Как найти объем вращения цилиндра

Содержание:

Говоря об объеме, имеют ввиду вместимость пространственной фигуры. Как вы думаете, емкость какого из цилиндров на рисунке больше?

Объем фигур вращения - определение и вычисление с примерами решения

Призмой, вписанной (описанной) в цилиндр, называется призма, основания которой вписаны (описаны) в основания цилиндра.

Объем цилиндра

Пусть в цилиндр с радиусом Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

При бесконечном возрастании Объем фигур вращения - определение и вычисление с примерами решения площадь оснований данных призм приближаются к площади основания Объем фигур вращения - определение и вычисление с примерами решения цилиндра, а их объемы к объему цилиндра:

Объем фигур вращения - определение и вычисление с примерами решения

Объем цилиндра равен произведению площади основания на высоту.

Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Практическая работа. Какая связь существует между объемами призмы и пирамиды, если они имеют одинаковые высоты и основания? Можно ли эту связь применить для объемов цилиндра и конуса?

Объем фигур вращения - определение и вычисление с примерами решения

Сделайте из картона модели сосудов в виде конуса и цилиндра, радиусы оснований и высоты которых одинаковы. Заполните цилиндрический сосуд при помощи сосуда в виде конуса (песком, рисом, и т. п.).

Объем фигур вращения - определение и вычисление с примерами решения

Сколько таких сосудов понадобится, чтобы заполнить цилиндрический сосуд? Верно ли утверждение, что цилиндрический сосуд можно заполнить тремя полными сосудами в виде конуса?

Объем фигур вращения - определение и вычисление с примерами решения

Обобщите соответствующую информацию о вычислении объема призмы, цилиндра, пирамиды и конуса, записав ответ в закрашенные ячейки.

Объем призмы и цилиндра:

Объем = площадь основания Объем фигур вращения - определение и вычисление с примерами решения

Объем пирамиды и конуса:

Объем = Объем фигур вращения - определение и вычисление с примерами решения объем призмы или цилиндра, имеющих одинаковые

основание и высоту.

Объем конуса

Объем фигур вращения - определение и вычисление с примерами решения

Объем конуса равен произведению одной третьей площади основания на высоту.

Объем фигур вращения - определение и вычисление с примерами решения

Пример №1

Образующая конуса 9 см, высота 6 см. Найдите объем конуса.

Решение:

Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Объем шара и его частей

Практическая работа.

1. Возьмите мяч. Определите его диаметр.

2. Изобразите на бумаге развертку цилиндра, диаметр и высота которого равны диаметру шару.

3. Вырежьте и сверните полученную развертку в цилиндр без верхней крышки. Скрепите развертку при помощи клейкой ленты. Разделите высоту цилиндра на 3 равные части и сделайте соответствующие разметки.

Объем фигур вращения - определение и вычисление с примерами решения

4. Обверните мяч фольгой или плотным материалом и сделайте мешок сферической формы. Наполните его песком.

Объем фигур вращения - определение и вычисление с примерами решения

5. Пересыпьте песок в цилиндр. Какая часть цилиндра заполнится?

Если разделить поверхность шара сеткой из вертикальных и горизонтальных линий и маленький «прямоугольный» кусочек сферы соединить с центром шара, то можно представить, что шар состоит из множества «маленьких пирамид».

Объем фигур вращения - определение и вычисление с примерами решения

Объем шара можно выразить через сумму объемов «маленьких пирамид» Объем фигур вращения - определение и вычисление с примерами решения высота которых равна радиусу шара. Бесконечно уменьшая размеры оснований, количество пирамид будет бесконечно расти.

Объем фигур вращения - определение и вычисление с примерами решения

Сумма площадей оснований «маленьких пирамид» будет равна площади поверхности шара. Учитывая, что площадь поверхности шара равна Объем фигур вращения - определение и вычисление с примерами решения получим формулу для нахождения объема шара:

Объем фигур вращения - определение и вычисление с примерами решения

Объем шара:

Объем фигур вращения - определение и вычисление с примерами решения

Объем шара равен произведению Объем фигур вращения - определение и вычисление с примерами решения и куба радиуса.

Объем фигур вращения - определение и вычисление с примерами решения

Пример №2

Найдите: а) объем шара радиуса 3 см

b) радиус шара объемом 288 Объем фигур вращения - определение и вычисление с примерами решения

Решение:

а) Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

b) Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Сектор шара и сегмент шара

Шаровой сектор — это часть шара, ограниченная конической поверхностью с вершиной в центре шара. Шаровой сектор-объеденение конуса и шарового сегмента.

Объем фигур вращения - определение и вычисление с примерами решения

Так как шаровой сектор можно рассмотреть как предел суммы объемов маленьких пирамид, вершины которых находятся в центре шара, а основания касаются его поверхности, то

Объем фигур вращения - определение и вычисление с примерами решения

Здесь Объем фигур вращения - определение и вычисление с примерами решениярадиус шара, Объем фигур вращения - определение и вычисление с примерами решениявысота соответствующего сегмента

Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

С другой стороны,

Объем фигур вращения - определение и вычисление с примерами решения

Проектная работа.

Отношение между объемами цилиндра, конуса и шара, которое получил Архимед.

Архимед нашел формулу для нахождения объема шара, исследовав связь между объемом цилиндра, описанного вокруг шара радиуса и объемом конуса, вписанного в данный цилиндр. Попробуйте и вы выполнить это исследование.

Объем фигур вращения - определение и вычисление с примерами решения

Если Объем фигур вращения - определение и вычисление с примерами решения — расстояние от центра шара до плоскости сечения, то для шара радиуса Объем фигур вращения - определение и вычисление с примерами решения представьте зависимость площади сечения от Объем фигур вращения - определение и вычисление с примерами решения выполнив следующие шаги.

Объем фигур вращения - определение и вычисление с примерами решения

a) Вычислите следующие значения функции Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Для примера найдено значение Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

b) Представьте свои суждения о значениях Объем фигур вращения - определение и вычисление с примерами решения и Объем фигур вращения - определение и вычисление с примерами решения сечений.

c) Запишите общую формулу для определения площади сечения, расположенного на расстоянии Объем фигур вращения - определение и вычисление с примерами решения от центра шара радиуса Объем фигур вращения - определение и вычисление с примерами решения

d) Свяжите формулу, полученную в пункте Объем фигур вращения - определение и вычисление с примерами решения и следующий рисунок.

Объем фигур вращения - определение и вычисление с примерами решения

e) Чтобы понять умозаключения Архимеда, вернемся к начальному рисунку.

Объем фигур вращения - определение и вычисление с примерами решения

При «извлечении» конуса из цилиндра в поперечном сечении получаем кольца, параллельные основанию.

Объем фигур вращения - определение и вычисление с примерами решения

На одном и том же уровне поперечное сечение шара является кругом. Из подобия треугольников можно доказать, что площадь кольца каждого слоя равна Объем фигур вращения - определение и вычисление с примерами решения Поскольку площади этих плоских сечений равны, по принципу Кавальери равны и объемы этих тел.

Объем фигур вращения - определение и вычисление с примерами решения

Объемы подобных фигур

Отношения соответствующих линейных размеров подобных пространствнных фигур должны быть равны.

По заданным соответствующим размерам подобных пространственных фигур можно найти неизвестные размеры.

Пример №3

Конусы Объем фигур вращения - определение и вычисление с примерами решения и Объем фигур вращения - определение и вычисление с примерами решения подобны. По данным рисунка найдите образующую конуса Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Решение: Запишем отношение линейных размеров: Радиус А Образующая А

Объем фигур вращения - определение и вычисление с примерами решения

Известно, что отношение площадей поверхностей двух подобных пространственных фигур равно квадрату отношения соответствующих линейных размеров или квадрату коэффициента подобия:

Объем фигур вращения - определение и вычисление с примерами решения

Объемы подобных пространственных фигур

Объем фигур вращения - определение и вычисление с примерами решения

Отношение объемов подобных пространственных фигур Объем фигур вращения - определение и вычисление с примерами решения и Объем фигур вращения - определение и вычисление с примерами решения равно кубу отношения соответствующих линейных размеров или кубу коэффициента подобия:

Объем фигур вращения - определение и вычисление с примерами решения

Пример №4

Отношение боковых поверхностей двух подобных цилиндров равно 4:9. Зная, что разность объемов равна Объем фигур вращения - определение и вычисление с примерами решения куб.ед., найдите объемы цилиндров.

