Как найти объем вращения окружности

Определение
3.
Тело
вращения – это тело, полученное вращением
плоской фигуры вокруг оси, не
пересекающей фигуру и лежащей с ней в
одной плоскости.

Ось вращения может
и пересекать фигуру, если это ось
симметрии фигуры.

Теорема
2.
Пусть
криволинейная трапеция, ограниченная
графиком непрерывной неотрицательной
функции
,
осьюи отрезками прямыхивращается вокруг оси.
Тогда объём получающегося тела вращения
можно вычислить по формуле


(2)

Доказательство.
Для такого тела сечение с абсциссой
– это круг радиуса,
значити формула (1) даёт требуемый результат.

Если фигура
ограничена графиками двух непрерывных
функций
и,
и отрезками прямыхи,
причёми,
то при вращении вокруг оси абсцисс
получим тело, объём которого

Пример
3.
Вычислить
объём тора, полученного вращением круга,
ограниченного окружностью вокруг оси абсцисс.

Решение.
Указанный круг снизу ограничен графиком
функции
,
а сверху –.
Разность квадратов этих функций:

Искомый объём

(графиком
подынтегральной функции является
верхняя полуокружность, поэтому
написанный выше интеграл – это площадь
полукруга).

Пример 4.
Параболический сегмент с основанием
,
и высотой,
вращается вокруг основания. Вычислить
объём получающегося тела («лимон»
Кавальери).

Решение.
Параболу расположим как показано на
рисунке. Тогда её уравнение
,
причем.
Найдём значение параметра:.
Итак, искомый объём:

Теорема
3.
Пусть
криволинейная трапеция, ограниченная
графиком непрерывной неотрицательной
функции
,
осьюи отрезками прямыхи,
причём,
вращается вокруг оси.
Тогда объём получающегося тела вращения
может быть найден по формуле

(3)

Идея
доказательства.

Разбиваем отрезок
точками,
на части и проводим прямые.
Вся трапеция разложится на полоски,
которые можно считать приближенно
прямоугольниками с основаниеми высотой.

Получающийся при
вращении такого прямоугольника цилиндр
разрежем по образующей и развернём.
Получим «почти» параллелепипед с
размерами:
,и.
Его объём.
Итак, для объёма тела вращения будем
иметь приближенноё равенство

Для получения
точного равенства надо перейти к пределу
при .
Написанная выше сумма есть интегральная
сумма для функции ,
следовательно, в пределе получим интеграл
из формулы (3). Теорема доказана.

Замечание
1.
В теоремах
2 и 3 условие
можно опустить: формула (2) вообще
нечувствительна к знаку,
а в формуле (3) достаточнозаменить на.

Пример
5.

Параболический сегмент (основание
,
высота)
вращается вокруг высоты. Найти объём
получающегося тела.

Решение.
Расположим
параболу как показано на рисунке. И хотя
ось вращения пересекает фигуру, она –
ось – является осью симметрии. Поэтому
надо рассматривать лишь правую половину
сегмента. Уравнение параболы
,
причем,
значит.
Имеем для объёма:

Замечание
2.
Если
криволинейная граница криволинейной
трапеции задана параметрическими
уравнениями
,,и,то можно использовать формулы (2) и (3) с
заменойнаинапри измененииt
от
до.

Пример
6.
Фигура
ограничена первой аркой циклоиды
,,,
и осью абсцисс. Найти объём тела,
полученного вращением этой фигуры
вокруг: 1) оси;
2) оси.

Решение.
1) Общая формула
В нашем случае:

2) Общая формула
Для нашей фигуры:

Предлагаем
студентам самостоятельно провести все
вычисления.

Замечание
3.
Пусть
криволинейный сектор, ограниченный
непре-рывной линией
и лучами,,
вращается вокруг полярной оси. Объём
получающегося тела можно вычислить по
формуле.

Пример
7.
Часть
фигуры, ограниченной кардиоидой
,
лежащая вне окружности,
вращается вокруг полярной оси. Найти
объём тела, которое при этом получается.

Решение.
Обе линии, а значит и фигура, которую
они ограничивают, симметричны относительно
полярной оси. Поэтому необходимо
рассматривать лишь ту часть, для которой

.
Кривые пересекаются прии

при
.
Далее, фигуру можно рассматривать как
разность двух секторов, а значит и объём
вычислять как разность двух интегралов.
Имеем:

Задачи
для самостоятельного решения.

1. Круговой сегмент,
основание которого ,
высота
,
вращается вокруг основания. Найти объём
тела вращения.

2. Найти объём
параболоида вращения, основание которого
,
а высота равна.

3. Фигура, ограниченная
астроидой
,вращает-ся вокруг оси абсцисс. Найти
объём тела, которое получается при этом.

4. Фигура, ограниченная
линиями
ивращается вокруг оси абсцисс. Найти
объём тела вращения.

Соседние файлы в папке Лекции по мат.анализу

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Объем тела вращения окружности

1. О применении определённого интеграла для нахождения объёмов тел вращения

1.1. Формула объёма тела вращения

В п.16.2 дано определение тела вращения.

Получим формулу для вычисления объёма тела вращения, применяя интеграл, о котором вам рассказали в курсе «Алгебры и начал математического анализа».

Пусть f ( x ) — непрерывная на отрезке [ a ; b ] функция, не принимающая отрицательных значений; А, В — точки графика этой функции (рис. 225).

Рассмотрим криволинейную трапецию aABb, ограниченную кривой графика функции y = f ( x ), отрезками aA, bB и отрезком [ a ; b ] координатной оси Ох (см. рис. 225). При вращении этой трапеции вокруг оси Ох образуется тело вращения (рис. 226), которое обозначим Ф и поставим себе задачу: найти объём этого тела.

Через произвольную точку х = с ( a ⩽ с ⩽ b ) отрезка [ a ; b ] проведём плоскость, перпендикулярную оси Ox. Сечением тела Ф этой плоскостью является круг, радиус которого равен f ( с ), а площадь — π f 2 ( с ) (или точка ( c ; 0)).

Объём части тела Ф , заключённой между этой плоскостью и плоскостью х = a, изменяется при изменении x. Обозначим этот переменный объём V ( х ) . Заметим, что V ( x ) = V ( a ) = 0 при х = a ; при х = b имеем V ( x ) = V ( b ) = V — искомый объём тела вращения Ф .

