Как найти область определения функции дискриминант

Как найти область определения функции

Что такое область определения функции?

Начнём с краткого определения. Область определения функции y=f(x) — это множество значений X, для которых существуют значения Y.

Войдём в тему более основательно. Каждой точке графика функции соответствуют:

  • определённое значение «икса» — аргумента функции;
  • определённое значение «игрека» — самой функции.

Верны следующие факты.

  • От аргумента — «икса» — вычисляется «игрек» — значения функции.
  • Область определения функции — это множества всех значений «икса», для которых существует, то есть может быть вычислен «игрек» — значение функции. Иначе говоря, множество значений аргумента, на котором «функция работает».

Можно понимать область определения функции и как проекцию графика функции на ось Ox.

Что требуется, чтобы уверенно находить область определения функции? Во-первых, нужно различать виды функций (корень, дробь, синус и др.). Во-вторых, решать уравнения и неравенства с учетом вида функции (например, на что нельзя делить, какое выражение не может быть под знаком корня и тому подобное). Согласитесь, не так уж много и не так сложно. При изучении темы области определения функции поможет материал Свойства и графики элементарных функций. А поскольку областью определения функции служат различные множества, а также их объединения и пересечения, то пригодится и материал Множества и операции над множествами.

Итак, чтобы находить области определения распространённых функций, порешаем уравнения и неравенства с одной переменной.

После этого экскурса в важную составную матанализа многие согласятся, что найти область определения функции не очень сложно.

Будут и задачи для самостоятельного решения, к которым можно посмотреть ответы. Приступаем к практике.

Общий принцип на самых простых примерах

Пример 1. На рисунке изображён график функции . Знаменатель дроби не может быть равен нулю, так как на нуль делить нельзя. Поэтому, приравнивая знаменатель нулю

и решая это уравнение:

получаем значение, не входящее в область определения функции: 1. То есть, область определения заданной функции — это все значения «икса» от минус бесконечности до единицы и от единицы до плюс бесконечности. Это хорошо видно на графике. Приведённый здесь пример функции относится к виду дробей. На уроке разберём решения всех распространённых видов функций.

Пример 2. Как найти область определения функции игрек равен квадратному корню из икса минус пять (подкоренное выражение икс минус пять) ()? Так как подкоренное выражение должно быть неотрицательным, нужно решить неравенство

Если перенести какое-либо слагаемое в другую часть неравенства с противоположным знаком, то мы получим равносильное неравенство с тем же знаком неравенства. Переносим минус 5 и получаем неравенство

Получаем решение: область определения функции — все значения икса больше или равно пяти (или икс принадлежит промежутку от пяти включительно до плюс бесконечности).

На чертеже сверху — фрагмент числовой оси. На ней область опредения рассмотренной функции заштрихована, при этом в «плюсовом» направлении штриховка продолжается бесконечно вместе с самой осью.

Область определения корня n-й степени

В случае, функции корня n-й степени, то есть когда функция задана формулой и n — натуральное число:

если n — чётное число, то областью определения функции является множество всех неотрицательных действительных чисел, то есть [0; + ∞[ ;

если n — нечётное число, то областью определения функции является множество всех действительных чисел, то есть ]- ∞; + ∞[ .

Пример 3. Найти область определения функции .

Решение. Как следует из определения, корень чётной степени имеет смысл, если подкоренное выражение неотрицательно. Поэтому решаем неравенство

.

Это квадратное неравенство

,

По формуле находим дискриминант:

.

По формуле находим корни квадратного трёхчлена:

.

Найденные точки разбивают числовую прямую на три промежутка:

и .

При этом знак квадратного трёхчлена (больше или меньше нуля) совпадает со знаком коэффициента a во всех точках промежутков

и

и противоположен знаку коэффициента a во всех точках промежутка .

В нашем случае имеем отрицательный коэффициент a=-1 , поэтому квадратный трёхчлен неотрицателен во всех точках промежутка .

Следовательно, область определения данной функции — [- 1; 1] .

Заштрихованная область числовой прямой на чертеже сверху — это область определения данной функции.

Область определения степенной функции

Область определения степенной функции находится в зависимости от вида степени в выражении.

Область определения степенной функции с дробным показателем степени

В случае, когда функция задана формулой :

если — положительное, то областью определения функции является множество [0; + ∞[ , то есть нуль входит в область определения;

если — отрицательное, то областью определения функции является множество (0; + ∞[ , то есть нуль не входит в область определения.

Пример 4. Найти область определения функции .

Решение. Выражение функции можно представить так:

Квадратный трёхчлен в скобках в знаменателе должен быть строго больше нуля (ещё и потому, что дробный показатель степени данной степенной функции — отрицательный). Поэтому решим строгое неравенство, когда квадратный трёхчлен в скобках строго больше нуля:

.

.

Дикриминант получился отрицательный. Следовательно сопряжённое неравенству квадратное уравнение не имеет корней. А это значит, что квадратный трёхчлен ни при каких значениях «икса» не равен нулю. Таким образом, область определения данной функции — вся числовая ось, или, что то же самое — множество R действительных чисел, или, что то же самое — ]- ∞; + ∞[ .

Пример 5. Найти область определения функции .

Решение. Оба слагаемых в выражении функции — степенные функции с положительными дробными показателями степеней. Следовательно, область определения данной функции — множество [0; + ∞[ .

На чертеже сверху заштрихована часть числовой прямой от нуля (включительно) и больше, причём штриховка продолжается вместе с самой прямой до плюс бесконечности.

Область определения степенной функции с целым показателем степени

В случае, когда функция задана формулой :

если a — положительное, то областью определения функции является множество всех действительных чисел, то есть ]- ∞; + ∞[ ;

если a — отрицательное, то областью определения функции является множество ]- ∞; 0[ ∪ ]0 ;+ ∞[ , то есть вся числовая прямая за исключением нуля.

На соответствующем чертеже сверху вся числовая прямая заштрихована, а точка, соответствующая нулю, выколота (она не входит в область определения функции).

Пример 6. Найти область определения функции .

Решение. Первое слагаемое целой степенью икса, равной 3, а степень икса во втором слагаемом можно представить в виде единицы — так же целого числа. Следовательно, область определения данной функции — вся числовая прямая, то есть ]- ∞; + ∞[ .

Область определения показательной и логарифмической функции

Область определения показательной функции

В случае, когда функция задана формулой , областью определения функции является вся числовая прямая, то есть ]- ∞; + ∞[ . Подробнее о графике такой функции.

Область определения логарифмической функции

Логарифмическая функция определена при условии, если её аргумент положителен, то есть, областью её определения является множество ]0; + ∞[ . Подробнее о графике такой функции.

Найти область определения функции самостоятельно, а затем посмотреть решение

Пример 7. Найти область определения функции .

Пример 8. Найти область определения функции .

Область определения тригонометрических функций

Область определения функции y = cos(x) — так же множество R действительных чисел.

Область определения функции y = tg(x) — множество R действительных чисел, кроме чисел .

Область определения функции y = ctg(x) — множество R действительных чисел, кроме чисел .

Пример 9. Найти область определения функции .

