Как найти область определения функции arctg

  1. Понятие арктангенса
  2. График и свойства функции y=arctgx
  3. Уравнение tgx=a
  4. Понятие арккотангенса
  5. График и свойства функции y=arcctgx
  6. Уравнение ctgx=a
  7. Формулы преобразований аркфункци
  8. Примеры

Определение тангенса и котангенса через отношение сторон прямоугольника и с помощью касательной к числовой окружности – см. §3 данного справочника.
Свойства функции y=tgx на всей области определения (xinmathbb{R}) — см. §6 данного справочника.
Свойства функции y=ctgx на всей области определения (xinmathbb{R}) — см. §7 данного справочника.
Определение и свойства взаимно обратных функций — см. §2 справочника для 9 класса.

п.1. Понятие арктангенса

В записи (y=tgx) аргумент x — это значение угла (в градусах или радианах), функция y – тангенс угла, действительное число в пределах от (-infty;) до (+infty). Т.е., по заданному углу мы находим тангенс.
Можно поставить обратную задачу: по заданному тангенсу найти угол. Но одному значению тангенса соответствует бесконечное количество углов. Например, если (tgx=1), то (x=fracpi4+pi k, kinmathbb{Z}); если (tgx=0), то (x=pi k, kinmathbb{Z}) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x главной ветвью тангенса: (-fracpi2leq xleq fracpi2) (правая половина числовой окружности, вся ось тангенсов).

Арктангенсом числа (a (ainmathbb{R})) называется такое число (xin[-fracpi2; fracpi2]), тангенс которого равен (a). $$ arctg a=x Leftrightarrow begin{cases} tgx=a\ -fracpi2leq xleq fracpi2 end{cases} $$

Например:

(arctgfrac{1}{sqrt{3}}=fracpi6, arctg(-sqrt{3})=-frac{pi}{3}, arctg1=fracpi4).

п.2. График и свойства функции y=arctgx

График и свойства функции y=arctg x
1. Область определения (xinmathbb{R}).
2. Функция ограничена сверху и снизу асимптотами (-fracpi2leq arctgxleq fracpi2).
Область значений (yinleft(-fracpi2; fracpi2right))
3. Функция стремится к максимальному значению (y_{max}=fracpi2 text{при} xrightarrow +infty)
Функция стремится к минимальному значению (y_{min}=-fracpi2 text{при} xrightarrow -infty)
Функция имеет две горизонтальные асимптоты (y=pmfracpi2).
4. Функция возрастает на всей области определения.
5. Функция непрерывна на всей области определения.
6. Функция нечётная: (arctg(-x)=-arctg(x)).

п.3. Уравнение tgx=a

Уравнение tgx=a На оси тангенсов каждому углу на числовой окружности в интервале (-fracpi2leq xleq fracpi2) соответствует одно действительное число.

Например:
1) Решим уравнение (tgx=frac{1}{sqrt{3}})
Числу (frac{1}{sqrt{3}}) на оси тангенсов соответствует угол (fracpi6) на числовой окружности, (arctgfrac{1}{sqrt{3}}=fracpi6).
Учитывая период тангенса (pi), получаем ответ:
(x=fracpi6+pi k)

Уравнение tgx=a 2) Решим уравнение (tgx=2)
Числу (frac{1}{sqrt{3}}) на оси тангенсов соответствует угол (arctg2) на числовой окружности.
Учитывая период тангенса (pi), получаем ответ:
(x=arctg2+pi k)

В общем случае:

Уравнение (tgx=a) имеет решения $$ x=arctga+pi k, kinmathbb{Z}, ainmathbb{R} $$

п.4. Понятие арккотангенса

По аналогии с арктангенсом, арккотангенс определяется на главной ветви котангенса: (0lt xlt pi) (верхняя половина числовой окружности, вся ось котангенсов).

Арккотангенсом числа (a (ainmathbb{R})) называется такое число (xin(0;pi)), котангенс которого равен (a). $$ arcctg a=x Leftrightarrow begin{cases} ctgx=a\ 0lt xlt pi end{cases} $$

Например:

(arcctgfrac{1}{sqrt{3}}=fracpi3, arcctg(-sqrt{3})=-frac{pi}{6}, arcctg1=fracpi4).

п.5. График и свойства функции y=arcctgx

График и свойства функции y=arcctg x
1. Область определения (xinmathbb{R}).
2. Функция ограничена сверху и снизу асимптотами (0lt arcctgxlt pi).
Область значений (yin(0;pi))
3. Функция стремится к максимальному значению (y_{max}=pi text{при} xrightarrow -infty)
Функция стремится к минимальному значению (y_{min}=0 text{при} xrightarrow +infty)
Функция имеет две горизонтальные асимптоты (y=0 text{и} y=pi).
4. Функция убывает на всей области определения.
5. Функция непрерывна на всей области определения.
6. Функция ни чётная, ни нечётная.

п.6. Уравнение ctgx=a

Уравнение ctgx=a

В общем случае:

Уравнение (ctgx=a) имеет решения $$ x=arcctga+pi k, kinmathbb{Z}, ainmathbb{R} $$

Часто уравнение (ctgx=a) преобразуют в уравнение (tgx=frac{1}{a}), и ищут его корни.
Например:
1) (ctgx=sqrt{3})
(x=fracpi6+pi k)
Можно также преобразовать уравнение в (tg x=frac{1}{sqrt{3}})
Получаем тот же ответ: (x=fracpi6+pi k)

2) (ctgx=2)
(x=arcctg2+pi k)
Можно также преобразовать уравнение в (tg x=frac{1}{2})
Получаем ответ: (x=arctgfrac12+pi k)
Очевидно, что (arcctg 2=arctgfrac{1}{2}) (см. ниже формулы для аркфункций).