Решение: по условию Объем фигур вращения - определение и вычисление с примерами решения тогда Объем фигур вращения - определение и вычисление с примерами решения Значит Объем фигур вращения - определение и вычисление с примерами решения С другой стороны, принимая во внимание, что Объем фигур вращения - определение и вычисление с примерами решения получим:

Объем фигур вращения - определение и вычисление с примерами решения

Объемы тел в высшей математике

Под телом Т будем подразумевать ограниченное множество в пространстве.
Будем рассматривать тела, имеющие внутренние точки и границу, которая также принадлежит телу (замкнутые тела), причем такие, что любые две внутренние
точки можно соединить непрерывной линией, проходящей внутри тела.
 

Определение 1. Рассмотрим тело Объем фигур вращения - определение и вычисление с примерами решения составленное из конечного числа многогранников, содержащихся в Т, и тело Объем фигур вращения - определение и вычисление с примерами решения, составленное из многогранников и покрывающее тело Т: Объем фигур вращения - определение и вычисление с примерами решения
Пусть Объем фигур вращения - определение и вычисление с примерами решенияТело называется кубируемым, если Объем фигур вращения - определение и вычисление с примерами решения. При этом числоОбъем фигур вращения - определение и вычисление с примерами решения (1) называется объемом тела Т (по Жордану).
 

Замечание. Для кубируемости тела Т необходимо и достаточно, чтобы Объем фигур вращения - определение и вычисление с примерами решения такие, что Объем фигур вращения - определение и вычисление с примерами решения (2)

Пусть для кубируемого тела Т известны площади s=s(x) его сечения плоскостями перпендикулярными оси Ох, проходящими через точки (х, 0, 0),Объем фигур вращения - определение и вычисление с примерами решения – непрерывна

Объем фигур вращения - определение и вычисление с примерами решения

Разобьем отрезок [ a b ] на n частичных отрезков точками Объем фигур вращения - определение и вычисление с примерами решенияОбъем фигур вращения - определение и вычисление с примерами решенияи обозначим это разбиение Объем фигур вращения - определение и вычисление с примерами решения. Пусть Объем фигур вращения - определение и вычисление с примерами решения
Объем фигур вращения - определение и вычисление с примерами решения – диаметр разбиения, тогда Объем фигур вращения - определение и вычисление с примерами решения(3)
Где Объем фигур вращения - определение и вычисление с примерами решения это – объем цилиндрического тела высотой Объем фигур вращения - определение и вычисление с примерами решения и площадью основания
Объем фигур вращения - определение и вычисление с примерами решения Пусть Объем фигур вращения - определение и вычисление с примерами решения k − -ый слой тела Т между плоскостями, проходящими через точки Объем фигур вращения - определение и вычисление с примерами решенияи перпендикулярными оси Ох.

Так как Т – кубируемо, то Объем фигур вращения - определение и вычисление с примерами решения – также кубируемо и Объем фигур вращения - определение и вычисление с примерами решениягде
Объем фигур вращения - определение и вычисление с примерами решения
Тогда Объем фигур вращения - определение и вычисление с примерами решения
∀n ∈ N, или Объем фигур вращения - определение и вычисление с примерами решения

ГдеОбъем фигур вращения - определение и вычисление с примерами решенияэто – нижняя и верхняя суммы Дарбу функции s(x) для разбиения
Объем фигур вращения - определение и вычисление с примерами решения ПоэтомуОбъем фигур вращения - определение и вычисление с примерами решенияТаким образом Объем фигур вращения - определение и вычисление с примерами решения  (6)
 

Замечание. Нужно заметить, что неравенство (4), которое использовалось для вывода формулы (6), выполняется, когда любые два рассматриваемые сечения
тела Т при проекции на плоскость yOz полностью содержатся одно в другом.
Однако формула (6) верна и в общем случае. Для этого достаточно потребовать,
чтобы тело Т было кубируемым и функция s (x) – непрерывной.

Пример №5

Найти объем тела ограниченного поверхностями Объем фигур вращения - определение и вычисление с примерами решения (ниже параболоида).
 

Решение.

Из системы уравнений Объем фигур вращения - определение и вычисление с примерами решения  следует, что z=h.

Объем фигур вращения - определение и вычисление с примерами решения

В сечении тела плоскостью проходящей через точку (0, 0, z) перпендикулярно оси Оz получается кольцо

Объем фигур вращения - определение и вычисление с примерами решения

Радиус внешней окружности равен R, радиус внутренней равен Объем фигур вращения - определение и вычисление с примерами решения
Поэтому по формуле (6):
Объем фигур вращения - определение и вычисление с примерами решения
Формулу (6) удобно применять к телам вращения. Пусть y=f(x) – непрерывна на отрезке Объем фигур вращения - определение и вычисление с примерами решения Будем вращать криволинейную трапецию
Объем фигур вращения - определение и вычисление с примерами решения 

Объем фигур вращения - определение и вычисление с примерами решения

вокруг оси Ох. Получим тело:

Объем фигур вращения - определение и вычисление с примерами решения
Тогда сечением полученного тела плоскостью проходящей через точку (х,0,0) и перпендикулярной оси Ох будет круг радиуса Объем фигур вращения - определение и вычисление с примерами решения и по формуле (6): Объем фигур вращения - определение и вычисление с примерами решения
Где y=f(x).
Аналогично, если Объем фигур вращения - определение и вычисление с примерами решения то при вращении вокруг оси Ох фигуры Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения
Получим тело, объем которого Объем фигур вращения - определение и вычисление с примерами решения
 

Пример №6

Рассмотрим фигуру Φ ограниченную эллипсом Объем фигур вращения - определение и вычисление с примерами решения Объем фигур вращения - определение и вычисление с примерами решения
Найдем объем эллипсоида полученного при вращении вокруг оси Ох фигуры Φ .
 

Решение.

Объем фигур вращения - определение и вычисление с примерами решения

По формуле (7): Объем фигур вращения - определение и вычисление с примерами решения
Пусть функция x=x(y) – непрерывна при Объем фигур вращения - определение и вычисление с примерами решения Тогда, аналогично, при вращении вокруг оси Оу фигуры Объем фигур вращения - определение и вычисление с примерами решения
Объем фигур вращения - определение и вычисление с примерами решения

Получим тело, объем которого Объем фигур вращения - определение и вычисление с примерами решения(9)
Если же вращать вокруг оси Оу трапецию Объем фигур вращения - определение и вычисление с примерами решения 

Объем фигур вращения - определение и вычисление с примерами решения

то Объем фигур вращения - определение и вычисление с примерами решения(10)
 

Пример №7

Рассмотрим тело Т из примера 1. Оно получается, если вращать вокруг оси Oz фигуру, ограниченную линиями:
Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения
Из первого уравнения найдем Объем фигур вращения - определение и вычисление с примерами решения поэтому по формуле (9):
Объем фигур вращения - определение и вычисление с примерами решения
 

Пример №8

Объем Объем фигур вращения - определение и вычисление с примерами решенияпри вращении фигуры Объем фигур вращения - определение и вычисление с примерами решения из примера 3 вокруг оси Oz можно также найти и по формуле (10): Объем фигур вращения - определение и вычисление с примерами решения

Пример №9

Фигура Ф ограничена линиями Объем фигур вращения - определение и вычисление с примерами решения НайтиОбъем фигур вращения - определение и вычисление с примерами решения
 

Решение.

Объем фигур вращения - определение и вычисление с примерами решения

Абсциссы точек пересечения: Объем фигур вращения - определение и вычисление с примерами решения (см. пример 1 § 30). По формуле (8):
Объем фигур вращения - определение и вычисление с примерами решения

Замечание. Для непрерывной функции Объем фигур вращения - определение и вычисление с примерами решения рассмотрим криволинейную трапецию Объем фигур вращения - определение и вычисление с примерами решения 

Объем фигур вращения - определение и вычисление с примерами решения
Пусть Объем фигур вращения - определение и вычисление с примерами решения – непрерывно-дифференцируема на промежуткеОбъем фигур вращения - определение и вычисление с примерами решенияТогда по формуле (7): Объем фигур вращения - определение и вычисление с примерами решенияпо формуле (1) § 26
Объем фигур вращения - определение и вычисление с примерами решения

Где Объем фигур вращения - определение и вычисление с примерами решения– параметрическое задание линии Объем фигур вращения - определение и вычисление с примерами решения Таким образом Объем фигур вращения - определение и вычисление с примерами решения илиОбъем фигур вращения - определение и вычисление с примерами решения (12)
(кривая обходится так, чтобы область Ф оставалась слева).