Покажем, что функция V ( x ) имеет производную V ′ ( х ) и V ′ ( х ) = π f 2 ( х ) .

Придадим абсциссе х приращение ∆ х > 0, тогда объём V ( х ) получает приращение ∆ V ( х ) = V ( x + ∆ x ) – V ( x ) . Пусть m и М — соответственно наименьшее и наибольшее значения функции f ( х ) на промежутке [ х ; х + ∆ х ] . Цилиндр, радиус основания которого равен m, содержится в теле вращения объёма ∆ V ( x ) , а цилиндр, радиус основания которого равен M , содержит тело объёма ∆ V ( х ); образующие цилиндров параллельны оси Ох и имеют длину, равную ∆ х . Объёмы этих цилиндров равны соответственно π m 2 • ∆ x и π M 2 • ∆ х . На основании свойства 2 объёмов (п. 10.1) получаем

π m 2 • ∆ x ⩽ ∆ V ( x ) ⩽ π M 2 • ∆ x,

π m 2 ⩽ ⩽ π M 2 .

Рассуждения для случая ∆ х ∆ х 0. Имеем m = M = f ( x ) , тогда

π m 2 ⩽ π M 2

π f 2 ( х ) ⩽ ⩽ π f 2 ( x ) .

Значит, = π f 2 ( х ). По определению производной функции = V ′ ( x ) . Поэтому V ′ ( x ) = π f 2 ( х ), следовательно, V ( х ) — первообразная для π f 2 ( х ).

Таким образом, переменный объём V ( x ) телa вращения представляет собой одну из первообразных для функции π f 2 ( х ) на отрезке [ a ; b ]. Эта первообразная обладает тем свойством, что при х = a она обращается в нуль ( V ( a ) = 0), а при х = b значение функции V ( x ) равно объёму тела вращения Ф ( V ( b ) = V ) .

Если F ( х ) — также некоторая первообразная для функции π f 2 ( x ) , то V ( x ) = F ( x ) + С, где С — произвольная постоянная. Так как V ( a ) = 0, то из равенства V ( a ) = F ( a ) + C = 0 находим С = – F ( a ). Значит, V ( x ) = F ( x ) – F ( a ). Toгдa V ( b ) = F ( b ) – F ( a ). Ho V ( b ) = V — искомый объём тела вращения Ф . Таким образом, V = F ( b ) – F ( a ) , где F ( b ) и F ( a ) — значения первообразной для функции π f 2 ( х ) соответственно при х = b и х = a. Это означает, что

V = f 2 ( x ) dx = π ( x ) dx.

Вот почему объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями у = f ( x ), х = a, х = b, у = 0, вычисляется по формуле

V = ( x ) dx . (*)

ЗАДАЧА. Вычислить объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями у = , х = 0, x = 2 и y = 0 (рис. 227).

Решени е. Воспользуемся формулой V = π ( x ) dx, для чего из уравнения у = находим y 2 = 2 х. Тогда получаем

V = π dx = 2 π • = = 4 π .

1.2. Объёмы конуса, шара и его частей

Используя формулу V = ( x ) dx вычисления объёма тела вращения, получим формулы для вычисления объёма каждого изученного ранее тела вращения.

а) Объём конуса и усечённого конуса

Теорема 1 ( об объёме полного конуса ). Объём V конуса с высотой Н и радиусом основания R равен одной трети произведения площади основания на высоту :

V = R 2 Н.

Доказательств о. Конус с высотой Н и радиусом основания R можно рассматривать как тело, образованное вращением вокруг оси Ox прямоугольного треугольника с вершинами О (0; 0), А ( Н ; 0) и B ( Н ; R ) (рис. 228). Треугольник АОВ является частным случаем криволинейной трапеции, которая ограничена графиком функции у = х (0 ⩽ х ⩽ H ), осью Ох и отрезком прямой х = Н. Поэтому, используя формулу (*) п. 1.1 «Дополнений» для объёма V конуса, получаем:

V = dx = π = π R 2 H,

где π R 2 — площадь основания конуса. Теорема доказана. ▼

Теорема 2 ( об объёме усечённого конуса ). Объём усечённого конуса с высотой Н и радиусами оснований r и R равен сумме объёмов трёх конусов с высотой Н , радиусы оснований которых соответственно равны r , R и :

V = ( r 2 + R 2 + rR ) H.

Доказательств о. Усечённый конус с высотой H и радиусами оснований r и R можно получить, вращая вокруг оси Oх прямоугольную трапецию OABC, где O (0; 0), A (0; r ), В ( Н ; R ) , С ( H ; 0) (рис. 229).

Рис. 229

Прямая AВ проходит через точки (0; r ) и ( Н ; R ), поэтому её уравнение имеет вид у = х + r. Следовательно, трапеция ОАВС ограничена графиком функции y = х + r (0 ⩽ х ⩽ Н ) , осью Oх и отрезками прямых х = 0 и х = Н. Поэтому, используя формулу (*) из п. 1.1 для объёма V усечённого конуса, получаем:

V = dx. (1)

Для вычисления интеграла сделаем замену переменных

x + r = t. (2)

Тогда dx = dt, откуда dx = dt. Новые пределы интегрирования (по переменной t ) найдём посредством подстановки формулы (2): х = 0 ⇒ t = r ; х = Н ⇒ t = R. Таким образом, для объёма V усечённого конуса получаем:

V = t 2 dt = = • ( R 3 – r 3 ) =
= ( r 2 + R 2 + rR ) ,

что и требовалось доказать. ▼

б) Объём шарового слоя

В прямоугольной декартовой системе координат Оху рассмотрим криволинейную трапецию aABb, ограниченную дугой окружности х 2 + у 2 = R 2 , –R ⩽ a ⩽ х ⩽ b ⩽ R, отрезком [ a ; b ] оси Ох и отрезками aА и bВ прямых соответственно x = a и х = b (рис. 230, а ) .

Рис. 230

При вращении криволинейной трапеции aАВb вокруг оси Ох образуется шаровой слой (рис. 230, б ). Найдём его объём, применяя формулу (*) п. 1.1.

