Как найти область определения функции натурального логарифма

Основные сведения об области определения логарифмической функции

Содержание:

  • Логарифм числа и его свойства
  • Логарифмическая функция, ее свойства и график
  • Область определения функции с корнем
  • Примеры решения задач

Логарифм числа и его свойства

Логарифм некого числа b по основанию а является показателем степени, в которую требуется возвести основание а для получения в результате числа b.

В качестве обозначения логарифма используют: (log _{a}b)

Данную запись можно прочитать, как «логарифм b по основанию а».

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Рассмотрим следующее равенство:

(x=log _{a}b)

Согласно записанному ранее определению логарифма, получим, что данное соотношение является равносильным следующему:

(a^{x}=b)

Пример 

Рассмотрим пример логарифмического уравнения:

(log _{2}8=3)

Равенство является справедливым по той причине, что:

(2^{3}=8)

Логарифмирование — операция по определению логарифма.

В определении логарифма принято использовать числа а и b из множества вещественных чисел. В некоторых случаях применима теория комплексных логарифмов.

С помощью логарифмов удается значительно упростить решение многих задач. Например, в процессе перехода к логарифмическому уравнению умножение может быть заменено на операцию сложения, а вместо деления используют вычитания, также возведение в степень и извлечение корня трансформируются в умножение и деление на показатель степени соответственно.

Примечание 1

Математик из Шотландии Джон Непер в 1614 году первым сформулировал определение логарифмов и представил таблицу со значениями тригонометрических функций. Со временем таблицы были уточнены и дополнены. До появления калькуляторов и компьютерной техники эти таблицы активно применялись на протяжении веков для выполнения расчетов в математике, инженерии и других научных областях знаний.

Изобразим в качестве примера двоичный логарифм на графике:

Изобразим в качестве примера двоичный логарифм на графике

Источник: ru.wikipedia.org

Рассмотрим логарифм какого-то числа из множества вещественных:

(x=log _{a}b)

Исходя из определения логарифма, данное соотношение представляет собой решение следующего уравнения:

(a^{x}=b)

В том случае, когда a=1 при (bneq 1), у записанного уравнения отсутствуют решения. Если b=1, то в качестве решения можно представить любое число. Эти два варианта приводят к неопределенности логарифма. Таким же образом, можно сделать вывод об отсутствии логарифма, когда а принимает нулевое или отрицательное значение.

Зная, что показательная функция (a^{x}) во всех случаях положительна, исключим также случаи, при которых b имеет отрицательное значение. Обобщая вышесказанное, запишем: вещественный логарифм (log _{a}b) обладает смыслом, если  (a>0,aneq 1,b>0.)

Распространенными являются следующими виды логарифмов:

  1. Натуральные: (log _{e},b) или (ln ,b) с основанием в виде числа Эйлера (e).
  2. Десятичные: (log _{10},b) или (lg ,b ) с основанием в виде числа 10.
  3. Двоичные: (log_{2},b) или (operatorname {lb},b) с основанием 2, которые нашли применение в теории информации, информатике, в разных разделах дискретной математики.

Свойства логарифма удобно использовать при решении различных задач. Рассмотрим главное логарифмическое тождество.

Основным логарифмическим тождеством называют справедливое равенство, которое вытекает из определения логарифма и имеет следующий вид: ( a^{log _{a}b}=b)

Следствие 

Согласно равенству пары вещественных логарифмов, логарифмируемые выражения равны, то есть при (log _{a}b=log _{a}) c справедливо, что (a^{log _{a}b}=a^{log _{a}c},) тогда по основному логарифмическому тождеству получаем: b=c.

Исходя из определения логарифма, можно вывести следующие справедливые равенства:

(log _{a}1=0)

(log _{a}a=1.)

Рассмотрим, как вычисляют логарифм произведения, частного от деления, степени и корня при положительных значениях переменных.

Произведение:

(log _{a}(xy)=log _{a}(x)+log _{a}(y))

К примеру:

(log _{3}(243)=log _{3}(9cdot 27)=log _{3}(9)+log _{3}(27)=2+3=5)

Частное от деления:

(log _{a}!left({frac {x}{y}}right)=log _{a}(x)-log _{a}(y))

Например:

(lg left({frac {1}{1000}}right)=lg(1)-lg(1000)=0-3=-3)

Степень:

(log _{a}(x^{p})=plog _{a}(x))

Докажем это равенство:

(log _{a}{x^{p}}=y)

(a^{y}=x^{p}{displaystyle }a^{y}=x^{p})

(a^{frac {y}{p}}=x{displaystyle }a^{frac {y}{p}}=x)

(log_{a}{x}={frac {y}{p}}{displaystyle} log_{a}{x}={frac {y}{p}})

(pcdot log_{a}{x}=y{displaystyle} pcdot log_{a}{x}=y)

Применим данную формулу для решения примера:

(log _{2}(64)=log _{2}(2^{6})=6log _{2}(2)=6)

Степень в основании:

(log _{(a^{p})}(x)={frac {1}{p}}log _{a}(x)={frac {log _{a}(x)}{p}})

Докажем, что записанное равенство является справедливым:

(log _{a^{p}}{x}=y)

(a^{ycdot p}=x{displaystyle} a^{ycdot p}=x)

(log_{a}{x}=pcdot y{displaystyle} log_{a}{x}=pcdot y)

(frac {log_{a}{x}}{p}=y)

В качестве примера упростим выражение:

(log _{2^{10}}{sin {left({frac {pi }{6}}right)}}={frac {log _{2}{frac {1}{2}}}{10}}=-{frac {1}{10}}=-0{,}1)

Корень:

(log _{a}{sqrt[{p}]{x}}={frac {1}{p}})

Докажем данное свойство:

(log _{a}{sqrt[{p}]{x}}=y)

(a^{y}={sqrt[{p}]{x}}{displaystyle} a^{y}={sqrt[{p}]{x}})

(a^{pcdot y}=x{displaystyle} a^{pcdot y}=x)

(log_{a}{x}=pcdot y{displaystyle} log_{a}{x}=pcdot y)

({frac {log_{a}{x}}{p}}=y{displaystyle} {frac {log_{a}{x}}{p}}=y)

Рассмотрим наглядный пример:

(lg {sqrt {1000}}={frac {1}{2}}lg 1000={frac {3}{2}}=1{,}5)

Корень в основании:

(log _{sqrt[{p}]{a}}(x)=plog _{a}(x))

Представим доказательства:

(log _{sqrt[{p}]{a}}{x}=y)

(a^{frac {y}{p}}=x{displaystyle} a^{frac {y}{p}}=x)

(a^{y}=x^{p}{displaystyle} a^{y}=x^{p})

(a^{frac {y}{p}}=x{displaystyle} a^{frac {y}{p}}=x)

(log_{a}{x}={frac {y}{p}}{displaystyle} log_{a}{x}={frac {y}{p}})

(pcdot log_{a}{x}=y{displaystyle} pcdot log_{a}{x}=y)

Применим записанное свойство на практике:

(log _{sqrt {pi }}{(4cdot operatorname {arctg} {1})}=2cdot log _{pi }{left(4cdot {frac {pi }{4}}right)}=2cdot log _{pi }{(pi )}=2)

В том случае, когда переменная обладает отрицательным значением, следует обратиться к обобщенной записи перечисленных свойств логарифма:

(log _{a}|xy|=log _{a}|x|+log _{a}|y|)

(log _{a}!left|{frac {x}{y}}right|=log _{a}|x|-log _{a}|y|)

Формулы для вычисления произведения допустимо обобщить с расчетом на любое число сомножителей:

(log _{a}(x_{1}x_{2}dots x_{n})=log _{a}(x_{1})+log _{a}(x_{2})+dots +log _{a}(x_{n}))

(log _{a}|x_{1}x_{2}dots x_{n}|=log _{a}|x_{1}|+log _{a}|x_{2}|+dots +log _{a}|x_{n}|)

Многозначные числа x, y можно умножать с помощью таблиц логарифмов таким образом:

  • определить по таблице логарифмы x, y;
  • суммировать полученные логарифмы, что соответствует (исходя из первого свойства логарифма) логарифму произведения xcdot y;
  • согласно логарифму произведения определить по таблице значение самого произведения.

Аналогичным способом выполняют деление. Только при этом вместо умножения применяют операцию вычитания, а алгоритм действий остается прежним.

Логарифм (log _{a}b) по основанию a допустимо записать в виде логарифма по другому основанию c:

(log _{a}b={frac {log _{c}b}{log _{c}a}})

Следствием из данной формулы, если b=c, является перестановка местами основания и логарифмируемого выражения:

(log _{a}b={frac {1}{log _{b}a}})

Обратим внимание на то, что коэффициент ({frac {1}{log _{c}a}}=log _{a}c) в рассматриваемом выражении замены основания носит названием модуля перехода от одного основания к другому.

При решении логарифмических неравенств следует помнить, что логарифм (log _{a}{b}) обладает положительным значение в том случае, когда a, b расположены с одной стороны относительно единицы, то есть оба больше, либо меньше по сравнению с 1. В противном случае логарифм имеет знак минуса.

Какое-либо неравенство в случае положительных чисел допустимо логарифмировать:

  • при основании больше, чем единица, знак неравенства остается без изменений;
  • при основании меньше, чем единица, знак неравенство нужно поменять на противоположный.

Существует тождество, которое поможет упростить действия, когда в основании или логарифмируемом выражении содержится степень:

({log _{a^{q}}{b}}^{p}={frac {p}{q}}log _{a}{b})

Данное соотношение получают путем замены в левой части логарифма основания (a^{q}) на a по ранее рассмотренной формуле замены основания. Из этого справедливого равенства можно вывести следующее:

(log _{a^{k}}b={frac {1}{k}}log _{a}b;quad log _{sqrt[{n}]{a}}b=nlog _{a}b;quad log _{a^{k}}b^{k}=log _{a}b)

Другим полезным тождеством является:

(c^{log _{a}b}=b^{log _{a}c})

В этом случае, можно заметить совпадение логарифмов слева и справа по основанию а, то есть являются равными (log _{a}bcdot log _{a}c). По следствию из главного логарифмического тождества получим, что части слева и справа равны друг другу тождественно.

С помощью логарифмирования предыдущего тождества по какому-либо произвольно выбранному основанию d можно получить дополнительное тождество для замены оснований:

(log _{a}bcdot log _{d}c=log _{d}bcdot log _{a}c.)

Логарифмическая функция, ее свойства и график

При рассмотрении какого-либо логарифмируемого числа в качестве переменной получается логарифмическая функция, имеющая следующий вид: (y=log _{a}x).

Областью определения данной функции являются такие значения, которые соответствуют интервалу:

(a>0; aneq 1;x>0.)

Область значений логарифмической функции определена таким образом:

(E(y) = (-infty ;+infty).)

На графике логарифмическая функция имеет вид кривой, которую часто называют логарифмикой. Согласно формуле, с помощью которой осуществляют замену основания логарифма, сделаем вывод о том, что:

  • графики логарифмических функций, имеющих разные основания, больше единицы, различаются по масштабу относительно оси y;
  • графики логарифмических функций для оснований, меньших, чем единица, представляют собой их зеркальное отражение по отношению к горизонтальной оси.

Изобразим графики логарифмических функций:

Изобразим графики логарифмических функций

Источник: ru.wikipedia.org

Согласно определению, логарифмическая функция является обратной для показательной функции (y=a^{x}). По этой причине графические изображения данных функций будут симметричными по отношению к биссектрисе первого и третьего квадрантов. Обе эти функции трансцендентны.

Заметим следующие особенности логарифмической функции:

  • строгое возрастание графика, если a>1;
  • строгое убывание графика, если 0<a<1.

Графически изображенная логарифмическая функция в любом случае будет пересекать точку с координатами (1;0). Функция не прерывается и дифференцируется без ограничений на любом участке в рамках собственной области определений.

Ось ординат при x=0 представляет собой вертикальную асимптоту, так как:

  • (lim _{xto 0+0}log _{a}x=-infty) при a>1;
  • (lim _{xto 0+0}log _{a}x=+infty) при 0<a<1.

Производную логарифмической функции вычисляют по формуле:

({frac {d}{dx}}log _{a}x={frac {1}{xcdot ln a}})

Логарифмическая функция представляет собой непрерывное решение, которое считают единственно верным, для следующего функционального уравнения:

(f(xy)=f(x)+f(y).)

Свойства функции (y={{log}_a x }), при a >1:

  1. Областью определения данной функции является интервал ((0,+infty )).
  2. Значения функции определяются, как множество действительных чисел.
  3. Данную функцию нельзя отнести к типу четных или нечетных.
  4. График пересекает оси координат. С осью Oy точки пересечения отсутствуют. Если (y=0), ({{log}_a x }=0, x=1). Функция пересекается с осью Ox в точке (1,0).
  5. Функция является положительной, если (xin (1,+infty )). Функция является отрицательной в том случае, когда (xin (0,1)).
  6. (y’=frac{1}{xlna}).
  7. Точки минимума и максимума: (frac{1}{xlna}=0), при этом корни отсутствуют, то есть максимальные и минимальные точки также отсутствуют.
  8. Функция является возрастающей на всей области определения.
  9. (y^{»}=-frac{1}{x^2lna}).
  10. Промежутки выпуклости и вогнутости: (-frac{1}{x^2lna}). Функция является выпуклой на всей области, в которой определяется.
  11. ({mathop{lim}_{xto 0} y }=-infty , {mathop{lim}_{xto +infty } y }=+infty.)