Аналогично, для непрерывной функции Объем фигур вращения - определение и вычисление с примерами решениярассмотрим криволинейную трапецию Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения

Пусть Объем фигур вращения - определение и вычисление с примерами решения – непрерывно-дифференцируема на промежутке Объем фигур вращения - определение и вычисление с примерами решенияТогда по формуле (9): Объем фигур вращения - определение и вычисление с примерами решенияпо формуле (1) § 26
Объем фигур вращения - определение и вычисление с примерами решения
ГдеОбъем фигур вращения - определение и вычисление с примерами решения – параметрическое задание линии Объем фигур вращения - определение и вычисление с примерами решения

Таким образом Объем фигур вращения - определение и вычисление с примерами решения(13)   (кривая обходится так, чтобы область Ф оставалась слева).

Рассмотрим область ,ограниченную простой замкнутой кривой
Объем фигур вращения - определение и вычисление с примерами решения (кривая лежит по одну сторону от оси Ox ). Тогда объем Объем фигур вращения - определение и вычисление с примерами решения можно находить по формуле (12): Объем фигур вращения - определение и вычисление с примерами решения
(кривая обходится так, чтобы область оставалась слева).

Аналогично ,для области ограниченной простой замкнутой кривой
Объем фигур вращения - определение и вычисление с примерами решения (кривая лежит по одну сторону от оси Oy )объем Объем фигур вращения - определение и вычисление с примерами решения можно находить по формуле (13): Объем фигур вращения - определение и вычисление с примерами решения(кривая обходится так, чтобы область оставалась слева).

Пример №10

Дана астроида Объем фигур вращения - определение и вычисление с примерами решения
Объем фигур вращения - определение и вычисление с примерами решения
Найдем Объем фигур вращения - определение и вычисление с примерами решения.
 

Решение.

Объем фигур вращения - определение и вычисление с примерами решения по формуле (12):
Объем фигур вращения - определение и вычисление с примерами решения
 

Пример №11

Петля кривой Объем фигур вращения - определение и вычисление с примерами решениявращается вокруг оси Ox .Найти Объем фигур вращения - определение и вычисление с примерами решения.
 

Решение.

Объем фигур вращения - определение и вычисление с примерами решения
Объем фигур вращения - определение и вычисление с примерами решения петля обходится против часовой стрелки. По формуле (12):
Объем фигур вращения - определение и вычисление с примерами решения

Пусть Объем фигур вращения - определение и вычисление с примерами решения – кривая в полярной системе координат, r (ϕ) – непрерывна при Объем фигур вращения - определение и вычисление с примерами решения Рассмотрим на плоскости хОу криволинейный сектор
Объем фигур вращения - определение и вычисление с примерами решения

Объем фигур вращения - определение и вычисление с примерами решения
Тогда объем тела при вращении фигуры ϕ вокруг полярной оси равен
Объем фигур вращения - определение и вычисление с примерами решения (14)

Пример №12

Объем фигур вращения - определение и вычисление с примерами решения(см. пример 4 § 31).

Объем фигур вращения - определение и вычисление с примерами решения
Найдем Объем фигур вращения - определение и вычисление с примерами решения.
 

Решение.

По формуле (14):
Объем фигур вращения - определение и вычисление с примерами решения

  • Длина дуги кривой
  • Геометрические фигуры и их свойства
  • Основные фигуры геометрии и их расположение в пространстве
  • Пространственные фигуры — виды, изображения, свойства
  • Площадь прямоугольника
  • Объем пространственных фигур
  • Объёмы поверхностей геометрических тел
  • Фигуры вращения: цилиндр, конус, шар

Рис. 67

Пусть требуется
вычислить объем тела, образованного
вращением вокруг оси Ох
фигуры,
ограниченной линиями:

)
(рис. 67).

Составим
интегральную сумму и перейдем к
пределу.

С помощью произвольно
выбранных точек

разобьем отрезок

на n
элементарных
отрезков длиной

i
= 1, 2, …, n.
Через точки деления проведем плоскости
перпендикулярно оси Ох.
Получим n
элементарных объемов тел вращения. На
каждом элементарном отрезке выберем
произвольно точку

и вычислим значение функции
.
Каждое элементарное тело вращения
заменим цилиндром с радиусом основания

и высотой
,
объем которого равен
.
Объем всего тела вращения приближенно
равен

.

Данная сумма
является интегральной. Перейдем к
пределу при
,

и получим точное значение объема

или

.

Если тело образуется
вращением вокруг оси Оy
фигуры, ограниченной линиями:
,
,
то его объем находится по формуле

.

Пример
5.15.

Рис. 68

Найти объем тела
(рис. 68), образованного вращением вокруг
оси Ох
эллипса
.

Найдем
.

Учитывая
симметричность фигуры, находим объем

.

Пример
5.16.
Найти объем тела, образованного вращением
вокруг оси Оy
фигуры, ограниченной линиями
.

Рис. 69

Находим

.

5.10.3. Длина дуги кривой

Требуется найти
длину отрезка кривой

при
.
Составим интегральную сумму и перейдем
к пределу. Разобьем отрезок

с помощью произвольно выбранных точек

на n
элементарных отрезков длиной
.

Рис. 70

На каждом
элементарном отрезке заменим дугу
кривой отрезком прямой

(рис. 70), длина
которого равна

,
.

Используем
теорему Лагранжа о конечном приращении
функции на каждом элементарном отрезке.
Найдем
,

.

Получим
.

Составим интегральную
сумму для нахождения приближенного
значения длины дуги отрезка кривой

.

Перейдем к пределу,
получим точное значение длины дуги
кривой

или

.

Пример
5.17.
Найти длину полукубической параболы
,
отсекаемой прямой

(рис. 71).

Рис. 71

Найдем
;
.

Учтем симметрию
кривой, получим


.

5.11. Численные методы нахождения определенных интегралов

Данные методы
основываются на геометрическом смысле
интеграла как площади криволинейной
трапеции.

Обычно интервал
интегрирования

разбивают на
n
равных элементарных отрезков. На каждом
элементарном отрезке подынтегральную
функцию заменяют или прямой, или кривой
задаваемого вида. Интеграл находится
приближенно как сумма площадей
элементарных криволинейных трапеций.
В зависимости от вида функции, которой
заменяют подынтегральную функцию на
элементарных отрезках получают различные
формулы для численных методов нахождения
определенных интегралов.

Пусть требуется
вычислить значение интеграла
.
С помощью точек

где
,
разобьем отрезок

на n
равных элементарных отрезков длиной
h.
Вычислим значения подынтегральной
функции в точках деления
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Дополнения

1.О применении определённого интеграла для нахождения объёмов тел вращения

1.1.Формула объёма тела вращения

В п.16.2 дано определение тела вращения.

Получим формулу для вычисления объёма тела вращения, применяя интеграл, о котором вам рассказали в курсе «Алгебры и начал математического анализа».

Пусть f(x) — непрерывная на отрезке [a; b] функция, не принимающая отрицательных значений; А, В — точки графика этой функции (рис. 225).

Рис. 225

Рассмотрим криволинейную трапецию aABb, ограниченную кривой графика функции y = f(x), отрезками aA, bB и отрезком [a; b] координатной оси Ох (см. рис. 225). При вращении этой трапеции вокруг оси Ох образуется тело вращения (рис. 226), которое обозначим Ф и поставим себе задачу: найти объём этого тела.

Рис. 226

Через произвольную точку х = с (a  с  b) отрезка [a; b] проведём плоскость, перпендикулярную оси Ox. Сечением тела Ф этой плоскостью является круг, радиус которого равен f(с), а площадь — πf2(с) (или точка (c; 0)).