Из уравнения х 2 + у 2 = R 2 имеем у 2 = R 2 – x 2 . Поэтому для вычисления объёма V шарового слоя получаем:

V = dx = = =
=

Таким образом, объём шарового слоя, отсекаемого от шара x 2 + y 2 + z 2 ⩽ R 2 радиуса R плоскостями x = a и x = b, вычисляется пo формуле

V = (**)

Пусть радиусы оснований шарового слоя равны r 1 и r 2 ( r 1 > r 2 ), а высота — H (см. рис. 230, a ).

Тогда Н = b – a, = R 2 – a 2 , = R 2 – b 2 .

Формулу (**) преобразуем к виду:

V = (3 R 2 – ( b 2 + ab + a 2 )) =
= (( R 2 – b 2 ) + ( R 2 – ab ) + ( R 2 – a 2 )).

Из системы равенств ( b – a ) 2 = H 2 , R 2 – a 2 = , R 2 – b 2 = после почленного сложения их левых и правых частей находим:

R 2 – ab = .

V = (( R 2 – b 2 ) + ( R 2 – ab ) + ( R 2 – a 2 )) =
= .

Таким образом, объём шарового слоя с радиусами оснований r 1 и r 2 и высотой Н вычисляется по формуле

V = . (***)

При вращении полукруга х 2 + у 2 = R 2 (расположенного в плоскости Оху, рис. 231, а ) вокруг оси Ох образуется шар радиуса R (рис. 231, б ). Из уравнения окружности х 2 + y 2 = R 2 данного полукруга имеем у 2 = R 2 – х 2 . Тогда, полагая a = –R, b = R в формуле (*) п. 1.1, находим объём V шара радиуса R :

V ш = =
= .

Таким образом, имеет место следующая теорема.

Теорема 3 ( об объёме шара ). Объём шара радиуса R вычисляется по формуле

V ш = .

г) Объём шарового сегмента

Если b = R (см. п. 1.2, б), то получаем криволинейную трапецию aAB (рис. 232, а ), при вращении которой вокруг оси Ох образуется шаровой сегмент (рис. 232, б ).

Пусть высота шарового сегмента равна Н, тогда a = R – Н. Так как дуга AВ криволинейной трапеции aАВ является частью окружности x 2 + y 2 = R 2 (в плоскости Оxу ) , то формулу объёма шарового сегмента получим по аналогии с выводом формулы для вычисления объёма шара, учитывая при этом, что пределы a и b интегрирования равны: a = R – H , b = R, т. е.

V ш. сегм = =
=

Таким образом, имеет место следующая теорема.

Теорема 4 ( об объёме шарового сегмента ). Объём шарового сегмента, отсекаемого от шара радиуса R и имеющего высоту Н , вычисляется по формуле

V ш. сегм =

Если в формуле (***) п. 1.2, б положить r 2 = 0, r 1 = r, то получим формулу для вычисления объёма шарового сегмента с радиусом основания r и высотой Н :

V ш. сегм = (3 r 2 + H 2 ) .

д) Объём шарового сектора

Шаровой сектор состоит из конуса с вершиной в центре шара и шарового сегмента, имеющего с конусом общее основание (риc. 233). Пусть R = ОА — радиус шара; АС = r — радиус основания шарового сегмента, NC = H — его высота; N — точка сферы (рис. 233).

Найдём объёмы конуса и шарового сегмента, учитывая, что высота h конуса равна OC = ON – CN = R – Н.

Объём V к конуса равен

π • АС 2 • ОС = π r 2 ( R – Н ) .

Выразим r 2 через R и H.

B прямоугольном треугольнике AOC находим r 2 = AC 2 = ОА 2 – OC 2 = R 2 – ( R – H ) 2 = H (2 R – H ).

V к = π H (2 R – H )( R – H ) = (2 R 2 – 3 RH + H 2 ) .

Для объёма шарового сегмента имеем:

V ш. сегм = (3 AC 2 + NC 2 ) = (3 H (2 R – H ) + H 2 ) =
= (3 RН – H 2 ) .

Тогда для объёма шарового сектора получаем

V ш. сект = V к + V ш. сегм =
= (2 R 2 – 3 RH + H 2 ) + (3 RH – H 2 ) = π R 2 H.

Таким образом, доказана следующая теорема.

Теорема 5 ( об объёме шарового сектора ). Объём шарового сектора шара радиуса R вычисляется по формуле

V ш. сект = R 2 H ,

где Н — длина высоты шарового сегмента, соответствующего данному шаровому сектору.

В курсе математического анализа, который вам предстоит изучать в высшей школе, будет дано строгое обоснование применения определённого интеграла не только для нахождения объёмов тел, но и для нахождения площадей поверхностей и длин дуг линий. Решите самостоятельно следующие задачи.

1) Найдите объём тела, которое получается при вращении вокруг оси Ох криволинейной трапеции, ограниченной гиперболой у = , прямыми х = 3, х = 12 и осью абсцисс. ( Ответ: 4 π .)

2) Найдите объём тела, образованного вращением вокруг оси Oх фигуры, ограниченной одной полуволной синусоиды у = sin x и отрезком 0 ⩽ х ⩽ π оси абсцисс. ( Ответ: 0,5 π 2 . )

3) Найдите объём тела, полученного при вращении кривой у = 0,25 х 2 вокруг оси Оу в пределах от у = 1 до у = 5. ( Ответ: 48 π .)

4) Найдите объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной кривыми у = 2 х 2 и у = x 3 .

Объем тела вращения онлайн

Рассмотрим некоторую функцию , непрерывную на отрезке :

Если мы будем вращать данную функцию вокруг оси , то образуется некоторое тело вращения:

Объём полученной фигуры можно посчитать, вычислив вот такой интеграл:

Теперь рассмотрим некоторую функцию , непрерывную на отрезке :

На этот раз будем вращать данную функцию вокруг оси . В результате получим следующее тело вращения:

Его объём вычисляется по формуле:

Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha позволяет вычислить объём тела вращения, заданного практически любой функцией. Для этого, в калькулятор нужно ввести саму функцию, границы в пределах которых будет вычисляться объём тела и выбрать ось вращения.

Конспекты по математике на тему «Тела вращения. Объемы тел вращения»

Конспекты занятий по математике для студентов первого курса теме «Тела вращения. Объемы тел вращения».

Тела вращения — объёмные тела, полученные при вращении плоской фигуры вокруг своей оси или стороны.

