В данной публикации мы рассмотрим, как можно найти объем тетраэдра и разберем примеры решения задач для закрепления материала.
-
Формула вычисления объема тетраэдра
- 1. Общая формула (через площадь основания и высоту)
- 2. Объем правильного тетраэдра
- Примеры задач
Формула вычисления объема тетраэдра
1. Общая формула (через площадь основания и высоту)
Объем (V) тетраэдра считается также, как и объем любой пирамиды. Он равняется одной третьей произведения площади любой грани и высоты, опущенной на нее:
- S – площадь грани ABC, в данном случае выступающего в роли основания
- h – высота, опущенная на грань ABC
2. Объем правильного тетраэдра
В правильном тетраэдре все грани являются равносторонними треугольниками. Объем данной фигуры равен одной двенадцатой произведения длины его ребра в кубе на квадратный корень из числа 2.
Т.к. это правильный тетраэдр, все его ребра равны (AB = BC = AC = AD = BD = CD).
Примеры задач
Задание 1
Площадь одной из граней тетраэдра равна 24 см2, а высоту, опущенная на нее – 9 см. Найдите объем фигуры.
Решение:
Применим общую формулу и получаем:
Задание 2
Дан правильный тетраэдр, ребро которого равняется 8 см. Найдите его объем.
Решение:
Воспользуемся формулой для расчета объема правильной фигуры:
Рассмотрим произвольный треугольник ABC и точку D, не лежащую в плоскости этого треугольника. Соединим отрезками эту точку с вершинами треугольника ABC. В результате получим треугольники ADC, CDB, ABD. Поверхность ограниченная четырьмя треугольниками ABC, ADC, CDB и ABD называется тетраэдром и обозначается DABC.
Треугольники, из которых состоит тетраэдр, называются его гранями.
Стороны данных треугольников называют ребрами тетраэдра. А их вершины – вершинами тетраэдра
Тетраэдр имеет 4 грани, 6 ребер и 4 вершины.
Два ребра, которые не имеют общей вершины, называются противоположными.
Зачастую для удобства, одну из граней тетраэдра называют основанием, а оставшиеся три грани боковыми гранями.
Таким образом, тетраэдр – это простейший многогранник, гранями которого являются четыре треугольника.
Но также верно и утверждение, что любая произвольная треугольная пирамида является тетраэдром. Тогда также верно, что тетраэдром называют пирамиду, в основании которой лежит треугольник.
Высотой тетраэдра называется отрезок, который соединяет вершину с точкой, расположенной на противоположной грани и перпендикулярный к ней.
Медианой тетраэдра называется отрезок, который соединяет вершину с точкой пересечения медиан противоположной грани.
Бимедианой тетраэдра называется отрезок, который соединяет середины скрещивающихся ребер тетраэдра.
Так как тетраэдр – это пирамида с треугольным основанием, то объем любого тетраэдра можно рассчитать по формуле
,
где
- S – площадь любой грани,
- H – высота, опущенная на эту грань
Правильный тетраэдр – частный вид тетраэдра
Тетраэдр, у которого все грани равносторонние треугольник называется правильным.
Свойства правильного тетраэдра:
- Все грани равны.
- Все плоские углы правильного тетраэдра равны 60°
- Так как каждая его вершина является вершиной трех правильных треугольников, то сумма плоских углов при каждой вершине равна 180°
- Любая вершина правильного тетраэдра проектируется в ортоцентр противоположной грани (в точку пересечения высот треугольника).
Пусть нам дан правильный тетраэдр ABCD с ребрами равными a. DH – его высота.
Произведем дополнительные построения BM – высоту треугольника ABC и DM – высоту треугольника ACD.
Высота BM равна BM и равна
Рассмотрим треугольник BDM, где DH, являющаяся высотой тетраэдра также и высота данного треугольника.
Высоту треугольника, опущенную на сторону MB можно найти, воспользовавшись формулой
, где
BM=, DM=, BD=a,
p=1/2 (BM+BD+DM)=
Подставим эти значения в формулу высоты. Получим
Вынесем 1/2a. Получим
Применим формулу разность квадратов
После небольших преобразований получим
Объем любого тетраэдра можно рассчитать по формуле
,
где ,
Подставив эти значения, получим
Таким образом формула объема для правильного тетраэдра
где a –ребро тетраэдра
Вычисление объема тетраэдра, если известны координаты его вершин
Пусть нам даны координаты вершин тетраэдра
Из вершины проведем векторы , , .
Для нахождения координат каждого из этих векторов вычтем из координаты конца соответствующую координату начала. Получим
Геометрических смысл смешенного произведения трех векторов заключается в следующем – смешенное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах.
