Как найти область определение функции методом интервала

область определения графика

Синонимы: область допустимых значений или сокращенно ОДЗ. Первое, с чем Вы сталкиваетесь при изучении различных функций или же при построении графиков — это область определения функции.

Определение:

Областью определения называется множество значений, которые может принимать x. Обозначение  D(f).

Как же это правило применить к заданной Вам функции?

В математике имеется достаточно небольшое количество элементарных функций, область определения которых ограничена. Все остальные «сложные» функции — это всего лишь их сочетания и комбинации.

1. Дробная функция — ограничение на знаменатель.

область определения

2. Корень четной степени — ограничение на подкоренное выражение.

obl 2

3. Логарифмы — ограничение на основание логарифма и подлогарифмическое выражение.

область определения

3. Тригонометрические tg(x) и ctg(x) — ограничение на аргумент.

Для тангенса:

Для котангенса: 

4. Обратные тригонометрические функции. 

 ex-13    

Пример нахождения области определения функции №1

Нахождение области определения любой линейной функции, т.е. функции первой степени: 

y = 2x + 3 —  уравнение задает прямую на плоскости.

Посмотрим внимательно на функцию и подумаем, какие же числовые значения мы сможем подставить в уравнение вместо переменной х?

Попробуем подставить значение х=0

Так как  y = 2·0 + 3 = 3 — получили числовое значение, следовательно функция существует при взятом значении переменной х=0.

Попробуем подставить значение х=10 

так как  y = 2·10 + 3 = 23 —  функция существует при взятом значении переменной х=10 .

Попробуем подставить значение х=-10

так как  y = 2·(-10) + 3 = -17 — функция существует при взятом значении переменной х=-10 . 

Уравнение задает прямую линию на плоcкости, а прямая не имеет ни начала ни конца, следовательно она существует для любых значений х.

области определения функции

Заметим, что какие бы числовые значения мы не подставляли в заданную функцию вместо х, всегда получим числовое значение переменной y.

Следовательно, функция существует для любого значения x ∈ R  или запишем так: D(f) = R 

Формы записи ответа:  D(f)=R  или  D(f)=(-∞:+∞)или x∈R  или x∈(-∞:+∞)

Сделаем вывод:

Для любой функции вида y = ax + b областью определения является множество действительных чисел.

Пример нахождения области определения функции №2

Задана функция вида:  

y = 10/(x + 5) —  уравнение гиперболы

Имея дело с дробной функцией, вспомним, что на ноль делить нельзя. Следовательно функция будет существовать для всех значений х, которые не

обращают знаменатель в ноль. Попробуем подставить какие-либо произвольные значения х.

При х = 0 имеем  y = 10/(0 + 5) = 2 — функция существует.

При х = 10 имеем  y = 10/(10 + 5) = 10/15 = 2/3 — функция существует.

При х = -5 имеем  y = 10/(-5 + 5) = 10/0  —  функция в этой точке не существует. 

Т.е. если заданная функция дробная, то необходимо знаменатель приравнять нулю и найти такую точку, в которой функция не существует. 

В нашем случае:

x + 5 = 0 → x = -5 — в этой точке заданная функция не существует.

или

x + 5 ≠ 0 → x ≠ -5 

Для наглядности изобразим графически:

область определения функции 

На графике также видим, что  гипербола максимально близко приближается к прямой х = -5, но самого значения -5 не достигает. 

Видим, что заданная функция существует во всех точках действительной оси, кроме точки  x = -5

Формы записи ответа:  D(f)=R{-5}  или  D(f)=(-∞;-5) (-5;+∞)  или  xR{-5}  или  x(-∞;-5)(-5;+∞) 

Вывод:

Если заданная функция дробная, то наличие знаменателя накладывает условие неравенства нулю знаменателя. 

Пример нахождения области определения функции №3

Рассмотрим пример нахождения области определения функции с корнем четной степени:

sqr_2x-8.gif 

Так как квадратный корень мы можем извлечь только из неотрицательного числа, следовательно, функция под корнем — неотрицательна.

2х — 8 ≥ 0  

Решим простое неравенство:  

2х — 8 ≥ 0  →  2х ≥ 8  →  х ≥ 4

Заданная функция существует только при найденных значениях х ≥ 4 или D(f)=[4;+∞)  или  x[4;+∞).

область определения функции

На графике видим, что функция существует для найденных значений х : х ≥ 4  или  D(f)=[4;+∞)  или  x[4;+∞).

При попытке подставить вместо х значения, отличные от найденных, под корнем получим отрицательное число, те в этих точках функция не существует. 

Вывод:

Если заданная функция содержит квадратный корень (или корень любой четной степени), то обязательно накладывается условие неотрицательности (≥0) на подкоренное выражение. Если квадратный корень находится в знаменателе функции, у которой мы находим область определения, то на подкоренное выражение накладывается условие положительности (>0), так как знаменатель всегда должен быть отличен от нуля. 