Объём части тела Ф, заключённой между этой плоскостью и плоскостью х = a, изменяется при изменении x. Обозначим этот переменный объём V(х). Заметим, что V(x) = V(a) = 0 при х = a; при х = b имеем V(x) = V(b) = V — искомый объём тела вращения Ф.

Покажем, что функция V(x) имеет производную V(х) и V(х) = πf2(х).

Придадим абсциссе х приращение х > 0, тогда объём V(х) получает приращение V(х) = V(x + x) – V(x). Пусть m и М — соответственно наименьшее и наибольшее значения функции f(х) на промежутке [х; х + х]. Цилиндр, радиус основания которого равен m, содержится в теле вращения объёма V(x), а цилиндр, радиус основания которого равен M, содержит тело объёма V(х); образующие цилиндров параллельны оси Ох и имеют длину, равную х. Объёмы этих цилиндров равны соответственно πm2x и πM2х. На основании свойства 2 объёмов (п. 10.1) получаем

πm2x  V(x πM2x,

откуда

πm2    πM2.

Рассуждения для случая х < 0 проводятся аналогично и дают тот же результат.

Пусть теперь х 0. Имеем m = M = f(x), тогда

πm2    πM2

или

πf2(х)    πf2(x).

Значит,  = πf2(х). По определению производной функции  = V(x). Поэтому V (x) = πf2(х), следовательно, V(х) — первообразная для πf2(х).

Таким образом, переменный объём V(x) телa вращения представляет собой одну из первообразных для функции πf 2(х) на отрезке [a; b]. Эта первообразная обладает тем свойством, что при х = a она обращается в нуль (V(a) = 0), а при х = b значение функции V(x) равно объёму тела вращения Ф (V(b) =  V).

Если F(х) — также некоторая первообразная для функции πf 2(x), то V(x) = F(x) + С, где С — произвольная постоянная. Так как V (a) = 0, то из равенства V(a) = F (a) + C = 0 находим С = –F(a). Значит, V(x) = F(x) – F(a). Toгдa V(b) = F(b) – F(a). Ho V(b) = V — искомый объём тела вращения ФТаким образом, V = F(b) – F(a), где F(b) и F(a) — значения первообразной для функции πf 2(х) соответственно при х = b и х = a. Это означает, что

V = f 2(x)dx = π(x)dx.

Вот почему объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями у = f(x), х = a, х = b, у = 0, вычисляется по формуле

Рис. 227

V = (x)dx.(*)

ЗАДАЧА. Вычислить объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями у = , х = 0, x = 2 и y = 0 (рис. 227).

Решение. Воспользуемся формулой V = π(x)dx, для чего из уравнения у =   находим y2 = 2х. Тогда получаем

V = πdx = 2π = = 4π.

Ответ: 4π.

1.2. Объёмы конуса, шара и его частей

Используя формулу V = (x)dx вычисления объёма тела вращения, получим формулы для вычисления объёма каждого изученного ранее тела вращения.

а) Объём конуса и усечённого конуса

Теорема 1 (об объёме полного конуса). Объём V конуса с высотой Н и радиусом основания R равен одной трети произведения площади основания на высоту:

V = R2Н.

Рис. 228

Доказательство. Конус с высотой Н и радиусом основания R можно рассматривать как тело, образованное вращением вокруг оси Ox прямоугольного треугольника с вершинами О(0; 0), А(Н; 0) и B(Н; R) (рис. 228). Треугольник АОВ является частным случаем криволинейной трапеции, которая ограничена графиком функции у = х (0  х  H), осью Ох и отрезком прямой х = Н. Поэтому, используя формулу (*) п. 1.1 «Дополнений» для объёма V конуса, получаем:

V = dx = π  = πR2H,

где πR2 — площадь основания конуса. Теорема доказана.

Теорема 2 (об объёме усечённого конуса). Объём усечённого конуса с высотой Н и радиусами оснований r и R равен сумме объёмов трёх конусов с высотой Н, радиусы оснований которых соответственно равны r, R и :

V =  (r2 + R2 + rR)H.

Доказательство. Усечённый конус с высотой H и радиусами оснований r и R можно получить, вращая вокруг оси  прямоугольную трапецию OABC, где O(0; 0), A(0; r), В(НR), С(H; 0) (рис. 229).

Рис. 229

Прямая проходит через точки (0; r) и (Н; R), поэтому её уравнение имеет вид у = х + r. Следовательно, трапеция ОАВС ограничена графиком функции y = х + r (0  х  Н), осью и отрезками прямых х = 0 и х = Н. Поэтому, используя формулу (*) из п. 1.1 для объёма V усечённого конуса, получаем:

V = dx.(1)

Для вычисления интеграла сделаем замену переменных

x + r = t.(2)

Тогда dx = dt, откуда dx = dt. Новые пределы интегрирования (по переменной t) найдём посредством подстановки формулы (2): х = 0 t = r; х = Н t = R. Таким образом, для объёма V усечённого конуса получаем:

что и требовалось доказать.

б) Объём шарового слоя

В прямоугольной декартовой системе координат Оху рассмотрим криволинейную трапецию aABb, ограниченную дугой окружности х2 + у2 = R2, –R  a  х  b  R, отрезком [ab] оси Ох и отрезками и прямых соответственно x =  a и х = b (рис. 230, а).

Рис. 230

При вращении криволинейной трапеции aАВb вокруг оси Ох образуется шаровой слой (рис. 230, б). Найдём его объём, применяя формулу (*) п. 1.1.

Из уравнения х2 + у2 = R2 имеем у2 = R2x2. Поэтому для вычисления объёма V шарового слоя получаем:

Таким образом, объём шарового слоя, отсекаемого от шара x2 + y2 + z2  R2 радиуса R плоскостями x = a и x = b, вычисляется пo формуле

V = (**)

Пусть радиусы оснований шарового слоя равны r1 и r2 (r> r2), а высота — H (см. рис. 230, a).

Тогда Н = ba,  = R2a2,  = R2b2.

Формулу (**) преобразуем к виду:

V = (3R2 – (b2 + ab + a2)) =

((R2b2) + (R2ab) + (R2a2)).

Из системы равенств (ba)2 = H2, R2a2 = , R2b2 = после почленного сложения их левых и правых частей находим:

R2ab = .

Тогда:

V = ((R2b2) + (R2ab) + (R2a2)) =

= .

Таким образом, объём шарового слоя с радиусами оснований r1 и r2 и высотой Н вычисляется по формуле

V = .(***)

в) Объём шара

Рис. 231

При вращении полукруга х2 + у2 = R2 (расположенного в плоскости Оху, рис. 231, а) вокруг оси Ох образуется шар радиуса R (рис. 231, б). Из уравнения окружности х2 + y2 = R2 данного полукруга имеем у2 = R2х2. Тогда, полагая a = –R, b = R в формуле (*) п. 1.1, находим объём V шара радиуса R:

Vш = =

= .

Таким образом, имеет место следующая теорема.

Теорема 3 (об объёме шара). Объём шара радиуса R вычисляется по формуле

Vш = .

г) Объём шарового сегмента

Если b = R (см. п. 1.2, б), то получаем криволинейную трапецию aAB (рис. 232, а), при вращении которой вокруг оси Ох образуется шаровой сегмент (рис. 232, б).

Рис. 232

Пусть высота шарового сегмента равна Н, тогда a = R – Н. Так как дуга криволинейной трапеции aАВ является частью окружности x2 + y2 = R2 (в плоскости Оxу), то формулу объёма шарового сегмента получим по аналогии с выводом формулы для вычисления объёма шара, учитывая при этом, что пределы a и b интегрирования равны: a = R – H, b = R, т. е.

Vш. сегм = =

=

Таким образом, имеет место следующая теорема.

Теорема 4 (об объёме шарового сегмента). Объём шарового сегмента, отсекаемого от шара радиуса R и имеющего высоту Н, вычисляется по формуле

Vш. сегм =

Если в формуле (***) п. 1.2, б положить r2 = 0, r1 = r, то получим формулу для вычисления объёма шарового сегмента с радиусом основания r и высотой Н:

Vш. сегм = (3r2 + H2).

