Как найти область определения функции на промежутке

Вспомним кратко основные определения функции в математике.

Функция — это зависимость переменной « y » от
независимой переменной « x ».

Функцию можно задать через формулу (аналитически). Например:

у = 2x

  • « x » называют независимым аргументом функции;
  • « y » зависимой переменной или значением функции.

Вместо « x » (аргумента функции) в формулу «у = 2x» подставляем произвольные числовые значения
и по заданной формуле вычисляем
значение « y ».

Подставим несколько числовых значений вместо « x » в формулу «у = 2x» и запишем результаты в таблицу.

x y = 2x
x = −2 у = 2 · (−2) = −4
x = 0 y = 2 · 0 = 0
x =

1
2
y = 2 ·

1
2

=

2 · 1
2

= 1

x = 3 y = 2 · 3 = 6

Запомните!
!

Область определения функции — это множество числовых значений, которые можно подставить вместо « x » (аргумента функции).

Обозначают область определения функции как:

D(y)

Вернемся к нашей функции «у = 2x» и найдем её область определения.

Посмотрим ещё раз на таблицу функции «y = 2x», где
мы подставляли произвольные числа вместо « x », чтобы найти « y ».

x y = 2x
−2 −4
0 0
1
2
1
3 6

Так как у нас не было никаких ограничений на числа, которые можно подставить вместо « x », можно утверждать,
что вместо « x » мы могли подставлять любое действительное число.

Другими словами, вместо « x » можно подставить любые числа, например:

  • −2
  • 0
  • 10
  • 30,5
  • 1 000 000
  • и так далее…

Запомните!
!

Областью определения функции называют множество чисел,
которые можно подставить вместо « x ».

В нашей функции «у = 2x» вместо « x »
можно подставить любое число, поэтому область определения функции «у = 2x» — это любые действительные числа.

Запишем область определения функции «у = 2x» через математические обозначения.

у = 2x
D(y): x
— любое действительное число

Ответ выше написан словами без использования специального математического языка. Заменим лишние слова на
математические символы.
Для этого вспомним понятие числовой оси.

числовая ось для x

Заштрихуем область на числовой оси, откуда можно брать значения для « x » в функции «у = 2x».
Так как в функции
«у = 2x» нет ограничений для « x »,
заштрихуем всю числовую ось от минус бесконечности «−∞» до плюс бесконечности
«+∞».

числовая ось для x

Запишем результат по правилам записи неравенств.

числовая ось для x

D(y): x ∈ (−∞ ; +∞)

Запись выше читается как: « x » принадлежит промежутку от минус бесконечности
до плюс бесконечности.

Запишем окончательный ответ для области определения функции.

Ответ:

D(y): x ∈ (−∞ ; +∞)

По-другому промежуток
« x ∈ (−∞ ; +∞) » можно записать
как
«x ∈ R».

Читается «x ∈ R» как: « x » принадлежит всем действительным числам».

Записи « x ∈ (−∞ ; +∞) » и
«x ∈ R» одинаковы по своей сути.

Область определения функции с дробью

Разберем пример сложнее, когда в задании на поиск области определения функции есть дробь с « x » в знаменателе.

Разбор примера

Найдите область определения функции:

Задание «Найдите область определения функции» означает, что нам нужно определить все числовые значения, которые может принимать « x »
в функции

« f(x) = ».

По законам математики из школьного курса мы помним, что на ноль делить нельзя.
Иначе говоря,
знаменатель (нижняя часть дроби) не может быть равен нулю.

Переменная « x » находится в знаменателе функции «f(x) = ».
Так как на ноль делить нельзя, запишем, что знаменатель не равен нулю.

x + 5 ≠ 0

Решим полученное линейное уравнение.

Получается, что « x » может принимать любые числовые значения кроме «−5».
На числовой оси заштрихуем все доступные значения для « x ».

Число «−5» отмечено
«пустой»
точкой на числовой оси, так как не входит в область допустимых значений.

числовая ось для x

Запишем заштрихованную область на числовой оси через знаки неравенства.

числовая ось для x

Запишем промежутки через математические символы. Так как число «−5» не входит
в область определения функции, при записи ответа рядом с ним будет стоять
круглая скобка.

Вспомнить запись ответа через математические символы можно в уроке
«Как записать ответ неравенства».

числовая ось для x

x ∈ (−∞ ; −5) ∪ (−5 ; +∞)

Запишем окончательный ответ для области определения функции
«f(x) = ».

Ответ:

D(y): x ∈ (−∞ ; −5) ∪ (−5 ; +∞)

Область определения функции с корнем

Рассмотрим другой пример. Требуется определить область определения функции, в которой содержится квадратный корень.

Разбор примера

Найти область определения функции:

y = 6 − x

Из урока «Квадратный корень» мы помним,
что подкоренное выражение корня чётной степени должно быть больше или равно нулю.

Найдём, какие значения может принимать « x » в функции
«у = 6 − x».
Подкоренное выражение
«6 − x» должно быть больше или равно нулю.

6 − x ≥ 0

Решим линейное неравенство по правилам урока «Решение линейных неравенств».

6 − x ≥ 0

−x ≥ −6 | ·(−1)

x 6

Запишем полученный ответ, используя числовую ось и математические символы. Число «6» отмечено
«заполненной»
точкой на числовой оси, так как входит в область допустимых значений.

числовая ось для x

x ∈ (−∞ ; 6]

Запишем окончательный ответ для области определения функции
«y = 6 − x» .
Так как число «6» входит
в область определения функции, при записи ответа рядом с ним будет стоять
квадратная скобка.

Ответ:

D(y): x ∈ (−∞ ; 6]

Правило для определения области определения функции

Запомните!
!

Чтобы найти область определения функции нужно проверить формулу функции по двум законам школьного курса математики:

  1. на ноль делить нельзя (другими словами, знаменатели дробей с « x » не должны быть равны нулю);
  2. подкоренные выражения корней чётной степени должны быть больше или равны нулю.

При нахождении области определения функции необходимо всегда задавать себе два вопроса:

  1. есть ли в функции дроби со знаменателем, в котором есть « x »?
  2. есть ли корни четной
    степени с « x »?

Если на оба вопроса вы получаете отрицательный ответ, то область определения функции — это все действительные числа.

Рассмотрим пример поиска области определения функции с корнем и дробью.

Разбор примера

Найдите область определения функции:

Идем по алгоритму. Задаём себе первый вопрос, есть ли в функции дробь с « x » в знаменателе. Ответ: да, есть.

В функции «
f(x) = x + 3 +

»

есть дробь «

»,
где « x » расположен в знаменателе. Запишем условие, что знаменатель
« x 2 − 9 »
не может быть равен нулю.