Пример нахождения области определения функции №4

Рассмотрим пример нахождения области определения функции с корнем четной степени в знаменателе:

formula 4

В числителе имеем линейную функцию, область определения которой множество всех действительных чисел. (см. пример 1)

В знаменателе — квадратный корень, накладывает условие на подкоренное выражение, не забывая о том, что знаменатель всегда отличен от нуля.

Получим:

x— 4x + 3 > 0   →  (x — 1)(x — 3) > 0 

Решим строгое неравенство методом интервалов:

Видим, что функция положительна на следующих интервалах: x∈(-∞;1)∪(3;+∞)

Нашли такие значения переменной х, при которых функция существует — нашли ОДЗ функции.

  

Пример нахождения области определения функции №5

Рассмотрим пример нахождения области определения функции с корнем нечетной степени:

нахождение области определения графика функции 

Имеем дело с корнем нечетной степени. Так как корень нечетной степени существует при любых значениях подкоренного выражения, то заданная дробная функция под корнем может принимать любые значения.

В числителе дробной функции — уравнение первой сnепени, которое существует при любых значениях переменной. Знаменатель любой дроби отличен от нуля. Следовательно, при нахождении ОДЗ заданного выражения имеем дело лишь с одним ограничением — ограничение на знаменатель дроби.

область определения найти как

Получили ОДЗ:  x∈(-∞;-1)∪(-1;1)∪(1;+∞)

Пример нахождения области определения функции №6

Рассмотрим пример нахождения области определения логарифма: 

область определения логарифмической функции 

Простенький пример на область определения логарифмической функции.

Помним, что основание логарифма положительно и отлично от нуля. Подлогарифмическое выражение положительно:

решение неравенства при нахождении области определения функции

Покажем на числовой прямой:

решение неравенства на плоскости 

Получили ОДЗ:  x∈(8;9)∪(9;+∞)

 

Пример нахождения области определения функции №7

Задана функция вида: 

область определения функции как найти 

1 ограничение основывается на наложении ограничения на знаменатель дроби (отличен от нуля):

ограничение на знаменатель дроби

Второе ограничение  — подлогарифмическое выражение положительно:

ограничение на логарифм

Т.е. для определения области определения заданной функции необходимо решить систему:

система для определения области определения функции

Необходимо решить каждое из ограничений системы по отдельности и пересечь получившиеся результаты.

Допускаю, что читатель самостоятельно может это проделать и перехожу к разбору следующего примера.

 

Пример нахождения области определения функции №8

Рассмотрим следующий пример: 

область определения функции 

Имеем дело с корнем четной степени, следовательно первое ограничение на подкоренное выражение:

ограничение на подкоренное выражение

Имеем дело с логарифмом, следовательно ограничение на подлогарифмическую функцию:

ограничение на подлогарифмическую функцию

Таким образом для определения области определения исходной функции необходимо решить систему неравенств:

система ограничений

Каждое из неравенств решим по отдельности.

Первое неравенство будем решать методом интервалов: найдем корни каждого из выражений неравенства, вынесем их на координатную плоскость и расставим знаки неравенства в каждом из полученных интервалов.

Корни:

находим корни

Второе неравенство:

решение неравенства системы ограничений на область определения функции

Выносим на координатную прямую:

решение неравенства на плоскости

Объясню как расставлены знаки в каждом из интервалов:

Значения левее 6/7 нет смысла рассматривать, так как логарифм для этих значений не существует.

1-ый интервал: (6/7;1]

Основание логарифма больше единицы, следовательно функция возрастающая. В корне x=1 логарифм меняет свое значение с » — » на » + «.

Наглядно покажу на графике:

знаки логарифма в примере нахождения области определения

Имеем: линейная функция (13 — x) 

Пример нахождения области определения функции №9

Рассмотрим следующий пример: 

Excample-9-uslovie 

область определения пример решения 

Пример нахождения области определения функции №10

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY. 

Найти область определения функции двух переменных

 

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY

Пример нахождения области определения функции №11

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY. 

Найти область определения функции двух переменных

 

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY 

Пример нахождения области определения функции №12

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY. 

Найти область определения функции двух переменных

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY 

 

Пример нахождения области определения функции №13

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY.

Найти область определения функции двух переменных

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY

Все графике в этой статье были построены в Geogebra. 

Подробно о построении графиков функции быстрым и удобным способом читать тут

  1. Метод интервалов

О.
Метод интервалов – метод решения
рациональных неравенств.

Этот метод основан
на следующей теореме математического
анализа

(теореме
Больцано-Коши)
, которую мы
рассмотрим без доказательства:

Пусть функция

на отрезке

и на концах его принимает разные по
знаку значения,

тогда в некоторой
точке отрезка функции обращается в
ноль.