п.7. Формулы преобразования аркфункций

Аркфункции от обратных тригонометрических функций

begin{gather*} arcsin(sinalpha)=alpha, alphainleft[-fracpi2;fracpi2right], arccos(cosalpha)=alpha, alphain[0;pi]\ arctg(tgalpha)=alpha, alphainleft(-fracpi2;fracpi2right), arcctg(ctgalpha)=alpha, alphain(0;pi) end{gather*}

Аркфункции отрицательных аргументов

begin{gather*} arcsin(-alpha)=-arcsinalpha, arccos(-alpha)=pi-arccosalpha\ arctg(-alpha)=-arctgalpha, arcctg(-alpha)=pi-arcctgalpha end{gather*}

Суммы аркфункций

begin{gather*} arcsinalpha+arccosalpha=fracpi2, arctgalpha+arcctgalpha=fracpi2 end{gather*}

Сводная таблица тригонометрических функций от аркфункций

arcsin arccos arctg arcctg
sin begin{gather*} a\ ain[-1;1] end{gather*} begin{gather*} sqrt{1-a^2}\ ain[-1;1] end{gather*} begin{gather*} frac{a}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*} begin{gather*} frac{1}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*}
cos begin{gather*} sqrt{1-a^2}\ ain[-1;1] end{gather*} begin{gather*} a\ ain[-1;1] end{gather*} begin{gather*} frac{1}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*} begin{gather*} frac{a}{sqrt{1+a^2}}\ ainmathbb{R} end{gather*}
tg begin{gather*} frac{a}{sqrt{1-a^2}}\ ain(-1;1) end{gather*} begin{gather*} frac{sqrt{1-a^2}}{a}\ ain(-1;0)cup(0;1) end{gather*} begin{gather*} a\ ainmathbb{R} end{gather*} begin{gather*} frac{1}{a}\ ane 0 end{gather*}
ctg begin{gather*} frac{sqrt{1-a^2}}{a}\ ain(-1;0)cup(0;1) end{gather*} begin{gather*} frac{a}{sqrt{1-a^2}}\ ain(-1;1) end{gather*} begin{gather*} frac{1}{a}\ ane 0 end{gather*} begin{gather*} a\ ainmathbb{R} end{gather*}

Аркфункции, выраженные через другие аркфункции

arcsin
arccos $$ arcsina= begin{cases} arccossqrt{1-a^2}, 0leq aleq 1\ -arccossqrt{1-a^2}, -1leq alt 0 end{cases} $$
arctg $$ arcsina=arctgfrac{a}{sqrt{1-a^2}}, -1lt alt 1 $$
arcctg $$ arcsina= begin{cases} arcctgfrac{sqrt{1-a^2}}{a}, 0lt aleq 1\ -arcctgfrac{sqrt{1-a^2}}{a}-pi, -1leq alt 0 end{cases} $$

arccos
arcsin $$ arccosa= begin{cases} arcsinsqrt{1-a^2}, 0leq aleq 1\ pi-arcsinsqrt{1-a^2}, -1leq alt 0 end{cases} $$
arctg $$ arccosa= begin{cases} arcctgfrac{sqrt{1-a^2}}{a}, 0lt aleq 1\ pi+arctgfrac{sqrt{1-a^2}}{a}, -1leq alt 0 end{cases} $$
arcctg $$ arccosa=arcctgfrac{a}{sqrt{1-a^2}}, -1lt alt 1 $$

arctg
arcsin $$ arctga=arcsinfrac{a}{sqrt{1+a^2}}, ainmathbb{R} $$
arccos $$ arctga= begin{cases} arccosfrac{1}{sqrt{1+a^2}}, ageq 0\ -arccosfrac{1}{sqrt{1+a^2}}, alt 0 end{cases} $$
arcctg $$ arctga=arcctgfrac{1}{a}, ane 0 $$

arcctg
arcsin $$ arcctga= begin{cases} arcsinfrac{1}{sqrt{1+a^2}}, ageq 0\ pi-arcsinfrac{1}{sqrt{1+a^2}}, alt 0 end{cases} $$
arccos $$ arcctga=arccosfrac{a}{sqrt{1+a^2}}, ainmathbb{R} $$
arctg $$ arcctga=arctgfrac{1}{a}, ane 0 $$

п.8. Примеры

Пример 1. Найдите функцию, обратную арктангенсу. Постройте графики арктангенса и найденной функции в одной системе координат.

Для (y=arctgx) область определения (xinmathbb{R}), область значений (-fracpi2leq yleq fracpi2).
Обратная функция (y=tgx) должна иметь ограниченную область определения (-fracpi2leq xleq fracpi2) (главная ветвь) и область значений (yinmathbb{R}).
Строим графики:
Пример 1
Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

a) (tg x=-1)
(x=fracpi4+pi k)
б) (ctgx=-1)
(x=frac{3pi}{4}+pi k)

Если решать через (tgx=-1)
(x=-fracpi4+pi k)

в) (tg x=-5)
(x=arctg(-5)+pi k=-arctg5+pi k)
г) (ctgx=3)
(x=arcctg3+pi k)

Если решать через (tgx=frac13)
(x=arctgfrac13+pi k)

Пример 3. Вычислите:
a) (2arccosleft(-frac12right)+arctg(-1)+arcsinfrac{sqrt{2}}{2}=2cdotfrac{2pi}{3}-fracpi4+fracpi4=frac{4pi}{3})
б) (arcsin1-arccosfrac{sqrt{3}}{2}-arctg(sqrt{-3})=arcsin1-fracpi3+fracpi3=arcsin1)
в) (arctg4+arcsin0-arccos1=arctg4+0-0=arctg4)
г) (5-2arccos0+arcsinfrac{sqrt{2}}{2}+3arccosfrac{sqrt{2}}{2}=5-2cdotfracpi2+fracpi4+3cdotfracpi4=5)