Решаем квадратное уравнение через
формулу квадратного уравнения.

x1;2 =

x2 − 9 ≠ 0

x1;2 =

−0 ±
02 − 4 · 1 · (−9)
2 · 1

x1;2

x1;2

x1;2

x1;2 ≠ ±3

Запомним полученный результат. Задаем себе
второй
вопрос.
Проверяем, есть ли в формуле функции

«
f(x) = x + 3 +

»

корень четной степени.

В формуле есть квадратный корень «
x + 3
».

Подкоренное выражение «x + 3»
должно быть больше или равно нулю.

x + 3 ≥ 0

Решим линейное неравенство.

x + 3 ≥ 0
x ≥ −3

числовая ось для x

Объединим полученные ответы по обоим вопросам:

  • знаменатель дроби
    «
    » не равен нулю ;
  • подкоренное выражение «
    x + 3
    » должно быть больше или равно нулю.

Объединим все полученные результаты на числовых осях.
Сравнивая полученные множества, выберем только те промежутки, которые удовлетворяют обоим условиям.

сравнение ограничений для поиска области определения

Выделим красным заштрихованные промежутки, которые совпадают на обеих числовых осях.
Обратим внимание, что числа «−3» и «3» отмечены «пустыми» точками и не входят в итоговое решение.

поиск общих промежутков

Получаем два числовых
промежутка «−3 < x < 3» и «x > 3», которые являются областью определения функции
«f(x) = x + 3 + ».
Запишем окончательный ответ.

Ответ:

D(y): x ∈ (−3 ; 3) ∪ (3 ; +∞)

Примеры определения области определения функции

Разбор примера

Найти область определения функции:

y = 6x +
51 + x

Для поиска области определения функций задаем себе
первый вопрос.

Есть ли знаменатель, в котором содержится « x »?

Ответ: в формуле функции

«y = 6x +
51 + x
»
нет дробей.

Задаем
второй вопрос.

Есть ли в функции корни четной степени?

Ответ: в функции есть корень шестой степени:
«6x».

Степень корня — число «6». Число «6» — чётное,
поэтому подкоренное выражение корня «6x»
должно быть больше или равно нулю.

x ≥ 0

В формуле функции «y = 6x +
51 + x
»
также есть корень пятой степени
«51 + x
».

Степень корня «5» — нечётное число, значит, никаких ограничений на подкоренное выражение
«1 + x»
не накладывается.

Получается, что единственное ограничение области определения функции

«y = 6x +
51 + x
»
— это ограничение подкоренного выражения
«6x».

x ≥ 0

Нарисуем область определения функции на числовой оси и запишем ответ.

поиск общих промежутков

Ответ:

D(y): x ∈ [0 ; +∞)


Разбор примера

Найдите область определения функции:

Есть ли в функции знаменатель, в котором содержится « x »? В заданной функции подобных знаменателей два.
Выделим знаменатели с « x » красным цветом.

Запишем условие, что каждый из знаменателей не должен быть равен нулю.

x + 2 ≠ 0
x2 − 7x + 6 ≠ 0

Обозначим их номерами «1» и
«2» и решим каждое уравнение отдельно.

x + 2 ≠ 0            (1)
x2 − 7x + 6 ≠ 0     (2)

Решаем первое уравнение.

x + 2 ≠ 0     (1)

Если значение квадратного корня
«x + 2 ≠ 0» не должно быть равно нулю,

значит, подкоренное выражение
«x + 2 ≠ 0»

также не должно быть равно нулю.

x + 2 ≠ 0     (1)

x + 2 ≠ 0
x ≠ −2

Теперь решим уравнение под номером «2», используя
формулу квадратного уравнения.

x1;2 =

x2 − 7x + 6 ≠ 0     (2)

x1;2 =

−(−7) ±
(−7)2 − 4 · 1 · 6
2 · 1

x1;2 =

x1;2 =

x1;2 =

Запишем все полученные ответы в порядке возрастания вместе под знаком системы, чтобы их не забыть.

Знаменатели с « x »
мы проверили. Настала очередь
проверить
формулу функции
на
наличие корней четной степени .

В формуле функции

«f(x) =

+
»

есть два корня
«x − 4» и
«x + 2». Их подкоренные
выражения должны быть больше или равны нулю.

Решим полученную
систему неравенств.

Нарисуем полученные решения на числовой оси. Выберем заштрихованный промежуток, который есть на обеих числовых осях.

решение системы неравенств

Выпишем результат решения системы неравенств.

x ≥ 4

Объединим в таблицу ниже полученные ответы по обеим
проверкам:

  1. проверка, что знаменатели
    дробей
    с « x »
    не равны нулю;
  2. проверка, что
    подкоренные выражения корней четной степени должно быть больше или равны нулю.
Условие проверки Результат

Результат проверки, что знаменатели дробей

с « x »

не равны нулю

Результат проверки, что подкоренные выражения должно быть больше или равны нулю

x ≥ 4

Нарисуем полученные результаты проверок на числовых осях, чтобы определить, какая заштрихованная область удовлетворяет
всем полученным условиям.

пример поиска области определения функции

Запишем окончательный ответ для области определения функции
«f(x) =

+
»

с использованием математических символов.

Ответ:

D(y): x ∈ [4 ; 6) ∪ (6; +∞)


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

17 декабря 2016 в 18:02

Татьяна Цыганова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Татьяна Цыганова
Профиль
Благодарили: 0

Сообщений: 1

Найти ОДЗ функции у=?(р1+р2х+x2
Я не могу понять за какое число воспринимать p1, p2

0
Спасибоthanks
Ответить

17 декабря 2016 в 19:10
Ответ для Татьяна Цыганова

Евгений Фёдоров
(^-^)
Профиль
Благодарили: 0

Сообщений: 60

(^-^)
Евгений Фёдоров
Профиль
Благодарили: 0

Сообщений: 60


x2 + p2x + p1 ? 0.

0
Спасибоthanks
Ответить

24 февраля 2016 в 20:29

Влад Алексеев
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Влад Алексеев
Профиль
Благодарили: 0

Сообщений: 1

Постройте график функции y=-

 . Укажите область определения функции

0
Спасибоthanks
Ответить

25 февраля 2016 в 8:10
Ответ для Влад Алексеев

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Область определения функции: знаменатель не равен 0.
x+1?0
x?-1
Графиком является гипербола, смещеная влево относительно оси Y.