То есть,

Пусть функция

непрерывна на своей области определения,

.
Для применения метода интервалов нужно
найти область определения функции, а
затем решить уравнение

и найти его корни. Эти точки разбивают
область определения функции на интервалы,
на каждом из которых функция сохраняет
свой знак. На каждом таком интервале
функция сохраняет знак именно по теореме
Больцано-Коши, так как если предположить,
что хотя бы в одной точке внутри одного
из таких интервалов функция меняет
свой знак, то значит, что существует
еще одна точка, в которой функция
обращается в ноль. Но все нули функции
— корни уравнения

,
которые являются концами интервалов
и никаких других нулей у функции быть
не может.

Знак функции на
каждом таком интервале можно определить
по одной точке, а для рациональной
функции можно использовать чередование
знаков с учетом степени сомножителей.
Если степень сомножителя

четная, то при переходе через точку

знак функции не меняется, если степень
сомножителя

нечетная, то при переходе через точку

знак функции меняется.

Приведем алгоритм
применения метода интервалов
:

  1. Приведем неравенство
    к виду

    .
    Для этого переносим все члены в левую
    часть.

  2. Приводим
    все члены в левой части к общему
    знаменателю.

  3. Числитель и
    знаменатель полученной дроби раскладываем
    на сомножители. Сомножители должны
    быть либо линейные (т. е. вида

    ),
    либо квадратные трехчлены, не имеющие
    действительных корней, т. е. не
    раскладывающиеся на линейные сомножители.
    Если в числителе и в знаменателе есть
    общие сомножители, то сокращать их
    пока не будем.

  4. Отметим нули
    числителя и знаменателя на числовой
    прямой. Нули знаменателя отмечаем
    всегда «выколотыми» точками, а нули
    числителя «выколотыми» точками, если
    неравенство строгое, и «закрашенными»,
    если неравенство нестрогое. После
    этого общие сомножители в числителе
    и в знаменателе нужно сократить.

  5. Полученные точки
    разбивают числовую прямую на промежутки,
    на которых левая часть сохраняет свой
    знак (По теореме Больцано-Коши). Нам
    нужно только определить знак на каждом
    промежутке.

Первый способ:
нужно взять по одной точке из каждого
промежутка (обязательно внутри, а не
на конце) и вычислить в этих точках
значения левой части.

Второй способ:
заметим, что сомножитель

в нечетной степени меняет знак «при
переходе через точку

»,
а сомножитель четной степени не меняет
знака. Можно определить знак на самом
правом промежутке, а затем расставить
знаки, учитывая переходы через все
нули. Остается только выбрать промежутки
с нужным знаком.

Пример.

Р
ешить
неравенство

Отметим нули
числителя и знаменателя на числовой
прямой, вычислим знак левой части на
каждом из получившихся промежутков.

Выберем те
промежутки, на которых функция имеет
нужный знак.

Ответ:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Метод интервалов: решение простейших строгих неравенств

12 ноября 2017

  • Домашнее задание
  • Ответы

Для начала — немного лирики, чтобы почувствовать проблему, которую решает метод интервалов. Допустим, нам надо решить вот такое неравенство:

(x − 5)(x + 3) > 0

Какие есть варианты? Первое, что приходит в голову большинству учеников — это правила «плюс на плюс дает плюс» и «минус на минус дает плюс». Поэтому достаточно рассмотреть случай, когда обе скобки положительны: x − 5 > 0 и x + 3 > 0. Затем также рассмотрим случай, когда обе скобки отрицательны: x − 5 < 0 и x + 3 < 0. Таким образом, наше неравенство свелось к совокупности двух систем, которая, впрочем, легко решается:

Исходное неравенство сводится к совокупности двух систем неравенств.

Более продвинутые ученики вспомнят (может быть), что слева стоит квадратичная функция, график которой — парабола. Причем эта парабола пересекает ось OX в точках x = 5 и x = −3. Для дальнейшей работы надо раскрыть скобки. Имеем:

x2 − 2x − 15 > 0

Теперь понятно, что ветви параболы направлены вверх, т.к. коэффициент a = 1 > 0. Попробуем нарисовать схему этой параболы:

Парабола с ветвями вверх и нулями в точках -3 и 5

Функция больше нуля там, где она проходит выше оси OX. В нашем случае это интервалы (−∞ −3) и (5; +∞) — это и есть ответ.

Обратите внимание: на рисунке изображена именно схема функции, а не ее график. Потому что для настоящего графика надо считать координаты, рассчитывать смещения и прочую хрень, которая нам сейчас совершенно ни к чему.

Почему эти методы неэффективны?

Итак, мы рассмотрели два решения одного и того же неравенства. Оба они оказались весьма громоздкими. В первом решении возникает — вы только вдумайтесь! — совокупность систем неравенств. Второе решение тоже не особо легкое: нужно помнить график параболы и еще кучу мелких фактов.

Это было очень простое неравенство. В нем всего 2 множителя. А теперь представьте, что множителей будет не 2, а хотя бы 4. Например:

(x − 7)(x − 1)(x + 4)(x + 9) < 0

Как решать такое неравенство? Перебирать все возможные комбинации плюсов и минусов? Да мы уснем быстрее, чем найдем решение. Рисовать график — тоже не вариант, поскольку непонятно, как ведет себя такая функция на координатной плоскости.

