Как найти объем звучания

Рассмотрим задание, в котором подробно разберем как определить информационный объем звукового файла.

Для решения подобных задач досаточно знать одну простую формулу

I = H*b*t*k

где:

I — информационный объем звукового файла (иногда обозначают Q)

H — частота дискретизации (количество измерений в секунду времени)

b — глубина кодирования информации (количество уровней громкости в измерениях)

k — количество каналов по которым производится запись (моно — 1 канал, стерео — 2 канала, квадро — 4 канала)

При решении подобных задач, как и многих других нужно помнить, что чаще всего все расчеты удобнее производить в степенях двойки.

Определение объема звукового файла

Размер цифрового аудиофайла измеряется по формуле: A = k*t*i*ch,

где k – частота дискретизации (Гц),

t – время звучания или записи звука,

i — разрядность регистра (разрешение),

ch – число дорожек.

Задача 1. Оценить информационный объем (в Кбайт) цифрового стерео звукового файла длительностью звучания 1 секунда при высоком качестве звука (16 бит, 48кГц).

Решение: 48 000 × 16 бит × 1 с × 2 = 1 536 000 бит / 8 / 1024 =

Ответ: 187,5

Задача 2. Оценить информационный объем (в Мбайтах) цифрового стерео звукового файла длительностью звучания 1 минута при среднем качестве звука (16 битов, 24 кГц).

Решение: 24 000 × 16 бит × 60 × 2 = 46 080 000 бит / 8 / 1024 = 5 760 000 байт = 5 625 Кбайт ≈

Ответ: 5,5

Задача 3. Одна минута записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой платы — 8. С какой частотой дискретизации (в кГц) записан звук?

Решение:

k = A / (t * i * ch) = 1,3 Мб : 60 : 8 бит

Ответ: 22,05

Задача 4. Объем свободной памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность звучания (в секундах) цифрового аудиофайла, записанного с частотой дискретизации 22,05 кГц?

Решение:

t = A / (k * i * ch) = 5,25 Мбайт : 22050 Гц : 16 бит

Ответ: 124,8

Задача 5. Две минуты записи цифрового аудиофайла занимают на диске 5 Мб. Частота дискретизации — 22050 Гц. Какова разрядность аудиоадаптера (в битах)?

Решение:

k =A / (t * i * ch) = 5 Мбайт : 120 сек : 22050 Гц

Ответ: 16

Задача 6*. Аналоговый звуковой сигнал был дискретизирован сначала с использованием 256 уровней интенсивности сигнала (качество звучания радиотрансляции), а затем с использованием 65536 уровней интенсивности сигнала (качество звучания аудио-CD). Во сколько раз различаются информационные объемы оцифрованного звука?

Домашнее задание — Решить задании:

1. Определить количество уровней сигнала 24-битной звуковой карты.

2. Уместиться ли песня на дискету размером 1,44 Мбайта, если она имеет следующие параметры: стерео длительностью звучания 3 минуты при качестве звука — 16 битов, 16 кГц.

Кодирование звуковой информации

Звук – это волны, распространяющиеся в твердых телах, жидкостях и газах, вызванные колебаниями частиц среды. Изменения давления акустической волны на препятствия, позволяет слуховому аппарату человека регистрировать звук.

Основными характеристиками любой волны являются частота и амплитуда. Амплитуда акустического сигнала характеризует громкость звука, а частота – тон.

Акустическая волна является непрерывной, поэтому для обработки на компьютере ее необходимо преобразовать в цифровую форму. В ходе кодирования звуковая информация подвергается временной дискретизации и квантованию.

Процесс временной дискретизации заключается в регистрации параметров звука через определённые очень короткие промежутки времени, в пределах которых сигнал считается неизменным (см. рис. 1). Частоту измерения сигнала называют частотой дискретизации.

В течении временной дискретизации непрерывный диапазон значений амплитуды звуковой волны квантуется путем разбиения на дискретную последовательность значений амплитудных уровней (см. рис. 2).

Временная дискретизация звука

Количество бит, отводимых для записи номеров уровней называется глубиной кодирования звука.

Глубина кодирования звука связана с количеством уровней квантования по формуле:
N = 2 i
где N – количество уровней разбиения амплитуды сигнала,
i – число бит (глубина кодирования), отводимых для кодирования уровней амплитуды сигнала

Чем выше частота дискретизации и глубина кодирования звука, тем точнее цифровое представление оригинального непрерывного звукового сигнала.

