Как найти обьем прямоугольного куба

  • Какой котлован нужно вырыть для погреба или фундамента?
  • Как узнать вместимость комнаты?

В расчетах поможет калькулятор объема в м3. Он пригодится в расчете объема прямоугольного параллелепипеда или куба, достаточно ввести данные в поля и узнать результат.

Справка. У прямоугольного параллелепипеда все грани являются прямоугольниками.

Калькулятор объема

Формулы расчета объема куба и параллелепипеда

Формула объема, по которой ведется расчет:

V=a*b*c

Где:

  • а – длина;
  • b – ширина;
  • c – высота.

Указано, что нужно вводить данные в метрах и результат получается в кубометрах (м3), но использовать можно любые системные единицы: мм, см или дм. Для конвертации используйте подсказки:

  • 1 мм3 = 0,000000001 м3;
  • 1 см3 = 0,000001 м3;
  • 1 дм3 = 0,001 м3.

Калькулятор кубических метров — это простой и эффективный инструмент для расчета вместимости любой прямоугольной формы. Этот инструмент поможет вам быстро получить ответ и будет полезен как для практических работ, так и в учебе. Используйте онлайн-калькулятор объема и получайте точные данные.


Загрузить PDF


Загрузить PDF

Куб — трехмерная геометрическая фигура, у которой все ребра равны (длина равна ширине и равна высоте). У куба шесть квадратных граней, которые пересекаются под прямым углом и стороны которых равны. Вычислить объем куба легко — нужно перемножить длину, ширину и высоту. Так как у куба длина равна ширине и равна высоте, то объем куба равен s3, где s — длина одного (любого) ребра куба.

  1. Изображение с названием Calculate the Volume of a Cube Step 1

    1

    Найдите длину одного ребра куба. Как правило, длина ребра куба дана в условии задачи. Если вы вычисляете объем реального объекта кубической формы, измерьте его ребро линейкой или рулеткой.

    • Рассмотрим пример. Ребро куба равно 5 см. Найдите объем куба.
  2. Изображение с названием Calculate the Volume of a Cube Step 2

    2

    Возведите в куб длину ребра куба. Другими словами, умножьте длину ребра куба саму на себя три раза. Если s — длина ребра куба, то s * s *s = s3 и, таким образом, вы вычислите объем куба.

    • Этот процесс аналогичен процессу нахождения площади основания куба (равна произведению длины на ширину квадрата в основании) и последующему умножению площади основания на высоту куба (то есть, другими словами, вы умножаете длину на ширину и на высоту). Так как в кубе длина ребра равна ширине и равна высоте, то этот процесс можно заменить возведением ребра куба в третью степень.
    • В нашем примере объем куба равен 5 * 5 *5 = 53 = 125.
  3. Изображение с названием Calculate the Volume of a Cube Step 3

    3

    К ответу припишите единицы измерения объема (если вы этого не сделаете, ваша оценка может быть снижена). Так как объем — это количественная характеристика пространства, занимаемого телом, то единицами измерения объема являются кубические единицы (кубические сантиметры, кубические метры и так далее).

    • В нашем примере размер ребра куба давался в сантиметрах, поэтому объем будет измеряться в кубических сантиметрах (или в см3). Итак, объем куба равен 125 см3.
    • Если размер ребра куба дается в других единицах, то и объем куба измеряется в соответствующих кубических единицах. Например, если ребро куба равно 5 м (а не 5 см), то его объем равен 125 м3.

    Реклама

  1. Изображение с названием Calculate the Volume of a Cube Step 4

    1

    В некоторых задачах длина ребра куба не дана, но даны другие величины, с помощью которых можно найти ребро куба и его объем. Например, если вам дана площадь поверхности куба, то разделите ее на 6, из полученного значения извлеките квадратный корень и вы найдете длину ребра куба. Затем возведите длину ребра куба в третью степень и вычислите объем куба.

    • Площадь поверхности куба равна 6s2, где s — длина ребра куба (то есть вы находите площадь одной грани куба, а затем умножаете ее на 6, так как у куба 6 равных граней).
    • Рассмотрим пример. Площадь поверхности куба равна 50 см2. Найдите объем куба.
  2. Изображение с названием Calculate the Volume of a Cube Step 5

    2

    Разделите площадь поверхности куба на 6 (так как у куба 6 равных граней, вы получите площадь одной грани куба). В свою очередь площадь одной грани куба равна s2, где s — длина ребра куба.