Решение. Внешняя функция — десятичный логарифм и на область её определения распространяются условия области определения логарифмической функции вообще. То есть, её аргумент должен быть положительным. Аргумент здесь — синус «икса». Пользуясь тригонометической таблицей (или поворачивая воображаемый циркуль по окружности), видим, что условие sin x > 0 нарушается при «иксе» равным нулю, «пи», два, умноженном на «пи» и вообще равным произведению числа «пи» и любого чётного ( 2 ) или нечётного целого числа ( (2k+1)π ).

Таким образом, область определения данной функции задаётся выражением

,

где k — целое число.

Область определения обратных тригонометрических функций

Область определения функции y = arcsin(x) — множество [-1; 1] .

Область определения функции y = arccos(x) — так же множество [-1; 1] .

Область определения функции y = arctg(x) — множество R действительных чисел.

Область определения функции y = arcctg(x) — так же множество R действительных чисел.

Пример 10. Найти область определения функции .

Решение. Решим неравенство:

Решение получили, основываясь на свойстве неравенств: если все части верного неравенства умножить на одно и то же положительное число, то получится также верное неравество. В данном случае умножали на 4.

Таким образом, получаем область определения данной функции — отрезок [- 4; 4] .

Пример 11. Найти область определения функции .

Решение. Решим два неравенства:

Решение первого неравенства:

Решение получили, основываясь на свойстве неравенств: если обе части верного неравенства умножить на одно и то же отрицательное число изменить знак неравенства на противоположный, то получится верное неравенство. В данном случае умножали на минус 2.

Аналогично и решение второго неравенства:

Таким образом, получаем область определения данной функции — отрезок [0; 1] .

Область определения дроби

Если функция задана дробным выражением, в котором переменная находится в знаменателе дроби, то областью определения функции является множество R действительных чисел, кроме таких x , при которых знаменатель дроби обращается в нуль.

Пример 12. Найти область определения функции .

Решение. Решая равенство нулю знаменателя дроби:

находим область определения данной функции — множество ]- ∞; — 2[ ∪ ]- 2 ;+ ∞[ , то есть все числа, кроме минус 2.

Пример 13. Найти область определения функции .

Решение. Решим уравнение:

Таким образом, получаем область определения данной функции — ]- ∞; — 1[ ∪ ]- 1 ; 1[ ∪ ]1 ;+ ∞[ , то есть все числа, кроме минус единицы и единицы.

Пример 14. Найти область определения функции .

Решение. Область определения первого слагаемого — данной функции — множество R действительных чисел, второго слагаемого — все действительные числа, кроме -2 и 2 (получили, решая равенство нулю знаменателя, как в предыдущем примере). В этом случае область определения функции должна удовлетворять условиями определения обоих слагаемых. Следовательно, область определения данной функции — ]- ∞; — 2[ ∪ ]- 2 ; 2[ ∪ ]2 ;+ ∞[ , то есть все числа, кроме -2 и 2.

Пример 15. Найти область определения функции .

Решение. Решим уравнение:

Уравнение не имеет действительных корней. Но функция определена только на действительных числах. Таким образом, получаем область определения данной функции — вся числовая прямая или, что то же самое — множество R действительных чисел или, что то же самое — ]- ∞; + ∞[ .

То есть, какое бы число мы не подставляли вместо «икса», знаменатель никогда не будет равен нулю.

Пример 16. Найти область определения функции .

Решение. Решим уравнение:

Таким образом, получаем область определения данной функции — ]- ∞; — 1[ ∪ ]- 1 ; 0[ ∪ ]0 ; 1[ ∪ ]1 ;+ ∞[ .

Пример 17. Найти область определения функции .

Решение. Кроме того, что знаменатель не может быть равным нулю, ещё и выражение под корнем не может быть отрицательным. Сначала решим уравнение:

График квадратичной функции под корнем представляет собой параболу, ветви которой направлены вверх. Как следует из решения квадратного уравнения, парабола пересекает ось Ox в точках 1 и 2. Между этими точками линия параболы находится ниже оси Ox, следовательно значения квадратичной функции между этими точками отрицательное. Таким образом, исходная функция не определена на отрезке [1; 2] .

Найти область определения функции самостоятельно, а затем посмотреть решение

Пример 18. Найти область определения функции .

Пример 19. Найти область определения функции .

Область определения постоянной

Постоянная (константа) определена при любых действительных значениях x , следовательно, данная функция определена на всём множестве R действительных чисел. Это можно записать и так: областью определения данной функции является вся числовая прямая ]- ∞; + ∞[ .

Пример 20. Найти область определения функции y = 2 .

Решение. Область определения функции не указана, значит, в силу выше приведённого определения имеется в виду естественная область определения. Выражение f(x) = 2 определено при любых действительных значениях x , следовательно, данная функция определена на всём множестве R действительных чисел.

Поэтому на чертеже сверху числовая прямая заштрихована на всём протяжении от минус бесконечности до плюс бесконечности.

Область определения линейной функции

Если функция задана формулой вида y = kx + b , то область определения функции — множество R действительных чисел.

Область определения функции

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие области определения функции

Впервые школьники знакомятся с термином «функция» на алгебре в 7 классе, и с каждой четвертью, с каждой новой темой это понятие раскрывается с новых сторон. И, конечно же, усложняются задачки. Сейчас дадим определения ключевым словам и будем находить область определения функции заданной формулой и по графику.

Если каждому значению x из некоторого множества соответствует число y, значит, на этом множестве задана функция. При этом х называют независимой переменной или аргументом, а у — зависимой переменной или функцией.

Зависимость переменной у от переменной х называют функциональной зависимостью. Записывают так: y = f(x).

Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества.

Из понятия функции сформулируем определение области определения функции.

Область определения функции — это множество всех значений аргумента (переменной x). Геометрически — это проекция графика функции на ось Ох. Чтобы обозначить область определения некоторой функции y, используют запись D(y).

Множество значений функции — множество всех значений, которые функция принимает на области определения. Геометрически — это проекция графика функции на ось Оy.

  • Например, область значений функции y = x2 — это все числа больше либо равные нулю. Это можно записать так: Е (у): у ≥ 0.

Материал со звездочкой

Старшеклассникам нужно помнить, что у некоторых функций есть собственные обозначения. Например, у тригонометрических. Поэтому в учебниках можно встретить такие записи: D(sin) — область определения функции синус, D(arcsin) — область определения функции арксинус.

Можно также записать D(f), где f — функция синуса или арксинуса. Если функция f определена на множестве значений x, то можно использовать формулировку D(f) = X. Так, например, для того же арксинуса запись будет выглядеть так: D (arcsin) = [-1, 1].

Область определения можно описывать словами, но часто ответ получается громоздким. Поэтому используют специальные обозначения.

Если мы хотим указать на множество чисел, которые лежат в некотором промежутке, то делаем так:

  1. Через точку с запятой указываем два числа: левую и правую границы промежутка.
  2. Если граница входит в промежуток, ставим возле нее квадратную скобку, если не входит — круглую.
  3. Если у промежутка нет правой границы, записываем так: ∞ или +∞. Если нет левой границы, пишем -∞.
  4. Если нужно описать множество, состоящее из нескольких промежутков, ставим между ними знак объединения: ∪.

Например, все действительные числа от 2 до 5 включительно можно записать так:

Все положительные числа можно описать так:

Ноль не положительное число, поэтому скобка возле него круглая.