д) Объём шарового сектора

Рис. 233

Шаровой сектор состоит из конуса с вершиной в центре шара и шарового сегмента, имеющего с конусом общее основание (риc. 233). Пусть R = ОА — радиус шара; АС = r — радиус основания шарового сегмента, NC  = H — его высота; N — точка сферы (рис. 233).

Найдём объёмы конуса и шарового сегмента, учитывая, что высота h конуса равна OC = ONCN = RН.

Объём Vк конуса равен

πАС2ОС = πr2 (RН).

Выразим r2 через R и H.

B прямоугольном треугольнике AOC находим r2 = AC2  = ОА2 – OC2 = R2 – (RH)2 = H(2RH).

Значит,

Vк = πH(2RH)(RH) =  (2R2 – 3RH + H2).

Для объёма шарового сегмента имеем:

Vш. сегм =  (3AC2 + NC2) =  (3H(2RH) + H2) =

=  (3H2).

Тогда для объёма шарового сектора получаем

Vш. сект = Vк + Vш. сегм =

 (2R2 – 3RH + H2) +  (3RHH2) =  πR2H.

Таким образом, доказана следующая теорема.

Теорема 5 (об объёме шарового сектора). Объём шарового сектора шара радиуса R вычисляется по формуле

Vш. сект = R2H,

где Н — длина высоты шарового сегмента, соответствующего данному шаровому сектору.

В курсе математического анализа, который вам предстоит изучать в высшей школе, будет дано строгое обоснование применения определённого интеграла не только для нахождения объёмов тел, но и для нахождения площадей поверхностей и длин дуг линий.
Решите самостоятельно следующие задачи.

1)Найдите объём тела, которое получается при вращении вокруг оси Ох криволинейной трапеции, ограниченной гиперболой у = , прямыми х = 3, х = 12 и осью абсцисс. (Ответ: 4π.)

2)Найдите объём тела, образованного вращением вокруг оси фигуры, ограниченной одной полуволной синусоиды у = sin x и отрезком 0  х  π оси абсцисс. (Ответ: 0,5π2.)

3)Найдите объём тела, полученного при вращении кривой у = 0,25х2 вокруг оси Оу в пределах от у = 1 до у = 5. (Ответ: 48π.)

4)Найдите объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной кривыми у = 2х2 и у = x3.

На этой странице вы узнаете

  • Как вода в кружке иллюстрирует сечение цилиндра?
  • Как лист бумаги превратить в цилиндр?

Что общего у джентльмена 19 века, Вилли Вонка из «Чарли и шоколадная фабрика», Шерлока Холмса в экранизации «Безобразная невеста» и некоторых сценических костюмов? Цилиндр! О нем, вернее о фигуре цилиндра и поговорим в статье.

Понятие цилиндра

Сейчас мы говорим про мужской головной убор, который был популярен в 19 веке и стал достаточно узнаваем в массовой культуре. Оказывается, в математике также существует цилиндр. И они похожи по форме.

Цилиндр — тело вращения, полученное при вращении прямоугольника вокруг одной из его сторон. 

Возможно, для уточнения некоторых терминов вам захочется заглянуть в статью «Тела вращения». 

Если посмотреть на форму шляпы, то она действительно будет похожа на геометрическую фигуру.  Встретить цилиндр можно и в наше время. Обычная кружка является цилиндром.

Прямая, вокруг которой мы крутили прямоугольник, чтобы получить цилиндр, — это ось цилиндра

Также, как у Земли есть ось вращения, она есть и у цилиндра. 

Наша кружка стоит на круглом дне. Это дно, как и самый верх кружки, будут называться основаниями цилиндра. 

Снова посмотрим на стенки кружки. В цилиндре эта поверхность будет называться цилиндрической поверхностью. Ее также могут называть боковой поверхностью цилиндра. 

Представим, что наша кружка раскрашена вертикальными линиями. Эти линии будут лежать на цилиндрической поверхности и перпендикулярны основаниям. У них есть название:

Образующая цилиндра — отрезок, соединяющий точки окружностей основания и перпендикулярный плоскостям оснований. 

Все образующие, — а в цилиндре их очень-очень много, —лежат только на цилиндрической поверхности. Эта поверхность и состоит из множества образующих. 

Узнаем ширину кружки. Для этого нужно измерить радиус дна. Этот же радиус будет радиусом основания, а в цилиндре он называется радиусом цилиндра. 

Теперь найдем высоту кружки. Для этого нужно измерить расстояние от дна до самого верха кружки. 

В математике это будет расстоянием между плоскостями, а ищется оно как длина перпендикуляра, опущенного из одной плоскости на другую. Подробнее про это можно прочесть в статье «Расстояния между фигурами». 

Высота цилиндра — перпендикуляр, опущенный из плоскости одного основания на плоскость второго основания. 

Свойства цилиндра

Рассмотрим, какими свойствами обладает цилиндр. 

Свойство 1. Основания цилиндра равны и параллельны. 

Это всегда два равных круга, лежащих в параллельных плоскостях. 

Свойство 2. Образующие цилиндра равны и параллельны. 

Поскольку все образующие перпендикулярны основаниям, то они параллельны между собой по свойству прямой и перпендикулярной ей плоскости. Подробнее про это свойство можно прочесть в статье «Углы в пространстве». 

А равны они потому, что являются перпендикуляром к основаниям, то есть равны высоте цилиндра.

Свойство 3. Сечение цилиндра, проходящее через ось цилиндра, является прямоугольником. Такое сечение в цилиндре будет называться осевым сечением цилиндра. 

Например, если разрезать тортик по диаметру, то место среза как раз будет прямоугольником. 

Подробности про сечения фигур можно найти в статье «Сечения». 

Свойство 4. Сечение цилиндра, проходящее параллельно оси цилиндра и перпендикулярно его основаниям, будет являться прямоугольником. 

Свойство 5. Сечение цилиндра, перпендикулярное оси цилиндра, является кругом с радиусом, равным радиусу цилиндра. Такое сечение в цилиндре называется перпендикулярным сечением цилиндра. 

Как вода в кружке иллюстрирует сечение цилиндра?

Если налить в кружку воду, то ее поверхность примет круглую форму. При этом совершенно без разницы, сколько воды наливать: поверхность останется кругом. 

Поскольку поверхность воды параллельна дну кружки, то есть основаниям цилиндра, то она является перпендикулярным сечением цилиндра. 

Этим опытом можно подтвердить свойство 5. 

Заметим, что все вышеописанные свойства относятся к прямому цилиндру. 

Цилиндр также может быть наклонным. В этом случае ось цилиндра и его образующие не будут перпендикулярны основаниям. 

Если мы разрежем поверхность цилиндра по одной из его образующих и как бы “развернем” ее, у нас получится прямоугольник. 

Это также легко увидеть, если вспомнить художников с тубусами. Тубус имеет форму цилиндра, и свернутый прямоугольный лист принимает такую же форму. 

Развертка боковой поверхности цилиндра — прямоугольник, одна сторона которого равна высоте цилиндра, а вторая — длине окружности его основания. 

Как лист бумаги превратить в цилиндр?

Поскольку развертка боковой поверхности цилиндра — это прямоугольник, то любой лист бумаги можно превратить в цилиндр. Для этого достаточно скрутить его в трубочку. При этом чем тоньше будет трубочка, тем меньше будет радиус цилиндра.

Формулы цилиндра

А если это прямоугольник, то мы знаем, как найти его площадь. Нам нужно умножить его длину на высоту. Так мы получаем площадь боковой поверхности цилиндра. 

(S_{бок.} = 2 pi RH)

В этой формуле 2R — длина окружности основания, где R — его радиус, а Н — образующая (или высота) цилиндра. Подробнее про площадь прямоугольника и длину окружности (а также про площадь круга) можно прочесть в статьях «Параллелограмм» и «Окружность и круг». 

Мы нашли площадь боковой поверхности. Как же теперь найти площадь полной поверхности?

Для этого нужно сложить площади боковой поверхности и оснований. Следовательно, мы получаем следующую формулу. 

(S = S_{бок.} + 2S_{осн.} = 2 pi RH+2 pi R^2 = 2 pi R(H + R))

Допустим, мы решили сделать чашку очень вкусного чая, но чтобы правильно его заварить нам нужно знать точный объем воды. Для этого вычислим объем цилиндра. Воспользуемся следующей формулой:

(V = S_{осн.}H = pi R^2H)

В этой формуле R — радиус цилиндра, Н — высота. 