Примеры тел вращения: цилиндр, конус, шар, сфера.

Цили́ндр (от греч. kýlindros, валик, каток) — геометрическое тело, образованное вращением прямоугольника вокруг одной из сторон.

Цилиндр состоит из двух параллельных кругов, не лежащих в одной плоскости, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей кругов, — образующими цилиндра.

Примеры тел, имеющих цилиндрическую форму: часть водопроводной трубы, консервная банка.

Радиусом цилиндра называется радиус его основания.

Высотой цилиндра называется расстояние между его основаниями.

Осью цилиндра называется прямая, проходящая через центр оснований, параллельно образующим.

Осевое сечение – сечение цилиндра плоскостью, проходящей через его ось.

Поверхность цилиндра состоит из оснований и боковой поверхности.

Боковая поверхность составлена из образующих.

Цилиндр называется прямым , если его образующие перпендикулярны плоскостям оснований.

Основания цилиндра равны и параллельны.

Образующие цилиндра равны и параллельны.

Ко́нус — тело вращения, образованное вращением прямоугольного треугольника, вокруг одного из его катетов.

Конус состоит из круга – основания конуса, вершины конуса — точки, не лежащей в плоскости основания, и всех отрезков, соединяющих вершину конуса с точками основания.

Примеры тел, имеющих форму конуса: воронка для наливания жидкости, чум — жилье народов севера, мороженое-рожок.

Отрезок, соединяющий вершину и границу основания, называется образующей конуса .

Боковая поверхность конуса — объединение образующих конуса.

Отрезок, опущенный перпендикулярно из вершины на плоскость основания, называется высотой конуса .

Конус называется прямым , если прямая ( ось конуса ), соединяющая вершину конуса с центром основания, перпендикулярна плоскости основания.

Сечение конуса плоскостью, проходящей через его ось, называется осевым сечением .

Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом .

Шар — тело вращения, полученное вращением полукруга около его неподвижного диаметра.

Примеры тел, имеющих форму шара или сферы: мыльный пузырь, земля, футбольный и теннисный мячи.

Любой отрезок, соединяющий центр шара с точкой его поверхности, называется радиусом .

Сфера это поверхность шара .

Отрезок, соединяющий две точки шаровой поверхности и проходящей через центр шара, называется диаметром .

Концы любого диаметра называются диаметрально противоположными точками шара.

Диаметр называется осью шара , а его оба конца — полюсами шара.

Плоскость, проходящая через центр шара, называется диаметральной плоскостью.

Плоскость, проходящая через точку А шаровой поверхности и перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью . Точка А называется точкой касания .

Если секущая плоскость проходит через центр шара, то сечение шара называется большим кругом . Другие плоские сечения шара называются малыми кругами.

Шар — это совокупность всех точек в трехмерном пространстве, расстояние от которых не превышает определенного расстояния до точки, называемой центром шара (О) (совокупность всех точек трехмерного пространства ограниченных сферой).

1. Уравнение шара с радиусом R и центром в начале декартовой системе координат :

x 2 + y 2 + z 2 ≤ R 2

2. Уравнение шара с радиусом R и центром в точке с координатами (x 0 , y 0 , z 0 ) в декартовой системе координат :

(x — x 0 ) 2 + (y — y 0 ) 2 + (z — z 0 ) 2 ≤ R 2

Сфера (поверхность шара) — это совокупность всех точек в трехмерном пространстве, которые находятся на одинаковом расстоянии от одной точки, называемой центром сферы (О).

Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

1. Уравнение сферы с радиусом R и центром в начале декартовой системе координат :

x 2 + y 2 + z 2 = R 2

2. Уравнение сферы с радиусом R и центром в точке с координатами (x 0 , y 0 , z 0 ) в декартовой системе координат :

(x — x 0 ) 2 + (y — y 0 ) 2 + (z — z 0 ) 2 = R 2

Формулы объема цилиндра, конуса и шара.

Цилиндр — это тело вращения, которое получается при вращении прямоугольника вокруг его стороны.

Объем прямого цилиндра равен произведению площади основания на высоту: V = S осн h , т.к. в основании цилиндра лежит круг, то S осн = S круга R 2 . Тогда формула объема цилиндра примет вид: V = π R 2 h .

Конус — геометрическое тело, образованное вращением прямоугольного треугольника около одного из его катетов.

Объем конуса равен одной трети произведения площади основания на высоту V = S осн h , т.к. в основании конуса лежит круг, то S осн =S круга =πR 2 . Тогда формула объема цилиндра примет вид: V = πR 2 h .

3. Объем усеченного конуса.

Усеченный конус — часть конуса, расположенная между его основанием и секущей плоскостью, параллельной основанию.

Шар — это геометрическое тело, состоящее из точек пространства, которые удалены от центра O на одинаковое расстояние R .

Объем шара радиуса R равен V = π R 3 .

источники:

http://mathforyou.net/online/calculus/volume/solid/

http://infourok.ru/konspekty-po-matematike-na-temu-tela-vrasheniya-obemy-tel-vrasheniya-4277759.html

Объём тела вращения

Пусть T — тело вращения, образованное вращением вокруг оси абсцисс криволинейной трапеции, расположенной в верхней полуплоскости и ограниченной осью абсцисс, прямыми x=a и x=b и графиком непрерывной функции y=f(x).

Докажем, что это тело вращения кубируемо и его объем выражается формулой

V=pi intlimits_{a}^{b} f^2(x),dx= pi intlimits_{a}^{b}y^2,dx,.

Сначала докажем, что это тело вращения регулярно, если в качестве Pi выберем плоскость Oyz, перпендикулярную оси вращения. Отметим, что сечение, находящееся на расстоянии x от плоскости Oyz, является кругом радиуса f(x) и его площадь S(x) равна pi f^2(x) (рис. 46). Поэтому функция S(x) непрерывна в силу непрерывности f(x). Далее, если S(x_1)leqslant S(x_2), то это значит, что f(x_1)leqslant f(x_2). Но проекциями сечений на плоскость Oyz являются круги радиусов f(x_1) и f(x_2) с центром O, и из f(x_1)leqslant f(x_2) вытекает, что круг радиуса f(x_1) содержится в круге радиуса f(x_2).