Так как тетраэдр есть пирамида с треугольным основанием, а объем пирамиды в шесть раз меньше объема параллелепипеда, то тогда имеет смысл следующая формула
Для закрепления материала рассмотрим пример использования формулы объема тетраэдра.
Объем правильного тетраэдра равен 2 см3. Найдите объем правильного тетраэдра, ребро которого в 3 раза больше ребра данного тетраэдра.
Объем правильного тетраэдра вычисляется по формуле
Тогда
Выразим куб стороны
Если сторону увеличить в 3 раза, что его куб увеличиться в 27 раз. Тогда
м
Найдем объем
Тетраэдр – простейшее многогранное тело, гранями и основанием которого являются треугольники.
Онлайн-калькулятор объема тетраэдра
Тетраэдр имеет четыре грани, каждая их которых образована тремя сторонами. Вершин у тетраэдра четыре, из каждой выходит по три ребра.
Данное тело разделяется на несколько видов. Ниже приведена их классификация.
- Равногранный тетраэдр — у него все грани являются одинаковыми треугольниками;
- Ортоцентрический тетраэдр — все высоты, проведенные из каждой вершины на противолежащую грань, являются одинаковыми по длине;
- Прямоугольный тетраэдр — ребра, исходящие из одной вершины, образуют друг с другом угол в 90 градусов;
- Каркасный;
- Соразмерный;
- Инцентрический.
Формулы объема тетраэдра
Объем данного тела можно найти несколькими способами. Разберем их более подробно.
Через смешанное произведение векторов
Если тетраэдр построен на трех векторах с координатами:
a⃗=(ax,ay,az)vec{a}=(a_x, a_y, a_z)
b⃗=(bx,by,bz)vec{b}=(b_x, b_y, b_z)
c⃗=(cx,cy,cz)vec{c}=(c_x, c_y, c_z),
тогда объем этого тетраэдра это смешанное произведение этих векторов, то есть такой определитель:
V=16⋅∣axayazbxbybzcxcycz∣V=frac{1}{6}cdotbegin{vmatrix}
a_x & a_y & a_z \
b_x & b_y & b_z \
c_x & c_y & c_z \
end{vmatrix}
Известны координаты четырех вершин октаэдра. A(1,4,9)A(1,4,9), B(8,7,3)B(8,7,3), C(1,2,3)C(1,2,3), D(7,12,1)D(7,12,1). Найдите его объем.
Решение
A(1,4,9)A(1,4,9)
B(8,7,3)B(8,7,3)
C(1,2,3)C(1,2,3)
D(7,12,1)D(7,12,1)
Первым шагом является определение координат векторов, на которых построено данное тело.
Для этого необходимо найти каждую координату вектора путем вычитания соответствующих координат двух точек. Например, координаты вектора AB→overrightarrow{AB}, то есть, вектора, направленного от точки AA к точке BB, это разности соответствующих координат точек BB и AA:
AB→=(8−1,7−4,3−9)=(7,3,−6)overrightarrow{AB}=(8-1, 7-4, 3-9)=(7, 3, -6)
Далее, аналогично:
AC→=(1−1,2−4,3−9)=(0,−2,−6)overrightarrow{AC}=(1-1, 2-4, 3-9)=(0, -2, -6)
AD→=(7−1,12−4,1−9)=(6,8,−8)overrightarrow{AD}=(7-1, 12-4, 1-9)=(6, 8, -8)
Теперь найдем смешанное произведение данных векторов, для этого составим определитель третьего порядка, при этом принимая, что AB→=a⃗overrightarrow{AB}=vec{a}, AC→=b⃗overrightarrow{AC}=vec{b}, AD→=c⃗overrightarrow{AD}=vec{c}.
∣axayazbxbybzcxcycz∣=∣73−60−2−668−8∣=7⋅(−2)⋅(−8)+3⋅(−6)⋅6+(−6)⋅0⋅8−(−6)⋅(−2)⋅6−7⋅(−6)⋅8−3⋅0⋅(−8)=112−108−0−72+336+0=268begin{vmatrix}
a_x & a_y & a_z \
b_x & b_y & b_z \
c_x & c_y & c_z \
end{vmatrix}=
begin{vmatrix}
7 & 3 & -6 \
0 & -2 & -6 \
6 & 8 & -8 \
end{vmatrix}=7cdot(-2)cdot(-8) + 3cdot(-6)cdot6 + (-6)cdot0cdot8 — (-6)cdot(-2)cdot6 — 7cdot(-6)cdot8 — 3cdot0cdot(-8) = 112 — 108 — 0 — 72 + 336 + 0 = 268
То есть, объем тетраэдра равен:
V=16⋅∣axayazbxbybzcxcycz∣=16⋅∣73−60−2−668−8∣=16⋅268≈44.8 см3V=frac{1}{6}cdotbegin{vmatrix}
a_x & a_y & a_z \
b_x & b_y & b_z \
c_x & c_y & c_z \
end{vmatrix}=frac{1}{6}cdot
begin{vmatrix}
7 & 3 & -6 \
0 & -2 & -6 \
6 & 8 & -8 \
end{vmatrix}=frac{1}{6}cdot268approx44.8text{ см}^3
Ответ
44.8 см3.44.8text{ см}^3.