0
Спасибоthanks
Ответить

5 февраля 2018 в 14:30
Ответ для Влад Алексеев

Кирилл Косован
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Кирилл Косован
Профиль
Благодарили: 0

Сообщений: 1

0
Спасибоthanks
Ответить

11 февраля 2018 в 15:44
Ответ для Влад Алексеев

Татьяна Мирная
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Татьяна Мирная
Профиль
Благодарили: 0

Сообщений: 1


у=- 

0
Спасибоthanks
Ответить

7 октября 2015 в 21:21

Катерина Яроцкая
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Катерина Яроцкая
Профиль
Благодарили: 0

Сообщений: 1

Помогите найти область определения функции

0
Спасибоthanks
Ответить

12 сентября 2016 в 15:59
Ответ для Катерина Яроцкая

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


К сожалению, картинка не отражается.

0
Спасибоthanks
Ответить


Область определения функции: понятие

Функция задается тогда, когда любому значению, например x соответствует любое значение y. Независимой переменной называют значение х или по другому — аргументом. Числовое значение y, как правило, является зависимой переменной.

Данная зависимость между x и y в алгебре называют функциональной. Записывают ее в виде функции y = f(x)

Другими словами, функция, это когда значения одной переменной зависят от значений другой переменной.

Далее можно сформулировать определение область функции. То есть, на какой промежуток действе функции распространяется.

Определение

В математике под областью определения функции понимают множество, которое включает в себя все значения аргумента. Если функция имеет предел, то он является значением аргумента при котором функция возрастает или убывает. Область определения функции также называется областью допустимых значений функции.

Область функции можно выразить геометрически. Например, в виде графика. Где за основу берутся оси х и y.  

Ограничение области определения

Область ограничения действительных чисел может быть от [(0 ;+infty)].

Например: [-4;1)U[5,7).

Область определения может указывать на следующие характеристики:

  • деление функции как [y=x+frac{2 cdot x}{x^{4}-1}];
  • корень четной степени и переменная под корнем:
    [=sqrt{x+1} text { или } y=sqrt[n]{2^{2 cdot x+1}}]
  • переменная в основании степенного значения

переменная в основании степенного значения

  • логарифмическая переменная [y=ln frac{x^{4}+x}{8} ; y=2+]. Значения основания должно быть положительным. Также, как и логарифмическое значение.
  • переменная тангенса и котангенса в виде следующего уравнения: y=arcsin (x+4)+4*x2.

Если отсутствует хотя бы один из перечисленных характеристик область определения функции определяется иначе.

Пример 1: [y=frac{x^{4}+2 x-x+2}{4}+2 frac{2}{3} cdot x], в данном множестве нет переменной, поэтому и решается оно иначе.

Пример 2: [y=frac{3}{x-1}], нужно вычислить область определения. Обязательно, при решении нужно уделить внимание на знаменатель. Потому что, по законам алгебры деление на ноль запрещено.

Получаем следующее действие:[frac{3}{x-1}].

Область значения не должна быть равной единице, так как в знаменателе получим нулевое значение. Отсюда область определения будет в пределах [(-infty, 1) cup(1,+infty)].

Область определения для суммы, разности и произведений числовых значений

Чтобы правильно уметь определять данную область, нужно знать следующие утверждения: если функция вычисляется, при помощи суммы: [f_{1}+f_{2}+ldots f_{n} text { или } mathrm{y}=f_{1}+f_{2}+ldots f_{n}]

Область определения будет следующего вида: [mathrm{D}(mathrm{f})=mathrm{D}left(f_{1}right)left(f_{2}right) ldotsleft(f_{n}right)]

Пример суммы числовых значений: возьмем уравнение: [y=x^{7}+x+5+t g x].

Решение: уравнение представлено в виде суммы нескольких значений, где степень равна семи, показатель один.

Область определения для суммы 1

Области определения tg характерны все действительные числа.

Ответ: для заданной функции относится пересечение областей или количество действительных чисел кроме [pi / 2+pi cdot n cdot n in z]

Пример разности значений:

Пример разности значений

Пример произведения чисел:

Пример произведения чисел

Сложные функции х и y и их область определения и значения

Сложная функция имеет следующий вид: [mathrm{y}=f_{1}left(f_{2}(mathrm{k})right)]

D (f) — множество значений;

Пересечение двух множеств и будет являться областью определения функции сложного типа.

[mathrm{k} in Dleft(f_{2}right) text {и } D f_{2}(x) in Dleft(f_{1}right)]

Примеры:

[y=ln x^{2}]

Представим функцию в виде: [mathrm{y}=f_{1}left(f_{2}(mathrm{k})right)]

Определение функции

Используем изученные в данном уроке области определения:

области определения 1

Исходя из этого получаем систему неравенства:

система неравенства 1

Ответ: все действительные числа, кроме нуля.

Область определения функции в виде дробного значения

Когда функция задается выражение в виде дроби. Переменная значений находится в знаменателе. Следовательно, область определения являются действительные числа. Исключением служит число, которое приведет знаменатель к нулевому значению.

Пример №1: [y=frac{x-4}{x+4}]. Решив уравнение, определим искомое значение области определения. Которое является [-infty ;-4 cup-4 ;+infty]

Пример №2: [y=frac{1}{x^{2-1}}];

[x^{2-} 1=0 Rightarrow x^{2} Rightarrow x_{1}=-1 quad x_{2}=1]

Искомая область: [-]-infty ;-1[cup]-1 ; 1[cup] 1 ;+infty[.]

Пример №3. [y=cos x+frac{3}{x^{2}-4}].

Первое слагаемое имеет область определения множество действительных чисел. Второе — также все числа, кроме -2 и 2, они приведут знаменатель к нулю. Область определения должна соответствовать условиям двух слагаемых и равняться действительным числам, кроме -2 и 2.

Область определения тригонометрических функций

Множество значений всех действительных чисел, будет являться областью определения функций синус и косинус, и записываться следующим образом.

Функции являются ограниченными, как сверху, так и снизу, y = sin x и y = cos x. Промежуток их действия сводится к неравенству -1 ≤ y ≤ 1

Областью определения функции тангенс tg x, является выражение [mathrm{x} neq frac{pi}{2}+pi k, mathrm{k} in z].

Областью определения функции y = ctg x  является множество чисел [x neq frac{pi}{2}, quad k in z].

На нижеприведенных примерах подробно расписано решение задач, при определении области функции, при заданных промежутках значений.

Пример №1

Определить область значения функции sin x

Данный вид функции относится к категории периодической. Ее период равняется 2п.

Определяем множество значений на следующем отрезке:( 0;2).

Область определения тригонометрических функций 1

Пример №2:

Необходимо определить область значения функции cos x.

Наименьшее значение равно -1;

Минимальное значение косинуса равняется -1, потому что наименьшее значение х, на окружности стремится к этому значению и следовательно равняется -1.