Для таких неравенств нужен специальный алгоритм решения, который мы сегодня и рассмотрим.

Что такое метод интервалов

Метод интервалов — это специальный алгоритм, предназначенный для решения сложных неравенств вида f (x) > 0 и f (x) < 0. Алгоритм состоит из 4 шагов:

  1. Решить уравнение f (x) = 0. Таким образом, вместо неравенства получаем уравнение, которое решается намного проще;
  2. Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на несколько интервалов;
  3. Выяснить знак (плюс или минус) функции f (x) на самом правом интервале. Для этого достаточно подставить в f (x) любое число, которое будет правее всех отмеченных корней;
  4. Отметить знаки на остальных интервалах. Для этого достаточно запомнить, что при переходе через каждый корень знак меняется.

Вот и все! После этого останется лишь выписать интервалы, которые нас интересуют. Они отмечены знаком «+», если неравенство имело вид f (x) > 0, или знаком «−», если неравенство имеет вид f (x) < 0.

На первый взгляд может показаться, что метод интервалов — это какая-то жесть. Но на практике все будет очень просто. Стоит чуть-чуть потренироваться — и все станет понятно. Взгляните на примеры — и убедитесь в этом сами:

Задача. Решите неравенство:

(x − 2)(x + 7) < 0

Работаем по методу интервалов. Шаг 1: заменяем неравенство уравнением и решаем его:

(x − 2)(x + 7) = 0

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю:

x − 2 = 0 ⇒ x = 2;
x + 7 = 0 ⇒ x = −7.

Получили два корня. Переходим к шагу 2: отмечаем эти корни на координатной прямой. Имеем:

Координатная ось и корни, отмеченные на ней.

Теперь шаг 3: находим знак функции на самом правом интервале (правее отмеченной точки x = 2). Для этого надо взять любое число, которое больше числа x = 2. Например, возьмем x = 3 (но никто не запрещает взять x = 4, x = 10 и даже x = 10 000). Получим:

f (x) = (x − 2)(x + 7);
x = 3;
f (3) = (3 − 2)(3 + 7) = 1 · 10 = 10;

Получаем, что f(3) = 10 > 0, поэтому в самом правом интервале ставим знак плюс.

Переходим к последнему пункту — надо отметить знаки на остальных интервалах. Помним, что при переходе через каждый корень знак должен меняться. Например, справа от корня x = 2 стоит плюс (мы убедились в этом на предыдущем шаге), поэтому слева обязан стоять минус.

Этот минус распространяется на весь интервал (−7; 2), поэтому справа от корня x = −7 стоит минус. Следовательно, слева от корня x = −7 стоит плюс. Осталось отметить эти знаки на координатной оси. Имеем:

координатная ось, отмеченные корни и знаки функции

Вернемся к исходному неравенству, которое имело вид:

(x − 2)(x + 7) < 0

Итак, функция должна быть меньше нуля. Значит, нас интересует знак минус, который возникает лишь на одном интервале: (−7; 2). Это и будет ответ.

Задача. Решите неравенство:

(x + 9)(x − 3)(1 − x) < 0

Шаг 1: приравниваем левую часть к нулю:

(x + 9)(x − 3)(1 − x) = 0;
x + 9 = 0 ⇒ x = −9;
x − 3 = 0 ⇒ x = 3;
1 − x = 0 ⇒ x = 1.

Помните: произведение равно нулю, когда хотя бы один из множителей равен нулю. Именно поэтому мы вправе приравнять к нулю каждую отдельную скобку.

Шаг 2: отмечаем все корни на координатной прямой:

Координатная прямая и три корня, отмеченные на ней

Шаг 3: выясняем знак самого правого промежутка. Берем любое число, которое больше, чем x = 1. Например, можно взять x = 10. Имеем:

f (x) = (x + 9)(x − 3)(1 − x);
x = 10;
f (10) = (10 + 9)(10 − 3)(1 − 10) = 19 · 7 · (−9) = − 1197;
f (10) = −1197 < 0.

Шаг 4: расставляем остальные знаки. Помним, что при переходе через каждый корень знак меняется. В итоге наша картинка будет выглядеть следующим образом:

Координатная ось, корни и знаки функции

Вот и все. Осталось лишь выписать ответ. Взгляните еще раз на исходное неравенство:

(x + 9)(x − 3)(1 − x) < 0

Это неравенство вида f (x) < 0, т.е. нас интересуют интервалы, отмеченные знаком минус. А именно:

x ∈ (−9; 1) ∪ (3; +∞)

Это и есть ответ.

Замечание по поводу знаков функции

Практика показывает, что наибольшие трудности в методе интервалов возникают на последних двух шагах, т.е. при расстановке знаков. Многие ученики начинают путаться: какие надо брать числа и где ставить знаки.