Часто формулу объема можно применить для решения жизненных задач. Например, чтобы найти объем детали, погруженной в воду. 

Пример 1. В цилиндрическом сосуде налито 1650 см3 жидкости. В этот сосуд опустили деталь. При этом уровень жидкости увеличился в 1,2 раза. Найдите объем детали. Ответ выразите в см3

Решение. 

Шаг 1. Выразим высоту жидкости в первый и второй раз. Пусть вначале уровень жидкости был равен х, значит после того, как в нее опустили деталь, он стал равен 1,2х. 

Шаг 2. Вспомним физику и заметим, что объем жидкости в сосуде после того, как в него опустили деталь, будет равен сумме объемов жидкости и детали: V = Vж + Vд

Шаг 3. С помощью объема жидкости выразим площадь основания сосуда:

Vж = Sосн.H
1650 = Sосн.x
(S_{осн} = frac{1650}{x})

Шаг 4. Подставим площадь основания в формулу объема жидкости после того, как в нее опустили деталь:

(V = S_{осн.}H = frac{1650}{x} * 1,2x = 1980)

Шаг 5. Тогда объем детали будет равен:

Vд = V — Vж
Vд = 1980 — 1650 =330 

Ответ: 330 см3

Фактчек

  • Цилиндр — тело вращения, полученное при вращении прямоугольника вокруг одной из его сторон. Цилиндр может быть прямым и наклонным. В наклонном цилиндре ось не перпендикулярна основаниям цилиндра. 
  • Цилиндр состоит из двух оснований и цилиндрической поверхности (боковой поверхности цилиндра). Основания имеют форму кругов, равны между собой и лежат в параллельных плоскостях. Развертка боковой поверхности имеет форму прямоугольника. 
  • Образующая цилиндра — отрезок, соединяющий точки окружностей основания и перпендикулярный плоскостям оснований. В прямом цилиндре образующая равна высоте цилиндра. Образующие равны и параллельны друг другу, а также образуют боковую поверхность цилиндра. 
  • Осевое сечение цилиндра проходит через его ось и является прямоугольником. Любое сечение, параллельное осевому, также будет являться прямоугольником. Перпендикулярное сечение проходит перпендикулярно оси цилиндра и параллельно его основаниям. Перпендикулярное сечение имеет форму круга. 

Проверь себя

Задание 1. 
Что такое образующая цилиндра?

  1. Ось вращения, с помощью которой получен цилиндр.
  2. Диаметр оснований цилиндра.
  3. Любой перпендикуляр, проведенный от одного основания к другому.
  4. Отрезок, соединяющий точки окружности основания. 

Задание 2. 
Площадь боковой поверхности цилиндра равняется 44. Его радиус равен 8. Найдите высоту цилиндра. 

  1. 2,75
  2. 5,5
  3. (2,75 pi)
  4. 2

Задание 3. 
Площадь основания цилиндра равна 16. Его высота равна 4. Найдите площадь полной поверхности цилиндра. 

  1. 64
  2. (64 pi)
  3. 32
  4. (32 pi)

Задание 4. 
Объем цилиндра равен 28, а его высота равняется 7. Найдите диаметр основания.

  1. 4
  2. 2
  3. 16
  4. 8

Ответы: 1. – 4 2. – 1 3. – 2  4. – 1

План урока:

Вычисление объема тела с помощью интеграла

Вычисление объема тел вращения

Объем наклонной призмы

Объем пирамиды

Объем конуса

Объем шара

Шаровой сегмент

Площадь сферы

Вычисление объема тела с помощью интеграла

Пусть у нас есть произвольная фигура, расположенная между двумя параллельными плоскостями:

1 obem slozhnyh tel

Как найти ее объем? Поступим следующим образом. Проведем прямую, перпендикулярную этим плоскостям. Эта прямая будет осью координат х. Пусть одна из плоскостей пересекает эту ось в точке а, а другая – в точке b. Таким образом, на координатной прямой появляется отрезок [a; b]. Далее разобьем этот отрезок на n равных отрезков, длина каждого из них будет равна величина ∆х. Обозначим концы этих отрезков как х0, х1, х2…, хn, причем точке х0 будет совпадать с точкой а, а точка хn – с точкой b. Ниже показано такое построение для n = 10:

2 obem slozhnyh tel

Далее через полученные точки проведем сечения, параллельные двум плоскостям, ограничивающим фигуру. Площадь сечения, проходящую через точку с номером i, обозначим как S(xi). Эти плоскости рассекут тело на n других тел. Обозначим объем тела, заключенного между сечениями с площадями S(xi) и S(xi+1) как V(xi). Можно приближенно считать, что эти тела имеют форму прямых цилиндров (напомним, что в общем случае цилиндром необязательно считается фигура, основанием которой является круг, основание может иметь и любую другую форму). Высота всех этих цилиндров будет равна величине ∆х. Тогда объем V(xi) может быть приближенно рассчитан так:

3 obem slozhnyh tel

Общий же объем исследуемой фигуры будет суммой объемов этих прямых цилиндров:

4 obem slozhnyh tel

Здесь знак ∑ означает сумму i слагаемых, каждое из которых равно величине S(xi)•∆х. Ясно, что чем больше мы возьмем число n, тем точнее будет полученная нами формула. Поэтому будет увеличивать число n до бесконечности, тогда приближенная формула станет точной:

5 obem slozhnyh tel

В правой части стоит предел суммы бесконечного числа слагаемых. Мы уже сталкивались с такими пределами, когда изучали определенный интеграл в курсе алгебры. Так как х0 = a, а число хn-1 при бесконечном увеличении n приближается к числу хn, то есть к b, то можно записать следующее:

6 obem slozhnyh tel

Здесь S(x) – это некоторая функция, которая устанавливает зависимость между площадью сечения объемной фигуры и координатой х, указывающей расположение этого сечения. Данная формула позволяет вычислять объем с помощью интеграла.

7 obem slozhnyh tel

Итак, для вычисления объема тела необходимо:

1) выбрать в пространстве какую-то удобную ось координат Ох;

2) найти площадь произвольного сечения фигуры, проходящей перпендикулярно оси Ох через некоторую координату х;

3) найти значение чисел а и b – координат сечений, ограничивающих тело в пространстве;

4) выполнить интегрирование.

Понятно, что сразу понять, как используется эта формула, тяжело. Поэтому рассмотрим простой пример.

Задание. Фигура расположена в пространстве между двумя плоскостями, перпендикулярными оси Ох, причем координаты этих сечений равны 1 и 2. Каждое сечение фигуры с координатой х является квадратом, причем его сторона равна величине 1/х. Найдите объем тела.

8 obem slozhnyh tel

Решение. В данной задаче ось Ох уже проведена. Известны и числа а и b – это 1 и 2, ведь именно плоскости, проходящие через точки х =1 и х = 2, ограничивают исследуемое тело. Теперь найдем площадь произвольного сечения с координатой х. Так как оно является квадратом со стороной 1/х, то его площадь будет квадратом этой стороны:

9 obem slozhnyh tel

Вычисление объема тел вращения

Телом вращения называют тело, которое может быть получено вращением какой-то плоской фигуры относительно некоторой оси вращения. Например, цилиндр получают вращением прямоугольника вокруг одной из его сторон, а усеченный конус – вращением прямоугольной трапеции вокруг боковой стороны, перпендикулярной основанию.

10 obem slozhnyh tel

В задачах на вычисление объемов таких тел ось координат Ох уже задана естественным образом – это ось вращения тела. Ясно, что каждое сечение тела, перпендикулярное оси вращения, будет являться кругом.

Рассмотрим случай, когда вокруг оси Ох поворачивают график некоторой функции у = f(x), ограниченный прямыми х = а и у = b. Тогда получится тело, сечениями которого являются круги, причем их радиусы будут равны величине f(x). Напомним, что площадь круга вычисляют по формуле:

11 obem slozhnyh tel

11 2 esli telo vraschenija polucheno vrascheniem edited

Рассмотрим, как на практике используется эта формула.