Максимальное значение косинуса будет соответственно 1. Поскольку значение на окружности х имеет число 1.

Область значение, следовательно, будет от минус одно до плюс одного. [-1;1].

Применяем двойное неравенство и записывает следующее выражение:

[-1 leq cos x leq 1]

Область значения косинуса никогда не зависит от аргумента, только если сам аргумент выражен в виде сложного выражения. Где имеют место ограничения касающиеся области определения и области значения.

Область определения тригонометрических функций 2

Таким образом, минимальное  значение cos x, cos (15a), cos(5-11x) и так далее, будет однозначно равняться  -1;

Самым максимальным значением cos x, cos(4φ), cos(5х+3) равняется  1.

Область значений функции y=cos x — также промежуток [-1;1].

Область значения квадрата косинуса, будет промежуток от нуля до единицы[0;1]. Потому что число в четной степени, является не отрицательным.

Область определения тригонометрических функций 3

Аналогичным образом находим область значений модуля косинуса — промежуток [0;1]

[0 leq(cos a) leq 1]

Пример №3

y = tgx на определенном интервале [left(-frac{pi}{2} ; frac{pi}{2}right)]

Решение:

Из правил алгебры, известно, что производная тангенса имеет положительное значение. Соответственно функция будет иметь возрастающую характеристику.

Далее необходимо определить поведение функции, в заданных пределах.

поведение функции в заданных пределах

Выполнив решение, мы получаем рост значений от минус до плюс бесконечности. Решение будет сводиться к следующему: множество решение заданной функции, будет множество всех действий функции.

Пример №4

[y=(arcsin x)=frac{1}{sqrt{1-x^{2}}}] на определенном интервале (-1;1).

Решение:

Для всех значений x производная будет положительной, в пределах от -1;1

Область определения тригонометрических функций 3

Нет времени решать самому?

Наши эксперты помогут!

Область определения показательной и логарифмической функции

Показательная функция записывается как: y = kx, где значения:

  • x — показатель степени;
  • k — число, которое обязательно больше нуля и не равно единице.

Определение

Область определения показательной функции — это множество значений R.

Основные примеры показательных функций:

Основные примеры показательных функций:

Область определения, для этих функций, записывается следующим образом: [(-infty,+infty)].

Логарифмическая функция выражается как: y=log nk

Где значение n, имеет значение больше нуля и не менее единицы.

Определение

Область определения логарифма и логарифмической функции — это множество положительных значений и действительных чисел.

Рассмотрим на примере, характер решения задачи данной функции.

Пример №1:

y = lnx , определить область определения натурального логарифма.

[D(y)=(0 ;+infty)]

На заданном интервале, производная будет иметь положительное значение, и функция будет возрастать на всем промежутке.

[y=ln x=frac{1}{x}]

Определим односторонний предел при, стремлении аргумента к нулю и когда значение x стремится к бесконечности.

Пример 1

Из данного решения мы видим, что значения будут возрастать от минус бесконечности до плюс бесконечности.

Из этого следует, что  множество всех действительных чисел – является областью значений функции натурального логарифма ln.

Ответ: множество всех действительных чисел, это и есть область значений функции ln.

Определения области значения функции x

На примерах рассмотрим, как определить области значений функции.

Первоначально, необходимо определить значения непрерывной функции y=f(x).

Известно, что функция непрерывная и достигает своих максимальных max f(x) и минимальных min f(x) значений, на разных периодах. Из этого следует отрезок, где находятся значения исходной функции. Тогда решение состоит в нахождении точек максимума и минимума.  

Пример №1 :

Необходимо вычислить область значений уравнения y = x4 — 5x3 + 6x2 на отрезке [ 1 ;   4 ] [1; 4].

Для решения задачи необходимо произвести следующие действия:

Определения области значения функции x

Следующим шагом будет определение значений функции в конечной и начальной точках.

определение значений функции 2

Ответ: [left(frac{117-165 cdot sqrt{33}}{512} ; 32right)]

Пример №2.

Необходимо вычислить область значений уравнения

y = x4 — 7x3 + 5x2 на отрезке [ 1 ;   4 ] [1; 4].

Для решения задачи необходимо произвести следующие действия:

Пример 3

Следующим шагом будет определение значений функции в конечной и начальной точках.

Пример 3

Ответ: [left(frac{231-165 cdot sqrt{33}}{512} ; 34right)]

Пример №3 :

На этом примере подробно рассмотрим, как вычисляются значения непрерывной функции y= f(x), в определенных промежутках.

Для этого, первоначально вычислим:

  •  наименьшее и наибольшее значение;
  •  определим промежуток возрастания и убывания функции;
  •  односторонние пределы;
  •  предел бесконечности.

Решение:

Для решения возьмем функцию [y=frac{1}{x^{2}-4}] и вычислим область значений на промежутке (-2;2).

Находим наименьшее и наибольшее значение функции на заданном отрезке.

наименьшее и наибольшее значение функции

Из данных вычислений видно, что максимальное значение равно 0, так как в этой точке происходит перемена знака функции и соответственно функция начинает убывать.

А именно: [y(0)=frac{1}{0^{2}-4}=-frac{1}{4}]

[-frac{1}{4}] — будет являться наибольшим значение заданной функции.

Следующим шагом в нашем решении, будет выяснение направления функции. Когда x значение стремится к (-2) и (+2).

В алгебре иными словами эти значения называют односторонними пределами.

Решение выглядит следующим образом.

Пример 5

В конечном итоге мы получаем, что в пределах от -2 до 0, функции будут возрастать [text { От }-infty text { до }-frac{1}{4} text {. }]

Если аргумент меняется, от 0 до то наоборот будет убывать к [-infty].

Следовательно, необходимое множество значений будет на интервале [-infty text { до }-frac{1}{4}].

Ответ: [left(-infty-frac{1}{4}right)]

Область определения функции y

Пример №1:

Данная функция имеет определенное значение, только при положительных значениях. [D(y)=(0 ;+infty)].

Производная будет иметь следующий вид: [y=(ln x)=frac{1}{x}].

Так как функция имеет положительное значение, то на всем промежутке будет наблюдаться ее возрастание. От [-infty text { до + — }].

Поэтому область значения — это множество всех натуральных значений.

Пример №2:

 У функции [y=frac{9}{z^{2}-1}];

Если значение z имеет положительное значение, то функция будет считаться определенной.

Вычислим наибольшее и наименьшее значение, а также промежутки возрастания и убывания.

наибольшее и наименьшее значение 5

Если значение x будет больше, либо равным 0,то функция будет убывать.