Пример 4. Постройте графики функций:
(a) y=arccosleft(frac{1}{x}right)+arccosleft(-frac{1}{x}right))
Сумма арккосинусов (arccosa+arccos(-a)=pi), где (-1leq aleq 1).
Получаем систему для определения ОДЗ: begin{gather*} -1leq frac{1}{x}leq 1Rightarrow 0leq frac{1}{x}+1leq 2Rightarrow begin{cases} frac{x+1}{x}geq 0\ frac{x+1}{x}leq 2 end{cases} Rightarrow begin{cases} frac{x+1}{x}geq 0\ frac{-x+1}{x}leq 0 end{cases} Rightarrow begin{cases} frac{x+1}{x}geq 0\ frac{x-1}{x}geq 0 end{cases} Rightarrow\ Rightarrow left[ begin{array}{l l} begin{cases} xgt 0\ x+1geq 0\ x-1geq 0 end{cases} \ begin{cases} xlt 0\ x+1leq 0\ x-1leq 0 end{cases} end{array} right. Rightarrow left[ begin{array}{l l} begin{cases} xgt 0\ xgeq 1 end{cases} \ begin{cases} xlt 0\ xleq -1 end{cases} end{array} right. Rightarrow xleq -1cup xgeq 1 end{gather*} Заметим, что используя модуль, тот же результат можно получить значительно быстрей: $$ -1leqfrac{1}{x}leq 1Leftrightarrow |frac{1}{x}|leq 1Leftrightarrow |x|geq 1 $$ Таким образом, ОДЗ – вся числовая прямая, кроме (xnotin(-1;1).) $$ y=arccosleft(frac{1}{x}right)+arccosleft(-frac{1}{x}right)Leftrightarrow begin{cases} y=pi\ xnotin (-1;1) end{cases} $$ Строим график:
Пример 4а

(б) y=arcctg(sqrt{x})+arcctg(-sqrt{x}))
Сумма арккотангенсов (arcctga+arcctg(-a)=pi), где (ainmathbb{R})
ОДЗ ограничено требованием к подкоренному выражению: (xgeq 0)
$$ y=arcctgleft(sqrt{x}right)+arcctgleft(-sqrt{x}right)Leftrightarrow begin{cases} y=pi\ xgeq 0 end{cases} $$ Строим график:
Пример 4б

Пример 5*. Запищите в порядке возрастания:
$$ arctgleft(fracpi4right), arcsinleft(fracpi4right), arctg1 $$

Пример 5 Способ 1. С помощью числовой окружности.

Отмечаем точку (fracpi4) на оси синусов (ось OY) и точки (fracpi4) и 1 на оси тангенсов (касательная к окружности).
На пересечении с числовой окружностью получаем искомые углы.
В порядке возрастания: $$ arctgleft(fracpi4right)lt underbrace{arctg1}_{=fracpi4} lt arcsinleft(fracpi4right) $$

Способ 2. Аналитический
Арктангенс – функция возрастающая: (fracpi4approx 0,79lt 1Rightarrow arctgleft(fracpi4right)lt arctg 1)
Сравним (arctg1=fracpi4=arcsinleft(frac{sqrt{2}}{2}right)) и (arcsinleft(fracpi4right))
(frac{sqrt{2}}{2} ? fracpi4) — возведем в квадрат обе части
(frac12 ? frac{pi^2}{16}Leftrightarrow 8 ? pi^2)
(8ltpi^2Rightarrowfrac{sqrt{2}}{2}ltfracpi4 Rightarrow arcsinleft(frac{sqrt{2}}{2}right)lt arcsinleft(fracpi4right)Rightarrow 1lt arcsinleft(fracpi4right))
Получаем: $$ arctgleft(fracpi4right)lt underbrace{arctg1}_{=fracpi4} lt arcsinleft(fracpi4right) $$

Пример 6*. Решите уравнения:

a) (arccosx=arctgx)
ОДЗ определяется ограничением для арккосинуса: (-1leq xleq 1)
Арккосинус ограничен (0leq arccosxleq pi), арктангенс (-fracpi2leq arctgxltfracpi2)
Т.к. по условию они равны, ограничение сужается до (0leq arctgxlt fracpi2) и (0leq arccos xlt fracpi2) $$ arccosx=arctgxLeftrightarrow begin{cases} x=cos(arctgx)\ -1leq xleq 1\ 0leq arctgxltfracpi2\ 0leq arccosxltfracpi2 end{cases} Leftrightarrow begin{cases} x=cos(arctgx)\ -1leq xleq 1\ 0leq x\ 0lt xleq 1 end{cases} Leftrightarrow begin{cases} x=cos(arctgx)\ 0lt xlt 1 end{cases} $$ Для решения можно воспользоваться готовой формулой для (cos(arctgx)).
Выведем её. Пуcть (arctgx=varphi). Тогда (x=tgvarphi) и $$ cos(arctgx)=cosvarphi=sqrt{frac{1}{1+tg^2varphi}}=sqrt{frac{1}{1+x^2}} $$ Получаем уравнение: $$ x=sqrt{frac{1}{1+x^2}}Rightarrow x^2=frac{1}{1+x^2}Rightarrow x^2(1+x^2)=1Rightarrow x^4+x^2-1=0 $$ $$ D=1+4=5, x^2=frac{-1pmsqrt{5}}{2} $$ Квадрат числа не может быть отрицательным. Остаётся корень (x^2=frac{sqrt{5}-1}{2})
Откуда (x=pmsqrt{frac{sqrt{5}-1}{2}})
По условию (0lt xlt 1). Получаем (x=sqrt{frac{sqrt{5}-1}{2}})
Ответ: (sqrt{frac{sqrt{5}-1}{2}})

б) (arccos^2x+arcsin^2x=frac{5pi^2}{36})
Используем формулу для суммы: (arccosx+arcsinx=fracpi2)
Получаем: begin{gather*} arccos^2x+left(fracpi2-arccosxright)^2=frac{5pi^2}{36}\ arccos^2x+frac{pi^2}{4}-pi arccosx+arccos^2x=frac{5pi^2}{36}\ 2arccos^2x-pi arccosx+frac{pi^2}{9}=0\ D=(-pi)^2-4cdot 2cdot frac{pi^2}{9}=pi^2-frac89pi^2=frac{pi^2}{9}\ arccosx=frac{pipmfracpi3}{4}Rightarrow left[ begin{array} {l l} arccosx_1=fracpi6\ arccosx_2=fracpi3 end{array} right. Rightarrow left[ begin{array} {l l} x_1=cosfracpi6=frac{sqrt{3}}{2}\ x_2=cosfracpi3=frac12 end{array} right. end{gather*} Ответ: (left{frac12; frac{sqrt{3}}{2}right})