Чтобы окончательно разобраться в методе интервалов, рассмотрим два замечания, на которых он построен:

  1. Непрерывная функция меняет знак только в тех точках, где она равна нулю. Такие точки разбивают координатную ось на куски, внутри которых знак функции никогда не меняется. Вот зачем мы решаем уравнение f (x) = 0 и отмечаем найденные корни на прямой. Найденные числа — это «пограничные» точки, отделяющие плюсы от минусов.
  2. Чтобы выяснить знак функции на каком-либо интервале, достаточно подставить в функцию любое число из этого интервала. Например, для интервала (−5; 6) мы вправе брать x = −4, x = 0, x = 4 и даже x = 1,29374, если нам захочется. Почему это важно? Да потому что многих учеников начинают грызть сомнения. Мол, что если для x = −4 мы получим плюс, а для x = 0 — минус? А ничего — такого никогда не будет. Все точки на одном интервале дают один и тот же знак. Помните об этом.

Вот и все, что нужно знать про метод интервалов. Конечно, мы разобрали его в самом простом варианте. Существуют более сложные неравенства — нестрогие, дробные и с повторяющимися корнями. Для них тоже можно применять метод интервалов, но это тема для отдельного большого урока.

Теперь хотел бы разобрать продвинутый прием, который резко упрощает метод интервалов. Точнее, упрощение затрагивает только третий шаг — вычисление знака на самом правом куске прямой. По каким-то причинам этот прием не проходят в школах (по крайней мере, мне никто такого не объяснял). А зря — ведь на самом деле этот алгоритм очень прост.

Итак, знак функции на правом куске числовой оси. Этот кусок имеет вид (a; +∞), где a — самый большой корень уравнения f (x) = 0. Чтобы не взрывать мозг, рассмотрим конкретный пример:

(x − 1)(2 + x)(7 − x) < 0;
f (x) = (x − 1)(2 + x)(7 − x);
(x − 1)(2 + x)(7 − x) = 0;
x − 1 = 0 ⇒ x = 1;
2 + x = 0 ⇒ x = −2;
7 − x = 0 ⇒ x = 7;

Мы получили 3 корня. Перечислим их в порядке возрастания: x = −2, x = 1 и x = 7. Очевидно, что наибольший корень — это x = 7.

Для тех, кому легче рассуждать графически, я отмечу эти корни на координатной прямой. Посмотрим, что получится:

корни уравнения на координатной прямой

Требуется найти знак функции f (x) на самом правом интервале, т.е. на (7; +∞). Но как мы уже отмечали, для определения знака можно взять любое число из этого интервала. Например, можно взять x = 8, x = 150 и т.д. А теперь — тот самый прием, который не проходят в школах: давайте в качестве числа возьмем бесконечность. Точнее, плюс бесконечность, т.е. +∞.

«Ты че, обкурился? Как можно подставить в функцию бесконечность?» — возможно, спросите вы. Но задумайтесь: нам ведь не нужно само значение функции, нам нужен только знак. Поэтому, например, значения f (x) = −1 и f (x) = −938 740 576 215 значат одно и то же: функция на данном интервале отрицательна. Поэтому все, что от вас требуется — найти знак, который возникает на бесконечности, а не значение функции.

На самом деле, подставлять бесконечность очень просто. Вернемся к нашей функции:

f (x) = (x − 1)(2 + x)(7 − x)

Представьте, что x — это очень большое число. Миллиард или даже триллион. Теперь посмотрим, что будет происходить в каждой скобке.

Первая скобка: (x − 1). Что будет, если из миллиарда вычесть единицу? Получится число, не особо отличающееся от миллиарда, и это число будет положительным. Аналогично со второй скобкой: (2 + x). Если к двойке прибавить миллиард, по получим миллиард с копейками — это положительное число. Наконец, третья скобка: (7 − x). Здесь будет минус миллиард, от которого «отгрызли» жалкий кусочек в виде семерки. Т.е. полученное число мало чем будет отличаться от минус миллиарда — оно будет отрицательным.

Осталось найти знак всего произведения. Поскольку в первых скобках у нас был плюс, а в последней — минус, получаем следующую конструкцию:

(+) · (+) · (−) = (−)

Итоговый знак — минус! И неважно, чему равно значение самой функции. Главное, что это значение — отрицательное, т.е. на самом правом интервале стоит знак минус. Осталось выполнить четвертый шаг метода интервалов: расставить все знаки. Имеем:

Координатная ось с отмеченными корнями и знаками функции

Исходное неравенство имело вид:

(x − 1)(2 + x)(7 − x) < 0

Следовательно, нас интересуют интервалы, отмеченные знаком минус. Выписываем ответ:

x ∈ (−2; 1) ∪ (7; +∞)

Вот и весь прием, который я хотел рассказать. В заключение — еще одно неравенство, которое решается методом интервалов с привлечением бесконечности. Чтобы визуально сократить решение, я не буду писать номера шагов и развернутые комментарии. Напишу только то, что действительно надо писать при решении реальных задач:

Задача. Решите неравенство:

x(2x + 8)(x − 3) > 0

Заменяем неравенство уравнением и решаем его:

x(2x + 8)(x − 3) = 0;
x = 0;
2x + 8 = 0 ⇒ x = −4;
x − 3 = 0 ⇒ x = 3.