Если значение x будет меньше либо равным нулю , функция будет возрастать.

Затем рассмотрим поведение функции и  ее значения на бесконечной прямой.

поведение функции и  ее значения

Вывод: если аргумент изменяется от [-infty] до 0, тогда значение функции увеличиваются от 0  до 9 . Когда значения аргумента меняются от 0  до [+infty], значения функции будут уменьшаться  от 9 до 0.

Пример №3:

Определить область значений [y=frac{x}{x-2}];

По правилам математики, знаменатель не может равняться нулю. Поэтому: [D(y)=(-infty ; 2)(+infty ; 2)].

Определим множества на первом отрезке. [(-infty ; 2)]. На этом отрезке функция будет убывающей и значение отрицательным:

Пример 7

Функция ассиметрично начнет приближаться к 1, когда аргумент будет изменяться к минус бесконечности.

Определим множества на втором отрезке [(+infty ; 2)].

На этом отрезке функция будет также убывающей:

Убывающая функция


Загрузить PDF


Загрузить PDF

Область определения функции — это множество чисел, на котором задается функция. Другими словами, это те значения х, которые можно подставить в данное уравнение. Возможные значения у называются областью значений функции. Если вы хотите найти область определения функции в различных ситуациях, выполните следующие действия.

  1. Изображение с названием Find the Domain of a Function Step 1

    1

    Запомните, что такое область определения. Область определения — это множество значений х, при подставлении которых в уравнение мы получаем область значений у.

  2. Изображение с названием Find the Domain of a Function Step 2

    2

    Научитесь находить область определения различных функций. Тип функции определяет метод нахождения области определения. Вот основные моменты, которые вы должны знать о каждом типе функции, о которых пойдет речь в следующем разделе:

    • Полиномиальная функция без корней или переменных в знаменателе. Для этого типа функции областью определения являются все действительные числа.
    • Дробная функция с переменной в знаменателе. Чтобы найти область определения данного типа функции, знаменатель приравняйте к нулю и исключите найденные значения х.
    • Функция с переменной внутри корня. Чтобы найти область определения данного типа функции, задайте подкоренное выражение больше или равно 0 и найдите значения х.
    • Функция с натуральным логарифмом (ln). Задайте выражение под логарифмом > 0 и решите.
    • График. Нарисуйте график для нахождения х.
    • Множество. Это будет список координат х и у. Область определения — список координат х.
  3. Изображение с названием Find the Domain of a Function Step 3

    3

    Правильно обозначайте область определения. Легко научиться правильному обозначению области определения, но важно, чтобы вы правильно записывали ответ и получали высокую оценку. Вот несколько вещей, которые вы должны знать о написании области определения:

    • Один из форматов написания области определения: квадратная скобка, 2 конечных значения области, круглая скобка.
      • Например, [-1; 5). Это означает область определения от -1 до 5.
    • Используйте квадратные скобки [ и ] , чтобы указать, что значение принадлежит области определения.

      • Таким образом, в примере [-1; 5) область включает -1.
    • Используйте круглые скобки ( и ) , чтобы указать, что значение не принадлежит области определения.

      • Таким образом, в примере [-1; 5) 5 не принадлежит области. Область включает только значения, бесконечно близкие к 5, то есть 4,999(9).
    • Используйте знак U для объединения областей, разделенных промежутком.

      • Например, [-1; 5 ) U (5; 10]. Это означает, что область проходит от -1 до 10 включительно, но не включает 5. Это может быть у функции, где в знаменателе стоит «х — 5».
      • Вы можете использовать несколько U по мере необходимости, если область имеет несколько разрывов/промежутков.
    • Используйте знаки «плюс бесконечность» и «минус бесконечность», чтобы выразить, что область бесконечна в любом направлении.

      • Со знаком бесконечности всегда используйте ( ), а не [ ].

    Реклама

  1. Изображение с названием Find the Domain of a Function Step 4

    1

    Запишите пример. Например, вам дана следующая функция:

    • f(x) = 2x/(x2 — 4)
  2. Изображение с названием Find the Domain of a Function Step 5

    2

    Для дробных функций с переменной в знаменателе надо приравнять знаменатель к нулю. При нахождении области определения дробной функции необходимо исключить все значения х, при которых знаменатель равен нулю, потому что нельзя делить на ноль. Запишите знаменатель как уравнение и приравняйте его к 0. Вот как это делается:

    • f(x) = 2x/(x2 — 4)
    • x2 — 4 = 0
    • (x — 2 )(x + 2) = 0
    • x ≠ 2; — 2
  3. Изображение с названием Find the Domain of a Function Step 6

    3

    Запишите область определения:

    • х = все действительные числа, кроме 2 и -2

    Реклама

  1. Изображение с названием Find the Domain of a Function Step 7

    1

    Запишите пример. Дана функция y =√(x-7)

  2. Изображение с названием Find the Domain of a Function Step 8

    2

    Задайте подкоренное выражение больше или равным 0. Вы не можете извлечь квадратный корень из отрицательного числа, хотя вы можете извлечь квадратный корень 0. Таким образом, задайте подкоренное выражение больше или равным 0. Заметим, что это относится не только к квадратным корням, но и ко всем корням с четной степенью. Тем не менее, это не относится к корням с нечетной степенью, так как отрицательное число может стоять под корнем нечетной степени.

    • х — 7 ≧ 0
  3. Изображение с названием Find the Domain of a Function Step 9

    3

    Выделите переменную. Для этого перенесите 7 в правую часть неравенства:

    • x ≧ 7
  4. Изображение с названием Find the Domain of a Function Step 10

    4

    Запишите область определения. Вот она:

    • D = [7; +∞)
  5. Изображение с названием Find the Domain of a Function Step 11

    5

    Найдите область определения функции с корнем, когда есть несколько решений. Дано: y = 1/√( ̅x2 -4). Приравняв знаменатель к нулю и решив это уравнение, вы получите х ≠ (2; -2). Вот как вы действуете далее:

    • Проверьте область за -2 (например, подставив -3), чтобы удостовериться, что подстановка в знаменатель чисел меньше -2 в результате дает число больше 0. И это так:
      • (-3)2 — 4 = 5
    • Теперь проверьте область между -2 и +2. Подставьте, например, 0.
      • 02 — 4 = -4, так что числа между -2 и 2 не подходят.
    • Теперь попробуйте числа больше 2, например 3.
      • 32 — 4 = 5, так что числа больше 2 подходят.
    • Запишите область определения. Вот как записывается эта область:
      • D = (-∞; -2) U (2; +∞)

    Реклама

  1. Изображение с названием Find the Domain of a Function Step 12

    1

    Запишите пример. Допустим, дана функция:

    • f(x) = ln(x — 8)
  2. Изображение с названием Find the Domain of a Function Step 13

    2

    Задайте выражение под логарифмом больше нуля. Натуральный логарифм должен быть положительным числом, поэтому задаем выражение внутри скобок больше нуля.