Формула объема равногранного тетраэдра по его стороне
Эта формула справедлива только для вычисления объема равногранного тетраэдра, то есть такого тетраэдра, у которого все грани являются одинаковыми правильными треугольниками.
V=2⋅a312V=frac{sqrt{2}cdot a^3}{12}
aa — длина ребра тетраэдра.
Определить объем тетраэдра, если дана его сторона, равная 11 см11text{ см}.
Решение
a=11a=11
Подставляем aa в формулу для объема тетраэдра:
V=2⋅a312=2⋅11312≈156.8 см3V=frac{sqrt{2}cdot a^3}{12}=frac{sqrt{2}cdot 11^3}{12}approx156.8text{ см}^3
Ответ
156.8 см3.156.8text{ см}^3.
На нашем сайте вы можете оформить выполнение контрольных работ на заказ онлайн!
Тест по теме «Объем тетраэдра»
Объем тетраэдра, формула
Вывод формулы объема тетраэдра
Объем тетраэдра расчитывается по классической формуле объема пирамиды. В нее необходимо подставить высоту тетраэдра и площадь правильного (равностороннего) треугольника.
Объем тетраэдра — равен дроби в числителе которой корень квадратный из двух в знаменателе двенадцать, помноженной на куб длины ребра тетраэдра
[ V = frac{sqrt{2}}{12} a^3 ]
(V — объем тетраэдра, a — ребро тетраэдра)
Вычислить, найти объем тетраэдра по формуле (1)
Объем тетраэдра |
стр. 357 |
---|
The key insight is to first determine the minimum distance between the body diagonal and the face diagonal. Without loss of generality let the cube have unit side length and take the body diagonal to be the segment joining $(0,0,0)$ to $(1,1,1)$; then there are six face diagonals that do not intersect the body diagonal. These can be partitioned into two groups of three such that each group lies in a plane, and form the sides of equilateral triangle of side length $sqrt{2}$ perpendicular to the body diagonal, which passes through the centers of these triangles.
Consequently, the minimum distance between the body diagonal and any such face diagonal is simply $$frac{sqrt{2}}{2sqrt{3}} = frac{1}{sqrt{6}}.$$
Since the tetrahedron is regular, with two vertices on the body diagonal and two on the face diagonal, this means distance between two non-adjacent edges of the tetrahedron is $1/sqrt{6}$. If the side length of the tetrahedron is $2s$, then this implies the distance between $(s, -frac{1}{2sqrt{6}}, 0)$ and $(0, frac{1}{2 sqrt{6}}, s)$ is $2s$; i.e., we require $$s^2 + frac{1}{6} + s^2 = 4s^2,$$ or $$s = frac{1}{2sqrt{3}}.$$
Therefore, the tetrahedron’s volume is $$V = frac{(2s)^3}{6sqrt{2}} = frac{1}{18sqrt{6}},$$ and the volume for the original cube of side length $a$ is $$V(a) = frac{a^3}{18 sqrt{6}}.$$
We could also have found this by noting that the circumscribed cube to the tetrahedron has edge length $1/sqrt{6}$, thus the edge of the tetrahedron, being also the face diagonal of the circumscribed cube, has length $sqrt{2}$ times this. And the circumscribed cube’s volume is just $frac{1}{6 sqrt{6}}$, which is $3$ times the volume of the inscribed tetrahedron, since the four congruent tetrahedra inside the cube but outside the regular tetrahedron each has volume $1/6$ that of the cube. So the desired tetrahedron’s volume is again $1/(18 sqrt{6})$.
For your understanding and enjoyment, please see the animation below, which illustrates the six tetrahedra that can be thus formed with a single body diagonal. A representative set of coordinates for a single tetrahedron, up to symmetry, is $$left{ left(frac{6 — sqrt{6}}{12}, frac{6 + sqrt{6}}{12}, 0 right), left(frac{6 + sqrt{6}}{12}, frac{6 — sqrt{6}}{12}, 0 right), left(frac{1}{6}, frac{1}{6}, frac{1}{6}right), left(frac{1}{2}, frac{1}{2}, frac{1}{2}right) right}.$$