Повышая частоту дискретизации и глубину кодирования звука, можно более точно сохранить, а затем восстановить форму оригинального звукового сигнала. Необходимо заметить, что в этом случае увеличивается объем сохраняемого файла. В различных ситуациях при цифровой записи звука используют разные значения частоты дискретизации и глубины кодирования звука.

Для расчета информационного объема звукового файла используется следующая формула:
I = i • ν • t • k
где i – глубина кодирования
ν – частота дискретизации
t — время звучания файла,
k — коэффициент, знaчение которого зависит от качества звука: моно — 1, стерео — 2, квадро — 4

Основные понятия

Частота дискретизации(f) определяет количество отсчетов, запоминаемых за
1 секунду;

1 Гц (один герц) – это один отсчет в секунду,

а 8 кГц – это 8000
отсчетов в секунду

Глубина кодирования (b) – это количество бит, которое
необходимо для кодирования 1 уровня громкости

Время звучания (t)

Объем памяти для хранения данных 1
канала (моно)

I=f·b·t

(для хранения информации о звуке
длительностью  t секунд, закодированном с частотой дискретизации f Гц и глубиной кодирования b бит требуется
I бит памяти)

При двухканальной записи
(стерео)
  объем памяти, необходимый для
хранения данных одного канала, умножается на 2
 

I=f·b·t·2
 

Единицы измерения I — биты, b -биты, f — Герцы,  t – секунды

Частота дискретизации 44,1
кГц, 22,05 кГц, 11,025 кГц

Кодирование звуковой информации

Основные
теоретические положения

Временная дискретизация звука. Для того чтобы компьютер мог обрабатывать звук,
непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную
форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается
на отдельные маленькие временные участки, для каждого такого участка
устанавливается определенная величина интенсивности звука.

Таким
образом, непрерывная зависимость громкости звука от времени A(t) заменяется на
дискретную последовательность уровней громкости. На графике это выглядит как
замена гладкой кривой на последовательность «ступенек».

Частота дискретизации.
Для записи аналогового звука и его преобразования в цифровую форму
используется
микрофон, подключенный к звуковой плате. Качество полученного цифрового
звука
зависит от количества измерений уровня громкости звука в единицу
времени, т.е.
частоты дискретизации. Чем большее количество измерений производится за 1
секунду (чем больше частота дискретизации), тем точнее «лесенка»
цифрового звукового сигнала повторяет кривую аналогового сигнала.

Частота дискретизации звука — это количество измерений громкости звука за одну
секунду, измеряется
в герцах (Гц). Обозначим частоту дискретизации буквой
f.

Частота дискретизации звука может лежать в диапазоне от
8000 до 48 000 измерений громкости звука за одну секунду. Для кодировки выбирают одну из трех частот: 44,1 КГц, 22,05 КГц, 11,025 КГц.

Глубина кодирования звука. Каждой «ступеньке» присваивается определенное
значение уровня громкости звука. Уровни громкости звука можно рассматривать как
набор возможных состояний N, для кодирования которых необходимо определенное
количество информации
b, которое называется глубиной
кодирования звука

Глубина кодирования звука — это количество информации, которое необходимо для кодирования
дискретных уровней громкости цифрового звука.

Если известна глубина кодирования, то количество уровней
громкости цифрового звука можно рассчитать по формуле N = 2b. Пусть глубина кодирования звука составляет 16 битов,
тогда количество уровней громкости звука равно:

N = 2b = 216
= 65 536.

В процессе кодирования каждому уровню громкости звука
присваивается свой 16-битовый двоичный код, наименьшему уровню звука будет
соответствовать код 0000000000000000, а наибольшему — 1111111111111111.

Качество оцифрованного звука. Чем больше частота и глубина дискретизации звука, тем
более качественным будет звучание оцифрованного звука. Самое низкое качество
оцифрованного звука, соответствующее качеству телефонной связи, получается при
частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и
записи одной звуковой дорожки (режим «моно»). Самое высокое качество
оцифрованного звука, соответствующее качеству аудио-CD, достигается при частоте
дискретизации 48 000 раз в секунду, глубине дискретизации 16 битов и записи
двух звуковых дорожек (режим «стерео»).