    • x — 8 > 0
  3. Изображение с названием Find the Domain of a Function Step 14

    3

    Решите. Для этого обособьте переменную х, прибавив к обеим частям неравенства 8.

    • x — 8 + 8 > 0 + 8
    • x > 8
  4. Изображение с названием Find the Domain of a Function Step 15

    4

    Запишите область определения. Область определения этой функции есть любое число больше 8. Вот так:

    • D = (8; +∞)

    Реклама

  1. Изображение с названием Find the Domain of a Function Step 16

    1

    Посмотрите на график.

  2. Изображение с названием Find the Domain of a Function Step 17

    2

    Проверьте значения х, которые отображены на графике. Это может быть легче сказать, чем сделать, но вот несколько советов:

    • Линия. Если на графике вы видите линию, которая уходит в бесконечность, то все значения х верны, и область определения включает все действительные числа.
    • Обычная парабола. Если вы видите параболу, которая смотрит вверх или вниз, то область определения — все действительные числа, потому что подходят все числа на оси х.
    • Лежачая парабола. Теперь, если у вас есть парабола с вершиной в точке (4; 0), которая простирается бесконечно вправо, то область определения D = [4; +∞)
  3. Изображение с названием Find the Domain of a Function Step 18

    3

    Запишите область определения. Запишите область определения в зависимости от типа графика, с которым вы работаете. Если вы не уверены в типе графика и знаете функцию, описывающую его, для проверки подставьте координаты х в функцию.

    Реклама

  1. Изображение с названием Find the Domain of a Function Step 19

    1

    Запишите множество. Множество — это набор координат х и у. Например, вы работаете со следующими координатами: {(1; 3), (2; 4), (5; 7)}

  2. Изображение с названием Find the Domain of a Function Step 20

    2

    Запишите координаты х. Это 1; 2; 5.

  3. Изображение с названием Find the Domain of a Function Step 21

    3

    Область определения: D = {1; 2; 5}

  4. Изображение с названием Find the Domain and Range of a Function Step 3

    4

    Убедитесь, что множество является функцией. Для этого необходимо, чтобы каждый раз, когда вы подставляете значение х, вы получали одно и то же значение y. Например, подставляя х = 3, вы должны получить у = 6, и так далее. Приведенное в примере множество не является функцией, потому что дано два разных значения у: {(1; 4), (3; 5), (1; 5)}.

    Реклама

Об этой статье

Эту страницу просматривали 854 361 раз.

Была ли эта статья полезной?

PowerPlusWaterMarkObject23713205

1. Область определения функции.

2. Четность, нечетность, периодичность.

3. Точки пересечения с осями координат.

4. Производная и критические точки.

5. Промежутки возрастания, убывания и
точки экстремума и значение функции в
этих точках.

6. Поведение функции на концах области
определения и асимптоты графика функции
(вертикальные, горизонтальные, и
наклонные)

7. Вторая производная и исследование
функции на выпуклость и вогнутость, и
нахождение точек перегиба.

8. Нахождение контрольных точек.

9. Построение графика по результатам
исследования.

Приложения.

Таблица
1. Как найти область определения функции.

Таблица
2. Четные и нечетные функции.

Таблица
3. Периодические функции.

Таблица
4. Применение производной к исследованию
функции.

Таблица
5. Асимптоты графика функции.

Таблица
6. Вторая производная и точки перегиба.

Примеры.

Пример
1.
Исследовать
функцию

и построить график функции.

Пример
2.
Исследовать
функцию

и построить график функции.

Пример
3.
Исследовать
функцию

и построить график функции.

Схема исследования
функции
y
=
f(x)
для построения

эскиза
ее графика.

Схема

Пример

1. Область определения функции

(см.
табл. 1
)

Область определения:

2. Четность, нечетность (табл.
2
),

периодичность
(
табл. 3)

Функция ни четная, ни нечетная и не
периодическая

3. Точки пересечения с осями координат
(если можно найти)

0y

x = 0; y = 0

y = 0;

0x

4. Производная и критические точки
(
табл. 4)

5. Промежутки возрастания, убывания
и точки экстремума (и значение функции
в этих точках) (
табл.
4
)


6. Поведение функции на концах
области определения и асимптоты
графика функции (вертикальные,
горизонтальные, и наклонные)

(табл. 5)


П
ри

слева


Следовательно,

При

справа x
= — 4


вертикальная
асимптота

Так как

то при

тогда

т.е. y
=
x
— 9

наклонная асимптота

7. Вторая производная и исследование
функции на выпуклость и вогнутость.
Найти точки перегиба (если они
существуют) и значение
f(x)
в точках перегиба (
табл.
6
)

П

оскольку


,
то знак второй производной может
меняться только в точке x
= -4

  1. Если необходимо, найти контрольные
    точки, уточняющие поведение графика

X

-6

-2

Y

-33

7

  1. На основании проведенного исследования
    строим эскиз графика функции
    y=f(x)


Как найти
область определения функции

Вид функции

Ограничения

(f(x)
и
g(x)

существуют!)

Формулировка

1

Знаменатель дроби не равен нулю

2

Под знаком корня четной степени может
стоять только неотрицательное выражение

3

Под знаком логарифма может стоять
только положительное выражение

4

(a
>0)

В основании логарифма может стоять
только положительное выражение, не
равное 1

5

Под знаком котангенса может стоять
только выражение, не равное

(k – целое)

6

Под знаком котангенса может стоять
только выражение, не равное

(k – целое)

7

Под знаком арксинуса и арккосинуса
может стоять только выражение, модуль
которого меньше или равен единице

8

9

а)


натуральное

x – любое число

б)


целое отрица-тельное или нуль

в)

— положитель-ное не целое число

г)

— отрицатель-ное не целое число

Таблица 1

Таблица 2

Четные и нечетные
функции

Четная функция

Нечетная функция

Определение. Функция f
называется четной, если ее область
определения симметрична относительно
начала координат и для любого X
из ее области определения

Определение. Функция f
называется нечетной, если ее
область определения симметрична
относительно начала координат и для
любого X из ее области
определения

Свойства

Свойства

График четной функции
симметричен относительно оси 0
y

График нечетной функции
симметричен относительно начала
координат

Примеры четных функций

Примеры нечетных функций





Таблица 3

Периодические
функции

Определение.
Функция называется периодической
с периодом

,
если для любого x из
области определения

Свойства

1. Если число Т период функции f
, то число

k*T


также является периодом этой функции

2. Если функция y=f(x)
периодическая с периодом Т, то
функция y=Af(kx+b)
также периодическая и ее период
равен