Области определения основных элементарных функций

Область определения функции — неотъемлемая часть самой функции. Когда мы вводим какую-либо функцию, то сразу указываем ее область определения.

На уроках алгебры мы последовательно знакомимся с каждой функцией: прямая пропорциональность, линейная функция, функция y = x2 и другие. А области их определения изучаем, как свойства.

Рассмотрим области определения основных элементарных функций.

Область определения постоянной функции

Постоянная функция задается формулой y = C, то есть f(x) = C, где C — некоторое действительное число. Ее еще называют константа.

Смысл функции — в том, что каждому значению аргумента соответствует значение функции, которое равно C. Поэтому, область определения этой функции — множество всех действительных чисел R.

  • Область определения постоянной функции y = -3 — это множество всех действительных чисел: D(y) = (−∞, +∞) или D(y) = R.
  • Областью определения функции y = 3 √9 является множество R.

Еще больше наглядных примеров и практики — на курсах по математике в онлайн-школе Skysmart!

Область определения функции с корнем

Функцию с корнем можно определить так: y = n √x, где n — натуральное число больше единицы.

Рассмотрим две вариации такой функции.

Область определения корня зависит от четности или нечетности показателя:

  • Если n — четное число, то есть, n = 2m, где m ∈ N, то ее область определения есть множество всех неотрицательных действительных чисел:
  • Если показатель корня нечетное число больше единицы, то есть n = 2m+1, при этом m принадлежит к N, то область определения корня — множество всех действительных чисел:

Значит, область определения каждой из функций y = √x, y = 4 √x, y = 6 √x,… есть числовое множество [0, +∞). А область определения функций y = 3 √x, y = 5 √x, y = 7 √x,… — множество (−∞, +∞).

Пример

Найти область определения функции:

Подкоренное выражение должно быть неотрицательным, но поскольку оно стоит в знаменателе, то равняться нулю не может. Следовательно, для нахождения области определения необходимо решить неравенство x 2 + 4x + 3 > 0.

Для этого решим квадратное уравнение x 2 + 4x + 3 = 0. Находим дискриминант:

D = 16 — 12 = 4 > 0

Дискриминант положительный. Ищем корни:

Значит парабола f(x) = x 2 + 4x + 3 пересекает ось абсцисс в двух точках. Часть параболы расположена ниже оси (неравенство x 2 + 4x + 3 2 + 4x + 3 > 0).

Поскольку коэффициент a = 1 > 0, то ветви параболы смотрят вверх. Можно сделать вывод, что на интервалах (−∞, -3) ∪ (−1, +∞) выполнено неравенство x 2 + 4x + 3 > 0 (ветви параболы уходят вверх на бесконечность), а вершина параболы расположена на промежутке (-3; -1) ниже оси абсцисс, что соответствует неравенству x 2 + 4x + 3

Область определения степенной функции

Степенная функция выглядит так: y = x a , то есть, f(x) = x a , где x — переменная в основании степени, a — некоторое число в показателе степени.

Область определения степенной функции зависит от значения показателя степени.

Перечислим возможные случаи:

  • Если a — положительное целое число, то область определения функции есть множество действительных чисел: (−∞, +∞).
  • Для нецелых действительных положительных показателей степени: D(f) = [0, +∞).
  • Если a — отрицательное целое число, то область определения функции представляет собой множество (−∞, 0) ∪ (0, +∞).
  • Для остальных действительных отрицательных a область определения степенной функции — числовой промежуток (0, +∞).

При a = 0 степенная функция y = x a определена для всех действительных значений x, кроме x = 0. Это связано с тем, что мы не определяли 0 0 . А любое отличное от нуля число в нулевой степени равно единице. То есть, при a = 0 функция приобретает вид y = x 0 = 1 на области определения (−∞, 0) ∪ (0, +∞).

Рассмотрим несколько примеров.

  1. Область определения функций y = x 5 , y = x 12 — множество R, так как показатели степени целые положительные.
  2. Степенные функции определены на интервале [0, +∞), так как их показатели положительные, но не целые.
  3. Область определения функции y = x −2 , как и функции y = x −5 — это множество (−∞, 0) ∪ (0, +∞), так как показатели степени целые отрицательные.
  4. Область определения степенных функций y = x -√19 , y = x -3e , — открытый числовой луч (0, +∞), так как их показатели не целые и отрицательные.

Область определения показательной функции

Показательную функцию можно задать формулой y = a x , где переменная x — показатель степени, а — больше нуля и не равно единице.

Область определения показательной функции — это множество R.

Примеры показательных функций:

  • y = e x
  • y = (√15) x
  • y = 13 x .

Область определения каждой из них (−∞, +∞).

Область определения логарифмической функции

Логарифмическая функция выглядит так: y = logax, где где число a > 0 и a ≠ 1. Она определена на множестве всех положительных действительных чисел.

Область определения логарифмической функции или область определения логарифма — это множество всех положительных действительных чисел. То есть, D (loga) = (0, +∞).
Например:

Рассмотрим примеры логарифмических функций:

  • y = log7x
  • y = lnx

Область определения этих функций есть множество (0, +∞).

Пример

Укажите, какова область определения функции:

Составим и решим систему:

Ответ: область определения: D(f) = (−3, -2) ∪ (−2, +∞).

Область определения тригонометрических функций

Сначала вспомним, как задавать тригонометрические функции и как увидеть их области определения.

  • Функция, которая задается формулой y = sinx, называется синусом, обозначается sin и определяется на множестве всех действительных чисел. Область определения синуса — это множество всех действительных чисел, то есть, D(sin) = R.
  • Функция, которая задана формулой y = cosx, называется косинусом, обозначается cos и определяется на множестве R. Область определения функции косинус — множество всех действительных чисел: D(cos) = R.
  • Функции, которые заданы формулами y = tgx и y = ctgx, называются тангенсом и котангенсом и обозначаются tg и ctg. Область определения тангенса — это множество всех действительных чисел, кроме чисел . Область определения котангенса — это множество всех действительных чисел, кроме чисел πk, k ∈ Z.

Поэтому, если x — аргумент функций тангенс и котангенс, то области определения тангенса и котангенса состоят из всех таких чисел x, что и x ∈ r, x ≠ πk, k ∈ Z соответственно.

Пример

Найдите область определения функции f(x) = tg2x.

Так как a(x) = 2x, то в область определения не войдут следующие точки:

Перенесем 2 из левой части в знаменатель правой части:

В результате . Отразим графически:

Ответ: область определения: .

Область определения обратных тригонометрических функций

Вспомним обратные тригонометрические функции: арксинус, арккосинус, арктангенс и арккотангенс.

    Функция, которая задается формулой y = arcsinx и рассматривается на отрезке [−1, 1], называется арксинусом и обозначается arcsin.

Область определения арксинуса — это множество [−1, 1], то есть, D(arcsin) = [−1, 1].
Функция, которая задается формулой y = arccosx и рассматривается на отрезке [−1, 1], называется арккосинусом и обозначается arccos.

Область определения функции арккосинус — отрезок [−1, 1], то есть, D(arccos) = [−1, 1].
Функции, которые задаются формулами вида y = arctgx и y = arcctgx и рассматриваются на множестве всех действительных чисел, называются арктангенсом и арккотангенсом и обозначаются arctg и arcctg.