Чертёж тела вращения вокруг оси абсцисс

Итак, тело вращения регулярно. Следовательно, оно кубируемо и его объем вычисляется по формуле

V=pi intlimits_{a}^{b} S(x),dx= pi intlimits_{a}^{b}f^2(x),dx,.

Если бы криволинейная трапеция была ограничена и снизу и сверху кривыми y_1=f_1(x), y_2=f_2(x), то

V= pi intlimits_{a}^{b}y_2^2,dx- pi intlimits_{a}^{b}y_1^2,dx= piintlimits_{a}^{b}Bigl(f_2^2(x)-f_1^2(x)Bigr)dx,.

Формулой (3) можно воспользоваться и для вычисления объема тела вращения в случае, когда граница вращающейся фигуры задана параметрическими уравнениями. В этом случае приходится пользоваться заменой переменной под знаком определенного интеграла.

В некоторых случаях оказывается удобным разлагать тела вращения не на прямые круговые цилиндры, а на фигуры иного вида.

Например, найдем объем тела, получаемого при вращении криволинейной трапеции вокруг оси ординат. Сначала найдем объем, получаемый при вращении прямоугольника с высотой y#, в основании которого лежит отрезок [x_k;x_{k+1}]. Этот объем равен разности объемов двух прямых круговых цилиндров

Delta V_k= pi y_k x_{k+1}^2- pi y_k x_k^2= pi y_k bigl(x_{k+1}+x_kbigr) bigl(x_{k+1}-x_kbigr).

Но теперь ясно, что искомый объем оценивается сверху и снизу следующим образом:

2pi sum_{k=0}^{n-1} m_kx_kDelta x_k leqslant Vleqslant 2pi sum_{k=0}^{n-1} M_kx_kDelta x_k,.

Отсюда легко следует формула объёма тела вращения вокруг оси ординат:

V=2pi intlimits_{a}^{b} xy,dx,.

(4)


Пример 4. Найдем объем шара радиуса R.

Решение. Не теряя общности, будем рассматривать круг радиуса R с центром в начале координат. Этот круг, вращаясь вокруг оси Ox, образует шар. Уравнение окружности имеет вид x^2+y^2=R^2, поэтому y^2=R^2-x^2. Учитывая симметрию круга относительно оси ординат, найдем сначала половину искомого объема

frac{1}{2}V= piintlimits_{0}^{R}y^2,dx= piintlimits_{0}^{R} (R^2-x^2),dx= left.{pi!left(R^2x- frac{x^3}{3}right)}right|_{0}^{R}= pi!left(R^3- frac{R^3}{3}right)= frac{2}{3}pi R^3.

Следовательно, объем всего шара равен frac{4}{3}pi R^3.


Конус, образованный вращением прямой вокруг оси абсцисс

Пример 5. Вычислить объем конуса, высота которого h и радиус основания r.

Решение. Выберем систему координат так, чтобы ось Ox совпала с высотой h (рис. 47), а вершину конуса примем за начало координат. Тогда уравнение прямой OA запишется в виде y=frac{r}{h},x.

Пользуясь формулой (3), получим:

V=pi intlimits_{0}^{h} y^2,dx= pi intlimits_{0}^{h} frac{r^2}{h^2},x^2,dx= left.{frac{pi r^2}{h^2}cdot frac{x^3}{3}}right|_{0}^{h}= frac{pi}{3},r^2h,.


Пример 6. Найдем объем тела, полученного при вращении вокруг оси абсцисс астроиды begin{cases}x=acos^3t,,\ y=asin^3t,.end{cases} (рис. 48).

Объём тела, полученного при вращении вокруг оси абсцисс астроиды

Решение. Построим астроиду. Рассмотрим половину верхней части астроиды, расположенной симметрично относительно оси ординат. Используя формулу (3) и меняя переменную под знаком определенного интеграла, найдем для новой переменной t пределы интегрирования.

Если x=acos^3t=0, то t=frac{pi}{2}, а если x=acos^3t=a, то t=0. Учитывая, что y^2=a^2sin^6t и dx=-3acos^2tsin{t},dt, получаем:

V=pi intlimits_{a}^{b} y^2,dx= pi intlimits_{pi/2}^{0} a^2sin^6t bigl(-3acos^2tsin{t}bigr),dt= ldots= frac{16pi}{105},a^3.

Объем всего тела, образованного вращением астроиды, будет frac{32pi}{105},a^3.


Пример 7. Найдем объем тела, получаемого при вращении вокруг оси ординат криволинейной трапеции, ограниченной осью абсцисс и первой аркой циклоиды begin{cases}x=a(t-sin{t}),\ y=a(1-cos{t}).end{cases}.

Решение. Воспользуемся формулой (4): V=2pi intlimits_{a}^{b}xy,dx, и заменим переменную под знаком интеграла, учитывая, что первая арка циклоиды образуется при изменении переменной t от 0 до 2pi. Таким образом,

begin{aligned}V&= 2pi intlimits_{0}^{2pi} a(t-sin{t})a(1-cos{t})a(1-cos{t}),dt= 2pi a^3 intlimits_{0}^{2pi} (t-sin{t})(1-cos{t})^2,dt=\ &= 2pi a^3 intlimits_{0}^{2pi}bigl(t-sin{t}- 2tcos{t}+ 2sin{t}cos{t}+ tcos^2t- sin{t}cos^2tbigr),dt=\ &= left.{2pi a^3!left( frac{t^2}{2}+ cos{t}- 2tsin{t}- 2cos{t}+ sin^2t+ frac{t^2}{4}+ frac{t}{4}sin2t+ frac{1}{8}cos2t+ frac{1}{3}cos^3tright)}right|_{0}^{2pi}=\ &= 2pi a^3!left( 2pi^2+1-2+pi^2+frac{1}{8}+ frac{1}{3}-1+2- frac{1}{8}- frac{1}{3}right)= 6pi^3a^3. end{aligned}

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Дополнения

1.О применении определённого интеграла для нахождения объёмов тел вращения

1.1.Формула объёма тела вращения

В п.16.2 дано определение тела вращения.

Получим формулу для вычисления объёма тела вращения, применяя интеграл, о котором вам рассказали в курсе «Алгебры и начал математического анализа».

Пусть f(x) — непрерывная на отрезке [a; b] функция, не принимающая отрицательных значений; А, В — точки графика этой функции (рис. 225).