    • В нашем примере: 50/6 = 8,33 см2 (не забывайте, что площадь измеряется в квадратных единицах — см2, м2 и так далее).
  3. Изображение с названием Calculate the Volume of a Cube Step 6

    3

    Так как площадь одной грани куба равна s2, то извлеките квадратный корень из значения площади одной грани и получите длину ребра куба.

    • В нашем примере, √8,33 = 2,89 см.
  4. Изображение с названием Calculate the Volume of a Cube Step 7

    4

    Возведите в куб полученное значение, чтобы найти объем куба (как описано в предыдущем разделе).

    • В нашем примере: 2,89 * 2,89 * 2,89 = 2,893 = 24,14 см3. К ответу не забудьте приписать кубические единицы.

    Реклама

  1. Изображение с названием Calculate the Volume of a Cube Step 8

    1

    Разделите диагональ одной из граней куба на √2, чтобы найти длину ребра куба. Таким образом, если в задаче дана диагональ грани (любой) куба, то вы можете найти длину ребра куба, разделив диагональ на √2.

    • Рассмотрим пример. Диагональ грани куба равна 7 см. Найдите объем куба. В этом случае длина ребра куба равна 7/√2 = 4,96 см. Объем куба равен 4,963 = 122,36 см3.
    • Запомните: d2 = 2s2, где d — диагональ грани куба, s — ребро куба. Эта формула вытекает из теоремы Пифагора, согласно которой квадрат гипотенузы (в нашем случае диагональ грани куба) прямоугольного треугольника равен сумме квадратов катетов (в нашем случае ребер), то есть d2 = s2 + s2 = 2s2.
  2. Изображение с названием Calculate the Volume of a Cube Step 9

    2

    Разделите диагональ куба на √3, чтобы найти длину ребра куба. Таким образом, если в задаче дана диагональ куба, то вы можете найти длину ребра куба, разделив диагональ на √3. Диагональ куба — отрезок, соединяющий две вершины, симметричные относительно центра куба, равный D2 = 3s2 (где D — диагональ куба, s — ребро куба).

    • Эта формула вытекает из теоремы Пифагора, согласно которой квадрат гипотенузы (в нашем случае диагональ куба) прямоугольного треугольника равен сумме квадратов катетов (в нашем случае один катет — это ребро, а второй катет — это диагональ грани куба, равная 2s2), то есть D2 = s2 + 2s2 = 3s2.
    • Рассмотрим пример. Диагональ куба равна 10 м. Найдем объем куба:
      • D2 = 3s2
      • 102 = 3s2
      • 100 = 3s2
      • 33,33 = s2
      • 5,77 м = s
      • Объем куба равен 5,773 = 192,45 м3

    Реклама

Об этой статье

Эту страницу просматривали 605 977 раз.

Была ли эта статья полезной?

Калькулятор для расчета объема параллелепипеда

C помощью нашего Онлайн-калькулятора для расчета объема параллелепипеда Вы можете быстро и точно рассчитать объем прямоугольного параллелепипеда. Для того, чтобы вычислить объем прямоугольного параллелепипеда, введите значение ребер «a», «b», «c» и нажмите кнопку «Рассчитать». Также Вы можете указать точность полученного результата, т.е. количество знаков после запятой, до которого будет округлен рассчитанный объем параллелепипеда.

Расчет объема параллелепипеда

Задайте значение ребер параллелепипеда а, b, c и нажмите кнопку «Рассчитать»

Округлить результат до

знаков после запятой

Рассчитать

Прямоугольный параллелепипед – это многогранник, у которого все грани являются прямоугольниками.

Объем прямоугольного параллелепипеда вычисляется по следующей формуле:
,
где a, b, c – ребра параллелепипеда.

Формулы объема геометрических фигур

Объем геометрической фигуры

— количественная характеристика пространства, занимаемого телом или веществом. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Объем куба

Куб

Объем куба равен кубу длины его грани.

Формула объема куба:

V = a3

где V — объем куба,

a — длина грани куба.

Объем призмы

призма

Объем призмы равен произведению площади основания призмы, на высоту.

Формула объема призмы:

V = So h

где V — объем призмы,

So — площадь основания призмы,

h — высота призмы.

Объем параллелепипеда

параллелепипед

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда:

V = So · h

где V — объем параллелепипеда,

So — площадь основания,

h — длина высоты.

Объем прямоугольного параллелепипеда

прямоугольный параллелепипед

Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

Формула объема прямоугольного параллелепипеда:

V = a · b · h

где V — объем прямоугольного параллелепипеда,

a — длина,

b — ширина,

h — высота.