Область определения арктангенса и арккотангенса — все множество действительных чисел R. То есть, D(arctg) = R и D(arcctg) = R.

Таблица областей определения функций

Области определения основных функций в табличном виде можно распечатать и использовать на уроках, чтобы быстрее решать задачки.

И, помните: чем чаще вы практикуетесь в решении задач — тем быстрее все запомните.

Функция

Область определения функции

Как найти область определения функции?

Синонимы: область допустимых значений или сокращенно ОДЗ. Первое, с чем Вы сталкиваетесь при изучении различных функций или же при построении графиков — это область определения функции.

Определение:

Областью определения называется множество значений, которые может принимать x. Обозначение D(f).

Как же это правило применить к заданной Вам функции?

В математике имеется достаточно небольшое количество элементарных функций, область определения которых ограничена. Все остальные «сложные» функции — это всего лишь их сочетания и комбинации.

1. Дробная функция — ограничение на знаменатель.

2. Корень четной степени — ограничение на подкоренное выражение.

3. Логарифмы — ограничение на основание логарифма и подлогарифмическое выражение.

3. Тригонометрические tg(x) и ctg(x) — ограничение на аргумент.

Для тангенса:

Для котангенса:

4. Обратные тригонометрические функции.

Арксинус Арккосинус Арктангенс, Арккотангенс

Пример нахождения области определения функции №1

Нахождение области определения любой линейной функции, т.е. функции первой степени:

y = 2x + 3 уравнение задает прямую на плоскости.

Посмотрим внимательно на функцию и подумаем, какие же числовые значения мы сможем подставить в уравнение вместо переменной х?

Попробуем подставить значение х=0

Так как y = 2·0 + 3 = 3 — получили числовое значение, следовательно функция существует при взятом значении переменной х=0.

Попробуем подставить значение х=10

так как y = 2·10 + 3 = 23 — функция существует при взятом значении переменной х=10 .

Попробуем подставить значение х=-10

так как y = 2·(-10) + 3 = -17 — функция существует при взятом значении переменной х=-10 .

Уравнение задает прямую линию на плоcкости, а прямая не имеет ни начала ни конца, следовательно она существует для любых значений х.

Заметим, что какие бы числовые значения мы не подставляли в заданную функцию вместо х, всегда получим числовое значение переменной y.

Следовательно, функция существует для любого значения x ∈ R или запишем так: D(f) = R

Формы записи ответа: D(f)=R или D(f)=(-∞:+∞)или x∈R или x∈(-∞:+∞)

Для любой функции вида y = ax + b областью определения является множество действительных чисел.

Пример нахождения области определения функции №2

Задана функция вида:

y = 10/(x + 5) уравнение гиперболы

Имея дело с дробной функцией, вспомним, что на ноль делить нельзя. Следовательно функция будет существовать для всех значений х, которые не

обращают знаменатель в ноль. Попробуем подставить какие-либо произвольные значения х.

При х = 0 имеем y = 10/(0 + 5) = 2 — функция существует.

При х = 10 имеем y = 10/(10 + 5) = 10/15 = 2/ 3 — функция существует.

При х = -5 имеем y = 10/(-5 + 5) = 10/0 — функция в этой точке не существует.

Т.е. если заданная функция дробная, то необходимо знаменатель приравнять нулю и найти такую точку, в которой функция не существует.

x + 5 = 0 → x = -5 — в этой точке заданная функция не существует.

Для наглядности изобразим графически:

На графике также видим, что гипербола максимально близко приближается к прямой х = -5 , но самого значения -5 не достигает.

Видим, что заданная функция существует во всех точках действительной оси, кроме точки x = -5

Формы записи ответа: D(f)=R <-5>или D(f)=(-∞;-5) ∪ (-5;+∞) или x ∈ R <-5>или x ∈ (-∞;-5) ∪ (-5;+∞)

Если заданная функция дробная, то наличие знаменателя накладывает условие неравенства нулю знаменателя.

Пример нахождения области определения функции №3

Рассмотрим пример нахождения области определения функции с корнем четной степени:

Так как квадратный корень мы можем извлечь только из неотрицательного числа, следовательно, функция под корнем — неотрицательна.

Решим простое неравенство:

2х — 8 ≥ 0 → 2х ≥ 8 → х ≥ 4

Заданная функция существует только при найденных значениях х ≥ 4 или D(f)=[4 ;+∞) или x ∈ [4 ;+∞) .

На графике видим, что функция существует для найденных значений х : х ≥ 4 или D(f)=[4 ;+∞) или x ∈ [4 ;+∞) .

При попытке подставить вместо х значения, отличные от найденных, под корнем получим отрицательное число, те в этих точках функция не существует.

Если заданная функция содержит квадратный корень (или корень любой четной степени), то обязательно накладывается условие неотрицательности (≥0) на подкоренное выражение. Если квадратный корень находится в знаменателе функции, у которой мы находим область определения, то на подкоренное выражение накладывается условие положительности (>0), так как знаменатель всегда должен быть отличен от нуля.

Пример нахождения области определения функции №4

Рассмотрим пример нахождения области определения функции с корнем четной степени в знаменателе:

В числителе имеем линейную функцию, область определения которой множество всех действительных чисел. (см. пример 1)

В знаменателе — квадратный корень, накладывает условие на подкоренное выражение, не забывая о том, что знаменатель всегда отличен от нуля.

x 2 — 4x + 3 > 0 → (x — 1)(x — 3) > 0

Решим строгое неравенство методом интервалов:

Видим, что функция положительна на следующих интервалах: x∈(-∞;1)∪(3;+∞)

Нашли такие значения переменной х, при которых функция существует — нашли ОДЗ функции.

Пример нахождения области определения функции №5

Рассмотрим пример нахождения области определения функции с корнем нечетной степени:

Имеем дело с корнем нечетной степени. Так как корень нечетной степени существует при любых значениях подкоренного выражения, то заданная дробная функция под корнем может принимать любые значения.

В числителе дробной функции — уравнение первой сnепени, которое существует при любых значениях переменной. Знаменатель любой дроби отличен от нуля. Следовательно, при нахождении ОДЗ заданного выражения имеем дело лишь с одним ограничением — ограничение на знаменатель дроби.

Пример нахождения области определения функции №6

Рассмотрим пример нахождения области определения логарифма:

Простенький пример на область определения логарифмической функции.

Помним, что основание логарифма положительно и отлично от нуля. Подлогарифмическое выражение положительно:

Покажем на числовой прямой:

Получили ОДЗ: x∈(8;9)∪(9;+∞)

Пример нахождения области определения функции №7

Задана функция вида:

1 ограничение основывается на наложении ограничения на знаменатель дроби (отличен от нуля):

Второе ограничение — подлогарифмическое выражение положительно:

Т.е. для определения области определения заданной функции необходимо решить систему:

Необходимо решить каждое из ограничений системы по отдельности и пересечь получившиеся результаты.

Допускаю, что читатель самостоятельно может это проделать и перехожу к разбору следующего примера.