Отмечаем все три корня на координатной прямой (сразу со знаками):

Справа на координатной оси стоит плюс, т.к. функция имеет вид:

f (x) = x(2x + 8)(x − 3)

А если подставить бесконечность (например, миллиард), получим три положительных скобки. Поскольку исходное выражение должно быть больше нуля, нас интересуют только плюсы. Осталось выписать ответ:

x ∈ (−4; 0) ∪ (3; +∞)

Смотрите также:

  1. Метод интервалов: случай нестрогих неравенств
  2. Тест по методу интервалов для строгих неравенств
  3. Сводный тест по задачам B12 (2 вариант)
  4. Профильный ЕГЭ-2022, задание 6. Геометрический смысл производной
  5. Формулы приведения: ускоряем вычисления в тригонометрии
  6. Задачи B4: перевозка груза тремя фирмами

На этой странице вы узнаете

  • Как мы ежедневно расставляем знаки неравенства в жизни?
  • Как быстро определить верное обозначение точки на прямой?
  • Как правильно чередовать знаки на числовой прямой?

Решая уравнение, мы стремимся к тому, чтобы обе части были равны. Но существуют такие примеры, где мы заведомо знаем, что два выражения не могут быть равны между собой. Они называются неравенствами. 

Метод интервалов

Неравенство — это алгебраическое выражение, в котором одна сторона имеет отличное от другой значение. В неравенствах обычно одна сторона больше другой.

Для записи неравенств используют знаки > , < , ≥ , ≤ . 

При этом “>” и “<” — это строгие знаки неравенства, а “≥” и “≤” — нестрогие знаки неравенства. 

Их отличие в том, что нестрогие знаки неравенства включают граничные точки в итоговый промежуток, а строгие — нет. 

Как мы ежедневно расставляем знаки неравенства в жизни?

Посмотрим на привычные ситуации с точки зрения строгости знаков неравенства.

Например, возьмем известную игру “Камень, ножницы, бумага”.
Правила игры говорят нам, что камень всегда побеждает ножницы, а бумага побеждает камень. Если перенести это на язык неравенства, то получится:

Теперь зайдем в магазин цифровой техники и попробуем выбрать себе новый мобильный телефон. Задачка непростая, не так ли? Две разные модели могут настолько незначительно отличаться друг от друга своими характеристиками, что будут казаться почти одинаковыми. Тогда мы можем сказать, что они практически равны между собой, то есть неравенство нестрогое. Но один из них всё-таки понравился нам больше.

И каждый наш выбор, каждый шаг – это расстановка знака неравенства в настоящей жизни. Просто по бокам от него не цифры и переменные, а существующие ситуации и вещи. 

Рассмотрим пример неравенства (х — 10)(х + 21) > 0. 

Его можно решить несколькими способами. Например, вспомним, что положительным будет произведение двух положительных или двух отрицательных множителей, тогда получается совокупность из двух систем. 

Однако этот способ решения очень трудоемкий и требует много времени. А если множителей будет больше, например, три или четыре, то время на решение в разы увеличивается. 

Небольшой секрет тайм-менеджмента: как сократить время при решении неравенств?  В таких случаях на помощь приходит метод интервалов.

Метод интервалов — специальный алгоритм решения для сложных неравенств вида f(x) > 0. При этом знак неравенства может быть любым.

Интервал — это промежуток на числовой прямой, ограниченный двумя различными числами.

 

Алгоритм решения неравенств методом интервалов

1 шаг. Перенести все части неравенства в одну сторону так, чтобы с другой остался только 0. 

2 шаг. Найти нули функции, для этого необходимо решить уравнение f(x) = 0. 

3 шаг. Начертить числовую прямую и отметить на ней все полученные корни. Таким образом, числовая прямая разобьется на интервалы. 

4 шаг. Определить знаки на каждом интервале. Для этого необходимо подставить любое удобное значение в f(x) и определить, какой знак будет иметь функция на данном интервале.

Расставляя полученные корни на прямой, необходимо отмечать их точками. При этом от того, какая отмечена точка (выколотая или закрашенная), будет зависеть ответ. 

  • Если в неравенстве стоит строгий знак неравенства, то все точки на прямой должны быть выколотыми. 

Таким образом, граничные точки не будут включены в итоговый промежуток. Для записи таких точек используют круглые скобочки. Например, в промежуток (2;3) включаются все значения от 2 до 3, но не включаются граничные точки. 

  • Если в неравенстве стоит нестрогий знак неравенства, то найденные корни должны быть отмечены закрашенными точками. 

Это означает, что мы включаем их в итоговый промежуток. Для записи таких точек используют квадратные скобочки. Например, в промежуток [2;3] включаются все значения от 2 до 3, в том числе и граничные точки. 