Необходимо помнить, что чем выше качество цифрового звука,
тем больше информационный объем звукового файла.

Задачи для
самостоятельной подготовки
.

1. Рассчитайте  объём 
монофонического  аудиофайла  длительностью 
10 с  при  16-битном 
кодировании  и  частоте 
дискретизации 44,1 к Гц. 
(861  Кбайт)

2. Производится двухканальная (стерео) звукозапись с
частотой дискретизации 48 кГц и 24-битным разрешением. Запись длится 1 минуту,
ее результаты записываются в файл, сжатие данных не производится. Какое из
приведенных ниже чисел наиболее близко к размеру полученного файла, выраженному
в мегабайтах?

 1)0,3   2) 4   3) 16   4) 132

3.
Производится одноканальная (моно) звукозапись с частотой дискретизации 11 кГц и
глубиной кодирования 24 бита. Запись длится 7 минут, ее результаты записываются
в файл, сжатие данных не производится. Какое из приведенных ниже чисел наиболее
близко к размеру полученного файла, выраженному в мегабайтах?

 1) 11     2)
13    3) 
15              4)  22

4.
Производится двухканальная (стерео) звукозапись с частотой дискретизации 11 кГц
и глубиной кодирования 16 бит. Запись длится 6 минут, ее результаты
записываются в файл, сжатие данных не производится. Какое из приведенных ниже
чисел наиболее близко к размеру полученного файла, выраженному в мегабайтах?

1)
11                2) 12           3) 
13         4)  15

5. При 
16-битном  кодировании,  частоте 
дискретизации  32 кГц  и 
объёме моноаудиофайла 700 Кбайт время 
звучания  равно:

                          1)
20 с             2) 10 с             3) 1,5 мин                  4) 1,5 с

6. Одна минута
записи цифрового аудиофайла занимает на диске 1,3 Мб, разрядность звуковой
платы — 8. С какой частотой дискретизации записан звук?

7. Аналоговый звуковой сигнал  был 
дискретизирован  сначала  с 
использованием  256 уровней  интенсивности 
сигнала  (качество  звучания 
радиотрансляции),  а  затем 
65 536 уровней (качество звучания аудио-
CD). 
Во  сколько  раз 
различаются  информационные  объёмы 
оцифрованного  звука?

                          1)
16                2)
24               3) 4                 4) 2

Литература.

  1. http://wiki.iteach.ru/images/f/fe/Лазарева_примеры_реш_задач.pdf
  2. http://kpolyakov.narod.ru/school/ege.htm
  3. http://fipi.ru/view/sections/217/docs/514.html
  4. Диагностические
    и тренировочные работы МИОО 2011-2012 http://www.alleng.ru/d/comp/com_ege-tr.htm
  5. http://festival.1september.ru/articles/103548/
  6. http://www.5byte.ru/9/0009.php
  7. Информатика. Задачник-практикум в 2 т. /Под ред. И.Г. Семакина,
    Е.К. Хеннера: Том 1. – Лаборатория Базовых Знаний, 2008 г. – 304 с.: ил.
     
  8. Практикум по информатике и информационным
    технологиям. Учебное пособие для общеобразовательных учреждений / Н.Д.
    Угринович, Л.Л. Босова, Н.И. Михайлова. – М.: Бином. Лаборатория Знаний, 2002.
    400 с.: ил.

Цель. Осмыслить процесс преобразования звуковой
информации, усвоить понятия необходимые для подсчета объема звуковой
информации. Научиться решать задачи по теме.

Цель-мотивация. Подготовка к ЕГЭ.

План урока

1. Просмотр презентации по теме с комментариями учителя. Приложение
1

Материал презентации: Кодирование звуковой информации.

С начала 90-х годов персональные компьютеры получили
возможность работать со звуковой информацией. Каждый компьютер, имеющий
звуковую плату, микрофон и колонки, может записывать, сохранять и
воспроизводить звуковую информацию.

Процесс преобразования звуковых волн в двоичный код в
памяти компьютера
:

Процесс воспроизведения звуковой информации, сохраненной
в памяти ЭВМ
:

Звук представляет собой звуковую волну с непрерывно
меняющейся амплитудой и частотой. Чем больше амплитуда, тем он громче для
человека, чем больше частота сигнала, тем выше тон. Программное обеспечение
компьютера в настоящее время позволяет непрерывный звуковой сигнал
преобразовывать в последовательность электрических импульсов, которые можно
представить в двоичной форме. В процессе кодирования непрерывного звукового
сигнала производится его временная дискретизация. Непрерывная
звуковая волна разбивается на отдельные маленькие временные участки, причем для
каждого такого участка устанавливается определенная величина амплитуды.