Пример нахождения области определения функции №8

Рассмотрим следующий пример:

Имеем дело с корнем четной степени, следовательно первое ограничение на подкоренное выражение:

Имеем дело с логарифмом, следовательно ограничение на подлогарифмическую функцию:

Таким образом для определения области определения исходной функции необходимо решить систему неравенств:

Каждое из неравенств решим по отдельности.

Первое неравенство будем решать методом интервалов: найдем корни каждого из выражений неравенства, вынесем их на координатную плоскость и расставим знаки неравенства в каждом из полученных интервалов.

Выносим на координатную прямую:

Объясню как расставлены знаки в каждом из интервалов:

Значения левее 6/7 нет смысла рассматривать, так как логарифм для этих значений не существует.

1-ый интервал: (6/7;1]

Основание логарифма больше единицы, следовательно функция возрастающая. В корне x=1 логарифм меняет свое значение с » — » на » + «.

источники:

http://skysmart.ru/articles/mathematic/oblast-opredeleniya-funkcii

http://matecos.ru/mat/matematika/kak-opredelit-oblast-opredeleniya-grafika-funktsii-5.html

Вспомним кратко основные определения функции в математике.

Функция — это зависимость переменной « y » от
независимой переменной « x ».

Функцию можно задать через формулу (аналитически). Например:

у = 2x

  • « x » называют независимым аргументом функции;
  • « y » зависимой переменной или значением функции.

Вместо « x » (аргумента функции) в формулу «у = 2x» подставляем произвольные числовые значения
и по заданной формуле вычисляем
значение « y ».

Подставим несколько числовых значений вместо « x » в формулу «у = 2x» и запишем результаты в таблицу.

x y = 2x
x = −2 у = 2 · (−2) = −4
x = 0 y = 2 · 0 = 0
x =

1
2
y = 2 ·

1
2

=

2 · 1
2

= 1

x = 3 y = 2 · 3 = 6

Запомните!
!

Область определения функции — это множество числовых значений, которые можно подставить вместо « x » (аргумента функции).

Обозначают область определения функции как:

D(y)

Вернемся к нашей функции «у = 2x» и найдем её область определения.

Посмотрим ещё раз на таблицу функции «y = 2x», где
мы подставляли произвольные числа вместо « x », чтобы найти « y ».

x y = 2x
−2 −4
0 0
1
2
1
3 6

Так как у нас не было никаких ограничений на числа, которые можно подставить вместо « x », можно утверждать,
что вместо « x » мы могли подставлять любое действительное число.

Другими словами, вместо « x » можно подставить любые числа, например:

  • −2
  • 0
  • 10
  • 30,5
  • 1 000 000
  • и так далее…

Запомните!
!

Областью определения функции называют множество чисел,
которые можно подставить вместо « x ».

В нашей функции «у = 2x» вместо « x »
можно подставить любое число, поэтому область определения функции «у = 2x» — это любые действительные числа.

Запишем область определения функции «у = 2x» через математические обозначения.

у = 2x
D(y): x
— любое действительное число

Ответ выше написан словами без использования специального математического языка. Заменим лишние слова на
математические символы.
Для этого вспомним понятие числовой оси.

числовая ось для x

Заштрихуем область на числовой оси, откуда можно брать значения для « x » в функции «у = 2x».
Так как в функции
«у = 2x» нет ограничений для « x »,
заштрихуем всю числовую ось от минус бесконечности «−∞» до плюс бесконечности
«+∞».

числовая ось для x

Запишем результат по правилам записи неравенств.

числовая ось для x

D(y): x ∈ (−∞ ; +∞)

Запись выше читается как: « x » принадлежит промежутку от минус бесконечности
до плюс бесконечности.

Запишем окончательный ответ для области определения функции.

Ответ:

D(y): x ∈ (−∞ ; +∞)

По-другому промежуток
« x ∈ (−∞ ; +∞) » можно записать
как
«x ∈ R».

Читается «x ∈ R» как: « x » принадлежит всем действительным числам».

Записи « x ∈ (−∞ ; +∞) » и
«x ∈ R» одинаковы по своей сути.

Область определения функции с дробью

Разберем пример сложнее, когда в задании на поиск области определения функции есть дробь с « x » в знаменателе.

Разбор примера

Найдите область определения функции:

Задание «Найдите область определения функции» означает, что нам нужно определить все числовые значения, которые может принимать « x »
в функции

« f(x) = ».

По законам математики из школьного курса мы помним, что на ноль делить нельзя.
Иначе говоря,
знаменатель (нижняя часть дроби) не может быть равен нулю.

Переменная « x » находится в знаменателе функции «f(x) = ».
Так как на ноль делить нельзя, запишем, что знаменатель не равен нулю.

x + 5 ≠ 0

Решим полученное линейное уравнение.

Получается, что « x » может принимать любые числовые значения кроме «−5».
На числовой оси заштрихуем все доступные значения для « x ».

Число «−5» отмечено
«пустой»
точкой на числовой оси, так как не входит в область допустимых значений.

числовая ось для x

Запишем заштрихованную область на числовой оси через знаки неравенства.

числовая ось для x

Запишем промежутки через математические символы. Так как число «−5» не входит
в область определения функции, при записи ответа рядом с ним будет стоять
круглая скобка.

Вспомнить запись ответа через математические символы можно в уроке
«Как записать ответ неравенства».

числовая ось для x

x ∈ (−∞ ; −5) ∪ (−5 ; +∞)

Запишем окончательный ответ для области определения функции
«f(x) = ».

Ответ:

D(y): x ∈ (−∞ ; −5) ∪ (−5 ; +∞)

Область определения функции с корнем

Рассмотрим другой пример. Требуется определить область определения функции, в которой содержится квадратный корень.

Разбор примера

Найти область определения функции:

y = 6 − x

Из урока «Квадратный корень» мы помним,
что подкоренное выражение корня чётной степени должно быть больше или равно нулю.

Найдём, какие значения может принимать « x » в функции
«у = 6 − x».
Подкоренное выражение
«6 − x» должно быть больше или равно нулю.

6 − x ≥ 0

Решим линейное неравенство по правилам урока «Решение линейных неравенств».

6 − x ≥ 0

−x ≥ −6 | ·(−1)

x 6

Запишем полученный ответ, используя числовую ось и математические символы. Число «6» отмечено
«заполненной»
точкой на числовой оси, так как входит в область допустимых значений.

числовая ось для x

x ∈ (−∞ ; 6]

Запишем окончательный ответ для области определения функции
«y = 6 − x» .
Так как число «6» входит
в область определения функции, при записи ответа рядом с ним будет стоять
квадратная скобка.

Ответ:

D(y): x ∈ (−∞ ; 6]

Правило для определения области определения функции

Запомните!
!

Чтобы найти область определения функции нужно проверить формулу функции по двум законам школьного курса математики:

  1. на ноль делить нельзя (другими словами, знаменатели дробей с « x » не должны быть равны нулю);
  2. подкоренные выражения корней чётной степени должны быть больше или равны нулю.

При нахождении области определения функции необходимо всегда задавать себе два вопроса:

  1. есть ли в функции дроби со знаменателем, в котором есть « x »?
  2. есть ли корни четной
    степени с « x »?

Если на оба вопроса вы получаете отрицательный ответ, то область определения функции — это все действительные числа.