  • Если в неравенстве появляются ограничения и некоторые точки нельзя взять в ответ, то такие точки должны быть выколотыми на числовой прямой, при этом знак самого неравенства может быть как строгим, так и нестрогим. 

Например, если необходимо решить неравенство с дробью, то нули знаменателя на числовой прямой обязательно должны быть обозначены выколотыми точками. 

Как быстро определить верное обозначение точки на прямой?

В случае сомнений мы всегда можем проверить себя по простой схеме.

Вывод:
— если знак неравенства строгий, то все точки будут выколотыми;
— если знак неравенства нестрогий, то точки будут закрашенными, кроме тех точек, которые нельзя взять в ответ (например, они не удовлетворяют ОДЗ).

Стоит отметить, что непрерывная функция будет менять знак только в точках, в которых она равна 0. Подробнее узнать про смену знака функции можно в статье «Определение и график функции». Именно поэтому в методе интервалов мы ищем и отмечаем нули функции на прямой — только при переходе через них будет меняться знак функции. 

При этом существует способ, с помощью которого можно быстро расставить знаки на прямой. Достаточно определить знак на одном из интервалов, а дальше чередовать знаки при переходе через каждую точку на прямой. 

Правила чередования знаков: 

  • Если корень повторяется нечетное количество раз (то есть его степень нечетная), то знак при переходе на следующий интервал меняется.
  • Если корень повторяется четное количество раз (его степень четная), то знак при переходе на следующий интервал не меняется. 
Как правильно чередовать знаки на числовой прямой?

Всегда будет нелишним перепроверить знак на каждом интервале, подставив значения в функцию, и  убедиться в правильности расстановки знаков на прямой. 

Но при расстановке можно пользоваться следующим алгоритмом, что значительно сократит время расстановки знаков. 

Методом интервалов можно решить практически любое неравенство в задании 14 из ЕГЭ по профильной математике, также он может понадобиться в заданиях 8, 11 и 17 «профиля» или в задании 17 ЕГЭ по базовой математике

На ОГЭ данным методом можно воспользоваться при решении неравенств из первой и второй частей — №13 и №20
Так что осваивайте метод и 2 балла ЕГЭ или 3 балла ОГЭ будут у вас в кармане. Обязательно следуйте алгоритму решения неравенств методом интервалов, тогда вы точно решите неравенство верно.

Практика

Рассмотрим несколько примеров, чтобы на практике разобрать применение метода интервалов для решения неравенств.  

Пример 1. Решить неравенство x2 + 8x — 33 > 0. 

Шаг 1. Первым шагом необходимо найти нули функции, для этого приравниваем выражение слева к 0: x2 + 8x — 33 = 0. 

Шаг 2. Находим корни уравнения, получаем х = 3 и х = -11. 

Шаг 3. Расставляем полученные корни на числовой прямой. Поскольку знак неравенства строгий, то точки должны быть выколотыми:

Шаг 4. Дальше необходимо определить знаки на каждом интервале. Для этого подставим х = -12 в x2 + 8x — 33. Получаем: 

(-12)2 + 8*(-12) — 33 = 144 — 96 — 33 = 15. 

Получается положительное число, следовательно, интервал от минус бесконечности до -11 положительный. Поскольку все корни в неравенстве повторяются нечетное количество раз (по одному разу), то знаки чередуются. 

В ответ необходимо записать промежутки с положительным знаком, следовательно, ответом будет х ∈ (-∞; -11) U (3; +∞). 

Пример 2. Решить неравенство (frac{2х^2 + 22х — 204}{(х-3)(х+5)} ≤ 0). 

1. Находим нули функции. 

Нули числителя: 2х2 + 22х — 204 = 0. Решая уравнение, получаем х = 6 и х = -17. 

Нули знаменателя: (х — 3)(х + 5) = 0, следовательно, х = 3 и х = -5. 

2. Расставляем полученные корни на числовой прямой. Нули числителя будут обозначены закрашенными точками, поскольку знак неравенства нестрогий. А вот нули знаменателя — выколотыми, поскольку знаменатель не может равняться 0, следовательно, и нули знаменателя не должны входить в итоговый промежуток. 

3. Определяем знак на крайнем левом промежутке, подставляя х=-20 в дробь:

(frac{2(-20)^2 + 22(-20) — 204}{(-20 -3)(-20 +5)} = frac{2 * 400 — 440 — 204}{(-23) * (-15)} = 156345. )

Следовательно, промежуток положительный. 

4. Поскольку каждый корень встречается один раз, то есть нечетное количество раз, то знаки будут чередоваться. 

В ответ необходимо включить отрицательные промежутки. Следовательно, ответом будет х ∈ [-17; -5) U (3; 6].

Пример 3. Решить неравенство (frac{1}{х^2} ≥ frac{1}{х+2})

1. Первым делом следует отметить, что знаменатели не могут быть равны 0, следовательно, х2 ≠ 0 и х + 2 ≠ 0, отсюда получаем х ≠ 0 и х ≠ -2. 