в) (arcsinfrac{sqrt{3x+2}}{2}=arcctgsqrt{frac{2}{x+1}})
ОДЗ определяется ограничением для арксинуса: ( -1leq frac{sqrt{3x+2}}{2}leq 1)
Арксинус ограничен (-fracpi2leq arcsinfrac{sqrt{3x+2}}{2}leqfracpi2), арккотангенс (0leq arcctgsqrt{frac{2}{x+1}}ltpi)
Т.к. по условию они равны, ограничение сужается до (0leq arcctgsqrt{frac{2}{x+1}}ltfracpi2) и (0leq arcsinfrac{sqrt{3x+2}}{2}ltfracpi2). begin{gather*} arcsinfrac{sqrt{3x+2}}{2}=arcctgsqrt{frac{2}{x+1}}Leftrightarrow begin{cases} frac{sqrt{3x+2}}{2}=sinleft(arcctgsqrt{frac{2}{x+1}}right)\ -1leqfrac{sqrt{3x+2}}{2}leq 1\ 0leq arcsinfrac{sqrt{3x+2}}{2}ltfracpi2\ 0leq arcctgsqrt{frac{2}{x+1}}ltfracpi2 end{cases} Leftrightarrow\ Leftrightarrow begin{cases} frac{sqrt{3x+2}}{2}=sinleft(arcctgsqrt{frac{2}{x+1}}right)\ -1leqfrac{sqrt{3x+2}}{2}leq 1\ 0leq frac{sqrt{3x+2}}{2}lt 1\ 0leq sqrt{frac{2}{x+1}} end{cases} Leftrightarrow begin{cases} frac{sqrt{3x+2}}{2}=sinleft(arcctgsqrt{frac{2}{x+1}}right)\ 0leq frac{sqrt{3x+2}}{4}lt 1\ frac{4}{x+1}geq 0 end{cases} end{gather*} Для ОДЗ получаем: $$ begin{cases} 0leq 3x+2lt 4\ x+1gt 0 end{cases} Rightarrow begin{cases} -2leq 3x lt 2\ xgt -1 end{cases} Rightarrow begin{cases} -frac23leq x lt frac23\ xgt -1 end{cases} Rightarrow -frac23leq xltfrac23 $$ ОДЗ: (-frac23leq xlt frac23)
Выведем формулу для синуса арккотангенса.
Пусть (arcctgx=varphi Rightarrow x=ctgvarphi)
Тогда (sin(arcctgx)=sinvarphi=sqrt{frac{1}{1+ctg^2varphi}}=sqrt{frac{1}{1+x^2}})
Правая часть уравнения: $$ sinleft(arcctgsqrt{frac{2}{x+1}}right)= sqrt{frac{1}{1+left(sqrt{frac{2}{x+1}}right)}}= sqrt{frac{1}{1+frac{2}{x+1}}}=sqrt{frac{x+1}{x+3}} $$ Подставляем: begin{gather*} frac{sqrt{3x+2}}{2}=sqrt{frac{x+1}{x+3}}Rightarrow frac{3x+2}{4}=frac{x+1}{x+3}Rightarrow (3x+2)(x+3)=4(x+1)Rightarrow\ Rightarrow 3x^2+11x+6=4x+4Rightarrow 3x^2+7x+2=0\ D=49-4cdot 3cdot 2=25\ x=frac{-7pm5}{6}Rightarrow left[ begin{array} {l l} x_1=-2 — text{ не подходит по ОДЗ}\ x_2=-frac13 end{array} right. end{gather*} Ответ: (-frac13)

Обратные тригонометрические функции — это арксинус, арккосинус, арктангенс и арккотангенс.

Сначала дадим определения.

Арксинусом числа а называется число varphi  in left[-frac{pi }{2} ;frac{pi }{2}right], такое, что sinvarphi  = a. Или, можно сказать, что это такой угол varphi, принадлежащий отрезку left[-frac{pi }{2}, ;frac{pi }{2}right], синус которого равен числу а.

Арккосинусом числа а называется число varphi  in  [0 ; pi ], такое, что cosvarphi  = a.

Арктангенсом числа а называется число varphi  in  left(-frac{pi }{2};frac{pi }{2}right), такое, что tg varphi  = a.

Арккотангенсом числа а называется число varphi  in  left(0 ; pi right), такое, что ctg = a.

Расскажем подробно об этих четырех новых для нас функциях — обратных тригонометрических.

Помните, мы уже встречались с обратными функциями.

Например, арифметический квадратный корень из числа а — такое неотрицательное число, квадрат которого равен а.

{(sqrt{a})}^2=a; sqrt{a}ge 0; age 0.

Логарифм числа b по основанию a — такое число с, что boldsymbol{a^c=b.}

При этом b textgreater 0,, , a textgreater 0,, , ane 1.

Мы понимаем, для чего математикам пришлось «придумывать» новые функции. Например, решения уравнения x^2=5 — это sqrt{5} и -sqrt{5}. Мы не смогли бы записать их без специального символа арифметического квадратного корня.

Понятие логарифма оказалось необходимо, чтобы записать решения, например, такого уравнения: 2^x=7. Решение этого уравнения — иррациональное число {log}_27. Это показатель степени, в которую надо возвести 2, чтобы получить 7.

Так же и с тригонометрическими уравнениями. Например, мы хотим решить уравнение sinx = frac{1}{4}.

Ясно, что его решения соответствуют точкам на тригонометрическом круге, ордината которых равна frac{1}{4}. И ясно, что это не табличное значение синуса. Как же записать решения?

Здесь не обойтись без новой функции, обозначающей угол, синус которого равен данному числу a. Да, все уже догадались. Это арксинус.

Угол, принадлежащий отрезку left[-frac{pi }{2}, ;frac{pi }{2}right], синус которого равен frac{1}{4} — это арксинус одной четвертой. И значит, серия решений нашего уравнения, соответствующая правой точке на тригонометрическом круге, — это arcsin frac{1}{4}+2 pi n,, nin Z.

А вторая серия решений нашего уравнения — это pi -arcsin frac{1}{4}+2 pi n,, nin Z.

Подробнее о решении тригонометрических уравнений — здесь.