Таким образом, непрерывная зависимость амплитуды сигнала от
времени A(t) заменяется
на дискретную последовательность уровней громкости. На графике это выглядит как
замена гладкой кривой на последовательность «ступенек».Каждой «ступеньке»
присваивается значение уровня громкости звука, его код(1, 2, 3 и так

далее). Уровни громкости звука можно рассматривать как
набор  возможных состояний, соответственно, чем большее количество уровней
громкости будет выделено в процессе кодирования, тем большее количество
информации будет нести значение каждого уровня и тем более качественным будет
звучание.

Аудиоадаптер (звуковая плата) — специальное
устройство, подключаемое к компьютеру, предназначенное для преобразования
электрических колебаний звуковой частоты в числовой двоичный код при вводе
звука и для обратного преобразования (из числового кода в электрические
колебания) при воспроизведении звука.

В процессе записи звука аудиоадаптер с определенным периодом
измеряет амплитуду электрического тока и заносит в регистр двоичный код
полученной величины. Затем полученный код из регистра переписывается в
оперативную память компьютера. Качество компьютерного звука определяется
характеристиками аудиоадаптера:

  • Частотой дискретизации
  • Разрядностью(глубина звука).

Частота временной дискретизации

— это количество измерений входного сигнала за 1 секунду.
Частота измеряется в герцах (Гц). Одно измерение за одну секунду соответствует
частоте 1 Гц. 1000 измерений за 1 секунду – 1 килогерц (кГц). Характерные
частоты дискретизации аудиоадаптеров:

11 кГц, 22 кГц, 44,1 кГц и др.

Разрядность регистра  (глубина звука) число бит в
регистре аудиоадаптера, задает количество возможных уровней звука.

Разрядность определяет точность измерения входного сигнала.
Чем больше разрядность, тем меньше погрешность каждого отдельного
преобразования величины электрического сигнала в число и обратно. Если
разрядность равна 8 (16) , то при измерении входного сигнала может быть
получено 28= 256 (216=65536) различных значений.
Очевидно, 16 разрядный аудиоадаптер точнее кодирует и воспроизводит звук,
чем 8-разрядный. Современные звуковые карты обеспечивают 16-битную глубину
кодирования звука. Количество различных уровней сигнала (состояний при данном
кодировании) можно рассчитать по формуле:

N = 2I = 216 = 65536, где
I — глубина звука.

Таким образом, современные звуковые карты могут обеспечить
кодирование 65536 уровней сигнала. Каждому значению амплитуды звукового сигнала
присваивается 16-битный код. При двоичном кодировании непрерывного звукового
сигнала он заменяется последовательностью дискретных уровней сигнала. Качество
кодирования зависит от количества измерений уровня сигнала в единицу времени,
то есть частоты  дискретизации. Чем большее количество измерений
производится за 1 секунду (чем больше частота дискретизации тем точнее
процедура двоичного кодирования.

Звуковой файл — файл, хранящий звуковую информацию в
числовой двоичной форме.

2. Повторяем единицы измерения информации

1 байт = 8 бит

1 Кбайт = 210 байт=1024 байт

1 Мбайт = 210 Кбайт=1024 Кбайт

1 Гбайт = 210 Мбайт=1024 Мбайт

1 Тбайт = 210 Гбайт=1024 Гбайт

1 Пбайт = 210 Тбайт=1024 Тбайт

3. Закрепить изученный материал, просмотрев презентацию, учебник
[1]

4. Решение задач

Учебник [1], показ решения на презентации.

Задача 1. Определить информационный объем стерео
аудио файла длительностью звучания 1 секунда при высоком качестве звука(16
битов, 48 кГц).

Запись условия

T=1 сек

I=16 бит

H= 48 кГц

Стерео — ×2

V=?

Решение

V= T
×I × H × 2

V=1 ×16 × 48 000 × 2=

1536000 бит/8  =192000 байт/1024 =
187,5 Кбайт

Задача (самостоятельно). Учебник [1], показ решения
на презентации.
Определить информационный объем цифрового  аудио файла длительностью звучания
которого составляет 10 секунда при частоте дискретизации 22,05 кГц и разрешении
8 битов.