Рис. 225

Рассмотрим криволинейную трапецию aABb, ограниченную кривой графика функции y = f(x), отрезками aA, bB и отрезком [a; b] координатной оси Ох (см. рис. 225). При вращении этой трапеции вокруг оси Ох образуется тело вращения (рис. 226), которое обозначим Ф и поставим себе задачу: найти объём этого тела.

Рис. 226

Через произвольную точку х = с (a  с  b) отрезка [a; b] проведём плоскость, перпендикулярную оси Ox. Сечением тела Ф этой плоскостью является круг, радиус которого равен f(с), а площадь — πf2(с) (или точка (c; 0)).

Объём части тела Ф, заключённой между этой плоскостью и плоскостью х = a, изменяется при изменении x. Обозначим этот переменный объём V(х). Заметим, что V(x) = V(a) = 0 при х = a; при х = b имеем V(x) = V(b) = V — искомый объём тела вращения Ф.

Покажем, что функция V(x) имеет производную V(х) и V(х) = πf2(х).

Придадим абсциссе х приращение х > 0, тогда объём V(х) получает приращение V(х) = V(x + x) – V(x). Пусть m и М — соответственно наименьшее и наибольшее значения функции f(х) на промежутке [х; х + х]. Цилиндр, радиус основания которого равен m, содержится в теле вращения объёма V(x), а цилиндр, радиус основания которого равен M, содержит тело объёма V(х); образующие цилиндров параллельны оси Ох и имеют длину, равную х. Объёмы этих цилиндров равны соответственно πm2x и πM2х. На основании свойства 2 объёмов (п. 10.1) получаем

πm2x  V(x πM2x,

откуда

πm2    πM2.

Рассуждения для случая х < 0 проводятся аналогично и дают тот же результат.

Пусть теперь х 0. Имеем m = M = f(x), тогда

πm2    πM2

или

πf2(х)    πf2(x).

Значит,  = πf2(х). По определению производной функции  = V(x). Поэтому V (x) = πf2(х), следовательно, V(х) — первообразная для πf2(х).

Таким образом, переменный объём V(x) телa вращения представляет собой одну из первообразных для функции πf 2(х) на отрезке [a; b]. Эта первообразная обладает тем свойством, что при х = a она обращается в нуль (V(a) = 0), а при х = b значение функции V(x) равно объёму тела вращения Ф (V(b) =  V).

Если F(х) — также некоторая первообразная для функции πf 2(x), то V(x) = F(x) + С, где С — произвольная постоянная. Так как V (a) = 0, то из равенства V(a) = F (a) + C = 0 находим С = –F(a). Значит, V(x) = F(x) – F(a). Toгдa V(b) = F(b) – F(a). Ho V(b) = V — искомый объём тела вращения ФТаким образом, V = F(b) – F(a), где F(b) и F(a) — значения первообразной для функции πf 2(х) соответственно при х = b и х = a. Это означает, что

V = f 2(x)dx = π(x)dx.

Вот почему объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями у = f(x), х = a, х = b, у = 0, вычисляется по формуле

Рис. 227

V = (x)dx.(*)

ЗАДАЧА. Вычислить объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями у = , х = 0, x = 2 и y = 0 (рис. 227).

Решение. Воспользуемся формулой V = π(x)dx, для чего из уравнения у =   находим y2 = 2х. Тогда получаем

V = πdx = 2π = = 4π.

Ответ: 4π.

1.2. Объёмы конуса, шара и его частей

Используя формулу V = (x)dx вычисления объёма тела вращения, получим формулы для вычисления объёма каждого изученного ранее тела вращения.

а) Объём конуса и усечённого конуса

Теорема 1 (об объёме полного конуса). Объём V конуса с высотой Н и радиусом основания R равен одной трети произведения площади основания на высоту:

V = R2Н.

Рис. 228

Доказательство. Конус с высотой Н и радиусом основания R можно рассматривать как тело, образованное вращением вокруг оси Ox прямоугольного треугольника с вершинами О(0; 0), А(Н; 0) и B(Н; R) (рис. 228). Треугольник АОВ является частным случаем криволинейной трапеции, которая ограничена графиком функции у = х (0  х  H), осью Ох и отрезком прямой х = Н. Поэтому, используя формулу (*) п. 1.1 «Дополнений» для объёма V конуса, получаем:

V = dx = π  = πR2H,

где πR2 — площадь основания конуса. Теорема доказана.

Теорема 2 (об объёме усечённого конуса). Объём усечённого конуса с высотой Н и радиусами оснований r и R равен сумме объёмов трёх конусов с высотой Н, радиусы оснований которых соответственно равны r, R и :

V =  (r2 + R2 + rR)H.

Доказательство. Усечённый конус с высотой H и радиусами оснований r и R можно получить, вращая вокруг оси  прямоугольную трапецию OABC, где O(0; 0), A(0; r), В(НR), С(H; 0) (рис. 229).

Рис. 229

Прямая проходит через точки (0; r) и (Н; R), поэтому её уравнение имеет вид у = х + r. Следовательно, трапеция ОАВС ограничена графиком функции y = х + r (0  х  Н), осью и отрезками прямых х = 0 и х = Н. Поэтому, используя формулу (*) из п. 1.1 для объёма V усечённого конуса, получаем:

V = dx.(1)

Для вычисления интеграла сделаем замену переменных

x + r = t.(2)

Тогда dx = dt, откуда dx = dt. Новые пределы интегрирования (по переменной t) найдём посредством подстановки формулы (2): х = 0 t = r; х = Н t = R. Таким образом, для объёма V усечённого конуса получаем:

что и требовалось доказать.

б) Объём шарового слоя

В прямоугольной декартовой системе координат Оху рассмотрим криволинейную трапецию aABb, ограниченную дугой окружности х2 + у2 = R2, –R  a  х  b  R, отрезком [ab] оси Ох и отрезками и прямых соответственно x =  a и х = b (рис. 230, а).

Рис. 230

При вращении криволинейной трапеции aАВb вокруг оси Ох образуется шаровой слой (рис. 230, б). Найдём его объём, применяя формулу (*) п. 1.1.