Осталось выяснить — зачем в определении арксинуса указывается, что это угол, принадлежащий отрезку left[-frac{pi }{2}, ;frac{pi }{2}right]?

Дело в том, что углов, синус которых равен, например, frac{1}{4}, бесконечно много. Нам нужно выбрать какой-то один из них. Мы выбираем тот, который лежит на отрезке left[-frac{pi }{2}, ;frac{pi }{2}right].

Взгляните на тригонометрический круг. Вы увидите, что на отрезке left[-frac{pi }{2}, ;frac{pi }{2}right] каждому углу соответствует определенное значение синуса, причем только одно. И наоборот, любому значению синуса из отрезка [-1;1] отвечает одно-единственное значение угла на отрезке left[-frac{pi }{2}, ;frac{pi }{2}right]. Это значит, что на отрезке [-1;1] можно задать функцию y={arcsin x,  } принимающую значения от -frac{pi }{2} до frac{pi }{2}.

Повторим определение еще раз:

Арксинусом числа a называется число varphi in left[-frac{pi }{2}, ;frac{pi }{2}right], такое, что sin{mathbf varphi } = a.

Обозначение: varphi = arcsina. Область определения арксинуса — отрезок [-1;1]. Область значений — отрезок left[-frac{pi }{2}, ;frac{pi }{2}right].

Можно запомнить фразу «арксинусы живут справа». Не забываем только, что не просто справа, но ещё и на отрезке left[-frac{pi }{2}, ;frac{pi }{2}right].

Мы готовы построить график функции y = arcsin x.

Как обычно, отмечаем значения х по горизонтальной оси, а значения у — по вертикальной.

Поскольку x = sin y, следовательно, х лежит в пределах от -1 до 1.

Значит, областью определения функции y = arcsin x является отрезок [-1;1].

Мы сказали, что у принадлежит отрезку left[-frac{pi }{2}, ;frac{pi }{2}right]. Это значит, что областью значений функции y = arcsin x является отрезок left[-frac{pi }{2}, ;frac{pi }{2}right].

Заметим, что график функции y=arcsinx весь помещается в области, ограниченной линиями x= -1; , x = 1, , y= -frac{pi}{2} и y= frac{pi}{2} .

Как всегда при построении графика незнакомой функции, начнем с таблицы.

По определению, арксинус нуля — это такое число из отрезка [-frac{pi}{2} ; frac{pi}{2} ], синус которого равен нулю. Что это за число? — Понятно, что это ноль.

Аналогично, арксинус единицы — это такое число из отрезка [-frac{pi}{2} ; frac{pi}{2} ], синус которого равен единице. Очевидно, это frac{pi}{2} .

Продолжаем: arcsin frac{1}{2} — это такое число из отрезка [-frac{pi}{2} ; frac{pi}{2} ], синус которого равен frac{1}{2}. Да, это frac{pi}{6}.

x -1 -frac{1}{2} 0 frac{1}{2} 1
y = arcsinx -frac{pi}{2} -frac{pi}{6} 0 frac{pi}{6} frac{pi}{2}

Строим график функции y = arcsinx.

Свойства функции y = arcsinx

1. Область определения D(y): x in left[-1;1right]

2. Область значений E (y): y in left[-frac{pi }{2}, ;frac{pi }{2}right]

3. arcsin(- x) = arcsinx, то есть эта функция является нечетной. Ее график симметричен относительно начала координат.

4. Функция y = arcsinx монотонно возрастает. Ее наименьшее значение, равное — frac{ pi }{2}, достигается при x=-1, а наибольшее значение, равное frac{pi}{2}, при x = 1.

5. Что общего у графиков функций y=sin x и y=arcsin x? Не кажется ли вам, что они «сделаны по одному шаблону» — так же, как правая ветвь функции y=x^2 и график функции y=sqrt{x} , или как графики показательной и логарифмической функций?

Представьте себе, что мы из обычной синусоиды вырезали небольшой фрагмент от -frac{pi}{2} до frac{pi}{2} , а затем развернули его вертикально — и мы получим график арксинуса.

То, что для функции y=sin x на этом промежутке — значения аргумента, то для арксинуса будут значения функции. Так и должно быть! Ведь синус и арксинус — взаимно-обратные функции. Другие примеры пар взаимно обратных функций — это y = x^2 при xgeq 0 и y= sqrt{x}, а также показательная и логарифмическая функции.

Напомним, что графики взаимно обратных функций симметричны относительно прямой y=x.

Аналогично, определим функцию y={arccos x}. Только отрезок нам нужен такой, на котором каждому значению угла соответствует свое значение косинуса, а зная косинус, можно однозначно найти угол. Нам подойдет отрезок [0;pi ].

Арккосинусом числа a называется число {mathbf varphi } in [0;pi ], такое, что cos varphi = a.

Легко запомнить: «арккосинусы живут сверху», и не просто сверху, а на отрезке [0;pi ].

Обозначение: varphi = arccosa. Область определения арккосинуса — отрезок [-1;1]. Область значений — отрезок [0;pi ].

Очевидно, отрезок [0;pi ] выбран потому, что на нём каждое значение косинуса принимается только один раз. Иными словами, каждому значению косинуса, от -1 до 1, соответствует одно-единственное значение угла из промежутка [0;pi ].

Арккосинус не является ни чётной, ни нечётной функцией. Зато мы можем использовать следующее очевидное соотношение: arccos(-a) = pi - arccosa.

Построим график функции y = arccosx.

Нам нужен такой участок функции y = cosx, на котором она монотонна, то есть принимает каждое свое значение ровно один раз.

Выберем отрезок left[0; pi right]. На этом отрезке функция y = cosx монотонно убывает, то есть соответствие между множествами left[0; pi right] и left[-1; 1right] взаимно однозначно. Каждому значению х соответствует свое значение у. На этом отрезке существует функция, обратная к косинусу, то есть функция у = arccosx.

Заполним таблицу, пользуясь определением арккосинуса.

Арккосинусом числа х, принадлежащего промежутку [-1; 1], будет такое число y, принадлежащее промежутку [0;pi ], что x=cos y.