Рассмотрим свойства функции (y={{log}_a x }, 0 < a < 1:)

  1. Функция определяется на интервале ((0,+infty).)
  2. Значениями функции являются все числа из множества действительных.
  3. Данную функцию нельзя отнести к типу четных или нечетных.
  4. Отсутствуют пересечения графика с осью Oy. Если (y=0, {{log}_a x }=0, x=1).Функция пересекает ось Ox в точке с координатами: (1,0).
  5. Функция является положительной, если (xin (0,1)). Функция является отрицательной в том случае, когда (xin (1,+infty).)
  6. (y’=frac{1}{xlna}.)
  7. Точки минимума и максимума: ( frac{1}{xlna}=0); в этом случае корни отсутствуют — значит, отсутствуют максимальные и минимальные точки.
  8. Функция является убывающей на всей области, в которой она определена.
  9. (y^{»}=-frac{1}{x^2lna}).
  10. Промежутки выпуклости и вогнутости: ( -frac{1}{x^2lna}>0). Функция является вогнутой на всей области, в которой она определена.
  11. (mathop{lim}_{xto 0} y =+infty , {mathop{lim}_{xto +infty } y }=-infty).

Область определения функции с корнем

По определению, логарифмическая функция имеет вид:

(y=log _{a} x,; a,, x>0,; ane 1.)

Областью определения функции (Dleft(yright)) является такое множество, на котором задана функция (y=fleft(xright)), при этом каждая точка рассматриваемого множества соответствует определенному значению функции.

В случае логарифмической функции, в том числе, с корнем квадратным, дробью со знаменателем, отличным от нуля, область определения соответствует какому-либо числу со знаком плюс из множества действительных чисел:

(Dleft(log _{a} xright):xin left(0;; +infty right))

Рассмотрим несколько примеров логарифмических функций, чтобы узнать область их определений:

(y=log _{ frac{2}{3} } x;)

(y=log _{ sqrt{5}} x;)

(y=log _{7} x.)

Областью определения записанных логарифмических функций, в том числе, с корнем, является интервал ((0, +infty)).

Попробуем решить задачу. Здесь требуется искать область определения в случае функции:

(f(x)=frac{1}{ln(x+3)})

Условия следующие:

х + 3 > 0

(x + 3 neq 1)

Тогда:

х > -3

(x neq -2)

Тогда область определения соответствует следующим значениям:

(D(f) = (-3, -2) cup (-2, +infty).)

Примеры решения задач

Задача 1

Дана функция:

(y=log _{pi } left(2x-4right).)

Требуется обозначить область определения данной функции.

Решение

Область определения рассматриваемой функции можно задать с помощью следующего неравенства:

(2x-4>0.)

Найдем решения для этого линейного неравенства:

(2x>4Rightarrow x>2Rightarrow xin left(2;; +infty right).)

В результате:

(Dleft(yright):xin left(2;; +infty right))

Ответ: (Dleft(yright):xin left(2;; +infty right).)

Задача 2

Имеется некая функция:

(y=log _{2} left(left(x-1right)left(x+5right)right).)

Нужно найти область, на которой определяется данная функция.

Решение

Логарифм определен в том случае, когда подлогарифмическая функция обладает положительным значением. Исходя из этого, запишем:

(Dleft(yright):left(x-1right)left(x+5right)>0.)

Решим получившееся неравенство:

(left(x-1right)left(x+5right)>0.)

Воспользуемся способом интервалов. В процессе определим, каковы нули всех сомножителей:

(begin{array}{c} {x-1=0Rightarrow x=1,} \ {x+5=0Rightarrow x=-5,} end{array})

Задача

 В результате:

(Dleft(yright):xin left(-infty ;; -5right)bigcup left(1;; +infty right).)

Ответ: (xin left(-infty ;; -5right)bigcup left(1;; +infty right).)

Задача 3

 Построен график логарифмической функции (fleft(xright)={{log}_a left(x+bright)}):

Задача 3

Источник: ege-study.ru

Требуется определить (fleft(11right)).

Решение

Заметим, что изображенный график функции (y={{log}_a left(x+bright) }) пересекает следующие точки:

(-3; 1)

(-1; 2)

Следует выполнить подстановку данных точек в уравнение функции. Получим:

(left{ begin{array}{c}{{log}_a left(-3+bright)=1 } \{{log}_a left(-1+bright) }=2 end{array}right.)

Тогда:

(left{ begin{array}{c}b-3=a \b-1=a^2 end{array};right.)

Путем вычитания из второго уравнения первого получим:

(a^2-a=2; a^2-a-2=0;)

a=2 или a=-1

Отрицательное значение является посторонним, так как a = 0, исходя из определения основания логарифма.

В результате:

(b=a+3=5; fleft(xright)={{log}_2 left(x+5right) })

(fleft(11right)={{log}_2 16=4.})

Ответ: 4.

Задача 4

 Представлено графическое изображение функции (fleft(xright)=a{{log}_5 x }-c:)

Задача 4

Источник: ege-study.ru

Требуется вычислить (f(0,2)).

Решение

Заметим, что функция на графике пересекает следующие точки:

(left(1;-2right))

(left(5;3right))

Тогда путем поочередной подстановки координат данных точек в уравнение функции получим:

(left{ begin{array}{c}a{{log}_5 1 }-c=-2 \a{{log}_5 5 }-c=3 end{array}right.)

(left{ begin{array}{c}-c=-2 \a-c=3 end{array}right.)

(left{ begin{array}{c}c=2 \a=5 end{array}right.)

Уравнение функции:

(fleft(xright)=5{{log}_5 x }-2.)

Определим значение (fleft(0,2right)=fleft(frac{1}{5}right):)

(displaystyle 5cdot {{log}_5 frac{1}{5} }-2=-5-2=-7.)

Ответ: -7.

Содержание:

Логарифмической функцией называется функция, задаваемая формулой:

Логарифмическая функция, её свойства и график с примерами решения

где Логарифмическая функция, её свойства и график с примерами решения

Теорема 7.

Областью определения логарифмической функции является множество Логарифмическая функция, её свойства и график с примерами решения всех положительных действительных чисел, а областью значений — множество Логарифмическая функция, её свойства и график с примерами решения всех действительных чисел.

Доказательство:

Пусть Логарифмическая функция, её свойства и график с примерами решения. Тогда выражение Логарифмическая функция, её свойства и график с примерами решения, в соответствии с определением логарифма числа, имеет значение, если значение аргумента — положительное действительное число, т. е. областью определения логарифмической функции является множество Логарифмическая функция, её свойства и график с примерами решения всех положительных действительных чисел.

Любое действительное число Логарифмическая функция, её свойства и график с примерами решения может быть значением выражения Логарифмическая функция, её свойства и график с примерами решения, так как уравнение Логарифмическая функция, её свойства и график с примерами решения имеет корень при любом действительном Логарифмическая функция, её свойства и график с примерами решения. Значит, областью значений логарифмической функции является множество Логарифмическая функция, её свойства и график с примерами решения всех действительных чисел.

Теорема 8.

Логарифмическая функция на множестве всех положительных действительных чисел является возрастающей при Логарифмическая функция, её свойства и график с примерами решения и убывающей при Логарифмическая функция, её свойства и график с примерами решения, а ее график проходит через точку (1; 0).

Доказательство:

Пусть Логарифмическая функция, её свойства и график с примерами решения. Если допустить, что Логарифмическая функция, её свойства и график с примерами решения, то, с учетом возрастания показательной функции с большим единицы основанием (см. теорему 2 из параграфа 11 и следствие из нее), получим, что Логарифмическая функция, её свойства и график с примерами решения, или Логарифмическая функция, её свойства и график с примерами решения, что противоречит условию Логарифмическая функция, её свойства и график с примерами решения. Потому остается признать, что Логарифмическая функция, её свойства и график с примерами решения.

ПустьЛогарифмическая функция, её свойства и график с примерами решения, тогда Логарифмическая функция, её свойства и график с примерами решения. Если Логарифмическая функция, её свойства и график с примерами решения, то по доказанному Логарифмическая функция, её свойства и график с примерами решения. После перехода к основанию Логарифмическая функция, её свойства и график с примерами решения получим, что Логарифмическая функция, её свойства и график с примерами решения, или Логарифмическая функция, её свойства и график с примерами решения.

Поскольку Логарифмическая функция, её свойства и график с примерами решения, то точка (1; 0) принадлежит графику логарифмической функции.

Из доказанной теоремы непосредственно получаем следующие утверждения.

Следствие 2.

Значения логарифмической функции с основанием, большим единицы, на промежутке (0; 1) отрицательны, а на промежутке Логарифмическая функция, её свойства и график с примерами решения положительны.

Следствие 3.

Значения логарифмической функции с положительным и меньшим единицы основанием на промежутке (0; 1) положительны, а на промежутке Логарифмическая функция, её свойства и график с примерами решения отрицательны.

Построим график функции Логарифмическая функция, её свойства и график с примерами решения. Для этого нанесем на координатную плоскость некоторые точки этого графика, составив предварительно таблицу значений функции.

Логарифмическая функция, её свойства и график с примерами решения

Используя построенные точки и установленные свойства логарифмической функции, получим график функции Логарифмическая функция, её свойства и график с примерами решения, который представлен на рисунке 167.

Для построения графика функции Логарифмическая функция, её свойства и график с примерами решения учтем равенство Логарифмическая функция, её свойства и график с примерами решения и используем то, что график функции Логарифмическая функция, её свойства и график с примерами решения получается из графика функции Логарифмическая функция, её свойства и график с примерами решения симметричным отражением относительно оси абсцисс. Указанное преобразование проведено на рисунке 168.

Логарифмическая функция, её свойства и график с примерами решения

Теорема 9.

График функции Логарифмическая функция, её свойства и график с примерами решения симметричен графику функции Логарифмическая функция, её свойства и график с примерами решения относительно прямой Логарифмическая функция, её свойства и график с примерами решения.

Доказательство:

Пусть точка Логарифмическая функция, её свойства и график с примерами решения принадлежит графику функции Логарифмическая функция, её свойства и график с примерами решения (рис. 169). Тогда ее координаты Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения удовлетворяют равенству Логарифмическая функция, её свойства и график с примерами решения. Но тогда истинно и равенство Логарифмическая функция, её свойства и график с примерами решения. А это означает, что точка Логарифмическая функция, её свойства и график с примерами решения принадлежит графику функции Логарифмическая функция, её свойства и график с примерами решения.

Так же доказывается, что если точка Логарифмическая функция, её свойства и график с примерами решения принадлежит графику функции Логарифмическая функция, её свойства и график с примерами решения, то точка Логарифмическая функция, её свойства и график с примерами решения принадлежит графику функции Логарифмическая функция, её свойства и график с примерами решения.

Для завершения доказательства остается заметить, что точки Логарифмическая функция, её свойства и график с примерами решения симметричны относительно прямой Логарифмическая функция, её свойства и график с примерами решения.

Логарифмическая функция, её свойства и график с примерами решения

Теорема 10.

Если положительные основания Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения логарифмов Логарифмическая функция, её свойства и график с примерами решения оба больше единицы или оба меньше ее и Логарифмическая функция, её свойства и график с примерами решения, то Логарифмическая функция, её свойства и график с примерами решения при Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения при Логарифмическая функция, её свойства и график с примерами решения.

Доказательство:

Сравним значения выражений Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения:

Логарифмическая функция, её свойства и график с примерами решения

Пусть Логарифмическая функция, её свойства и график с примерами решения, тогда, с учетом возрастания логарифмической функции с большим единицы основанием, получим Логарифмическая функция, её свойства и график с примерами решения или Логарифмическая функция, её свойства и график с примерами решения

Если Логарифмическая функция, её свойства и график с примерами решения, то Логарифмическая функция, её свойства и график с примерами решения, и потому Логарифмическая функция, её свойства и график с примерами решения, или Логарифмическая функция, её свойства и график с примерами решения

Если Логарифмическая функция, её свойства и график с примерами решения, то Логарифмическая функция, её свойства и график с примерами решения, и потому Логарифмическая функция, её свойства и график с примерами решения или Логарифмическая функция, её свойства и график с примерами решения

Пусть теперь Логарифмическая функция, её свойства и график с примерами решения. Поскольку логарифмическая функция с меньшим единицы основанием убывает, то Логарифмическая функция, её свойства и график с примерами решения, или Логарифмическая функция, её свойства и график с примерами решения

Если Логарифмическая функция, её свойства и график с примерами решения, то Логарифмическая функция, её свойства и график с примерами решения, и потому Логарифмическая функция, её свойства и график с примерами решения, а если Логарифмическая функция, её свойства и график с примерами решения, то Логарифмическая функция, её свойства и график с примерами решения, и потому Логарифмическая функция, её свойства и график с примерами решения

В соответствии с теоремой 10 с увеличением основания Логарифмическая функция, её свойства и график с примерами решения график функции Логарифмическая функция, её свойства и график с примерами решения на промежутке (0; 1) располагается более высоко, а на промежутке Логарифмическая функция, её свойства и график с примерами решения — более низко.