Рассмотрим пример поиска области определения функции с корнем и дробью.

Разбор примера

Найдите область определения функции:

Идем по алгоритму. Задаём себе первый вопрос, есть ли в функции дробь с « x » в знаменателе. Ответ: да, есть.

В функции «
f(x) = x + 3 +

»

есть дробь «

»,
где « x » расположен в знаменателе. Запишем условие, что знаменатель
« x 2 − 9 »
не может быть равен нулю.

Решаем квадратное уравнение через
формулу квадратного уравнения.

x1;2 =

x2 − 9 ≠ 0

x1;2 =

−0 ±
02 − 4 · 1 · (−9)
2 · 1

x1;2

x1;2

x1;2

x1;2 ≠ ±3

Запомним полученный результат. Задаем себе
второй
вопрос.
Проверяем, есть ли в формуле функции

«
f(x) = x + 3 +

»

корень четной степени.

В формуле есть квадратный корень «
x + 3
».

Подкоренное выражение «x + 3»
должно быть больше или равно нулю.

x + 3 ≥ 0

Решим линейное неравенство.

x + 3 ≥ 0
x ≥ −3

числовая ось для x

Объединим полученные ответы по обоим вопросам:

  • знаменатель дроби
    «
    » не равен нулю ;
  • подкоренное выражение «
    x + 3
    » должно быть больше или равно нулю.

Объединим все полученные результаты на числовых осях.
Сравнивая полученные множества, выберем только те промежутки, которые удовлетворяют обоим условиям.

сравнение ограничений для поиска области определения

Выделим красным заштрихованные промежутки, которые совпадают на обеих числовых осях.
Обратим внимание, что числа «−3» и «3» отмечены «пустыми» точками и не входят в итоговое решение.

поиск общих промежутков

Получаем два числовых
промежутка «−3 < x < 3» и «x > 3», которые являются областью определения функции
«f(x) = x + 3 + ».
Запишем окончательный ответ.

Ответ:

D(y): x ∈ (−3 ; 3) ∪ (3 ; +∞)

Примеры определения области определения функции

Разбор примера

Найти область определения функции:

y = 6x +
51 + x

Для поиска области определения функций задаем себе
первый вопрос.

Есть ли знаменатель, в котором содержится « x »?

Ответ: в формуле функции

«y = 6x +
51 + x
»
нет дробей.

Задаем
второй вопрос.

Есть ли в функции корни четной степени?

Ответ: в функции есть корень шестой степени:
«6x».

Степень корня — число «6». Число «6» — чётное,
поэтому подкоренное выражение корня «6x»
должно быть больше или равно нулю.

x ≥ 0

В формуле функции «y = 6x +
51 + x
»
также есть корень пятой степени
«51 + x
».

Степень корня «5» — нечётное число, значит, никаких ограничений на подкоренное выражение
«1 + x»
не накладывается.

Получается, что единственное ограничение области определения функции

«y = 6x +
51 + x
»
— это ограничение подкоренного выражения
«6x».

x ≥ 0

Нарисуем область определения функции на числовой оси и запишем ответ.

поиск общих промежутков

Ответ:

D(y): x ∈ [0 ; +∞)


Разбор примера

Найдите область определения функции:

Есть ли в функции знаменатель, в котором содержится « x »? В заданной функции подобных знаменателей два.
Выделим знаменатели с « x » красным цветом.

Запишем условие, что каждый из знаменателей не должен быть равен нулю.

x + 2 ≠ 0
x2 − 7x + 6 ≠ 0

Обозначим их номерами «1» и
«2» и решим каждое уравнение отдельно.

x + 2 ≠ 0            (1)
x2 − 7x + 6 ≠ 0     (2)

Решаем первое уравнение.

x + 2 ≠ 0     (1)

Если значение квадратного корня
«x + 2 ≠ 0» не должно быть равно нулю,

значит, подкоренное выражение
«x + 2 ≠ 0»

также не должно быть равно нулю.

x + 2 ≠ 0     (1)

x + 2 ≠ 0
x ≠ −2

Теперь решим уравнение под номером «2», используя
формулу квадратного уравнения.

x1;2 =

x2 − 7x + 6 ≠ 0     (2)

x1;2 =

−(−7) ±
(−7)2 − 4 · 1 · 6
2 · 1

x1;2 =

x1;2 =

x1;2 =

Запишем все полученные ответы в порядке возрастания вместе под знаком системы, чтобы их не забыть.

Знаменатели с « x »
мы проверили. Настала очередь
проверить
формулу функции
на
наличие корней четной степени .

В формуле функции

«f(x) =

+
»

есть два корня
«x − 4» и
«x + 2». Их подкоренные
выражения должны быть больше или равны нулю.

Решим полученную
систему неравенств.

Нарисуем полученные решения на числовой оси. Выберем заштрихованный промежуток, который есть на обеих числовых осях.

решение системы неравенств

Выпишем результат решения системы неравенств.

x ≥ 4

Объединим в таблицу ниже полученные ответы по обеим
проверкам:

  1. проверка, что знаменатели
    дробей
    с « x »
    не равны нулю;
  2. проверка, что
    подкоренные выражения корней четной степени должно быть больше или равны нулю.
Условие проверки Результат

Результат проверки, что знаменатели дробей

с « x »

не равны нулю

Результат проверки, что подкоренные выражения должно быть больше или равны нулю

x ≥ 4

Нарисуем полученные результаты проверок на числовых осях, чтобы определить, какая заштрихованная область удовлетворяет
всем полученным условиям.

пример поиска области определения функции

Запишем окончательный ответ для области определения функции
«f(x) =

+
»

с использованием математических символов.

Ответ:

D(y): x ∈ [4 ; 6) ∪ (6; +∞)


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

17 декабря 2016 в 18:02

Татьяна Цыганова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Татьяна Цыганова
Профиль
Благодарили: 0

Сообщений: 1

Найти ОДЗ функции у=?(р1+р2х+x2
Я не могу понять за какое число воспринимать p1, p2

0
Спасибоthanks
Ответить

17 декабря 2016 в 19:10
Ответ для Татьяна Цыганова

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


x2 + p2x + p1 ? 0.

0
Спасибоthanks
Ответить

24 февраля 2016 в 20:29

Влад Алексеев
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Влад Алексеев
Профиль
Благодарили: 0

Сообщений: 1

Постройте график функции y=-

 . Укажите область определения функции

0
Спасибоthanks
Ответить

25 февраля 2016 в 8:10
Ответ для Влад Алексеев

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Область определения функции: знаменатель не равен 0.
x+1?0
x?-1
Графиком является гипербола, смещеная влево относительно оси Y.

0
Спасибоthanks
Ответить

5 февраля 2018 в 14:30
Ответ для Влад Алексеев

Кирилл Косован
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Кирилл Косован
Профиль
Благодарили: 0

Сообщений: 1

0
Спасибоthanks
Ответить

11 февраля 2018 в 15:44
Ответ для Влад Алексеев

Татьяна Мирная
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Татьяна Мирная
Профиль
Благодарили: 0

Сообщений: 1


у=- 

0
Спасибоthanks
Ответить

7 октября 2015 в 21:21

Катерина Яроцкая
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Катерина Яроцкая
Профиль
Благодарили: 0

Сообщений: 1

Помогите найти область определения функции

0
Спасибоthanks
Ответить

12 сентября 2016 в 15:59
Ответ для Катерина Яроцкая

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


К сожалению, картинка не отражается.