Значит, arccos 1 = 0, поскольку cos0 = 1;

arccos (-1) = pi, так как cos pi = -1;

arccos 0 = frac{pi}{2} , так как cos frac{pi}{2} = 0,

arccos frac{1}{2} = frac{pi }{3}, так как cos frac{pi }{3} = 0,

x -1 -frac{1}{2} 0 frac{1}{2} 1
arccosx pi frac{2pi}{3} frac{pi}{2} frac{pi}{3} 0

Вот график арккосинуса:

Свойства функции y = arccosx:

1. Область определения D(y): x in left[-1;1right]

2. Область значений E (y): y in left[0; pi right]

3. arccos(- x) = pi - arccosx

Эта функция общего вида — она не является ни четной, ни нечетной.

4. Функция является строго убывающей. Наибольшее значение, равное pi, функция у = arccosx принимает при x=-1, а наименьшее значение, равное нулю, принимает при x=1.

5. Функции y = cos x и y = arccosx являются взаимно обратными.

Следующие — арктангенс и арккотангенс.

Арктангенсом числа a называется число varphi in left(-frac{pi }{2}, ;frac{pi }{2}right), такое, что tg{mathbf varphi } = a.

Обозначение: varphi = arctga. Область определения арктангенса — промежуток (-infty; +infty). Область значений — интервал left(-frac{pi }{2}, ;frac{pi }{2}right).

Почему в определении арктангенса исключены концы промежутка — точки pm frac {pi}{2}? Конечно, потому, что тангенс в этих точках не определён. Не существует числа a, равного тангенсу какого-либо из этих углов.

Построим график арктангенса. Согласно определению, арктангенсом числа х называется число у, принадлежащее интервалу (-frac{pi}{2} ; frac{pi}{2} ), такое, что tg y =x.

Как строить график — уже понятно. Поскольку арктангенс — функция обратная тангенсу, мы поступаем следующим образом:

— Выбираем такой участок графика функции y = tg x, где соответствие между х и у взаимно однозначное. Это интервал Ц На этом участке функция y = tg x принимает значения от -infty до +infty.

Тогда у обратной функции, то есть у функции y=arctg,x, область, определения будет вся числовая прямая, от -infty до +infty, а областью значений — интервал (-frac{pi}{2} ; frac{pi}{2} ).

Дальше рассуждаем так же, как при построении графиков арксинуса и арккосинуса.

tg 0 = 0, значит, arctg 0 = 0

tg frac{pi}{4} = 1, значит, arctg 1 = frac{pi}{4}

tg (-frac{pi}{4}) = -1, значит, arctg (-1) = - frac{pi}{4}.

А что же будет при бесконечно больших значениях х? Другими словами, как ведет себя эта функция, если х стремится к плюс бесконечности?

Мы можем задать себе вопрос: для какого числа из интервала (-frac{pi}{2} ; frac{pi}{2} ) значение тангенса стремится к бесконечности? — Очевидно, это frac{pi}{2} .

А значит, при бесконечно больших значениях х график арктангенса приближается к горизонтальной асимптоте y=frac{pi}{2} .

Аналогично, если х стремится к минус бесконечности, график арктангенса приближается к горизонтальной асимптоте y= - frac{pi}{2} .

На рисунке — график функции y =arctg x

Свойства функции y=arctg,x

1. Область определения D(y): x in R

2. Область значений E (y): y in (-frac{pi}{2} ; frac{pi}{2} )

3. Функция y=arctg,x нечетная.

4. Функция y=arctg,x является строго возрастающей.

5. Прямые y= - frac{pi}{2} и y= frac{pi}{2} — горизонтальные асимптоты данной функции.

6. Функции y = tg x и y = arctg x являются взаимно обратными — конечно, когда функция y = tg x рассматривается на промежутке (-frac{pi}{2} ; frac{pi}{2} )

Аналогично, определим функцию арккотангенс и построим ее график.

Арккотангенсом числа a называется число {mathbf varphi } in (0{mathbf ;}{mathbf pi }), такое, что ctg{mathbf varphi } = a.

График функции y = arcctg x:

Свойства функции y=arcctg,x

1. Область определения D(y): x in R

2. Область значений E (y): y in (0; pi )

3. Функция y=arcctg ,x — общего вида, то есть ни четная, ни нечетная.

4. Функция y=arcctg,x является строго убывающей.

5. Прямые y= 0 и y= pi — горизонтальные асимптоты данной функции.

6. Функции y = ctg x и y = arcctg x являются взаимно обратными, если рассматривать y = ctg x на промежутке (0; pi ).

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Обратные тригонометрические функции и их графики» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Обратные тригонометрические функции, их свойства и графики.

Обратные
тригонометрические функции (арксинус,
арккосинус, арктангенс и арккотангенс)
являются основным элементарным функциями.
Часто из-за приставки «арк» обратные
тригонометрические функции называют
аркфункциями. Сейчас мы рассмотрим их
графики и перечислим свойства.

Функция
арксинус y
= arcsin(x)
.

Изобразим
график функции арксинус:

Свойства
функции арксинус
 y = arcsin(x).

  • Областью
    определения функции арксинус является
    интервал от минус единицы до единицы
    включительно: .

  • Область
    значений функции y = arcsin(x).

  • Функция
    арксинус — нечетная, так как .

  • Функция y = arcsin(x) возрастает
    на всей области определения, то есть,
    при .

  • Функция
    вогнутая при ,
    выпуклая при .

  • Точка
    перегиба (0;
    0)
    ,
    она же ноль функции.

  • Асимптот
    нет.

Функция
арккосинус y
= arccos(x)
.

График
функции арккосинус имеет вид:

Свойства
функции арккосинус
 y = arccos(x).

  • Область
    определения функции арккосинус: .

  • Область
    значений функции y = arccos(x).

  • Функция
    не является ни четной ни нечетной, то
    есть, она общего вида.

  • Функция
    арккосинус убывает на всей области
    определения, то есть, при .

  • Функция
    вогнутая при ,
    выпуклая при .

  • Точка
    перегиба .

  • Асимптот
    нет.

Функция
арктангенс y
= arctg(x)
.

График
функции арктангенс имеет вид:

Свойства
функции арктангенс
 y = arctg(x).