График любой логарифмической функции Логарифмическая функция, её свойства и график с примерами решения с основанием Логарифмическая функция, её свойства и график с примерами решения, большим единицы, похож на график функции Логарифмическая функция, её свойства и график с примерами решения. На рисунке 170 представлены графики функций Логарифмическая функция, её свойства и график с примерами решения

График любой логарифмической функции Логарифмическая функция, её свойства и график с примерами решения с положительным основанием Логарифмическая функция, её свойства и график с примерами решения, меньшим единицы, похож на график функции Логарифмическая функция, её свойства и график с примерами решения. На рисунке 171 приведены графики функций Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Логарифм числа:

Определение:

Логарифмом положительного числа Логарифмическая функция, её свойства и график с примерами решения по основанию Логарифмическая функция, её свойства и график с примерами решения называется показатель степени, в которую необходимо возвести Логарифмическая функция, её свойства и график с примерами решения чтобы получить Логарифмическая функция, её свойства и график с примерами решения.

Обозначение: Логарифмическая функция, её свойства и график с примерами решения

Десятичный логарифм — это логарифм по основанию 10. Обозначение: Логарифмическая функция, её свойства и график с примерами решения

Примеры:

Логарифмическая функция, её свойства и график с примерами решения

Определение:

Натуральный логарифм — это логарифм по основанию Логарифмическая функция, её свойства и график с примерами решения (Логарифмическая функция, её свойства и график с примерами решения — иррациональное число, приближенное значение которого:Логарифмическая функция, её свойства и график с примерами решения). Обозначение: Логарифмическая функция, её свойства и график с примерами решения

Пример:

Логарифмическая функция, её свойства и график с примерами решения

Основное логарифмическое тождество:

Логарифмическая функция, её свойства и график с примерами решения

Примеры:

Логарифмическая функция, её свойства и график с примерами решения

Свойства логарифмов и формулы логарифмирования: Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Логарифм единицы no любому основанию равен нулю.

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Логарифм произведения положительных чисел равен сумме логарифмов множителей.

Логарифмическая функция, её свойства и график с примерами решения

Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.

Логарифмическая функция, её свойства и график с примерами решения

Логарифм степени положительного числа равен произведению показа теля степени на логарифм основания этой степени.

Формула перехода к логарифмам с другим основанием:

Логарифмическая функция, её свойства и график с примерами решения

Следствия:

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Объяснение и обоснование:

Логарифм числа

Если рассмотреть равенство Логарифмическая функция, её свойства и график с примерами решения то, зная любые два числа из этого равенства, мы можем найти третье:

Логарифмическая функция, её свойства и график с примерами решения

Первые две операции, представленные в этой таблице (возведение в степень и извлечение корня Логарифмическая функция, её свойства и график с примерами решения степени), нам уже известны, а с третьей — логарифмированием, то есть нахождением логарифма данного числа, мы ознакомимся в этом параграфе.

В общем виде операция логарифмирования позволяет из равенства Логарифмическая функция, её свойства и график с примерами решения найти показатель степени Логарифмическая функция, её свойства и график с примерами решения Результат выполнения этой операции обозначается Логарифмическая функция, её свойства и график с примерами решения

Таким образом, логарифмом положительного числа Логарифмическая функция, её свойства и график с примерами решения по основанию Логарифмическая функция, её свойства и график с примерами решения называется показатель степени, в которую необходимо возвести Логарифмическая функция, её свойства и график с примерами решения чтобы получить Логарифмическая функция, её свойства и график с примерами решения

Например:

  1. Логарифмическая функция, её свойства и график с примерами решения так как Логарифмическая функция, её свойства и график с примерами решения
  2. Логарифмическая функция, её свойства и график с примерами решения поскольку Логарифмическая функция, её свойства и график с примерами решения
  3. Логарифмическая функция, её свойства и график с примерами решения потому что Логарифмическая функция, её свойства и график с примерами решения

Отметим, что при положительных Логарифмическая функция, её свойства и график с примерами решения уравнение Логарифмическая функция, её свойства и график с примерами решения всегда имеет единственное решение, поскольку функция Логарифмическая функция, её свойства и график с примерами решения принимает все значения из промежутка Логарифмическая функция, её свойства и график с примерами решения и при Логарифмическая функция, её свойства и график с примерами решения является возрастающей, а при Логарифмическая функция, её свойства и график с примерами решения — убывающей (рис. 15.1).

Логарифмическая функция, её свойства и график с примерами решения

И так, каждое свое значение Логарифмическая функция, её свойства и график с примерами решения функция Логарифмическая функция, её свойства и график с примерами решения принимает только при одном значении Логарифмическая функция, её свойства и график с примерами решения Следовательно, для любых положительных чисел Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решенияуравнение Логарифмическая функция, её свойства и график с примерами решения имеет единственный корень Логарифмическая функция, её свойства и график с примерами решения

При Логарифмическая функция, её свойства и график с примерами решения уравнение Логарифмическая функция, её свойства и график с примерами решения не имеет корней, таким образом, при Логарифмическая функция, её свойства и график с примерами решенияЬ < 0 значение выражения Логарифмическая функция, её свойства и график с примерами решения не существует . Например, не существуют значения Логарифмическая функция, её свойства и график с примерами решения

Отметим, что логарифм по основанию 10 называется десятичным логарифмом и обозначается Логарифмическая функция, её свойства и график с примерами решения Например, Логарифмическая функция, её свойства и график с примерами решения

В недалеком прошлом десятичным логарифмам отдавали предпочтение и составляли очень подробные таблицы их значений, которые использовались в различных вычислениях. В эпоху всеобщей компьютеризации десятичные логарифмы утратили свою ведущую роль. В современной науке и технике широко используются логарифмы, основанием которых является особенное число Логарифмическая функция, её свойства и график с примерами решения (такое же знаменитое, как и число Логарифмическая функция, её свойства и график с примерами решения). Число Логарифмическая функция, её свойства и график с примерами решения, как и число Логарифмическая функция, её свойства и график с примерами решения, — иррациональное, Логарифмическая функция, её свойства и график с примерами решения

Логарифм по основанию Логарифмическая функция, её свойства и график с примерами решения называется натуральным логарифмом и обозначается Логарифмическая функция, её свойства и график с примерами решения Например, Логарифмическая функция, её свойства и график с примерами решения

Основное логарифмическое тождество

По определению логарифма, если Логарифмическая функция, её свойства и график с примерами решения Подставляя в последнее равенство вместо Логарифмическая функция, её свойства и график с примерами решения его значение, получаем равенство, которое называется основным логарифмическим тождеством:

Логарифмическая функция, её свойства и график с примерами решения

Например: Логарифмическая функция, её свойства и график с примерами решения

Свойства логарифмов и формулы логарифмирования

Во всех приведенных ниже формулах Логарифмическая функция, её свойства и график с примерами решения

1) Из определения логарифма получаем, что Логарифмическая функция, её свойства и график с примерами решения поскольку Логарифмическая функция, её свойства и график с примерами решения Таким образом, логарифм единицы по любому основанию равен нулю.

2) Поскольку Логарифмическая функция, её свойства и график с примерами решения то Логарифмическая функция, её свойства и график с примерами решения

Чтобы получить формулу логарифма произведения Логарифмическая функция, её свойства и график с примерами решения обозначим Логарифмическая функция, её свойства и график с примерами решения Тогда по определению логарифма

Логарифмическая функция, её свойства и график с примерами решения

Перемножив почленно два последних равенства, имеем Логарифмическая функция, её свойства и график с примерами решения По определению логарифма и с учетом введенных обозначений из последнего равенства получаемЛогарифмическая функция, её свойства и график с примерами решения

Таким образом,

Логарифмическая функция, её свойства и график с примерами решения

Логарифм произведения положительных чисел равен сумме логарифмов множителей.

4) Аналогично, чтобы получить формулу логарифма частного — Логарифмическая функция, её свойства и график с примерами решениядостаточно разделить почленно равенства (1). Тогда Логарифмическая функция, её свойства и график с примерами решения По определению логарифма и с учетом введенных обозначений из последнего равенства получаемЛогарифмическая функция, её свойства и график с примерами решения Таким образом,

Логарифмическая функция, её свойства и график с примерами решения

Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.

5) Чтобы получить формулу логарифма степени Логарифмическая функция, её свойства и график с примерами решения обозначим Логарифмическая функция, её свойства и график с примерами решения По определению логарифма Логарифмическая функция, её свойства и график с примерами решения ТогдаЛогарифмическая функция, её свойства и график с примерами решения и по определению логарифма с учетом обозначения для Логарифмическая функция, её свойства и график с примерами решения имеемЛогарифмическая функция, её свойства и график с примерами решения Таким образом,

Логарифмическая функция, её свойства и график с примерами решения

Логарифм степени положительного числа равен произведению показателя степени на логарифм основания этой степени.

Учитывая, что приЛогарифмическая функция, её свойства и график с примерами решения по формуле (4) имеем: Логарифмическая функция, её свойства и график с примерами решения Иными словами, при Логарифмическая функция, её свойства и график с примерами решения можно воспользоваться формулой

Логарифмическая функция, её свойства и график с примерами решения

(запоминать эту формулу не обязательно, при необходимости можно записывать корень из положительного числа как соответствующую степень).

Замечание. Иногда приходится находить логарифм произведения Логарифмическая функция, её свойства и график с примерами решения и в том случае, когда оба числа Логарифмическая функция, её свойства и график с примерами решения отрицательны Логарифмическая функция, её свойства и график с примерами решения

Тогда Логарифмическая функция, её свойства и график с примерами решения существует, но формулой (2) воспользоваться нельзя — она обоснована только для положительных значений Логарифмическая функция, её свойства и график с примерами решения В случаеЛогарифмическая функция, её свойства и график с примерами решения имеем Логарифмическая функция, её свойства и график с примерами решения и теперь Логарифмическая функция, её свойства и график с примерами решения Таким образом, для логарифма произведения Логарифмическая функция, её свойства и график с примерами решения можно воспользоваться формулой (2). Поэтому при Логарифмическая функция, её свойства и график с примерами решения можем записать: Логарифмическая функция, её свойства и график с примерами решения Отметим, что полученная формула справедлива и при Логарифмическая функция, её свойства и график с примерами решения поскольку в этом случаеЛогарифмическая функция, её свойства и график с примерами решения Таким образом, при Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Аналогично можно обобщить и формулы (3) и (4):

при Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения

при Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения

4. Формула перехода к логарифмам с другим основанием ПустьЛогарифмическая функция, её свойства и график с примерами решения Тогда по определению логарифма Логарифмическая функция, её свойства и график с примерами решенияПрологарифмируем обе части последнего равенства по основанию Логарифмическая функция, её свойства и график с примерами решенияПолучим Логарифмическая функция, её свойства и график с примерами решения Используя в левой части этого равенства формулу логарифма степени, имеем Логарифмическая функция, её свойства и график с примерами решения Тогда Логарифмическая функция, её свойства и график с примерами решения Учитывая, что Логарифмическая функция, её свойства и график с примерами решения получаем

Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения

Таким образом, логарифм положительного числа Логарифмическая функция, её свойства и график с примерами решения по одному основанию Логарифмическая функция, её свойства и график с примерами решения равен логарифму этого же числа Логарифмическая функция, её свойства и график с примерами решения по новому основанию Логарифмическая функция, её свойства и график с примерами решения, деленному на логарифм прежнего основания Логарифмическая функция, её свойства и график с примерами решения по новому основанию Логарифмическая функция, её свойства и график с примерами решения.

С помощью последней формулы можно получить следующие следствия. 1) Логарифмическая функция, её свойства и график с примерами решения Учитывая, чтоЛогарифмическая функция, её свойства и график с примерами решения имеем

Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения

2) Аналогично, учитывая формулу перехода от одного основания логарифма к другому и формулу логарифма степени, получаем (при Логарифмическая функция, её свойства и график с примерами решения)

Логарифмическая функция, её свойства и график с примерами решения

Записав полученную формулу справа налево, имеем

Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения

Примеры решения задач:

Пример №1

Вычислите: Логарифмическая функция, её свойства и график с примерами решения

Решение:

1)Логарифмическая функция, её свойства и график с примерами решения поскольку Логарифмическая функция, её свойства и график с примерами решения

2) Логарифмическая функция, её свойства и график с примерами решения так как Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Исходя из определения логарифма, необходимо подобрать такой показатель степени, чтобы при возведении основания логарифма в эту степень получить число, стоящее под знаком логарифма.

Пример №2

Запишите решение простейшего показательного уравнения: Логарифмическая функция, её свойства и график с примерами решения

Решение:

По определению логарифма:

1)Логарифмическая функция, её свойства и график с примерами решения

2)Логарифмическая функция, её свойства и график с примерами решения

3)Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Для любых положительных чисел Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения уравнение Логарифмическая функция, её свойства и график с примерами решения имеет единственный корень. Показатель степени Логарифмическая функция, её свойства и график с примерами решения в которую необходимо возвести основание Логарифмическая функция, её свойства и график с примерами решения чтобы получить Логарифмическая функция, её свойства и график с примерами решения, называется логарифмом Логарифмическая функция, её свойства и график с примерами решения по основанию Логарифмическая функция, её свойства и график с примерами решенияпоэтому Логарифмическая функция, её свойства и график с примерами решения

Пример №3

Выразите логарифм по основанию 3 выражения Логарифмическая функция, её свойства и график с примерами решения. (где Логарифмическая функция, её свойства и график с примерами решения) через логарифмы по основанию 3 чисел Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения. (Коротко говорят так: «Прологарифмируйте данное выражение по основанию 3».)

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Сначала запишем выражения, стоящие в числителе и знаменателе данного выражения, как степени чисел и букв. Далее учтем, что логарифм частного Логарифмическая функция, её свойства и график с примерами решенияположительных чисел равен разности логарифмов числителя и знаменателя, а затем то, что логарифм произведения (Логарифмическая функция, её свойства и график с примерами решения) равен сумме логарифмов множителей.