Из уравнения х2 + у2 = R2 имеем у2 = R2x2. Поэтому для вычисления объёма V шарового слоя получаем:

Таким образом, объём шарового слоя, отсекаемого от шара x2 + y2 + z2  R2 радиуса R плоскостями x = a и x = b, вычисляется пo формуле

V = (**)

Пусть радиусы оснований шарового слоя равны r1 и r2 (r> r2), а высота — H (см. рис. 230, a).

Тогда Н = ba,  = R2a2,  = R2b2.

Формулу (**) преобразуем к виду:

V = (3R2 – (b2 + ab + a2)) =

((R2b2) + (R2ab) + (R2a2)).

Из системы равенств (ba)2 = H2, R2a2 = , R2b2 = после почленного сложения их левых и правых частей находим:

R2ab = .

Тогда:

V = ((R2b2) + (R2ab) + (R2a2)) =

= .

Таким образом, объём шарового слоя с радиусами оснований r1 и r2 и высотой Н вычисляется по формуле

V = .(***)

в) Объём шара

Рис. 231

При вращении полукруга х2 + у2 = R2 (расположенного в плоскости Оху, рис. 231, а) вокруг оси Ох образуется шар радиуса R (рис. 231, б). Из уравнения окружности х2 + y2 = R2 данного полукруга имеем у2 = R2х2. Тогда, полагая a = –R, b = R в формуле (*) п. 1.1, находим объём V шара радиуса R:

Vш = =

= .

Таким образом, имеет место следующая теорема.

Теорема 3 (об объёме шара). Объём шара радиуса R вычисляется по формуле

Vш = .

г) Объём шарового сегмента

Если b = R (см. п. 1.2, б), то получаем криволинейную трапецию aAB (рис. 232, а), при вращении которой вокруг оси Ох образуется шаровой сегмент (рис. 232, б).

Рис. 232

Пусть высота шарового сегмента равна Н, тогда a = R – Н. Так как дуга криволинейной трапеции aАВ является частью окружности x2 + y2 = R2 (в плоскости Оxу), то формулу объёма шарового сегмента получим по аналогии с выводом формулы для вычисления объёма шара, учитывая при этом, что пределы a и b интегрирования равны: a = R – H, b = R, т. е.

Vш. сегм = =

=

Таким образом, имеет место следующая теорема.

Теорема 4 (об объёме шарового сегмента). Объём шарового сегмента, отсекаемого от шара радиуса R и имеющего высоту Н, вычисляется по формуле

Vш. сегм =

Если в формуле (***) п. 1.2, б положить r2 = 0, r1 = r, то получим формулу для вычисления объёма шарового сегмента с радиусом основания r и высотой Н:

Vш. сегм = (3r2 + H2).

д) Объём шарового сектора

Рис. 233

Шаровой сектор состоит из конуса с вершиной в центре шара и шарового сегмента, имеющего с конусом общее основание (риc. 233). Пусть R = ОА — радиус шара; АС = r — радиус основания шарового сегмента, NC  = H — его высота; N — точка сферы (рис. 233).

Найдём объёмы конуса и шарового сегмента, учитывая, что высота h конуса равна OC = ONCN = RН.

Объём Vк конуса равен

πАС2ОС = πr2 (RН).

Выразим r2 через R и H.

B прямоугольном треугольнике AOC находим r2 = AC2  = ОА2 – OC2 = R2 – (RH)2 = H(2RH).

Значит,

Vк = πH(2RH)(RH) =  (2R2 – 3RH + H2).

Для объёма шарового сегмента имеем:

Vш. сегм =  (3AC2 + NC2) =  (3H(2RH) + H2) =

=  (3H2).

Тогда для объёма шарового сектора получаем

Vш. сект = Vк + Vш. сегм =

 (2R2 – 3RH + H2) +  (3RHH2) =  πR2H.

Таким образом, доказана следующая теорема.

Теорема 5 (об объёме шарового сектора). Объём шарового сектора шара радиуса R вычисляется по формуле

Vш. сект = R2H,

где Н — длина высоты шарового сегмента, соответствующего данному шаровому сектору.

В курсе математического анализа, который вам предстоит изучать в высшей школе, будет дано строгое обоснование применения определённого интеграла не только для нахождения объёмов тел, но и для нахождения площадей поверхностей и длин дуг линий.
Решите самостоятельно следующие задачи.

1)Найдите объём тела, которое получается при вращении вокруг оси Ох криволинейной трапеции, ограниченной гиперболой у = , прямыми х = 3, х = 12 и осью абсцисс. (Ответ: 4π.)

2)Найдите объём тела, образованного вращением вокруг оси фигуры, ограниченной одной полуволной синусоиды у = sin x и отрезком 0  х  π оси абсцисс. (Ответ: 0,5π2.)

3)Найдите объём тела, полученного при вращении кривой у = 0,25х2 вокруг оси Оу в пределах от у = 1 до у = 5. (Ответ: 48π.)

4)Найдите объём тела, образованного вращением вокруг оси Ох фигуры, ограниченной кривыми у = 2х2 и у = x3.

Объем тела V, образованного вращением вокруг оси Ox фигуры , , где y1(x) и y2(x) — непрерывные неотъемлемые функции, равняется определенному интегралу от разницы квадратов функций yi(x) по переменной x

Объем тела V, образованного вращением вокруг оси Oy фигуры , , где y(x) — однозначная непрерывная функция, равняется определенному интегралу, рассчитанному по формуле

Примеры выбраны из учебной программы для студентов механико-математического факультета Львовского национального университета имени Ивана Франко. 

Первый номер в примерах отвечает номеру основного задания из сборника М. В. Заболоцький, Фединяк С.И., Филевич П.В. «Практикум из математического анализа» (рядом стоит номер из сборника Б. П. Демидовича).
Для изучения основных моментов схема интегрирования и формулы вычисления объема тела вращения будут повторяться из примера в пример.

ІV. Найти объемы тел, ограниченными поверхностями, полученными при вращении отрезков следующих линий

Пример 2.139 (2472) Найти объем тела, образованного вращением кривой (нейлоїд) xє[0;a] вокруг оси Ox.
Решение: Складываем подинтегральную функцию:

Пределы интегрирования известны за условием: [0;a].
Найдем объем тела интегрированием:

Всегда помните, что объем измеряется в кубических единицах.