  • Область
    определения функции y = arctg(x).

  • Область
    значений функции арктангенс: .

  • Функция
    арктангенс — нечетная, так как .

  • Функция
    возрастает на всей области определения,
    то есть, при .

  • Функция
    арктангенс вогнутая при ,
    выпуклая при .

  • Точка
    перегиба (0;
    0)
    ,
    она же ноль функции.

  • Горизонтальными
    асимптотами являются прямые  при  и  при .
    На чертеже они показаны зеленым цветом.

Функция
арккотангенс y
= arcctg(x)
.

Изобразим
график функции арккотангенс:

Свойства
функции арккотангенс
 y = arcctg(x).

  • Областью
    определения функции арккотангенс
    является все множество действительных
    чисел: .

  • Область
    значений функции y = arcctg(x).

  • Функция
    арккотангенс не является ни четной ни
    нечетной, то есть, она общего вида.

  • Функция
    убывает на всей области определения,
    то есть, при .

  • Функция
    вогнутая при ,
    выпуклая при .

  • Точка
    перегиба .

  • Горизонтальными
    асимптотами являются прямые  при  (на
    чертеже показана зеленым цветом)
    и y = 0 при .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Каждая функция имеет свою собственную область определения. Целью этого материала является объяснение этого понятия и описание способов ее вычисления. Сначала мы введем основное определение, а потом на конкретных примерах покажем, как выглядит область определения основных элементарных функций (степенной, постоянной и др.) Разбирать случаи с более сложными функциями мы пока не будем.

В рамках данной статьи мы рассмотрим область определения функций, включающих в себя только одну переменную.

Понятие и обозначение области определения функции

Самое простое определение этого понятия дается в учебниках тогда, когда впервые вводится понятие функции как таковой. На этом этапе термином «область определения» обозначают множество всех возможных значений аргумента.

По мере углубления знаний о функциях определение сужается и усложняется. Так, в одном из учебников можно встретить следующую формулировку:

Определение 1

Числовая функция с областью определения D – это соответствие значений переменной x некоторому числу y, которое находится в зависимых отношениях с x.

Используя это определение, охарактеризуем нужное нам понятие более четко:

Определение 2

Областью определения функции называется множество значений аргумента, на котором можно задать эту функцию.

Теперь рассмотрим, как правильно обозначать ее на письме. Ранее мы договорились, что для записи самих функций будем использовать маленькие латинские буквы, например, g, f и др. Чтобы указать на наличие функциональной зависимости, используется запись вида y=f(x). Таким образом, функция f представляет собой некоторое правило, согласно которому каждому значению переменной x можно поставить в соответствие значение другой переменной y, которая находится в зависимых отношениях от x.

Пример 1

Возьмем для примера функцию y=x2. Можно записать ее как f(x)=x2.  Это функция возведения в квадрат, которая ставит в соответствие каждому значению переменной x=x0 некоторое значение y=x02. Так, если мы возьмем число 3, то функция поставит ему в соответствие 9, поскольку 32=9.

Чтобы обозначить область определения некоторой функции f, используется запись D(f). Однако нужно помнить, что у некоторых функций есть собственные обозначения, например, у тригонометрических. Поэтому в учебниках иногда встречаются записи вида D(sin) или D(arcsin). Их следует понимать как области определения синуса и арксинуса соответственно. Допустима и запись вида D(f), где f – функция синуса или арксинуса.

Если мы хотим записать, что функция f определена на множестве значений x, то используем формулировку D(f)=X. Так, для того же арксинуса запись будет выглядеть как D(arcsin)= [−1, 1] (подробнее об области определения арксинуса мы расскажем далее.)

Как найти области определения для основных элементарных функций

Прочитав определения выше, легко понять, что понятие области определения очень важно для любой функции. Это ее неотъемлемая часть, которую задают вместе с самой функцией. То есть когда мы вводим какую-либо функцию, то мы сразу указываем и область ее определения. Обычно в рамках школьного курса основные функции изучаются последовательно: сначала прямые пропорциональности, затем линейные функции, потом y=x2 и т.д., а их области определения указываются в качестве основных свойств.

В этом пункте мы расскажем, какие области определения имеют основные элементарные функции.

Область определения постоянной функции

Определение 3

Вспомним формулу, которой задается постоянная функция: y=C, или f(x)=C. Переменная C может быть любым действительным числом.

Смысл функции в том, что каждому значению аргумента будет соответствовать значение, равное C, следовательно, областью определения данной функции будет множество всех действительных чисел. Обозначим его R.

Пример 2

Так, если у нас есть функция y=−3 (или в другой записи f(x)=−3), то (D(f)= (−∞, +∞) или D(f)=R).

Если же мы возьмем функцию y=73, то для нее, как и для любой постоянной функции, область определения будет равна R.

Область определения функции с корнем

С помощью знака корня, или радикала, мы можем задать функцию извлечения квадратного корня y=x, либо в обобщенном виде функцию корня степени N, которую можно записать в виде формулы y=xn. В этих случаях n может быть любым натуральным числом, которое больше 1.

Область определения таких функций будет зависеть от того, является ли показатель четным или нечетным числом.

Определение 4
  1. Возьмем сначала случай, когда n – четное число, т.е. n=2·m, где m∈N. Тогда областью определения станет множество всех неотрицательных действительных чисел: D2·m=[0; +∞).
  2. Если же n представляет из себя нечетное число, которое больше 1, т.е. n=2·m+1, то областью определения будет множество всех действительных чисел: D2·m+1=(-∞; +∞).
Пример 3

Таким образом, область определения функций с корнем y=x, y=x4, y=x6 – это числовое множество [0, +∞), а функций  y=x3, y=x5,  y=x7 – множество (−∞, +∞).

Область определения степенной функции

Запись степенной функции выглядит как y=xa или f(x)=xa, где x является переменной, которая лежит в основании степени, и a представляет из себя определенное число в ее показателе. Мы берем область определения степенной функции в зависимости от значения ее показателя.

Перечислим возможные варианты.