Пример №4

Известно, что Логарифмическая функция, её свойства и график с примерами решения Выразите Логарифмическая функция, её свойства и график с примерами решения через Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Сначала представим число 700 как произведение степеней данных чисел 5 и 7 и основания логарифма 2, а далее используем свойства логарифмов и подставим в полученное выражение значения Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения

Пример №5

Прологарифмируйте по основанию 10 выражение Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Поскольку логарифмы существуют только для положительных чисел, то мы можем прологарифмировать данное выражение только в случае, когдаЛогарифмическая функция, её свойства и график с примерами решения Из условия не следует, что в данном выражении значения Логарифмическая функция, её свойства и график с примерами решения положительны. Поэтому будем пользоваться обобщенными формулами логарифмирования Логарифмическая функция, её свойства и график с примерами решения а также учтем, что Логарифмическая функция, её свойства и график с примерами решенияЛогарифмическая функция, её свойства и график с примерами решения

Иногда приходится искать выражение, зная его логарифм. Такую операцию называют потенцированием.

Пример №6

Найдите Логарифмическая функция, её свойства и график с примерами решения по его логарифму: Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Пользуясь формулами логарифмирования справа налево, запишем правые части данных равенств в виде логарифма какого-либо выражения. Из полученного равенства Логарифмическая функция, её свойства и график с примерами решения получаем Логарифмическая функция, её свойства и график с примерами решения (как будет показано, значение Логарифмическая функция, её свойства и график с примерами решения, удовлетворяющее равенству (1), — единственное).

Пример №7

Вычислите значение выражения Логарифмическая функция, её свойства и график с примерами решения

Решение:

Поскольку Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Кроме того Логарифмическая функция, её свойства и график с примерами решения

Тогда

Логарифмическая функция, её свойства и график с примерами решения

Итак, Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Попытаемся привести показатель степени данного выражения к виду Логарифмическая функция, её свойства и график с примерами решениячтобы можно было воспользоваться основным логарифмическим тождеством: Логарифмическая функция, её свойства и график с примерами решения Для этого перейдем в показателе степени к одному основанию логарифма — 5.

Логарифмическая функция

Определение:

Логарифмической функцией называется функция вида Логарифмическая функция, её свойства и график с примерами решения

1. График логарифмической функции

Функции Логарифмическая функция, её свойства и график с примерами решения — взаимно обратные функции, поэтому их графики симметричны относительно прямой Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

2. Свойства логарифмической функции

1. Область определения: Логарифмическая функция, её свойства и график с примерами решенияЛогарифмическая функция, её свойства и график с примерами решения 2. Область значений: Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения 3. Функция ни четная, ни нечетная. 4. Точки пересечения с осями координат:

С осью Логарифмическая функция, её свойства и график с примерами решения, с осью Логарифмическая функция, её свойства и график с примерами решения

5. Промежутки возрастания и убывания:

Логарифмическая функция, её свойства и график с примерами решения функция Логарифмическая функция, её свойства и график с примерами решения возрастает на всей области определения

Логарифмическая функция, её свойства и график с примерами решения функция Логарифмическая функция, её свойства и график с примерами решения убывает на всей области определения

6. Промежутки знакопостоянства:

Логарифмическая функция, её свойства и график с примерами решения

7. Наибольшего и наименьшего значений функция не имеет.

8. Логарифмическая функция, её свойства и график с примерами решения

Объяснение и обоснование:

Понятие логарифмической функции

Логарифмической функцией называется функция вида Логарифмическая функция, её свойства и график с примерами решения Покажем, что эта функция является обратной функции Логарифмическая функция, её свойства и график с примерами решения

Действительно, показательная функция Логарифмическая функция, её свойства и график с примерами решения при Логарифмическая функция, её свойства и график с примерами решения возрастает на множестве Логарифмическая функция, её свойства и график с примерами решения, а при Логарифмическая функция, её свойства и график с примерами решения — убывает на множестве Логарифмическая функция, её свойства и график с примерами решения. Область значений функции Логарифмическая функция, её свойства и график с примерами решения — промежуток Логарифмическая функция, её свойства и график с примерами решения Таким образом, функция Логарифмическая функция, её свойства и график с примерами решенияобратима и имеет обратную функцию с областью определения Логарифмическая функция, её свойства и график с примерами решения и областью значений Логарифмическая функция, её свойства и график с примерами решения. Напомним, что для записи формулы обратной функции достаточно из равенства Логарифмическая функция, её свойства и график с примерами решения выразить Логарифмическая функция, её свойства и график с примерами решения через у и в полученной формуле Логарифмическая функция, её свойства и график с примерами решения аргумент обозначить через Логарифмическая функция, её свойства и график с примерами решения, а функцию — через Логарифмическая функция, её свойства и график с примерами решения.

Тогда из уравнения Логарифмическая функция, её свойства и график с примерами решения по определению логарифма получаем Логарифмическая функция, её свойства и график с примерами решения — формулу обратной функции, в которой аргумент обозначен через Логарифмическая функция, её свойства и график с примерами решения, а функция — через Логарифмическая функция, её свойства и график с примерами решения. Изменяя обозначения на традиционные, имеем формулу Логарифмическая функция, её свойства и график с примерами решения — функции, обратной функции Логарифмическая функция, её свойства и график с примерами решения

Как известно, графики взаимно обратных функций симметричны относительно прямой Логарифмическая функция, её свойства и график с примерами решения Таким образом, график функции Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения можно получить из графика функции Логарифмическая функция, её свойства и график с примерами решения симметричным отображением его относительно прямой Логарифмическая функция, её свойства и график с примерами решения На рис. 16.1 приведены графики логарифмических функций при Логарифмическая функция, её свойства и график с примерами решения и при Логарифмическая функция, её свойства и график с примерами решения График логарифмической функции называют логарифмической кривой.

Логарифмическая функция, её свойства и график с примерами решения

Свойства логарифмической функции

Свойства логарифмической функции и другие свойства прочитаем из полученного графика функции Логарифмическая функция, её свойства и график с примерами решения и обоснуем, опираясь на свойства функции Логарифмическая функция, её свойства и график с примерами решения

Поскольку область определения прямой функции является областью значений обратной, а область значений прямой функции — областью определения обратной, то, зная эти характеристики для функции Логарифмическая функция, её свойства и график с примерами решения получаем соответствующие характеристики для функции Логарифмическая функция, её свойства и график с примерами решения

Функция:

1)Логарифмическая функция, её свойства и график с примерами решения 2)Логарифмическая функция, её свойства и график с примерами решения

Область определения :

1)Логарифмическая функция, её свойства и график с примерами решения 2)Логарифмическая функция, её свойства и график с примерами решения

Область значений:

1)Логарифмическая функция, её свойства и график с примерами решения 2)Логарифмическая функция, её свойства и график с примерами решения

Обоснуем это, опираясь на свойства функции Логарифмическая функция, её свойства и график с примерами решения

Например, при Логарифмическая функция, её свойства и график с примерами решения возьмем Логарифмическая функция, её свойства и график с примерами решения По основному логарифмическому тождеству можно записать: Логарифмическая функция, её свойства и график с примерами решения Тогда, учитывая, что Логарифмическая функция, её свойства и график с примерами решения имеем Логарифмическая функция, её свойства и график с примерами решения Поскольку при Логарифмическая функция, её свойства и график с примерами решения функция Логарифмическая функция, её свойства и график с примерами решения является возрастающей, то из последнего неравенства получаем Логарифмическая функция, её свойства и график с примерами решения А это и означает, что при Логарифмическая функция, её свойства и график с примерами решения функция Логарифмическая функция, её свойства и график с примерами решения возрастает на всей области определения.

Аналогично можно обосновать, что при Логарифмическая функция, её свойства и график с примерами решения функция Логарифмическая функция, её свойства и график с примерами решения убывает на всей области определения. 6) Промежутки знакопостоянства. Поскольку график функции Логарифмическая функция, её свойства и график с примерами решенияпересекает ось Логарифмическая функция, её свойства и график с примерами решения в точке Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения то, учитывая возрастание функции при Логарифмическая функция, её свойства и график с примерами решения и убывание при Логарифмическая функция, её свойства и график с примерами решения имеем:

Значение функции:

1) Логарифмическая функция, её свойства и график с примерами решения 2)Логарифмическая функция, её свойства и график с примерами решения

Значение аргумента Логарифмическая функция, её свойства и график с примерами решения

1)Логарифмическая функция, её свойства и график с примерами решения 2)Логарифмическая функция, её свойства и график с примерами решения

Значение аргумента Логарифмическая функция, её свойства и график с примерами решения

1)Логарифмическая функция, её свойства и график с примерами решения 2)Логарифмическая функция, её свойства и график с примерами решения

Примеры решения задач:

Пример №8

Найдите область определения функции: Логарифмическая функция, её свойства и график с примерами решения

Решение:

1)Область определения функции Логарифмическая функция, её свойства и график с примерами решения задается неравенствомЛогарифмическая функция, её свойства и график с примерами решенияОтсюдаЛогарифмическая функция, её свойства и график с примерами решениято естьЛогарифмическая функция, её свойства и график с примерами решения 2) Область определения функции Логарифмическая функция, её свойства и график с примерами решения задается неравенством Логарифмическая функция, её свойства и график с примерами решения Это неравенство выполняется при всех действительных значениях Логарифмическая функция, её свойства и график с примерами решения Таким образом, Логарифмическая функция, её свойства и график с примерами решения 3) Область определения функцииЛогарифмическая функция, её свойства и график с примерами решения задается квадратным неравенством Логарифмическая функция, её свойства и график с примерами решения Решая его, получаемЛогарифмическая функция, её свойства и график с примерами решения или Логарифмическая функция, её свойства и график с примерами решения (см. рисунок), То есть Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Поскольку выражение, стоящее под знаком логарифма, должно быть положительным, то для нахождения области определения данной функции необходимо найти те значения аргумента х, при которых выражение, стоящее под знаком логарифма, будет положительным.

Логарифмическая функция, её свойства и график с примерами решения

Пример №9

Изобразите схематически график функции: Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Область определения функции Логарифмическая функция, её свойства и график с примерами решения — значения Логарифмическая функция, её свойства и график с примерами решения следовательно, график этой функции всегда расположен справа от оси Логарифмическая функция, её свойства и график с примерами решения Этот график пересекает ось Логарифмическая функция, её свойства и график с примерами решения в точке Логарифмическая функция, её свойства и график с примерами решения При Логарифмическая функция, её свойства и график с примерами решения логарифмическая функция возрастает, таким образом, графиком функции уЛогарифмическая функция, её свойства и график с примерами решения будет логарифмическая кривая, точки которой при увеличении аргумента поднимаются. При Логарифмическая функция, её свойства и график с примерами решения логарифмическая функция убывает, таким образом, графиком функции Логарифмическая функция, её свойства и график с примерами решения будет логарифмическая кривая, точки которой при увеличении аргумента опускаются.

Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Пример №10

Изобразите схематически график функции Логарифмическая функция, её свойства и график с примерами решения

Решение:

Последовательно строим графики:

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Составим план последовательного построения графика данной функции с помощью геометрических преобразований. 1. Можно построить график функции уЛогарифмическая функция, её свойства и график с примерами решения (основание логарифма Логарифмическая функция, её свойства и график с примерами решения — логарифмическая функция возрастает). 2. Затем можно построить график функции Логарифмическая функция, её свойства и график с примерами решения (справа от оси Логарифмическая функция, её свойства и график с примерами решения график функции Логарифмическая функция, её свойства и график с примерами решения остается без изменений, и эта же часть графика отображается симметрично относительно оси Логарифмическая функция, её свойства и график с примерами решения). 3. После этого можно построить график данной функции Логарифмическая функция, её свойства и график с примерами решенияпараллельным переносом графика функции Логарифмическая функция, её свойства и график с примерами решениявдоль оси Логарифмическая функция, её свойства и график с примерами решения на 2 единицы.

Пример №11

Сравните положительные числа Логарифмическая функция, её свойства и график с примерами решения зная, что: Логарифмическая функция, её свойства и график с примерами решения

Решение:

1) Поскольку функция Логарифмическая функция, её свойства и график с примерами решения возрастающая, то для положительных чиселЛогарифмическая функция, её свойства и график с примерами решения из неравенстваЛогарифмическая функция, её свойства и график с примерами решения c получаем Логарифмическая функция, её свойства и график с примерами решения 2) Так как функция Логарифмическая функция, её свойства и график с примерами решения убывающая, то для положительных чисел Логарифмическая функция, её свойства и график с примерами решения из неравенства Логарифмическая функция, её свойства и график с примерами решения получаем Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

В каждом задании данные выражения — это значения логарифмической функции Логарифмическая функция, её свойства и график с примерами решения в точках Логарифмическая функция, её свойства и график с примерами решения. Используем возрастание или убывание соответствующей функции: 1) при Логарифмическая функция, её свойства и график с примерами решения функция Логарифмическая функция, её свойства и график с примерами решения возрастающая, и поэтому большему значению функции соответствует большее значение аргумента; 2) при Логарифмическая функция, её свойства и график с примерами решения функция Логарифмическая функция, её свойства и график с примерами решения убывающая, следовательно, большему значению функции соответствует меньшее значение аргумента.