Пример 2.140 (2473) Найти объем тела, образованного вращением кривой y=2x-x^2, y=0 
а) вокруг оси Ox; б) вокруг оси Oy.
Решение: Запишем подинтегральные функции:
а)
б)
Из приведенных формул Вы можете видеть разницу, в каких случаях применять каждую из формул объема.
Найдем пределы интегрирования:

И заключительным шагом вычисляем объемы интегрированием.
а) Найдем объем тела вращения вокруг оси Ox:

б) Вычислим объем тела вращения вокруг оси Oy:

В этом примере интегралы легко берутся и нет потребности объяснять детали операций.

Пример 2.141 (2474) Вычислить объем тела, образованного вращением кривой y=sin(x)

а) вокруг оси Ox; б) вокруг оси Oy.
Решение: Выпишем подинтегральные функции:
а)
б)
Пределы интегрирования берем из начального условия:

Осталось вычислить определенные интегралы:
а) Найдем объем тела вращения вокруг оси Ox:

б) Выполняем вычисление объема тела при вращении вокруг оси Oy:

Замена переменных помогает найти последний интеграл.

Пример 2.143 (2476) Найти объем тела, образованного вращением кривой y=e— x, y=0,
а) вокруг оси Ox; б) вокруг оси Oy
.
Решение: Уравнение подинтегральных функций :
а) y2=e-2x;
б) x*y (x) =xe-x.
Запишем пределы интегрирования (известно за условием):

а) Находим объем тела вращения вокруг оси Ox:

б) Найдем объем тела вращения вокруг оси Oy:

Здесь, чтобы вычислить интегралы придется находить границу при переменной направляющейся к безграничности.
Во втором интеграле выполняем интегрирование частями.

Пример 2.144 (2477) Вычислить объем тела, образованного вращением кривой x2+(y-b)2=a2, , вокруг оси Ox.
Решение: Фигурой вращения является круг с центром в точке (0;b) и радиусом a.
При выражении самой функции получим две ветки корневых функций:

При поднесении к квадрату разница слагаемых сложит такое выражение подинтегральной функции:

Запишем пределы интегрирования: для круга они равны xє[-a;a] или два полукруга из на промежутке xє[0;a].
Через интеграл находим объем тела вращения вокруг оси Ox:

Внимательно разберите приведенный пример.

Пример 2.145 (2478) Найти объем тела, образованного вращением кривой x2-xy+y2=a2, вокруг оси Ox.
Решение: Сведем кривую к каноническому виду (методами из аналитической геометрии) устанавливаем, что заданная линия является эллипсом
— уравнение в канонической системы координат.
В приведенной системе координат уравнения эллипса имеет вид:

Прямая y=x/2 является осью симметрии этой фигуры.
Запишем подинтегральную функцию:

Найдем пределы интегрирования из условия равности функций y2(x)=y1(x):


или двукратный объем на интервале

Но тогда еще нужно отнять объем тела в пределах

(которая не принадлежит эллипсу) и ограничена первой кривой

и результат умножить на 2 (симметрия).

Последним шагом вычисляем объем тела вращения вокруг оси Ox:

Формула интеграла вышла достаточно длинным, однако его удобно читать пользователям, которые заходят на сайт из мобильных устройств.

Пример 2.146 (2479) Найти объем тела, образованного вращением кривой вокруг оси Ox.
Решение: Запишем подинтегральную функцию:
y2(x)=e-2x*sin (x).
Установим пределы интегрирования: при , где k=0,1,2.
Таким образом имеем бесконечный ряд промежутков интегрирования.
При нахождении объема тела вращения вокруг оси Ox получим бесконечный ряд интегралов, который совпадает:

Здесь вычислили интеграл дважды выполнив замену переменных:

тому
— это числовой ряд.
В данном случае бесконечно нисходящая геометрическая прогрессия, у которой b1=1, b2=e-4Pi, поэтому q=e— 4Pi, а сумма прогрессии равна

Объем тела, образованного вращением вокруг полярной оси плоской фигуры

Чтобы найти объем тела V, образованного в результате вращением вокруг полярной оси плоской фигуры r(phi)
необходимо вычислить определенный интеграл по формуле

Пример 2483 Найти объем тела, образованного вращением кривой r=a (1+cos (phi)), , y=0
а) вокруг полярной оси;
б) вокруг прямой


Решение: Чтобы достать подинтегральную функцию подносим к кубу заданную функцию:

Пределы интегрирования записываем из начального условия:

а) Сначала найдем объем тела вращения вокруг полярной оси:

Для упрощения вычислений переходим к новой переменной под интегралом.
б) Перейдем к новым координатам с помощью формул: x1=y, y1=-x-a/4.
Определяем пределы интегрирования:
при росте угла от 0 к Pi/2 координата x1 растет от 0 к , при росте от Pi/2 к Pi переменная x1 спадает от к 0, поэтому пределы ограничены интервалом

Запишем подинтегральную функцию:
Уравнения перехода между системами координат имеют вид

Подстановкой в уравнение получим:
,
Найдем объем тела вращения вокруг прямой :

откроем скобки, возведем подобные слагаемые и, приняв во внимание, что интеграл равен нулю получим

Здесь последние интегралы выражаются через факториалы

(смотри пример 2.59, часть І).
Парные факториалы вычисляем по правилу

Пример 2484.1 Найти объем тела, образованного вращением кривой r=a*phi (a>0)вокруг полярной оси.
Решение: Запишем подинтегральную функцию:

С пределами интегрирования проблем нет:

Чтобы найти объем тела вращения вокруг полярной оси выполняем ряд манипуляций с интегралами:

Внимательно проанализируйте, как находится этот «тригонометрический» интеграл.

Пример 2484.2 Найти объем тела, образованного вращением кривой phi=Pi*r3, phi=Pi, вокруг полярной оси.
Решение: Запишем подинтегральную функцию:

Пределы интегрирования:
 
Вычисляем объем тела вращения вокруг полярной оси:

Здесь синус вносим под дифференциал и выполняем интегрирование частями.
На данное время это все примеры, которые мы смогли подготовить для Вас по данной теме.

Понравилась статья? Поделить с друзьями:
  • Как составить свой рацион по кбжу
  • Принтер печатает с задержкой в 60 секунд как исправить
  • Как найти адрес если есть телефонный
  • Как найти следователя в москве
  • Расскажите кто как нашел работу