Определение 5
  1. Допустим, что a будет положительным целым числом. Тогда областью определения степенной функции будет множество действительных чисел (−∞, +∞).
  2. Если a является нецелым положительным числом, то D(f)= [0, +∞).
  3. В случае, когда a относится к целым отрицательным числам, областью определения такой функции становится множество (−∞, 0)∪(0, +∞).
  4. В остальных случаях, т.е. когда a будет отрицательным нецелым числом, область определения будет числовым промежутком (0, +∞).
  5. Если a имеет нулевое значение, то такая степенная функция будет определена для всех действительных x, кроме нулевого. Это связано с неопределенностью 00.  Мы знаем, что любое число, кроме 1, при возведении в нулевую степень будет равно 1, тогда при a=0 у нас получится функция y=x0=1, область определения которой (−∞, 0) ∪ (0, +∞).

Поясним нашу мысль несколькими примерами.

Пример 4

Для функций y=x5, y=x12 область определения представляет собой множество всех действительных чисел R, поскольку показатели степени являются целыми положительными числами.

Пример 5

Для степенных функций y=x63, y=xπ, y=x74, y=x23 будут определены на интервале [0, +∞), поскольку показатели являются положительными, но не целыми числами.

Пример 6

3. Для функции y=x−5 с целыми отрицательными показателями областью определения будет множество (−∞, 0)∪(0, +∞).

Пример 7

4. Для степенных функций y=x-19, y=x-3e, y=x-98, y=x-311 область определения будет представлять из себя открытый числовой луч (0, +∞), т.к. их показателями являются нецелые отрицательные числа.

Область определения показательной функции

Определение 6

Такую функцию принято записывать как y=ax, причем переменная будет располагаться в показателе функции. Основанием степени здесь является число a, которое больше 0 и не равно 1.

Область определения такой функции есть множество всех действительных чисел, т.е. R.

Пример 8

Например, если у нас есть показательные функции y=14x, y=ex, y=13x, y=15x, то они будут определены на промежутке от минус бесконечности до плюс бесконечности.

Область определения логарифмической функции

Определение 7

Функция логарифма задается как y=logax , где a – основание, большее 0 и не равное 1. Она определена на множестве всех положительных действительных чисел. Это можно записать как D(loga)=(0, +∞), например, D(ln)=(0, +∞) и D(lg)=(0, +∞).

Пример 9

Так, для логарифмических функций y=log23x, y=log3x, y=log7x, y=lnx областью определения будет множество (0, +∞).

Область определения тригонометрических функций

Чтобы узнать, на каком промежутке будут определены тригонометрические функции, нужно вспомнить, как именно они задаются и как называются.

Определение 8
  • Формула y=sin x обозначает функцию синуса (sin). Она будет определена на множестве всех действительных чисел. Можно записать, что D(sin)=R.
  • Формула y=cos x означает функцию косинуса (cos). Она также будет определена на множестве всех действительных чисел, т.е. D(cos)=R.
  • Формула y=tg x означает функцию тангенса (tg), а y=ctg x– котангенса. Областью определения тангенса будет множество всех действительных чисел, за исключением π2+π·k, k∈Z.

Областью определения котангенса будет также множество R, за исключением π·k, k∈Z.

Иными словами, если мы знаем, что x является аргументом функций тангенса и котангенса, то нужно помнить, что данные функции определены при x∈R, x≠π2+π·k, k∈Z и x∈R, x≠π·k, k∈Z.

Область определения тригонометрических функций

К обратным тригонометрическим относятся функции арксинуса, арккосинуса, арктангенса и арккотангенса.

Определение 9
  • Формула y=arcsin x обозначает функцию арксинуса. Обычно она рассматривается на отрезке [−1, 1]] и обозначается arcsin. Промежуток [−1, 1] и будет нужной нам областью определения данной функции. Можно записать, что D(arcsin)=[−1, 1].
  • Формула y=arccos x выражает функцию арккосинуса (обозначается arccos). Она рассматривается на том же отрезке, что и арксинус. Следовательно, областью определения данной функции является [−1, 1], т.е. D(arccos)=[−1, 1].
  • Функции y=arctg x и y=arcctg x означают арктангенс и арккотангенс. Они рассматриваются на множестве всех действительных чисел, значит, областью их определения является R. Можем записать, что D(arctg)=R и D(arcctg)=R.

Области определения основных функций в табличном виде

Чтобы запомнить или легко найти нужные нам области, правила вычисления которых мы объяснили выше, представим всю информацию в табличном виде. Не лишним будет оформить ее на отдельном листе и держать под рукой, так же, как и таблицу простых чисел, квадратов и др. Она очень пригодится при работе с функциями, пока вы не выучите ее содержимое наизусть.

Области определения функций
Функиця Ее область определения
Постоянная y=C R
Корень y=xn

[0; +∞), если n — четное
-∞; +∞, если n — нечетное

Степенная y=xa

-∞; +∞, если a>0, a∈Z
[0; +∞), если a>0, a∈R, a∉Z
-∞; 0∪0; +∞, если a<0, a∈Z
0; +∞, если a∈R, a≠Z
-∞; 0∪0, +∞, если a=0

Показательная y=ax R
Логарифмическая y=logax 0; +∞

Тригонометрические

y=sin xy=cos xy=tg xy=ctg x

RRx∈R, x≠π2+π·k, k∈Zx∈R, x≠π·k, k∈Z

Обратные тригонометрические

y=arcsin xy=arccos xy=arctg xy=arcctg x

-1; 1-1; 1RR

Подводя итоги статьи, следует отметить, что в рамках школьного курса изучаются не только основные элементарные функции, но и их различные сочетания. Задачи такого типа встречаются очень часто. Области определения таких комбинированных функций указываются далеко не всегда. Авторы задач подразумевают, что в таких случаях областью определения функции можно считать множество таких значений аргумента, при которых она будет иметь смысл. Это позволяет нам приблизиться к ответу на вопрос, как именно вычисляется область определения функции в подобных случаях.

Понравилась статья? Поделить с друзьями:
  • Как исправить ошибку доступа к микрофону в одноклассниках
  • Как найти мои плагины
  • Дети подростки как найти общий язык
  • Как найти механические часы
  • Как составить телефонный диалог на английском