2. Теперь перенесем все части неравенства влево: 

(frac{1}{х^2} — frac{1}{х+2} ≥ 0). 

Приведем к общему знаменателю:

 (frac{х + 2 — х^2}{х^2 (х + 2)} ≥ 0). 

Для решения неравенства будет удобнее, если перед х2 в числителе будет стоять положительный знак, для этого умножим неравенство на -1. 

При умножении неравенства на отрицательное число знак неравенства меняется на противоположный. 

Получаем:

(frac{х^2 — х — 2}{х^2 (х + 2)} ≤ 0). 

Теперь найдем нули функции. 

Нули числителя: х2 — х — 2 = 0. Тогда х = -1 и х = 2. 

Нули знаменателя: х = 0 и х = -2. 

2. Расставим корни на числовой прямой, при этом нули числителя будут обозначены закрашенными точками, а нули знаменателя — выколотыми. 

3. Определим знак на крайнем левом промежутке, подставив для этого х = -3 в дробь: 

(frac{(-3)^2 — (-3) — 2}{(-3)^2 ((-3) + 2)} = frac{9 + 3 — 2}{9 * (-1)} = frac{10}{-9})

Промежуток отрицательный. 

4. Дальше расставляем знаки, чередуя их. При этом следует заметить, что х = 0 — корень, повторяющийся четное количество раз (поскольку у х2 четная степень). Следовательно, при переходе через эту точку знак функции меняться не будет. 

В ответ необходимо включить отрицательные промежутки, следовательно: х ∈ (-∞; -2) U [-1; 0) U (0; 2]. 

Давайте подведем итог. Для чего мы это изучили?

Конечно же, эти знания пригодятся на экзаменах, а также в решении школьных примеров с 8 класса по 11 класс. 

Советуем после прочтения этой статьи попрактиковаться в рубрике «Проверь себя», чтобы закрепить полученные знания. После чего можете приступить к решению заданий посложнее, чтобы на экзамене у вас точно получилось решить подобные задания и набрать за них максимум баллов.

Фактчек

  • Метод интервалов позволяет упростить решение любого  неравенства, а также экономит время, которое ограничено на экзамене. 
  • Чтобы решить неравенство с помощью метода интервалов необходимо найти нули функции, расставить их на числовой прямой, а после определить знак каждого полученного интервала. 
  • Нули функции на прямой обозначаются точками, при этом закрашенные точки включают граничные значения в итоговый промежуток, а незакрашенные, напротив, исключают их из промежутка. 
  • Для определения знака на каждом интервале необходимо подставить любое значение из этого интервала в функцию. 
  • Для упрощения расстановки знаков можно пользоваться правилами чередования, определив знак только на одном интервале, а дальше менять знаки на каждом следующем. При этом если корень встречается в функции нечетное количество раз, то знак при переходе через эту точку на следующий интервал меняется, а если корень встречается четное количество раз, то знак на следующем интервале не меняется. 

Проверь себя

Задание 1. 
Какие знаки неравенства существуют?

  1. Строгие
  2. Нестрогие
  3. Строгие и нестрогие 
  4. Больше и меньше

Задание 2. 
Какой знак неравенства может встретиться в методе интервалов?

  1. Только больше или меньше. 
  2. Только “больше или равно” или “меньше или равно”. 
  3. Только “больше” и “больше или равно” или только “меньше” и “меньше или равно”.
  4. Любой. 

Задание 3. 
Какое утверждение верное?

  1. Если в неравенстве строгий знак неравенства, то точки на числовой прямой закрашены.
  2. Если в неравенстве строгий знак неравенства, то точки на числовой прямой выколоты.
  3. Если в неравенстве нестрогий знак неравенства, то все точки на числовой прямой закрашены, даже если в неравенстве есть ограничения.
  4. Если в неравенстве нестрогий знак неравенства, то все точки на числовой прямой выколоты. 

Задание 4. 
Какое утверждение верное? 

  1. При переходе на числовой прямой на следующий интервал, знак на интервале всегда будет меняться.
  2. Если корень встречается в неравенстве четное количество раз, то при переходе через него на следующий интервал знак не меняется.
  3. Если корень встречается в неравенстве нечетное количество раз, то при переходе через него на следующий интервал знак не меняется.
  4. Невозможно определить правильное чередование знаков на прямой, не подставляя значение из каждого интервала в функцию.

Задание 5. 
Если в неравенстве строгий знак неравенства, то какие скобочки могут встретиться в ответе? 

  1. Круглые
  2. Квадратные
  3. И круглые, и квадратные
  4. Ни один из перечисленных вариантов 

Ответы: 1. — 3 2. — 4 3. — 2 4. — 2 5. —

Понравилась статья? Поделить с друзьями:
  • Как на андроиде найти латинские буквы
  • Как найти тракторный прицеп
  • Составить предложения по схеме где как что сделала что
  • Как найти объем айсберга массой 240т
  • Как найти фотографа для портфолио