Пример №12

Сравните с единицей положительное число Логарифмическая функция, её свойства и график с примерами решения зная, что Логарифмическая функция, её свойства и график с примерами решения

Решение:

Поскольку Логарифмическая функция, её свойства и график с примерами решения а из условия получаем, что Логарифмическая функция, её свойства и график с примерами решения (то естьЛогарифмическая функция, её свойства и график с примерами решения), то функция Логарифмическая функция, её свойства и график с примерами решения убывающая, поэтому Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

ЧислаЛогарифмическая функция, её свойства и график с примерами решения — это два значения функции Логарифмическая функция, её свойства и график с примерами решения Исходя из данного неравенства, выясняем, является эта функция возрастающей или убывающей, и учитываем, что она возрастает при Логарифмическая функция, её свойства и график с примерами решения и убывает при Логарифмическая функция, её свойства и график с примерами решения

Решение логарифмических уравнений

1. Основные определения и соотношения

Определение:

Логарифмом положительного числа Логарифмическая функция, её свойства и график с примерами решения по основанию Логарифмическая функция, её свойства и график с примерами решения называется показатель степени, в которую необходимо возвести Логарифмическая функция, её свойства и график с примерами решения чтобы получить Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

График функции Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

2. Решение простейших логарифмических уравнений

Ориентир

Если Логарифмическая функция, её свойства и график с примерами решения — число (Логарифмическая функция, её свойства и график с примерами решения), то

Логарифмическая функция, её свойства и график с примерами решения

(используем определение логарифма)

Пример:

Логарифмическая функция, её свойства и график с примерами решения

Ответ: 10

3. Использование уравнений-следствий

Ориентир:

Если из предположения, что первое равенство верно, следует, что каж дое следующее верно, то гарантируем, что получаются уравнения- следствия. При использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составной частью решения.

Пример:

Логарифмическая функция, её свойства и график с примерами решения

По определению логарифма получаем

Логарифмическая функция, её свойства и график с примерами решения

Проверка, Логарифмическая функция, её свойства и график с примерами решения — посторонний корень (в основании логарифма получаем отрицательное число);

Логарифмическая функция, её свойства и график с примерами решения

Ответ: 2

4. Равносильные преобразования логарифмических уравнений

Замена переменных

Ориентир:

Если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то соответствующее выражение с переменной удобно обозначить одной буквой (новой переменной).

Пример:

Логарифмическая функция, её свойства и график с примерами решения

Ответ: 0,1; 1000.

Уравнение вида Логарифмическая функция, её свойства и график с примерами решения

Ориентир:

Логарифмическая функция, её свойства и график с примерами решения

(учитываем ОДЗ и приравниваем выражения, стоящие под знаками логарифмов)

Пример:

Логарифмическая функция, её свойства и график с примерами решения

На этой ОДЗ данное уравнение равносильно уравнениям:

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения — посторонний корень (не удовлетворяет условиям ОДЗ); Логарифмическая функция, её свойства и график с примерами решения — корень (удовлетворяет условиям ОДЗ). Ответ: 3.

Равносильные преобразования уравнений в других случаях

Ориентир:

  • 1. Логарифмическая функция, её свойства и график с примерами решения данного уравнения (и избегаем преобразований, приводящих к сужению ОДЗ)
  • 2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.

Пример:

Логарифмическая функция, её свойства и график с примерами решения

На этой ОДЗ данное уравнение равносильно уравнениям:

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения — корень (удовлетворяет условиям ОДЗ); Логарифмическая функция, её свойства и график с примерами решения — посторонний корень (не удовлетворяет условиям ОДЗ). Ответ: 1.

Объяснение и обоснование:

Решение простейших логарифмических уравнений

Простейшим логарифмическим уравнением обычно считают уравнение Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция возрастает (или убывает) на всей своей области определения, то есть при Логарифмическая функция, её свойства и график с примерами решения (см. графики в п. 1 табл. 23), и поэтому каждое свое значение принимает только при одном значении аргумента. Учитывая, что логарифмическая функция принимает все действительные значения, уравнение Логарифмическая функция, её свойства и график с примерами решения всегда имеет единственный корень, который можно записать, исходя из определения логарифма:Логарифмическая функция, её свойства и график с примерами решения

Если рассмотреть уравнение Логарифмическая функция, её свойства и график с примерами решения и выполнить замену переменной: f (х) = t, то получим простейшее логарифмическое уравнение Логарифмическая функция, её свойства и график с примерами решения имеющее единственный корень Логарифмическая функция, её свойства и график с примерами решения Выполняя обратную замену, получаем, что решения уравнения (2) совпадают с корнями уравнения Логарифмическая функция, её свойства и график с примерами решения

Следовательно, уравнения (2) и (3) равносильны. Таким образом, мы обосновали, что для равносильного преобразования простейшего логарифмического уравнения. (1) или уравнения (2) (которое мы также будем относить к простейшим при условии, что основание Логарифмическая функция, её свойства и график с примерами решения — число) достаточно применить определение логарифма. Если обозначить равносильность уравнений значком Логарифмическая функция, её свойства и график с примерами решения то коротко этот результат можно записать так:

Логарифмическая функция, её свойства и график с примерами решения

Напомним, что все равносильные преобразования уравнения выполняются на его области допустимых значений (ОДЗ). Для уравнения (2) ОДЗ задается условием Логарифмическая функция, её свойства и график с примерами решения Но для всех корней уравнения (3) это условие выполняется автоматически (потому что Логарифмическая функция, её свойства и график с примерами решения). Поэтому в явном виде ОДЗ для простейших логарифмических уравнений можно не записывать (поскольку оно учитывается автоматически при переходе от уравнения (2) к уравнению (3)). Например, уравнение Логарифмическая функция, её свойства и график с примерами решения равносильно уравнению Логарифмическая функция, её свойства и график с примерами решения корень которогоЛогарифмическая функция, её свойства и график с примерами решения и является корнем данного уравнения. Аналогично записано и решение простейшего уравнения Логарифмическая функция, её свойства и график с примерами решения в табл. 23.

Использование уравнений-следствий при решении логарифмических уравнений

При решении уравнения главное — не потерять его корни, и поэтому важно следить за тем, чтобы каждый корень первого уравнения оставался корнем следующего уравнения — в этом случае получаем уравнения-следствия. Напомним, что каждый корень данного уравнения обращает его в верное числовое равенство. Используя это определение, можно обосновать, что в случае, когда преобразования уравнений проводятся так: если из предположения, что первое равенство верно, следует, что каждое следующее верно, то мы получаем уравнения-следствия (поскольку каждый корень первого уравнения будет и корнем следующего уравнения). Хотя при использовании уравнений-следствий и не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составляющей решения при использовании уравнений-следствий.

Пример решения логарифмического уравнения с помощью уравнений- следствий и оформление такого решения приведены в п. 3.

Равносильные преобразования логарифмических уравнений

Одним из часто используемых способов равносильных преобразований уравнений является замена переменной.

Напомним общий ориентир, которого мы придерживались при решении уравнений из других разделов: если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то соответствующее выражение с переменной удобно обозначить одной буквой ( новой переменной).

Например, в уравнение Логарифмическая функция, её свойства и график с примерами решения переменная входит только в виде Логарифмическая функция, её свойства и график с примерами решения поэтому для его решения целесобразно применить заменуЛогарифмическая функция, её свойства и график с примерами решения получить квадратное уравнение Логарифмическая функция, её свойства и график с примерами решения имеющее корниЛогарифмическая функция, её свойства и график с примерами решения а затем выполнить обратную замену и получить простейшие логарифмические уравнения: Логарифмическая функция, её свойства и график с примерами решения Тогда, по определению логарифма, корнями данных уравнений являются Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения

Принимая во внимание то, что замена переменной (вместе с обратной заменой) является равносильным преобразованием уравнения на любом множестве, для выполнения замены не обязательно находить ОДЗ данного уравнения. После выполнения обратной замены мы получили простейшие логарифмические уравнения, ОДЗ которых (как было показано выше) учитываются автоматически и могут также не записываться. Таким образом, в приведенном решении ОДЗ данного уравнения учтена автоматически, и поэтому в явном виде ОДЗ можно не записывать в решение. Именно так и оформлено решение этого уравнения в п. 4.

Рассмотрим также равносильные преобразования уравнения вида

Логарифмическая функция, её свойства и график с примерами решения

Как уже отмечалось, все равносильные преобразования уравнения выполняются на его области допустимых значений. Для уравнения (4) ОДЗ задается системой неравенств Логарифмическая функция, её свойства и график с примерами решения Поскольку логарифмическая функция Логарифмическая функция, её свойства и график с примерами решения возрастает (при Логарифмическая функция, её свойства и график с примерами решения) или убывает (при Логарифмическая функция, её свойства и график с примерами решения) на всей своей области определения и каждое свое значение принимает только при одном значении аргумента, то равенство (4) может выполняться (на ОДЗ) тогда и только тогда, когда Логарифмическая функция, её свойства и график с примерами решенияУчитывая ОДЗ, получаем, что уравнение (4) равносильно системе

Логарифмическая функция, её свойства и график с примерами решения

Полученный результат символично зафиксирован в п. 4, а коротко его можно сформулировать так:

  • чтобы решить уравнение вида Логарифмическая функция, её свойства и график с примерами решения с помощью равносильных преобразований, учитываем ОДЗ этого уравнения и приравниваем выражения, стоящие под знаками логарифмов.

Пример использования этого ориентира приведен в табл. 23.

Замечание 1.

Полученную систему (5)-(7) можно несколько упростить. Если в этой системе выполняется равенство (5), то значения Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения между собой равны, поэтому если одно из них будет положительным, то второе также будет положительным. Таким образом, уравнение (4) равносильно системе, состоящей из уравнения (5) и одного из неравенств (6) или (7) (обычно выбирают простейшее из этих неравенств). Например, уравнение Логарифмическая функция, её свойства и график с примерами решения рассмотренное в табл. 23, равносильно системе

Логарифмическая функция, её свойства и график с примерами решения

Но учитывая, что ограничения ОДЗ этого уравнения:

Логарифмическая функция, её свойства и график с примерами решения

мы не решали, а только проверяли, удовлетворяют ли найденные корни этим ограничениям, приведенное упрощение не дает существенного выигрыша при решении.

Замечание 2.

Как было обосновано выше, если выполняется равенство (4), то обязательно выполняется и равенство (5). Таким образом, уравнение (5) является следствием уравнения (4). Поэтому для нахождения корней уравнения (4): Логарифмическая функция, её свойства и график с примерами решения достаточно найти корни уравнения-следствия (5): Логарифмическая функция, её свойства и график с примерами решения и выполнить проверку найденных корней подстановкой в данное уравнение. (При таком способе решения ОДЗ уравнения (4) будет учтено опосредствованно, в момент проверки полученных корней, и его не придется явно записывать.)

Выполняя равносильные преобразования логарифмических уравнений в более сложных случаях, можно придерживаться следующего ориентира (он следует из определения равносильных уравнений и обоснован в курсе 10 класса):

  • 1) Учитываем ОДЗ данного уравнения,
  • 2) Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.

Например, решим уравнение

Логарифмическая функция, её свойства и график с примерами решения

с помощью равносильных преобразований. Для этого достаточно учесть ОДЗ уравнения Логарифмическая функция, её свойства и график с примерами решения а затем, выполняя каждое преобразование уравнения, все время следить за тем, можно ли на ОДЗ выполнить это преобразование и в обратном направлении. Если ответ положителен, то выполненные преобразования равносильны. Если же какое-то преобразование для всех значений переменной из ОДЗ можно выполнить только в одном направлении (от исходного уравнения к следующему), а для его выполнения в обратном направлении необходимы какие-то дополнительные ограничения, то мы получим только уравнение-следствие, и полученные корни придется проверять подстановкой в исходное уравнение.

Применим этот план к решению уравнения (8).

Чтобы привести это уравнение к простейшему, перенесем все члены уравнения с логарифмами влево. Получим равносильное уравнение

Логарифмическая функция, её свойства и график с примерами решения

(Равносильность уравнений (8) и (9) следует из известной теоремы: если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное данному на любом множестве. Равносильность этих уравнений следует также из того, что мы можем не только перейти от равенства (8) к равенству (9), но и выполнить обратное преобразование, пользуясь свойствами числовых равенств.) Учитывая, что сумма логарифмов положительных (на ОДЗ) чисел равна логарифму произведения, получаем уравнение

Логарифмическая функция, её свойства и график с примерами решения

На ОДЗ данного уравнения можно выполнить и обратное преобразование: поскольку Логарифмическая функция, её свойства и график с примерами решения то логарифм произведения положительных чисел равен сумме логарифмов множителей. Таким образом, от равенства (10) можно вернуться к равенству (9), то есть этот переход также приводит к равносильному уравнению. Уравнение (10) — это простейшее логарифмическое уравнение. Оно равносильно уравнению, которое получается по определению логарифма:

Логарифмическая функция, её свойства и график с примерами решения

Выполняя равносильные преобразования полученного уравнения, имеем:

Логарифмическая функция, её свойства и график с примерами решения

Поскольку все равносильные преобразования выполнялись на ОДЗ данного уравнения, учтем ее, подставляя полученные корни в ограничения ОДЗ: Логарифмическая функция, её свойства и график с примерами решения — корень, поскольку удовлетворяет условиям ОДЗ;

Логарифмическая функция, её свойства и график с примерами решения не является корнем (посторонний корень), потому что не удовлетворяет условиям ОДЗ. Таким образом, данное уравнение имеет только один корень Логарифмическая функция, её свойства и график с примерами решения

Замечание:

Рассмотренное уравнение можно было решить и с использованием уравнений-следствий, не учитывая явно ОДЗ, но проверив полученные решения подстановкой их в исходное уравнение. Поэтому каждый имеет право выбирать способ решения: использовать уравнения- следствия или равносильные преобразования данного уравнения. Однако для многих уравнений проверку полученных корней выполнить достаточно непросто, а для неравенств вообще нельзя использовать следствия.