(A, b, k
– постоянные числа и

)

3. Если функция y=f(x)
периодическая с периодом Т, то
сложная функция (функция от функции)
y=φ(f(x))
также периодическая с периодом Т
(хотя, возможно, этот период и не
является наименьшим по абсолютной
величине)

4. Для построения графика периодической
функции с периодом Т достаточно
построить график на отрезке длиной
Т, а далее – параллельно перенести
этот график вдоль оси 0х на расстояние

влево и вправо

Примеры периодических функций

y=sin(x)

T=2π

y=cos(x)

T=2π

y=tg(x)

T=π

y=ctg(x)

T=π

y=sin(3x)

T=

y={x}-

дробная часть х

T=1

y=|cos(x)|

T=π

y=3

T-любое число (Т≠0)

Практические приемы нахождения
периодов функций

1. Найти период каждой составляющей
функции, которая входит в запись
заданной функции.

2. Подобрать
интервал (если возможно), внутри
которого каждый из найденных периодов
укладывается целое число раз. Длина
этого интервала и будет периодом
заданной функции (хотя, возможно, и не
наименьшим по абсолютной величине).

Пример:
f(x) =
sin(4x)+tg(3x);

Таблица 4

Применение
производной к исследованию функции

Монотонность и постоянство функции

Достаточное
условие

возрастания
функции

Достаточное
условие

возрастания
функции

Если в каждой
точке интервала (a;b)
ƒ ́(x)>0,

то функция ƒ(x)

возрастает

на
этом интервале

Если в каждой
точке интервала (a;b)
ƒ ́(x)<0,

то функция ƒ(x)

убывает

на
этом интервале

З
амечание.
Эти
условия являются только достаточными,

но
не являются необходимыми условиями

возрастания
и убывания функции.

Например,
функция

— возрастающая

на
всей области определения, хотя в точке

ее производная

равна нулю.

Необходимое и достаточное условие
постоянства функции

Функция

постоянна
на интервале (a;
b)
тогда и только тогда, когда

во
всех точках этого интервала.

Экстремумы (максимум и минимум)
функции

Точка максимума

Точка минимума

Определение

Точка

из области

определения
функции

называется
точкой максимума

для
этой функции, если

найдется



окрестность

(
)
точки

,

т
акая,
что для всех

из этой окрестности

выполняется
неравенство

Определение

Точка

из области

определения
функции

называется
точкой минимума

для
этой функции, если

найдется


окрестность

(

)
точки

,

такая,
что для всех

из этой окрестности

выполняется
неравенство

— точка максимума

— точка минимума

Точки максимума
и минимума называются точками
экстремума
.

Значения функции
в точках максимума и минимума называются

экстремумами
функции

(максимумом и минимумом функции)

-максимум

-минимум

Критические точки

Определение.
Внутренние
точки области определения функции,

в
которых производная функции равна
нулю или не существует, называются
критическими.

Необходимое
условие экстремума

Достаточное
условие экстремума

В точках экстремума
производная функции

равна
нулю или не существует

— точка экстремума


Если функция

непрерывна
в точке

и
производная

меняет
знак в точке

,

то

— точка экстремума функции

в
точке

знак

меняется с «+» на «-»

— точка максимума

в
точке

знак

меняется с «-» на «+»

точка минимума

Пример графика функции

,
имеющей экстремумы

(


критические точки)





Исследование функции

на монотонность и экстремумы

Схема

Пример

1. Найти область
определения и интервалы, на которых
функция непрерывна

Область определения:

Функция
непрерывна в каждой точке своей области
определения

2. Найти производную

3. Найти критические
точки, т.е. внутренние точки области
определения, в которых

или не существует

4. Отметить
критические точки на области
определения, найти знак производной
и характер поведения функции на каждом
интервале, на которые разбивается
область определения.

5. Относительно
каждой критической точки определить,
является ли она точкой максимума,
минимума или не является точкой
экстремума

6. Записать
требуемые результаты исследования
(промежутки монотонности и экстремумы)

возрастает
при

и

при

убывает
при

Точки экстремума:

Экстремумы:

Наибольшее и наименьшее значение
функции, непрерывное на отрезке

Свойства

Если функция

непрерывна
на отрезке и имеет на нем конечное
число критических точек, то она
принимает свое наибольшее и наименьшее
значение на этом отрезке или в
критических точках, принадлежащих
этому отрезку, или на концах отрезка

Примеры

Нахождение наибольшего и наименьшего
значения функции,

непрерывной
на отрезке

Схема

Пример

Найти
наибольшее и наименьше значение
функции:

при

1. Найти производную


2. Найти критические
точки

(
или
не существует)


при
х = -4 и при х = 2

3. Выбрать
критические точки, принадлежащие
заданному отрезку

Заданному отрезку
[1;3] принадлежит только критическая
точка х = 2

4. Вычислить
значение функции в критических точках
и на концах отрезка

5. Сравнить
полученные значения и выбрать из них
наименьшее и наибольшее

АСИМПТОТЫ ГРАФИКА ФУНКЦИИ

Определение.
Асимптота
кривой – это прямая,

к
которой неограниченно приближается
кривая

при
удалении ее в бесконечность.

Вертикальные асимптоты (х = а)



вертикальная

асимптота Вертикальная
асимптота х
= а

может быть в точке а,
если точка а
ограничивает открытие промежутки
области
при х→а
f(x)
→ ∞
определения
данной функции и возле точки а
функция уходит в бесконечность

Примеры
вертикальных асимптот

О.О.

При
х→0 (справа) y→+∞

При
х→0 (слева) y→-∞

X
= 0 – вертикальная асимптота

О.О.

При
х→0 (справа) y→-∞

X
= 0 – вертикальная асимптота

О.О.

Z

При
х→

(слева) y→+∞

При
х→

(справа) y→-∞

X
=


вертикальная асимптота

Таблица 5.

Наклонные и
горизонтальные асимптоты

1.
Если
f(x)
– дробно-рациональная функция, в
которой степень числителя на единицу
больше степени знаменателя, то выделяем
целую часть и используем определение
асимптоты.

Пример 1

Пример 2

При

т.е.

,
тогда

— наклонная
асимптота (кроме того

вертикальная
асимптота – см. график)

При

т.е.

,
тогда

— горизонтальная
асимптота (кроме того

вертикальная
асимптота – см. график)

2.
В общем случае уравнения наклонных и
горизонтальных асимптот
y
=
kx + b
могут быть получены с использованием
формул:

Для примера 1

Для примера 2

— наклонная
асимптота.