Объем пирамиды

пирамида

Объем пирамиды равен трети от произведения площади ее основания на высоту.

Формула объема пирамиды:

где V — объем пирамиды,

So — площадь основания пирамиды,

h — длина высоты пирамиды.

Объем правильного тетраэдра

правильный тетраэдр

Формула объема правильного тетраэдра:

где V — объем правильного тетраэдра,

a — длина ребра правильного тетраэдра.

Объем цилиндра

цилиндр

Объем цилиндра равен произведению площади его основания на высоту.

Формулы объема цилиндра:

V = π R2 h

V = So h

где V — объем цилиндра,

So — площадь основания цилиндра,

R — радиус цилиндра,

h — высота цилиндра,

π = 3.141592.

Объем конуса

конус

Объем конуса равен трети от произведению площади его основания на высоту.

Формулы объема конуса:

где V — объем конуса,

So — площадь основания конуса,

R — радиус основания конуса,

h — высота конуса,

π = 3.141592.

Объем шара

шар

Объем шара равен четырем третьим от его радиуса в кубе помноженного на число пи.

Формула объема шара:

где V — объем шара,

R — радиус шара,

π = 3.141592.

Определение куба

Куб (или гексаэдр) — это правильный многогранник, который состоит из многоугольников, являющихся квадратами.

объем куба

У куба 12 ребер – отрезков, которые являются сторонами квадратов (граней куба).
Также он имеет 8 вершин и 6 граней.

Онлайн-калькулятор объема куба

Формула объема куба

Для нахождения объема куба нужно перемножить его измерения – длину, ширину и высоту. Исходя из того, что куб состоит из квадратов, все его измерения одинаковы и численно равны длине ребра.

Формула для вычисления объема куба такова:

V=a3V=a^3

где aa — длина ребра куба.

Рассмотрим несколько примеров.

Задача 1

Найти объем куба, если периметр PP его грани aa равен 16 cм.16text{ cм.}

Решение

P=16P=16

Периметр PP грани куба связан с длиной его ребра aa по формуле:

P=a+a+a+a=4⋅aP=a+a+a+a=4cdot a

16=4⋅a16=4cdot a

a=164=4a=frac{16}{4}=4

Найдем объем нашего тела:

V=a3=43=64 см3V=a^3=4^3=64text{ см}^3

Ответ: 64 см3.64text{ см}^3.

Задача 2

Одна четвертая часть диагонали квадрата равна 3 см.3text{ см.} Найти объем куба, образованного данным четырехугольником.

Решение

Пусть dd — диагональ фигуры, тогда по условию:

d4=3frac{d}{4}=3

d=4⋅3=12d=4cdot 3=12

Найдем сторону этого квадрата. Обратимся за помощью к теореме Пифагора:

a2+a2=12a^2+a^2=12,

где aa — сторона квадрата.

2⋅a2=122cdot a^2=12

a=6a=sqrt{6}

Приходим к окончательным расчетам для объема:

V=a3=(6)3=66 см3V=a^3=(sqrt{6})^3=6sqrt{6}text{ см}^3

Ответ: 66 см3.6sqrt{6}text{ см}^3.

Чуть более сложный пример.

Задача 3

В куб вписан шар, площадь SS которого равна 64π64pi. Найти объем куба.

Решение

S=64πS=64pi

Первый шагом является нахождение радиуса RR данного шара. Формула его площади такова:

S=4⋅π⋅R2S=4cdotpicdot R^2

64π=4⋅π⋅R264pi=4cdotpicdot R^2

64=4⋅R264=4cdot R^2

644=R2frac{64}{4}=R^2

16=R216=R^2

R=4R=4

Для куба радиус вписанного шара является половиной его стороны aa:

a=2⋅R=2⋅4=8a=2cdot R=2cdot4=8

Объем вычисляется следующим образом:

V=a3=83=512 см3V=a^3=8^3=512text{ см}^3

Ответ: 512 см3.512text{ см}^3.

На Студворке вы можете оформить заказ контрольных работ для студентов по самым низким ценам!

Тест по теме «Объем куба»

Понравилась статья? Поделить с друзьями:
  • Как найти ответы на скай смарт тест
  • Круглые плечи у мужчин как исправить
  • Как найти друзей по алфавиту
  • Steam is not installed please install it first как исправить
  • Как найти вебкамщицу по фото