Это обусловлено тем, что не удается проверить все решения — их количество у неравенств, как правило, бесконечно. Таким образом, для неравенств приходится выполнять только равносильные преобразования (по ориентирам, аналогичным приведенным выше).

Пример №13

Решите уравнение Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Проверка.Логарифмическая функция, её свойства и график с примерами решения — посторонний корень (под знаком логарифма получаем 0), Логарифмическая функция, её свойства и график с примерами решения— корень, поскольку имеем

Логарифмическая функция, её свойства и график с примерами решения

Ответ: 14

Комментарий:

Решим данное уравнение с помощью уравнений-следствий. При использовании уравнений-следствий главное — гарантировать, что в случае, когда первое равенство верно, то и все последующие также будут верны. Чтобы избавиться от дробного коэффициента, умножим обе части уравнения (1) на 2 (если равенство (1) верно, то и равенство (2) верно). Если равенства (1) и (2) верны (при значениях Логарифмическая функция, её свойства и график с примерами решения, которые являются корнями этих уравнений), то при таких значениях Логарифмическая функция, её свойства и график с примерами решения существуют все записанные логарифмы. Тогда выраженияЛогарифмическая функция, её свойства и график с примерами решения — положительны. Следовательно, для положительных Логарифмическая функция, её свойства и график с примерами решения можно воспользоваться формулами: Логарифмическая функция, её свойства и график с примерами решения таким образом, равенства (3) и (4) также верны.

Учитывая, что функцияЛогарифмическая функция, её свойства и график с примерами решения возрастающая, а значит, каждое свое значение принимает только при одном значении аргумента, из равенства логарифмов (4) получаем равенство соответствующих аргументов (5). Если равенство (5) верно, то знаменатель дроби не равен нулю, и после умножения обеих его частей на Логарифмическая функция, её свойства и график с примерами решения получаем верное равенство (6) (а значит, и верное равенство (7)). Поскольку мы использовали уравнения-следствия, то в конце необходимо выполнить проверку.

Пример №14

Решите уравнение Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

На этой ОДЗ данное уравнение равносильно уравнениям:

Логарифмическая функция, её свойства и график с примерами решения

Учитывая ОДЗ, получаем, что х = 1 входит в ОДЗ, таким образом, является корнем; Логарифмическая функция, её свойства и график с примерами решения не входит в ОДЗ, следовательно, не является корнем данного уравнения. Ответ: 1.

Комментарий:

Решим данное уравнение с по мощью равносильных преобразований. Для этого достаточно учесть ОДЗ данного уравнения и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства. Заметим, что на ОДЗ выражение Логарифмическая функция, её свойства и график с примерами решения может быть как положительным, так и отрицательным, поэтому мы не имеем права применять к выражению Логарифмическая функция, её свойства и график с примерами решения формулу: Логарифмическая функция, её свойства и график с примерами решения (это приведет к потере корня). Применение обобщенной формулы логарифмирования приведет к уравнению с модулем. Используем другой способ преобразований, учтя, что Логарифмическая функция, её свойства и график с примерами решения Поскольку на ОДЗ все выражения, стоящие под знаками логарифмов, положительны, то все преобразования от уравнения (1) к уравнению (2) равносильны. Выполнить равносильные преобразования уравнения (2) можно с использованием ориентира, приведенного на с. 213. Равносильность уравнений (2) и (3) можно обосновать также через возрастание функции Логарифмическая функция, её свойства и график с примерами решения которая каждое свое значение принимает только при одном значении аргумента.

Пример №15

Решите уравнение Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения На ОДЗ данное уравнение равносильно уравнению Логарифмическая функция, её свойства и график с примерами решения

Замена: Логарифмическая функция, её свойства и график с примерами решения Получаем:

Логарифмическая функция, её свойства и график с примерами решения

(оба корня входят в ОДЗ). Ответ: 16; 64.

Комментарий:

Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ Логарифмическая функция, её свойства и график с примерами решения Поскольку в уравнение входят логарифмы с разными основаниями, то приведем их к одному и тому же основанию (желательно числовому, иначе можно потерять корни уравнения). В данном случае приводим к основанию 4 по формуле Логарифмическая функция, её свойства и график с примерами решения После приведения логарифмов к одному основанию переменная входит в уравнение только в одном виде Логарифмическая функция, её свойства и график с примерами решения Выполним заменуЛогарифмическая функция, её свойства и график с примерами решения Поскольку по ограничениям ОДЗ Логарифмическая функция, её свойства и график с примерами решения Тогда полученное дробное уравнение (1) равносильно квадратному уравнению (2). Поскольку замена и обратная замена являются равносильными преобразованиями на ОДЗ, то для полученных решений достаточно проверить, входят ли они в ОДЗ.

Пример №16

Решите уравнение Логарифмическая функция, её свойства и график с примерами решения

Решение:

ОДЗ: Логарифмическая функция, её свойства и график с примерами решения На ОДЗ данное уравнение равносильно уравнениям:

Логарифмическая функция, её свойства и график с примерами решения

Замена: Логарифмическая функция, её свойства и график с примерами решения Получаем:

Логарифмическая функция, её свойства и график с примерами решения

Обратная замена дает

Логарифмическая функция, её свойства и график с примерами решения

Ответ: 0,1; 1000

Комментарий:

Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ и используем ориентир: если переменная входит и в основание, и в показатель степени, то для решения такого уравнения можно попытаться прологарифмировать обе его части (только если они положительны). В запись уравнения входит десятичный логарифм , поэтому прологарифмируем обе части по основанию 10 (на ОДЗ они обе положительны ). Поскольку функция Логарифмическая функция, её свойства и график с примерами решения возрастающая, то каждое свое значение она принимает только при одном значении аргумента. Следовательно, если выполняется равенство (1), то выполняется и равенство (2), и наоборот: если выполняется равенство (2), то выполняется и равенство (1). Таким образом, уравнения (1) и (2) равносильны на ОДЗ. При Логарифмическая функция, её свойства и график с примерами решения применение формулы Логарифмическая функция, её свойства и график с примерами решения является равносильным преобразованием, а значит, уравнения (2) и (3) также равносильны . Обоснование равносильности дальнейших преобразований полностью совпадает с аналогичным обоснованием в предыдущей задаче.

Пример №17

Решите уравнение Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Замена: Логарифмическая функция, её свойства и график с примерами решения Получаем

Логарифмическая функция, её свойства и график с примерами решения

Обратная замена дает

Логарифмическая функция, её свойства и график с примерами решения— корней нет. Ответ: 2.

Комментарий:

Если сначала рассмотреть данное уравнение как простейшее логарифмическое, то по определению логарифма оно равносильно уравнению Логарифмическая функция, её свойства и график с примерами решения Как уже отмечалось (с. 211), ОДЗ данного уравнения Логарифмическая функция, её свойства и график с примерами решения для всех корней уравнения (1) учитывается автоматически, поскольку Логарифмическая функция, её свойства и график с примерами решения всегда. После этого уравнение (1) решается по схеме решения показательных уравнений (табл. 19, с. 178). Поскольку Логарифмическая функция, её свойства и график с примерами решения поэтому уравнение (2) равносильно уравнению (3).

Пример №18

Решите систему уравнений Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

По определению логарифма имеем

Логарифмическая функция, её свойства и график с примерами решения

Из второго уравнения последней системы получаем Логарифмическая функция, её свойства и график с примерами решенияи подставляем в первое уравнение:

Логарифмическая функция, её свойства и график с примерами решения

Проверка Логарифмическая функция, её свойства и график с примерами решения — решение данной системы.

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения — постороннее решение

(под знаком логарифма получаем отрицательные числа). Ответ: (1; 4).

Комментарий:

Как и логарифмические уравнения, системы логарифмических уравнений можно решать как с помощью систем-следствий (каждое решение первой системы является решением второй), так и с помощью равносильных преобразований систем (все решения каждой из них являются решениями другой).

Кроме того, при решении логарифмических систем можно применить те же способы, что и при решении других видов систем (способ алгебраического сложения, подстановка некоторого выражения из одного уравнения в другое, замена переменных).

Решим данную систему с помощью систем-следствий. Для этого достаточно гарантировать, что если данная система состоит из верных равенств, каждая следующая система также будет содержать верные равенства. Как и для уравнений, при использовании систем-следствий необходимо выполнить проверку полученных решений подстановкой в исходную систему.

Замечание. Данную систему можно было решить и с помощью равносильных преобразований систем. При этом пришлось бы учесть ОДЗ данной системы Логарифмическая функция, её свойства и график с примерами решенияследить за равносильностью выполненных у — х > 0 , преобразований (в данном случае все написанные преобразования являются равносильными на ОДЗ), а в конце проверить, удовлетворяют ли полученные решения условиям ОДЗ (пара чисел Логарифмическая функция, её свойства и график с примерами решения удовлетворяет условиям ОДЗ, а пара Логарифмическая функция, её свойства и график с примерами решенияне удовлетворяет условиям ОДЗ).

Пример №19

Решите систему уравнений Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Тогда из первого уравнения имеем Логарифмическая функция, её свойства и график с примерами решения Замена Логарифмическая функция, её свойства и график с примерами решениядает уравнения Логарифмическая функция, её свойства и график с примерами решения

Обратная замена дает Логарифмическая функция, её свойства и график с примерами решения то есть Логарифмическая функция, её свойства и график с примерами решения Тогда из второго уравнения системы имеем Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения (не принадлежит ОДЗ), Логарифмическая функция, её свойства и график с примерами решения (принадлежит ОДЗ). Таким образом, решение данной системы

Логарифмическая функция, её свойства и график с примерами решения

Ответ: (5; 5).

Комментарий:

Решим данную систему с помощью равносильных преобразований. Для этого достаточно учесть ее ОДЗ Логарифмическая функция, её свойства и график с примерами решения и гарантировать, что на каждом шагу были выполнены именно равносильные преобразования уравнения или всей системы. В первом уравнении системы все логарифмы приведем к одному основанию Логарифмическая функция, её свойства и график с примерами решения (на ОДЗ Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения

На ОДЗ Логарифмическая функция, её свойства и график с примерами решения следовательно, Логарифмическая функция, её свойства и график с примерами решения Тогда после замены Логарифмическая функция, её свойства и график с примерами решения имеем Логарифмическая функция, её свойства и график с примерами решения и поэтому переход в решении от дробного уравнения к квадратному является равносильным. Поскольку замена (вместе с обратной заменой) является равносильным преобразованием, то, заменяя первое уравнение системы равносильным ему (на ОДЗ) уравнением Логарифмическая функция, её свойства и график с примерами решения получаем систему, равносильную данной (на ее ОДЗ).

Решение логарифмических неравенств

1. График функции Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решенияЛогарифмическая функция, её свойства и график с примерами решения

2. Равносильные преобразования простейших логарифмических неравенств

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Знак неравенства не меняется, и учитывается ОДЗ.

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Знак неравенства меняется, и учитывается ОДЗ.

Примеры:

Логарифмическая функция, её свойства и график с примерами решения

Функция Логарифмическая функция, её свойства и график с примерами решения возрастающая, тогда Логарифмическая функция, её свойства и график с примерами решения

Учитывая ОДЗ, имеем Логарифмическая функция, её свойства и график с примерами решения

Ответ: Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Функция Логарифмическая функция, её свойства и график с примерами решения убывающая, тогда Логарифмическая функция, её свойства и график с примерами решения

Учитывая ОДЗ, имеем Логарифмическая функция, её свойства и график с примерами решения

Ответ: Логарифмическая функция, её свойства и график с примерами решения

3. Решение более сложных логарифмических неравенств

Ориентир:

I. С помощью равносильных преобразований данное неравенство приводится к неравенству известного вида.

Схема равносильных преобразований неравенства:

  • 1. Учитываем ОДЗ данного неравенства (и избегаем преобразований, приводящих к сужению ОДЗ).
  • 2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было вы полнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.

II. Применяется метод интервалов (данное неравенство приводится к неравенству Логарифмическая функция, её свойства и график с примерами решения) и используется схема:

Пример №20

1)Логарифмическая функция, её свойства и график с примерами решения

ОДЗ: Логарифмическая функция, её свойства и график с примерами решения На этой ОДЗ данное неравенство равносильно неравенствам: Логарифмическая функция, её свойства и график с примерами решения Замена Логарифмическая функция, её свойства и график с примерами решения Тогда Логарифмическая функция, её свойства и график с примерами решения то естьЛогарифмическая функция, её свойства и график с примерами решения Решение этого неравенства

Логарифмическая функция, её свойства и график с примерами решения

Обратная замена дает

Логарифмическая функция, её свойства и график с примерами решения

Тогда Логарифмическая функция, её свойства и график с примерами решения

Учитывая, что функция Логарифмическая функция, её свойства и график с примерами решения возрастающая, получаем:

Логарифмическая функция, её свойства и график с примерами решения

С учетом ОДЗ имеем:

Логарифмическая функция, её свойства и график с примерами решения

Ответ: Логарифмическая функция, её свойства и график с примерами решения

Пример №21

2) Логарифмическая функция, её свойства и график с примерами решения Решим неравенство методом интервалов. Оно равносильно неравенству Логарифмическая функция, её свойства и график с примерами решения Обозначим Логарифмическая функция, её свойства и график с примерами решения

1. Логарифмическая функция, её свойства и график с примерами решения

2. Нули функции: Логарифмическая функция, её свойства и график с примерами решения Тогда Логарифмическая функция, её свойства и график с примерами решения На ОДЗ это уравнение равносильно уравнению Логарифмическая функция, её свойства и график с примерами решения (полученному по определению логарифма). То есть Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решенияВ ОДЗ входит только Логарифмическая функция, её свойства и график с примерами решения Итак, Логарифмическая функция, её свойства и график с примерами решения имеет единственный нуль функцииЛогарифмическая функция, её свойства и график с примерами решения 3. Отмечаем нули функции на ОДЗ, находим знак Логарифмическая функция, её свойства и график с примерами решения на каждом из промежутков, на которые разбивается ОДЗ, и записываем решения неравенства Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Ответ: Логарифмическая функция, её свойства и график с примерами решения

Объяснение и обоснование:

Решение простейших логарифмических неравенств

Простейшими логарифмическими неравенствами обычно считают неравенства вида

Логарифмическая функция, её свойства и график с примерами решения

Для решения такого неравенства можно применять равносильные преобразования. Для этого необходимо учесть его ОДЗ: Логарифмическая функция, её свойства и график с примерами решения

и рассмотреть два случая: основание логарифма больше 1 и основание меньше 1 (но больше 0).