0
Спасибоthanks
Ответить


область определения графика

Синонимы: область допустимых значений или сокращенно ОДЗ. Первое, с чем Вы сталкиваетесь при изучении различных функций или же при построении графиков — это область определения функции.

Определение:

Областью определения называется множество значений, которые может принимать x. Обозначение  D(f).

Как же это правило применить к заданной Вам функции?

В математике имеется достаточно небольшое количество элементарных функций, область определения которых ограничена. Все остальные «сложные» функции — это всего лишь их сочетания и комбинации.

1. Дробная функция — ограничение на знаменатель.

область определения

2. Корень четной степени — ограничение на подкоренное выражение.

obl 2

3. Логарифмы — ограничение на основание логарифма и подлогарифмическое выражение.

область определения

3. Тригонометрические tg(x) и ctg(x) — ограничение на аргумент.

Для тангенса:

Для котангенса: 

4. Обратные тригонометрические функции. 

 ex-13    

Пример нахождения области определения функции №1

Нахождение области определения любой линейной функции, т.е. функции первой степени: 

y = 2x + 3 —  уравнение задает прямую на плоскости.

Посмотрим внимательно на функцию и подумаем, какие же числовые значения мы сможем подставить в уравнение вместо переменной х?

Попробуем подставить значение х=0

Так как  y = 2·0 + 3 = 3 — получили числовое значение, следовательно функция существует при взятом значении переменной х=0.

Попробуем подставить значение х=10 

так как  y = 2·10 + 3 = 23 —  функция существует при взятом значении переменной х=10 .

Попробуем подставить значение х=-10

так как  y = 2·(-10) + 3 = -17 — функция существует при взятом значении переменной х=-10 . 

Уравнение задает прямую линию на плоcкости, а прямая не имеет ни начала ни конца, следовательно она существует для любых значений х.

области определения функции

Заметим, что какие бы числовые значения мы не подставляли в заданную функцию вместо х, всегда получим числовое значение переменной y.

Следовательно, функция существует для любого значения x ∈ R  или запишем так: D(f) = R 

Формы записи ответа:  D(f)=R  или  D(f)=(-∞:+∞)или x∈R  или x∈(-∞:+∞)

Сделаем вывод:

Для любой функции вида y = ax + b областью определения является множество действительных чисел.

Пример нахождения области определения функции №2

Задана функция вида:  

y = 10/(x + 5) —  уравнение гиперболы

Имея дело с дробной функцией, вспомним, что на ноль делить нельзя. Следовательно функция будет существовать для всех значений х, которые не

обращают знаменатель в ноль. Попробуем подставить какие-либо произвольные значения х.

При х = 0 имеем  y = 10/(0 + 5) = 2 — функция существует.

При х = 10 имеем  y = 10/(10 + 5) = 10/15 = 2/3 — функция существует.

При х = -5 имеем  y = 10/(-5 + 5) = 10/0  —  функция в этой точке не существует. 

Т.е. если заданная функция дробная, то необходимо знаменатель приравнять нулю и найти такую точку, в которой функция не существует. 

В нашем случае:

x + 5 = 0 → x = -5 — в этой точке заданная функция не существует.

или

x + 5 ≠ 0 → x ≠ -5 

Для наглядности изобразим графически:

область определения функции 

На графике также видим, что  гипербола максимально близко приближается к прямой х = -5, но самого значения -5 не достигает. 

Видим, что заданная функция существует во всех точках действительной оси, кроме точки  x = -5

Формы записи ответа:  D(f)=R{-5}  или  D(f)=(-∞;-5) (-5;+∞)  или  xR{-5}  или  x(-∞;-5)(-5;+∞) 

Вывод:

Если заданная функция дробная, то наличие знаменателя накладывает условие неравенства нулю знаменателя. 

Пример нахождения области определения функции №3

Рассмотрим пример нахождения области определения функции с корнем четной степени:

sqr_2x-8.gif 

Так как квадратный корень мы можем извлечь только из неотрицательного числа, следовательно, функция под корнем — неотрицательна.

2х — 8 ≥ 0  

Решим простое неравенство:  

2х — 8 ≥ 0  →  2х ≥ 8  →  х ≥ 4

Заданная функция существует только при найденных значениях х ≥ 4 или D(f)=[4;+∞)  или  x[4;+∞).

область определения функции

На графике видим, что функция существует для найденных значений х : х ≥ 4  или  D(f)=[4;+∞)  или  x[4;+∞).

При попытке подставить вместо х значения, отличные от найденных, под корнем получим отрицательное число, те в этих точках функция не существует. 

Вывод:

Если заданная функция содержит квадратный корень (или корень любой четной степени), то обязательно накладывается условие неотрицательности (≥0) на подкоренное выражение. Если квадратный корень находится в знаменателе функции, у которой мы находим область определения, то на подкоренное выражение накладывается условие положительности (>0), так как знаменатель всегда должен быть отличен от нуля. 

Пример нахождения области определения функции №4

Рассмотрим пример нахождения области определения функции с корнем четной степени в знаменателе:

formula 4

В числителе имеем линейную функцию, область определения которой множество всех действительных чисел. (см. пример 1)

В знаменателе — квадратный корень, накладывает условие на подкоренное выражение, не забывая о том, что знаменатель всегда отличен от нуля.

Получим:

x— 4x + 3 > 0   →  (x — 1)(x — 3) > 0 

Решим строгое неравенство методом интервалов:

Видим, что функция положительна на следующих интервалах: x∈(-∞;1)∪(3;+∞)

Нашли такие значения переменной х, при которых функция существует — нашли ОДЗ функции.

  

Пример нахождения области определения функции №5

Рассмотрим пример нахождения области определения функции с корнем нечетной степени:

нахождение области определения графика функции 

Имеем дело с корнем нечетной степени. Так как корень нечетной степени существует при любых значениях подкоренного выражения, то заданная дробная функция под корнем может принимать любые значения.

В числителе дробной функции — уравнение первой сnепени, которое существует при любых значениях переменной. Знаменатель любой дроби отличен от нуля. Следовательно, при нахождении ОДЗ заданного выражения имеем дело лишь с одним ограничением — ограничение на знаменатель дроби.

область определения найти как

Получили ОДЗ:  x∈(-∞;-1)∪(-1;1)∪(1;+∞)

Пример нахождения области определения функции №6

Рассмотрим пример нахождения области определения логарифма: 

область определения логарифмической функции 

Простенький пример на область определения логарифмической функции.

Помним, что основание логарифма положительно и отлично от нуля. Подлогарифмическое выражение положительно:

решение неравенства при нахождении области определения функции

Покажем на числовой прямой:

решение неравенства на плоскости 

Получили ОДЗ:  x∈(8;9)∪(9;+∞)

 

Пример нахождения области определения функции №7

Задана функция вида: 

область определения функции как найти 

1 ограничение основывается на наложении ограничения на знаменатель дроби (отличен от нуля):

ограничение на знаменатель дроби

Второе ограничение  — подлогарифмическое выражение положительно:

ограничение на логарифм

Т.е. для определения области определения заданной функции необходимо решить систему:

система для определения области определения функции

Необходимо решить каждое из ограничений системы по отдельности и пересечь получившиеся результаты.