Задание. Объемное тело получено вращением ветви параболы

12 obem slozhnyh tel

вокруг оси Ох. Оно ограничено плоскостями х = 0 и х = 4. Каков объем такой фигуры?

13 obem slozhnyh tel

Решение. Здесь пределами интегрирования, то есть числами а и b, будут 0 и 4. Используем формулу для тела вращения:

14 obem slozhnyh tel

Объем наклонной призмы

Теперь, используя методы интегрирования, мы можем составить формулы для вычисления объема некоторых фигур. Начнем с треугольной наклонной призмы.

Пусть есть треугольная призма АВСА2В2С2. Проведем ось Ох так, чтобы точка О располагалась в плоскости АВС. Пусть Ох пересечет плоскость А2В2С2 в некоторой точке О2. Тогда отрезок ОО2 будет высотой призмы, ведь он окажется перпендикулярным к обоим основаниям.

15 obem slozhnyh tel

Обозначим длину высоты ОО2 буквой h. Далее докажем, что всякое сечение А1В1С1 призмы, перпендикулярное оси Ох, будет равно ∆АВС. Действительно, если АВС⊥ОО2 и А1В1С1⊥ОО2, то АВС||А1В1С1. Прямые АВ и А1В1 принадлежат одной грани АВВ2А1, но не пересекаются, ведь они находятся в параллельных плоскостях. Аналогично АС||А1С1 и ВС||В1С1. Теперь посмотрим на четырехугольник АВВ1А1. АВ||A1В1 и АА1||ВВ1. Тогда АВВ1А1 по определению является параллелограммом. Это означает, что отрезки АВ и А1В1 одинаковы. Аналогично доказывается, что одинаковы отрезки АС и А1С1, а также ВС и В1С1. Но тогда одинаковы и ∆АВС и ∆А1В1С1.

Итак, площади всех сечений одинаковы и равны площади основания призмы. Обозначим ее как S. Так как S не зависит от координаты, то интегрирование будет выглядеть так:

16 obem slozhnyh tel

Итак, объем треугольной наклонной призмы – это произведение площади ее основания на высоту. Теперь рассмотрим произвольную призму, в чьем основании находится n-угольник. Такой n-угольник можно разбить на треугольные призмы с общей высотой h и площадями оснований S1, S2, S3, …

17 obem slozhnyh tel

Тогда площадь S основания всей призмы будет суммой этих чисел:

18 obem slozhnyh tel

18 2 obem naklonnoj prizmy raven proizvedeniju edited

Задание. Основание призмы – это треугольник со сторонами 10, 10 и 12. Боковое ребро имеет длину 8 и образует с основанием угол в 60°. Вычислите объем призмы.

19 obem slozhnyh tel

Решение. Пусть в основании призмы АВСА1В1С1 лежит ∆АВС со сторонами АВ = 12 и АС = ВС = 10. Его площадь можно найти разными способами, но быстрее всего применить формулу Герона. Сначала найдем полупериметр ∆АВС:

20 obem slozhnyh tel

Далее надо найти высоту призмы. Опустим из точки В1 перпендикуляр В1О на плоскость АВС. Тогда в прямоугольном ∆ОВВ1 ∠В = 60° (по условию задачи и по определению угла между плоскостью и прямой). Зная длину бокового ребра ВВ1, найдем высоту ОВ1:

21 obem slozhnyh tel

Объем пирамиды

Для начала рассмотрим треугольную пирамиду. Вершину пирамиды примем за начало координат точку О, а ось Ох проведем перпендикулярно основанию, причем ось будет направлена от вершины пирамиды к основанию.

22 obem slozhnyh tel

Пусть ось Ох пересечет основание АВС в точке М. Тогда ОМ – это высота, чью длину мы обозначим как h.

Далее построим сечение А1В1С1, параллельное АВС. Это сечение пересечется с ОМ в точке ОМ1. Тогда ОМ1 – это координата х, характеризующая расположение сечения А1В1С1.

Осталось составить выражение для площади ∆А1В1С1. Так как АВ||A1B1, то ∠АВО и ∠А1В1О одинаковы как соответственные углы. Тогда у ∆АВО и ∆А1В1О есть два равных угла (ведь ∠АОВ у них общий), а потому эти треугольники подобны по первому признаку подобия. Это означает, что

23 obem slozhnyh tel

Надо как-то найти значение коэффициента k, который, очевидно, как-то зависит от переменной х. Рассмотрим теперь ∆ОМВ и ∆ОМ1В1. Они прямоугольные, ведь ОМ перпендикулярен плоскостям этих треугольников. Также у них есть общий угол ∠ОВМ. Значит, они подобны, и поэтому

24 obem slozhnyh tel

Итак, если пирамида имеет высоту h и площадь основания S, то объем пирамиды равен:

25 obem slozhnyh tel

Выведенная нами формула справедлива для треугольной пирамиды. Однако если в основании пирамиды лежит произвольный многоугольник, то, разбив этот многоугольник на треугольники, мы разобьем и пирамиду на несколько треугольных пирамид. У них будет общая высота h и площади оснований S1, S2, S3…, которые в сумме составляют площадь многоугольника S.

26 obem slozhnyh tel

Объем треугольных пирамид рассчитывается по выведенной нами формуле:

27 obem slozhnyh tel

27 2 obem piramidy raven odnoj treti ot proizvedenija edited

Задание. В основании пирамиды высотой 15 лежит квадрат со стороной 4. Вычислите ее объем.

Решение. Сначала находим площадь основания. Для этого надо сторону квадрата умножить саму на себя:

28 obem slozhnyh tel

Задание. В кубе АВСDA1В1С1D1 отмечены точки Е и F – середины ребер ВС и CD соответственно. Во сколько раз объем пирамиды С1EFC меньше объема куба?

29 obem slozhnyh tel

Решение. Обозначим длину ребра куба буквой а. Тогда его объем рассчитывается так:

30 obem slozhnyh tel

Задание. Отрезок MN перпендикулярен плоскости пятиугольника АВСDE. Точка K, принадлежащая этой плоскости, делит отрезок MN в отношении 2:1. Во сколько раз объем пирамиды MABCDE больше объема пирамиды NABCDE?

31 obem slozhnyh tel

Решение. Запишем формулы для объемов этих пирамид. При этом учтем, что MK – высота для MABCDE, а NK – это высота для NABCDE.

32 obem slozhnyh tel

Далее рассмотрим такую фигуру, как усеченная пирамида. Ясно, что ее объем можно вычислить, если из объема исходной пирамиды вычесть объем отсеченной верхушки.

33 obem slozhnyh tel

Снова рассмотрим пирамиду ОАВС, через которую проведено сечение А1В1С1, параллельное основанию.

34 obem slozhnyh tel

Обозначим площадь нижнего основания пирамиды как S2, а площадь верхнего основания – как S1. Далее высоту усеченной пирамиды (отрезок ММ1) обозначим как h. Мы уже выяснили ранее, что основания АВС и А1В1С1 – это подобные треугольники, причем коэффициент их подобия k равен отношению высот ОМ и ОМ1. Тогда можно записать:

35 obem slozhnyh tel

Далее используем основное свойство пропорции:

36 obem slozhnyh tel

Далее числитель дроби мы раскладываем на множители, используя формулу разности кубов:

37 obem slozhnyh tel

37 2 obem usechennoj piramidy edited

Задание. Основаниями усеченной пирамиды являются квадраты со сторонами 9 см и 5 см, а высота пирамиды составляет 6 см. Найдите ее объем.

Сначала вычислим площади оснований:

38 obem slozhnyh tel

Объем конуса

Рассмотрим конус с высотой h и радиусом основания R. Совместим начало координат с вершиной конуса и направим ось Ох в сторону основания конуса. Тогда она пересечет основание в какой-то точке М c координатой h. Далее через точку М1 на оси Ох, имеющей координату х, проведем сечение, перпендикулярное оси Ох. Это сечение будет окружностью.