Запись условия

T=10 сек

I=8 бит

H= 22,05 кГц

Моно- ×1

V=?

Решение

V= T
×I × H
× 1

V=10 ×8 × 22,05
× 1=

10 × 8 × 22 050 бит/8  = 220500 байт/1024 =
215,332/1024 Кбайт = 0,21 Мбайт

5. Закрепление.  Решение задач дома, самостоятельно на
следующем уроке

Учебник [1]

№ 90

Определить
объем памяти для хранения цифрового аудио­файла, время звучания которого
составляет две минуты при частоте дискретизации 44,1 кГц и разрешении 16 битов.

Запись условия

T=2 мин

I= 16 бит

H= 44,1 кГц

Моно- ×1

V=?

Решение

V= T
×I × H × 2

V=2×60 ×16 ×
44,1 × 1=

(120 × 16 × 44 010) бит  = 84672000
бит/8= 10584000байт/1024 = 10335,9375 Кбайт/1024  = 10,09 Мбайт

№ 91

В распоряжении
пользователя имеется память объемом 2,6 Мб. Необходимо записать цифровой
аудиофайл с длительностью звучания 1 минута. Какой должна быть частота
дискретиза­ции и разрядность?

Запись условия

V=2,6 Мб

 T=1 мин

 Моно- ×1

I= ?

H= ?

Решение

V= T ×I × H × 1; I
× H= V /  T

I × H=
2,6 Мб/1 мин. = 2,6×1024×1024×8 бит/ 60 сек=21810380,8/60=

363506,237

363506,237/8=45438,3

363506,237/16=22719,15

Ответ.

Если I=8 ,бит, то H=44,1 кГц.

Если I=16 бит, то H=22,05 кГц.

№ 92

Объем свободной
памяти на диске — 5,25 Мб, разрядность звуковой платы — 16. Какова длительность
звучания цифро­вого аудиофайла, записанного с частотой дискретизации 22,05 кГц?

№ 93

Одна минута
записи цифрового аудиофайла занимает на дис­ке 1,3 Мб, разрядность звуковой
платы — 8. С какой частотой дискретизации записан звук?

№ 94

Какой объем
памяти требуется для хранения цифрового аудиофайла с записью звука высокого
качества при условии, что время звучания составляет 3 минуты?

№ 95

Цифровой
аудиофайл содержит запись звука низкого качест­ва (звук мрачный и
приглушенный). Какова длительность звучания файла, если его объем составляет
650 Кб?

№ 96

Две минуты
записи цифрового аудиофайла занимают на дис­ке 5,05 Мб. Частота дискретизации —
22 050 Гц. Какова раз­рядность аудиоадаптера?

№ 97

Объем свободной памяти на диске — 0,1 Гб, разрядность зву­ковой
платы — 16. Какова длительность звучания цифрового аудиофайла, записанного с частотой
дискретизации 44 100 Гц?

Ответы

№ 92.
124,8 секунды.

№ 93.
22,05 кГц.

№ 94. Высокое качество звучания достигается при частоте дискретизации 44,1 кГц и
разрядности аудиоадаптера, равной 16. Требуемый объем памяти — 15,1 Мб.

№ 95. Для
мрачного и приглушенного звука характерны следующие параметры: частота
дискретизации — 11 кГц, разрядность аудиоадаптера — 8. Длительность звучания
равна 60,5 с.

№ 96. 16
битов.

№ 97. 20,3 минуты.

Литература

1. Учебник: Информатика, задачник-практикум 1 том, под
редакцией И.Г.Семакина, Е.К. Хеннера )

2. Фестиваль педагогических идей «Открытый урок»Звук.
Двоичное кодирование звуковой информации. Супрягина Елена Александровна,
учитель информатики.

3. Н. Угринович. Информатика и информационные технологии.
10-11 классы. Москва. Бином. Лаборатория знаний 2003.

Понравилась статья? Поделить с друзьями:
  • Как найти кому принадлежит цитата
  • Как мне найти нужный сайт
  • Как составить книгу протоколов
  • Как найти закрытый сайт в яндексе
  • Ошибка 764 при подключении к интернету как исправить