Допускаю, что читатель самостоятельно может это проделать и перехожу к разбору следующего примера.

 

Пример нахождения области определения функции №8

Рассмотрим следующий пример: 

область определения функции 

Имеем дело с корнем четной степени, следовательно первое ограничение на подкоренное выражение:

ограничение на подкоренное выражение

Имеем дело с логарифмом, следовательно ограничение на подлогарифмическую функцию:

ограничение на подлогарифмическую функцию

Таким образом для определения области определения исходной функции необходимо решить систему неравенств:

система ограничений

Каждое из неравенств решим по отдельности.

Первое неравенство будем решать методом интервалов: найдем корни каждого из выражений неравенства, вынесем их на координатную плоскость и расставим знаки неравенства в каждом из полученных интервалов.

Корни:

находим корни

Второе неравенство:

решение неравенства системы ограничений на область определения функции

Выносим на координатную прямую:

решение неравенства на плоскости

Объясню как расставлены знаки в каждом из интервалов:

Значения левее 6/7 нет смысла рассматривать, так как логарифм для этих значений не существует.

1-ый интервал: (6/7;1]

Основание логарифма больше единицы, следовательно функция возрастающая. В корне x=1 логарифм меняет свое значение с » — » на » + «.

Наглядно покажу на графике:

знаки логарифма в примере нахождения области определения

Имеем: линейная функция (13 — x) 

Пример нахождения области определения функции №9

Рассмотрим следующий пример: 

Excample-9-uslovie 

область определения пример решения 

Пример нахождения области определения функции №10

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY. 

Найти область определения функции двух переменных

 

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY

Пример нахождения области определения функции №11

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY. 

Найти область определения функции двух переменных

 

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY 

Пример нахождения области определения функции №12

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY. 

Найти область определения функции двух переменных

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY 

 

Пример нахождения области определения функции №13

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY.

Найти область определения функции двух переменных

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY

Найти область определения функции двух переменных, ответ изобразить на плоскости ХОY

Все графике в этой статье были построены в Geogebra. 

Подробно о построении графиков функции быстрым и удобным способом читать тут

Определение

Уравнение вида ax2+bx+c=0, где a,b,c – любые числа, причем a≠0, называют квадратным уравнением. Числа a,b,c принято называть коэффициентами, при этом a – первый коэффициент, b – второй коэффициент, c – свободный член.

Квадратное уравнение может иметь не более двух корней. Решить такое уравнение – это значит найти все его корни или доказать, что их нет.

Дискриминант

Количество корней квадратного уравнения зависит от такого элемента, как дискриминант (обозначают его буквой D).

Нахождение корней квадратного уравнения

Дискриминант – это такой математический инструмент, который позволяет нам определять количество корней. Он выражается определенной формулой:

D=b2–4ac

  • Если D>0, то уравнение имеет два различных корня. Их находят по формуле:

Корни квадратного уравнения

  • Если D<0, то уравнение не имеет корней.
  • Если D=0, то уравнение имеет два равных корня, их записывают и находят как один:

Корень при D=0

Рассмотрим решение квадратных уравнений на примерах.

Пример №1. Решить уравнение х2–2х–3=0. Определяем коэффициенты: а=1, b=–2, c=–3. Находим дискриминант: D=b2–4ac=(–2)2–41(–3)=4+12=16. Видим, что дискриминант положительный, значит, уравнение имеет два различных корня, находим их:

Пример №2. Решить уравнение 5х2+2х+1=0. Определяем коэффициенты: а=5, b=2, c=1. D=b2–4ac=22–4=4–20=–16, D<0, уравнение не имеет корней.

Пример №3. Решить уравнение х2–6х+9=0. Определяем коэффициенты: а=1, b=–6, c=9.

D=b2–4ac=(–6)2–4=36–36=0, D=0, 1 корень

Теорема Виета

Приведенные квадратные уравнения

Среди квадратных уравнений встречаются такие, у которых первый коэффициент равен 1 (обратим внимание на пример 1 и 3), такие уравнения называются приведенными.

Приведенные квадратные уравнения можно решать не только с помощью дискриминанта, но и с помощью теоремы Виета.

Теорема Виета

Сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком; произведение корней равно третьему коэффициенту.

х12= –b

х1•х2= с

Корни с помощью данной теоремы находятся устно способом подбора. Рассмотрим это на примерах.

Пример №4. Решить уравнение х2–10х+21=0. Выпишем коэффициенты: а=1, b=–10, c=21. Применим теорему Виета:

х12=–(–10)=10

х1х2=21

Начинаем с произведения корней, которое является положительным числом, значит оба корня либо отрицательные, либо положительные. Предполагаем, что это могут быть либо 3 и 7, либо противоположные им числа. Теперь смотрим на сумму, она является положительным числом, поэтому нам подходит пара чисел 3 и 7. Проверяем: 3+7=10, 37=21. Значит, корнями данного уравнения являются числа 3 и 7.

Пример №5. Решить уравнение: х2+5х+4=0. Выпишем коэффициенты: а=1, b=5, c=4. По теореме Виета:

х12=–5

х1х2=4

Видим, что произведение корней равно 4, значит оба корня либо отрицательные, либо положительные. Видим, что сумма отрицательная, значит, будем брать два отрицательных числа, нам подходят –1 и –4. Проверим:

–1+(–4)=–5

(–1)(–4)=4

Ответ: –1 и –4

Задание OM2002

Решить уравнение: х22х+5х=5х+24


Данное уравнение является квадратным. Но в его условии присутствует квадратный корень, что усложняет нам задачу для нахождения его корней, в том плане, что необходимо увидеть, какие же ограничения на переменную х здесь будут.

Записываем обязательно в начале решения, что подкоренное выражение может быть только равным нулю или положительным числом (правило извлечения квадратного корня): ограничение на х: 5х0

Решаем полученное неравенство: х5, отсюда х5. Следовательно, для ответа мы будем выбирать значения, которые меньше или равны 5.

Решаем наше квадратное уравнение, перенося все слагаемые из правой части в левую, изменяя при этом знаки на противоположные и приводя подобные слагаемые (выражения с квадратным корнем взаимоуничтожаются):

  х22х+5х  5х 24=0

Получим приведенное квадратное уравнение, корни которого можно найти подбором по теореме Виета:

 х22х 24=0

Итак, корнями уравнения х22х 24=0 будут числа -4 и 6.

Теперь выбираем корень, обращая внимание на наше ограничение на х, т.е. корень должен быть меньше или равен 5. Таким образом, запишем, что 6 – это посторонний корень, так как 6 не5, а число минус 4 записываем в ответ нашего уравнения, так как 45 .

Ответ: -4

pазбирался: Даниил Романович | обсудить разбор

Алла Василевская | Просмотров: 13.1k

Понравилась статья? Поделить с друзьями:
  • Как найти новую версию тока бока
  • Как найти где в фейсбуке
  • Как найти русскую народную песню по словам
  • Как найти площадь равнобедренной трапеции через угол
  • Как найти папку зона