39 obem slozhnyh tel

Также построим образующую ОА, которая будет проходить через сечение в точке А1. Теперь сравним ∆ОАМ и ∆ОА1М1. Они прямоугольные, и у них есть общий угол ∠АОМ. Это значит, что они подобны, и поэтому справедливо отношение:

40 obem slozhnyh tel

Полученную формулу можно переписать в другом виде так, чтобы она содержала площадь основания, причем она будет похожа на аналогичную формулу для пирамиды:

41 obem slozhnyh tel

41 2 obem konusa mozhet byt vychislen po formulam edited

Задание. Радиус конуса – 8 см, а его высота составляет 12 см. Определите его объем.

Решение. Здесь надо просто применить выведенную формулу:

42 obem slozhnyh tel

Задание. В сосуде, имеющем форму перевернутого конуса, вода доходит до уровня, соответствующего 2/3 высоты сосуда. При этом ее объем составляет 192 мл. Каков объем всего сосуда?

43 obem slozhnyh tel

Решение. В задаче фигурируют два конуса. Один из них – это сам сосуд, а второй – его часть, заполненная водой. При выведении формулы объема мы уже выяснили, что радиусы таких конусов пропорциональны их высотам:

44 obem slozhnyh tel

Мы уже заметили, что формулы для объема пирамида и конуса идентичны. По сути, конус можно рассматривать как особый случай пирамиды, у которой в основании лежит не многоугольник, а окружность. Аналогично и усеченный конус можно считать особым случаем усеченной пирамиды, а поэтому для расчета его объема можно применять такую же формулу:

45 obem slozhnyh tel

Задание. Вычислите объем усеченного конуса с высотой 9 и радиусами оснований 7 и 4.

Решение. Сначала находим площади оснований:

46 obem slozhnyh tel

Объем шара

Пришло время разобраться и с таким телом, как шар. Здесь можно использовать тот же метод интегрирования, что и в случае с конусом и пирамидой. Но можно поступить и иначе – использовать выведенную нами для тел вращения формулу

47 obem slozhnyh tel

Шар как раз является телом вращения. Он получается при вращении полуокружности вокруг диаметра, на который эта дуга опирается.

48 obem slozhnyh tel

Напомним известное нам уравнение окружности, чей центр совпадает с началом координат:

49 obem slozhnyh tel

Здесь надо уточнить, что если у получившейся функции впереди записан знак «+», то ее график соответствует полуокружности, находящейся над осью Ох. Если же используется знак «–», то получается уже нижняя полуокружность, расположенная под осью Ох:

50 obem slozhnyh tel

В принципе мы можем поворачивать любую из этих полуокружностей вокруг Ох, но мы выберем верхнюю полуокружность. Заметим, что эта дуга начинается в точке х = – R и заканчивается в точке х = R, эти числа будут пределами интегрирования. Тогда объем шара равен:

51 obem slozhnyh tel

51 2 obem shara vychisljaetsja edited

Задание. Найдите объем шара с радиусом 6.

Решение. Подставляем радиус из условия в формулу:

52 obem slozhnyh tel

Задание. В цилиндр вписан шар. Во сколько раз объем цилиндра больше объема такого шара?

53 obem slozhnyh tel

Решение. Ясно, что так как шар вписан в цилиндр, то радиусы этих тел одинаковы. Обозначим этот радиус как R. Также ясно, что раз шар касается оснований цилиндра, то расстояние между ними (то есть высота цилиндра) равно двум радиусам шара:

54 obem slozhnyh tel

Шаровой сегмент

Когда плоскость проходит через шар, она рассекает его на две фигуры, которые именуются шаровым сегментом. Если из центра шара О провести радиус ОА длиной R в направлении плоскости сечения, который перпендикулярен этой плоскости, то он пересечет ее какой-то точке В. Длину отрезка АВ называют высотой шарового сегмента и обозначают буквой h:

55 obem slozhnyh tel

Ясно, что при этом отрезок ОВ – это расстояние от секущей плоскости (или от основания сегмента) до центра шара, причем этот отрезок имеет длину R –h.

Можно считать, что шаровой сегмент, как и шар, получается при вращении дуги окружности вокруг оси Ох. Однако если сам шар при этом ограничен плоскостями x = R и х = – R, то сегмент ограничен другими плоскостями: х = R и х = R – h. Это значит, что его объем можно вычислить с помощью интеграла также, как и объем шара, отличаться будет лишь нижний предел интегрирования:

56 obem slozhnyh tel

56 2 obem sharovogo segmenta edited

Заметим, что шар можно рассматривать как шаровой сегмент, чья высота вдвое больше его радиуса. И действительно, если в выведенную формулу мы подставим значение h = 2R, то получим уже известную нам формулу объема шара.

Задание. Найдите объем шарового сегмента высотой 6, если он отсечен от шара радиусом 15.

Решение. Используем выведенную формулу:

57 obem slozhnyh tel

Задание. Диаметр шара разделили на три равных отрезка. Через концы этих отрезков провели секущие плоскости, перпендикулярные диаметру. Чему равен объем тела, заключенного между этими двумя плоскостями (оно называется шаровым слоем), если радиус шара обозначен буквой R?

58 obem slozhnyh tel

Решение. Ясно, что для вычисления объема шарового слоя достаточно вычесть из объема шара объемы двух шаровых сегментов, образующихся при проведении секущих плоскостей. Так как они разделили диаметр на три одинаковых отрезка, то высота этих сегментов будет в три раза меньше диаметра шара:

59 obem slozhnyh tel

Площадь сферы

В предыдущих уроках мы уже узнали формулу для вычисления площади сферы, однако тогда мы ее не доказывали. Однако теперь мы можем ее доказать, используя формулу объема шара. Но сначала напомним саму формулу:

60 obem slozhnyh tel

Впишем сферу в многогранник с n гранями. Ясно, что расстояние от граней этого многогранника до центра сферы равно радиусы сферы R. Далее построим пирамиды, чьи вершины находятся в центре сферы, а основания – это грани многогранника. Заметим, что такие пирамиды будут иметь одинаковые высоты длиной R.

Обозначим площади граней многогранника как S1, S2, S3,…Sn. Тогда объемы пирамид, построенных на этих гранях, вычисляются так:

61 obem slozhnyh tel

Заметим, что в сумме эти объемы дают объем всего многогранника, а сумма площадей S1, S2, S3,…Sn – это площадь всей его поверхности. Тогда можно записать:

62 obem slozhnyh tel

62 2 obem mnogogrannika v kotoryj vpisana sfera edited

Теперь начнем неограниченно уменьшать размеры граней многогранника. Тогда число n будет расти, объем многогранника будет приближаться к объему шара, а площадь многогранника – к площади к сфере. Тогда и доказанное равенство можно будет записать так:

63 obem slozhnyh tel

Задание. Необходимо изготовить закрытый сосуд с заранее заданным объемом V. Предлагается два варианта формы этого сосуда – шар и куб. Так как поверхность сосуда покрывается очень дорогой краской, то необходимо выбрать вариант с меньшей площадью поверхности. Какую форму для сосуда следует выбрать?

Решение. Обозначим радиус шара как R, а ребро куба как а. Тогда можно записать:

64 obem slozhnyh tel

Теперь надо выяснить, какое из полученных значений больше. Для этого поделим площадь куба на площадь сферы. Если получится число, большее единицы, то площадь куба больше:

65 obem slozhnyh tel

Получившееся число больше единицы, ведь 6 больше числа π, равного 3,1415926… Значит, и площадь куба больше, а потому необходимо выбрать сосуд, имеющий форму шара.

Ответ: шар.

Примечание. Более сложными математическими методами можно доказать, что если второй сосуд имеет не форму куба, а вообще любую форму, отличную от шара, то всё равно следует выбирать именно сосуд в форме шара. То есть из всех поверхностей, ограничивающих определенный объем, именно сфера имеет наименьшую площадь. Этот факт имеет и физическое следствие – капли дождя и мыльные пузыри стремятся принять форму шара, также как и любые жидкости, находящиеся в невесомости.

Итак, мы научились вычислять объемы таких тел, как конус, пирамида, шар, призма. Также помощью интегрирования можно находить объемы и ещё более сложных тел, если мы можем составить функцию, описывающую площадь их сечения.

Понравилась статья? Поделить с друзьями:
  • Как найти помощь беженцам
  • Как исправить ошибку в имени в авиабилете победа
  • Пенится тесто для блинов как исправить
  • Как найти сиделку в тамбове
  • Как найти синтаксис в стихотворении