I. При Логарифмическая функция, её свойства и график с примерами решения логарифмическая функция Логарифмическая функция, её свойства и график с примерами решения возрастает на всей своей области определения (при Логарифмическая функция, её свойства и график с примерами решения), поэтому большему значению функции соответствует большее значение аргумента. Таким образом, переходя в неравенстве (1) от значений функции к значениям аргумента (в данном случае переходя к выражениям, стоящим под знаком логарифма), мы должны оставить тот же знак неравенства, то есть

Логарифмическая функция, её свойства и график с примерами решения

Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (большему положительному значению аргумента соответствует большее значение функции), получаем, что на ОДЗ неравенство (1) равносильно неравенству (2). Коротко это можно записать так:

Логарифмическая функция, её свойства и график с примерами решения

II. При Логарифмическая функция, её свойства и график с примерами решения логарифмическая функция Логарифмическая функция, её свойства и график с примерами решения убывает на всей области определения (при Логарифмическая функция, её свойства и график с примерами решения), поэтому большему значению функции соответствует меньшее значение аргумента. Следовательно, переходя в неравенстве (1) от значений функции к значениям аргумента, мы должны знак неравенства изменить на противоположный, то есть

Логарифмическая функция, её свойства и график с примерами решения

Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (меньшему положительному значению аргумента соответствует большее значение функции), получаем, что при Логарифмическая функция, её свойства и график с примерами решения неравенство (1) на его ОДЗ равносильно неравенству (5). Коротко это можно записать так:

Логарифмическая функция, её свойства и график с примерами решения

Суммируя полученные результаты, отметим, что для решения неравенства вида Логарифмическая функция, её свойства и график с примерами решения с помощью равносильных преобразований необходимо учесть его ОДЗ, а при переходе от значений функции к значениям аргумент а (выражениям, стоящим под знаком логарифма) — значение Логарифмическая функция, её свойства и график с примерами решения: при Логарифмическая функция, её свойства и график с примерами решения знак неравенства не меняется, при Логарифмическая функция, её свойства и график с примерами решения знак неравенства меняется на противоположный

Примеры использования этих ориентиров приведены в табл. 24. Замечание. Системы неравенств, полученные для случаев I и II, можно несколько упростить. Например, если в системе выполняются неравенство (2): Логарифмическая функция, её свойства и график с примерами решения и неравенство (4): Логарифмическая функция, её свойства и график с примерами решения то из этих неравенств следует, что Логарифмическая функция, её свойства и график с примерами решенияСледовательно, неравенство (3) этой системы выполняется автоматически, когда выполняются неравенства (2) и (4), и его можно не записывать в эту систему (см. п. 2 табл. 24). Аналогично обосновывается, что в случае II неравенство (4) в системе является следствием неравенств (3) и (5), и его также можно не записывать в систему. Например, решим неравенство Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

(ОДЗ данного неравенства Логарифмическая функция, её свойства и график с примерами решения учтено автоматически, поскольку, если Логарифмическая функция, её свойства и график с примерами решения то выполняется и неравенство Логарифмическая функция, её свойства и график с примерами решения) Решаем неравенство Логарифмическая функция, её свойства и график с примерами решения Тогда Логарифмическая функция, её свойства и график с примерами решения отсюда (см. рисунок) Логарифмическая функция, её свойства и график с примерами решения или Логарифмическая функция, её свойства и график с примерами решения — решение данного неравенства (его можно записать и так:Логарифмическая функция, её свойства и график с примерами решения

Решение более сложных логарифмических неравенств выполняется или с помощью равносильных преобразований данного неравенства (и приведения его к известному виду неравенств), или с помощью метода интервалов

Схема равносильных преобразований логарифмических неравенств полностью аналогична схеме равносильных преобразований логарифмических уравнений:

  1. учитываем ОДЗ данного неравенства;
  2. следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.

В этом случае на ОДЗ каждое решение данного неравенства будет решением второго и, наоборот, каждое решение второго неравенства будет решением первого, то есть эти неравенства равносильны (на ОДЗ). Примеры решения логарифмических неравенств с помощью равносильных преобразований и методом интервалов и оформления такого решения приведены в табл. 24. Рассмотрим еще несколько примеров.

Примеры решения задач:

Пример №22

Решите неравенство Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Решим данное неравенство с помощью равносильных преобразований. Как и для уравнений, для этого достаточно учесть ОДЗ данного неравенства и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства. Поскольку на ОДЗ выражения, стоящие под знаком логарифмов, положительны, то формулу Логарифмическая функция, её свойства и график с примерами решения для положительных Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения можно применить как в прямом, так и в обратном направлениях. Таким образом, выполняя преобразование неравенства по этой формуле, получим неравенство, равносильное данному (на его ОДЗ). Чтобы применить свойства логарифмической функции, запишем число (-1 ) как значение логарифмической функции: Логарифмическая функция, её свойства и график с примерами решения (разумеется, эту формулу можно применить как в прямом, так и в обратном направлениях) и учтем, чтоЛогарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

На этой ОДЗ данное неравенство равносильно неравенству

Логарифмическая функция, её свойства и график с примерами решения

Функция Логарифмическая функция, её свойства и график с примерами решения убывающая, поэтому

Логарифмическая функция, её свойства и график с примерами решения

Получаем Логарифмическая функция, её свойства и график с примерами решения Последнее неравенство имеет решения:

Логарифмическая функция, её свойства и график с примерами решения (см. рисунок).

Логарифмическая функция, её свойства и график с примерами решения Учитывая ОДЗ, получаем Логарифмическая функция, её свойства и график с примерами решения

Ответ: Логарифмическая функция, её свойства и график с примерами решения

Пример №23

Решите неравенство Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Учитывая ОДЗ данного неравенства и то, что функция Логарифмическая функция, её свойства и график с примерами решения убывающая, получаем

Логарифмическая функция, её свойства и график с примерами решения

то есть Логарифмическая функция, её свойства и график с примерами решения

Тогда Логарифмическая функция, её свойства и график с примерами решения

Так как функция Логарифмическая функция, её свойства и график с примерами решения возрастающая, получаем

Логарифмическая функция, её свойства и график с примерами решения

Это неравенство равносильно системе Логарифмическая функция, её свойства и график с примерами решения

которая равносильна системе Логарифмическая функция, её свойства и график с примерами решения

Решаем неравенства (4) и (5) методом интервалов и находим их общее решение (см. рисунок)

Для неравенства (4) ОДЗ: Логарифмическая функция, её свойства и график с примерами решения

нуль функцииЛогарифмическая функция, её свойства и график с примерами решения

Для неравенства (5) ОДЗ: Логарифмическая функция, её свойства и график с примерами решения

нуль функции Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Ответ: Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

ОДЗ данного неравенства задается системой

Логарифмическая функция, её свойства и график с примерами решения

При выполнении равносильных преобразований главное — учесть ОДЗ в ходе решения. При переходе от неравенства (1) к неравенству (2) в записи последнего остается выражение Логарифмическая функция, её свойства и график с примерами решения для которого ОДЗ: Логарифмическая функция, её свойства и график с примерами решения

Следовательно, при таком переходе ограничение (7) будет неявно учтено, поэтому достаточно учесть только ограничение (6) (что и сделано в левой части неравенства (2)). Чтобы применить свойства соответствующих логарифмических функций, записываем сначала Логарифмическая функция, её свойства и график с примерами решения (и учитываем, что Логарифмическая функция, её свойства и график с примерами решенияа затем — Логарифмическая функция, её свойства и график с примерами решения

При переходе от неравенства (2) к неравенству (3) получаем Логарифмическая функция, её свойства и график с примерами решения таким образом, и в этом случае не равенство (7) учтено автоматически. Для нахождения общих решений неравенств (4) и (5) удобно их решения методом интервалов разместить одно над другим так, чтобы одинаково обозначенные точки находились одна над другой. Тогда из приведенного рисунка легко увидеть общее решение системы неравенств.

Определение логарифмической функции

Если величины Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения связаны уравнением Логарифмическая функция, её свойства и график с примерами решения, то Логарифмическая функция, её свойства и график с примерами решения называют логарифмической функцией от Логарифмическая функция, её свойства и график с примерами решения. Возьмем Логарифмическая функция, её свойства и график с примерами решения и будем придавать независимому переменному Логарифмическая функция, её свойства и график с примерами решения значения, равные целым положительным числам. Составим для значений Логарифмическая функция, её свойства и график с примерами решения таблицу:

Логарифмическая функция, её свойства и график с примерами решения

Заметим, что в этой таблице значения Логарифмическая функция, её свойства и график с примерами решения растут в геометрической прогрессии, в то время как значения Логарифмическая функция, её свойства и график с примерами решения растут в арифметической прогрессии. Это будет иметь место во всех случаях, когда а больше единицы. Если Логарифмическая функция, её свойства и график с примерами решения давать значения, образующие убывающую геометрическую прогрессию с положительными членами, то Логарифмическая функция, её свойства и график с примерами решения будет принимать значения убывающей арифметической прогрессии, как это видно из таблицы:

Логарифмическая функция, её свойства и график с примерами решения

Напомним, что отрицательные числа и нуль не имеют логарифмов, точнее, они не имеют действительных логарифмов.

Логарифмическая функция, её свойства и график с примерами решения

При Логарифмическая функция, её свойства и график с примерами решения график функции Логарифмическая функция, её свойства и график с примерами решения имеет вид, указанный на рис. 33 (Логарифмическая функция, её свойства и график с примерами решения).

Логарифм числа. Исследование

1)Запишите вместо х такие числа, чтобы равенства были верными.

а) 2х = 16 б) 3х = 9 в) 4х = 64

2)При каких значениях аргумента функция у = 2х получает значение равное 6? Является ли это значение х единственным?

Логарифмическая функция, её свойства и график с примерами решения

3)Между какими двумя целыми числами находятся значения х удовлетворяющие равенствам? а) 2х = 24 б) 3х = 18 в) 4 х = 56

Что такое логарифм

Логарифмом по основанию а числа b, называется такое число, что

при возведении числа а в эту степень получится число b .

Это записывается так Логарифмическая функция, её свойства и график с примерами решения. Здесь, при Логарифмическая функция, её свойства и график с примерами решения число а и b  положительные действительные числа. Запись Логарифмическая функция, её свойства и график с примерами решения является логарифмической записью равенства Логарифмическая функция, её свойства и график с примерами решения и наоборот запись

Логарифмическая функция, её свойства и график с примерами решения является экспоненциальной записью для равенства Логарифмическая функция, её свойства и график с примерами решения.

Логарифмическая функция, её свойства и график с примерами решения

То есть записи Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения эквивалентны.

Логарифмическая функция, её свойства и график с примерами решения

Равенство Логарифмическая функция, её свойства и график с примерами решения называется основным логарифмическим тождеством.

Пример №24

Заменим логарифмическую запись экспоненциальности.

Логарифмическая функция, её свойства и график с примерами решения

Решение:

логарифмическая запись: экспоненциальная запись:

Логарифмическая функция, её свойства и график с примерами решения

Пример №25

Найдём значение логарифмического выражения.

Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Логарифм чисел по основанию 10 и е соответственно обозначаются как Логарифмическая функция, её свойства и график с примерами решения. Логарифм по основанию 10 называется десятичным логарифмом, по основанию е — натуральным логарифмом.

Логарифмическая функция, её свойства и график с примерами решения

При вычислении логарифмов можно пользоваться калькулятором. Например, виртуальным калькулятором по адресу http://web2.0calc.com

Исследование. Постройте в тетради таблицу значений и график функций Логарифмическая функция, её свойства и график с примерами решения обратной ей функции Логарифмическая функция, её свойства и график с примерами решения . Запишите своё мнение о полученных функциях.

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция

Для каждого значения области определения функции Логарифмическая функция, её свойства и график с примерами решения соответствует единственное значение из области значений, т.е. для функции Логарифмическая функция, её свойства и график с примерами решения существует обратная функция Логарифмическая функция, её свойства и график с примерами решения.

Логарифмическая функция, её свойства и график с примерами решения

Значит, если график функции Логарифмическая функция, её свойства и график с примерами решения отразить симметрично относительно прямой у = х, то получим график функции Логарифмическая функция, её свойства и график с примерами решения.