— горизонтальная
асимптота.

Таблица 6.

ВТОРАЯ ПРОИЗВОДНАЯ И ТОЧКИ ПЕРЕГИБА

Понятие второй
производной

Пусть функция

имеет
производную

во
всех точках некоторого промежутка.
Эта производная, в свою очередь,
является функцией от x.
Если функция

дифференцируема, то ее производную
называют второй производной от

и
обозначают

(или

)

Пример.

Понятия
выпуклости, вогнутости и точек перегиба
графика функции

Пусть функция

определена
на промежутке (а; в), а в точке

имеет
конечную производную.

Тогда
к графику этой функции в точке

можно
провести касательную.

Если в некоторой
окрестности точки М все точки кривой
графика функции

(кроме
самой точки М) лежат выше касательной,
то говорят, что кривая (и сама функция)
в точке М выпуклая (точнее, строго
выпуклая). Также иногда говорят, что
в этом случае график функции

направлен
выпуклостью вниз.

Если в некоторой
окрестности точки М все точки кривой
графика функции

(кроме
самой точки М) лежат ниже касательной,
то говорят, что кривая (и сама функция)
в точке М вогнутая (точнее, строго
вогнутая). Также иногда говорят, что
в этом случае график функции

направлен
выпуклостью вверх.

Если точка

оси абсцисс обладает тем свойством,
что при переходе аргумента

через
нее кривая

переходит с одной стороны касательной
на другую, то точка

называется точкой перегиба функции

,
а точка кривой


точкой перегиба графика функции

точка
перегиба функции

В
некоторой окрестности точки

:
при

кривая ниже касательной, а при

кривая
выше касательной (или наоборот)

Достаточные
усовия выпуклости и вогнутости функции,

которая
имеет первую и вторую производную при

Условие
выпуклости

Условие
вогнутости

Если в каждой
точке интервала

то
на интервале

график
функции

направлен
выпуклостью вниз (выпуклый)

Если в каждой
точке интервала

то
на интервале

график
функции

направлен
выпуклостью вверх (вогнутый)

Замечание:

Эти условия
являются только достаточными, но не
являются необходимыми.

Например, график
функции

направлен
выпуклостью вниз на всей числовой
прямой,

хотя
в точке

ее вторая производная

равна
нулю.

Нахождение
точек перегиба функции, которая имеет
вторую производную на заданном
интервале

Необходимое
условие

Достаточное
условие

В
точке перегиба функции

ее
вторая производная равна нулю или не
существует

Если
функция

имеет
первую и вторую производную на интервале

и
ее вторая производная меняет знак при
переходе аргумента через точку

,
то точка

является
точкой перегиба функции

Исследование
функции

на выпуклость, вогнутость и точки
перегиба

Схема

Пример.

1. Найти область
определения и интервалы, на которых
функция непрерывна

Область определения:

Функция
непрерывна в каждой точке своей области
определения

2. Найти вторую
производную

3. Найти внутренние
точки области определения, в которых

или не
существует


существует
на всей области определения


при
x
= -1, x = 3

4. Отметить
найденные точки на области определения,
найти знак производной и характер
поведения функции на каждом интервале,
на которые разбивается область
определения

5. Записать
требуемый результат исследования
(интервалы выпуклости и вогнутости
и точки перегиба)

В интервале

и
в интервале

график
функции

направлен
выпуклостью вниз

,
а в интервале

график
функции

направлен
выпуклостью вверх

.

Точки
перегиба: x
= -1 и x
= 3 (в этих точках

меняет
знак.

Пример 1:

Исследовать
функцию

и построить график функции.

Т.к. знаменатель
заданной функции не должен быть равен
нулю, то можем записать:

Функция определена
на трех указанных участках.

2.

Функция четная,
график функции симметричен оси OY.

Функция не
периодическая.

3. Точки пересечения с осями координат.

Точка пересечения
с осью OY
(0;2), точек пересечения с осью OX
нет.

4. Производная и критические точки.

5. Промежутки
возрастания, убывания, точки экстремума.

На рисунке
представлено изменение знака первой
производной и поведение функции на
участках области определения.

Точка Х0(0;2)
– точка минимума функции.

6. Поведение
функции на концах области определения
и асимптоты.

При :

Следовательно, мы
имеем две вертикальные асимптоты

Наклонные и
горизонтальные асимптоты типа: y=kx+b
находим по формулам:

Уравнение асимптоты
примет вид: y=0*x-1=-1.

Горизонтальная
асимптота: Y=-1.

7. Вторая производная
и исследование функции на выпуклость
и вогнутость.

— не существует в
точках +2 и -2.

Знак производной
меняется в указанных точках.

На рисунке
представлено изменение знака второй
производной и поведение функции на
участках области определения.

8. Контрольные
точки.

Для более наглядного
представления поведения графика функции
определим значение функции в точках:

9. График функции
представлен на рисунке.

Красным цветом
отмечены асимптоты графика и найденные
по результатам исследования точки.

Пример 2:

Исследовать
функцию

и построить график функции.

1. Область определения функции:

Т.к. под знаком
логарифма может стоять только положительное
выражение, то можем записать следующее:

Функция определена
на указанном участке.

2.

Функция ни нечетная,
ни четная, не периодическая.

3. Точки пересечения с осями координат.

Точек пересечения
с осью OY
нет. Точка пересечения с осью ОХ: х=8.

4. Производная и критические точки.

5. Промежутки
возрастания, убывания, точки экстремума.

На рисунке
представлено изменение знака первой
производной и поведение функции на
участках области определения.

точек экстремума
нет.

возрастает
на всей области определения

6. Поведение
функции на концах области определения
и асимптоты.

При :

Следовательно, мы
имеем вертикальную асимптоту

Наклонные и
горизонтальные асимптоты типа: y=kx+b
находим по формулам:

наклонных и
горизонтальных асимптот нет.

7. Вторая производная
и исследование функции на выпуклость
и вогнутость.

Вторая производная
не меняет знак на всей области определения.

выпуклость
вверх

8. Контрольные
точки.

Для более наглядного
представления поведения графика функции
определим значение функции в точках:

9. График функции
представлен на рисунке.

Красным цветом
отмечены асимптоты графика и найденные
по результатам исследования точи.

Пример 3:

Исследовать
функцию

и построить график функции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти вектор перпендикулярный данному в пространстве
  • Как найти песню по мелодии на телефоне
  • Как найти network manager в linux
  • Как найти площадь прямоугольника pascal
  • Как найти производную сложной заданной функции