1)Область определения логарифмической функции все

положительные числа: Логарифмическая функция, её свойства и график с примерами решения

2)Множество значений логарифмической функции множество всех действительных чисел: Логарифмическая функция, её свойства и график с примерами решения

3)При Логарифмическая функция, её свойства и график с примерами решения логарифмическая функция является возрастающей, при Логарифмическая функция, её свойства и график с примерами решения убывающей.

4)График функции Логарифмическая функция, её свойства и график с примерами решения пересекает ось абсцисс в точке (1; 0). В качестве примера для Логарифмическая функция, её свойства и график с примерами решения на рисунке даны графики Логарифмическая функция, её свойства и график с примерами решения.

Постройте графики в тетради.

Если Логарифмическая функция, её свойства и график с примерами решения, то при Логарифмическая функция, её свойства и график с примерами решения логарифмическая функция принимает отрицательные значения, при Логарифмическая функция, её свойства и график с примерами решения принимает положительные значения.

В качестве примера для Логарифмическая функция, её свойства и график с примерами решения на рисунке даны графики функций у = log_i_ х, у Логарифмическая функция, её свойства и график с примерами решения.

Постройте графики в тетради.Если Логарифмическая функция, её свойства и график с примерами решения, то при Логарифмическая функция, её свойства и график с примерами решения логарифмическая функция принимает положительные значения, при Логарифмическая функция, её свойства и график с примерами решения принимает отрицательные значения. Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая шкала и решение задач

В химии: Показатель рН-мера активности ионов водорода в растворе, количественно выражающая его кислотность. Для вычисления уровня рН в растворах используется формулаЛогарифмическая функция, её свойства и график с примерами решения

Здесь, Н+ концентрация ионов в мол/л. Из формулы следует, что при увеличении показателя рН па 1 единицу, концентрация ионов в растворе увеличивается в 10 раз. По шкале рН значения показателя рН изменяются от 0 до 14. Если рН равно 7, то раствор считается нейтральным, меньше 7 — кислым, больше 7 — щелочным.

Логарифмическая функция, её свойства и график с примерами решения

В физике: Громкость звука измеряется в децибелах и вычисляется по формуле Логарифмическая функция, её свойства и график с примерами решения. Здесь I — интенсивность звука (ватт/м2), I0 — наименьшая интенсивность звука, которую различает человеческое ухо (принято 10-12 ватт/м2). Человеческое ухо может различать звуки в очень большом диапазоне от 0 dB (тишина) до 180 dB.

Землетрясение. В 1935 году американский сейсмолог Чарлз Рихтер вывел формулу Логарифмическая функция, её свойства и график с примерами решения и создал логарифмическую шкалу определения силы землетрясения (она называется шкалой Рихтера). Здесь М -сила землетрясения (в баллах), А — максимальная амплитуда волны (в микронах), зарегистрированная на сейсмографе, Ао— амплитуда (принято 1 микрон (10 -6 м)) самой маленькой сейсмической волны зарегистрированной сейсмографом (её называют «нулём землетрясения»). Формулу Логарифмическая функция, её свойства и график с примерами решения можно записать иначе, как Логарифмическая функция, её свойства и график с примерами решения. Таким образом, по шкале Рихтера, амплитуда сейсмической волны в 4 балла в 10 раз больше амплитуды сейсмической волны в 3 балла.

Биология. Биологи по длине Логарифмическая функция, её свойства и график с примерами решения следа слона, могут, приблизительно, определить его возраст ( а). Для этого они используют формулу Логарифмическая функция, её свойства и график с примерами решения .

Свойства логарифмов

1. Логарифм произведения: Логарифмическая функция, её свойства и график с примерами решения

Логарифм произведения двух положительных чисел равен сумме логарифмов множителей. Здесь Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения, х и у — положительные действительные числа.

2. Логарифм частного: Логарифмическая функция, её свойства и график с примерами решения

Логарифм частного двух положительных чисел равен разности логарифмов. Здесь Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения, х и у — положительные действительные числа.

3. Логарифм степени: Логарифмическая функция, её свойства и график с примерами решения

Логарифм степени числа равен произведению степени и логарифма этого числа. ЗдесьЛогарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения, х — положительное действительное число.

Свойство 1. Логарифмическая функция, её свойства и график с примерами решения

Доказательство свойства 1:

Обозначим Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Свойство 2. Логарифмическая функция, её свойства и график с примерами решения

Доказательство свойства 2:

Обозначим Логарифмическая функция, её свойства и график с примерами решения.

Логарифмическая функция, её свойства и график с примерами решения

Свойство 3. Логарифмическая функция, её свойства и график с примерами решения

Доказательство свойства 3:

Обозначим Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Используя свойства логарифмов, запишите данные выражения через логарифмы положительных чисел х, у и z.

Пример:

Логарифмическая функция, её свойства и график с примерами решения

Используя свойства логарифмов запишите в виде логарифма какого-либо числа вида Логарифмическая функция, её свойства и график с примерами решения.

Пример:

Логарифмическая функция, её свойства и график с примерами решения

Запишите в виде логарифма следующие выражения, зная, что переменные могут принимать только положительные значения.

Пример:

Логарифмическая функция, её свойства и график с примерами решения

Переход к новому основанию:

По основному логарифмическому тождеству и свойству степени логарифма имеем: Логарифмическая функция, её свойства и график с примерами решения

Отсюда:Логарифмическая функция, её свойства и график с примерами решения

В частном случае при Логарифмическая функция, её свойства и график с примерами решения

На многих калькуляторах существуют кнопки для вычисления только десятичного логарифма (lg) и натурального логарифма (In). Поэтому, возникает необходимость представлять логарифмы в виде десятичных и натуральных логарифмов.

Логарифмическая функция, её свойства и график с примерами решения

Пример:

Запишите в виде : а) десятичного; б) натурального логарифма и вычислите.

Логарифмическая функция, её свойства и график с примерами решения

Логарифм числа и его свойства

Логарифм числа:

Логарифмом положительного числа b по основанию Логарифмическая функция, её свойства и график с примерами решения называется показатель степени, в которую необходимо возвести а, чтобы получить b. Обозначение: Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения поскольку Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решениятак как Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения поскольку Логарифмическая функция, её свойства и график с примерами решения

Десятичный логарифм — это логарифм по основанию 10. Обозначение: Логарифмическая функция, её свойства и график с примерами решения

Натуральный логарифм — это логарифм по основанию Логарифмическая функция, её свойства и график с примерами решения — иррациональное число, приближенное значение которого: Логарифмическая функция, её свойства и график с примерами решения

Обозначение: Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

2. Основное логарифмическое тождество

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

3. Свойства логарифмов и формулы логарифмирования Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения Логарифм единицы по любому основанию равен нулю.

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения Логарифм произведения положительных чисел равен сумме логарифмов множителей.

Логарифмическая функция, её свойства и график с примерами решения Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.

Логарифмическая функция, её свойства и график с примерами решения Логарифм степени положительного числа равен произведению показателя степени на логарифм основания этой степени.

4. Формула перехода к логарифмам с другим основанием

Логарифмическая функция, её свойства и график с примерами решения

Следствия

Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения

Объяснение и обоснование:

Логарифм числа в высшей математике

Если рассмотреть равенство Логарифмическая функция, её свойства и график с примерами решения то, зная любые два числа из этого равенства, мы можем найти третье:

Логарифмическая функция, её свойства и график с примерами решения

Первые две операции, представленные в этой таблице (возведение в степень и извлечение корня Логарифмическая функция, её свойства и график с примерами решения степени), нам уже известны, а с третьей — логарифмированием, то есть нахождением логарифма данного числа — мы познакомимся в этом параграфе.

В общем виде операция логарифмирования позволяет из равенства Логарифмическая функция, её свойства и график с примерами решения (где Логарифмическая функция, её свойства и график с примерами решения найти показатель Логарифмическая функция, её свойства и график с примерами решения Результат выполнения этой операции обозначается Логарифмическая функция, её свойства и график с примерами решения Таким образом, логарифмом положительного числа Логарифмическая функция, её свойства и график с примерами решения по основанию Логарифмическая функция, её свойства и график с примерами решения называется показатель степени, в которую необходимо возвести Логарифмическая функция, её свойства и график с примерами решения чтобы получить Логарифмическая функция, её свойства и график с примерами решения

2) Например: 1) Логарифмическая функция, её свойства и график с примерами решения поскольку Логарифмическая функция, её свойства и график с примерами решения поскольку Логарифмическая функция, её свойства и график с примерами решения

3) Логарифмическая функция, её свойства и график с примерами решения поскольку Логарифмическая функция, её свойства и график с примерами решения

Отметим, что при положительных Логарифмическая функция, её свойства и график с примерами решения уравнение Логарифмическая функция, её свойства и график с примерами решения всегда имеет единственное решение, поскольку функция Логарифмическая функция, её свойства и график с примерами решения принимает все значения из промежутка Логарифмическая функция, её свойства и график с примерами решения является возрастающей, а при Логарифмическая функция, её свойства и график с примерами решения — убывающей (рис. 126).

Итак, каждое свое значение Логарифмическая функция, её свойства и график с примерами решения функция Логарифмическая функция, её свойства и график с примерами решения принимает только при одном значении Логарифмическая функция, её свойства и график с примерами решения Следовательно, для любых положительных чисел Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения уравнение Логарифмическая функция, её свойства и график с примерами решения имеет единственный корень Логарифмическая функция, её свойства и график с примерами решения

При Логарифмическая функция, её свойства и график с примерами решения уравнение Логарифмическая функция, её свойства и график с примерами решения не имеет корней, таким образом, при Логарифмическая функция, её свойства и график с примерами решения значение выражения Логарифмическая функция, её свойства и график с примерами решения не существует.

Логарифмическая функция, её свойства и график с примерами решения

Например, не существуют значения Логарифмическая функция, её свойства и график с примерами решения

Отметим, что логарифм по основанию 10 называется десятичным логарифмом и обозначается Логарифмическая функция, её свойства и график с примерами решения

Например, Логарифмическая функция, её свойства и график с примерами решения

В недалеком прошлом десятичным логарифмам отдавали предпочтение и составляли очень подробные таблицы их значений, которые использовались в разных вычислениях. В эпоху всеобщей компьютеризации десятичные логарифмы утратили свою ведущую роль. В современной науке и технике широко используются логарифмы, основанием которых является особенное число Логарифмическая функция, её свойства и график с примерами решения (такое же знаменитое, как и число Логарифмическая функция, её свойства и график с примерами решения Число Логарифмическая функция, её свойства и график с примерами решения как и число Логарифмическая функция, её свойства и график с примерами решения— иррациональное, Логарифмическая функция, её свойства и график с примерами решения Логарифм по основанию Логарифмическая функция, её свойства и график с примерами решения называется натуральным логарифмом и обозначается Логарифмическая функция, её свойства и график с примерами решения

Например, Логарифмическая функция, её свойства и график с примерами решения

Основное логарифмическое тождество

По определению логарифма, если Логарифмическая функция, её свойства и график с примерами решения Подставляя в последнее равенство вместо Логарифмическая функция, её свойства и график с примерами решения его значение, получаем равенство, которое называется основным логарифмическим тождеством:

Логарифмическая функция, её свойства и график с примерами решения где Логарифмическая функция, её свойства и график с примерами решения

Например: Логарифмическая функция, её свойства и график с примерами решения

Свойства логарифмов и формулы логарифмирования

Во всех приведенных ниже формулах Логарифмическая функция, её свойства и график с примерами решения

1) Из определения логарифма получаем, что

Логарифмическая функция, её свойства и график с примерами решения

поскольку Логарифмическая функция, её свойства и график с примерами решения Таким образом, логарифм единицы по любому основанию равен нулю.

2) Поскольку Логарифмическая функция, её свойства и график с примерами решения то Логарифмическая функция, её свойства и график с примерами решения

3) Чтобы получить формулу логарифма произведения Логарифмическая функция, её свойства и график с примерами решения обозначим Логарифмическая функция, её свойства и график с примерами решения Тогда по определению логарифма

Логарифмическая функция, её свойства и график с примерами решения

Перемножив почленно два последних равенства, имеем Логарифмическая функция, её свойства и график с примерами решения По определению логарифма и с учетом введенных обозначений из последнего равенства получаем Логарифмическая функция, её свойства и график с примерами решения Таким образом,

Логарифмическая функция, её свойства и график с примерами решения

Логарифм произведения положительных чисел равен сумме логарифмов множителей.

4) Аналогично, чтобы получить формулу логарифма частного Логарифмическая функция, её свойства и график с примерами решения достаточно разделить почленно равенства (1). Тогда Логарифмическая функция, её свойства и график с примерами решения По определению логарифма и с учетом введенных обозначений из последнего равенства получаем Логарифмическая функция, её свойства и график с примерами решения Таким образом, Логарифмическая функция, её свойства и график с примерами решения

Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.

5) Чтобы получить формулу логарифма степени Логарифмическая функция, её свойства и график с примерами решения обозначим Логарифмическая функция, её свойства и график с примерами решения По определению логарифма Логарифмическая функция, её свойства и график с примерами решения Тогда Логарифмическая функция, её свойства и график с примерами решения и по определению логарифма с учетом обозначения для Логарифмическая функция, её свойства и график с примерами решения имеем Логарифмическая функция, её свойства и график с примерами решения Таким образом, Логарифмическая функция, её свойства и график с примерами решения

Логарифм степени положительного числа равен произведению показателя степени на логарифм основания этой степени.

Учитывая, что при Логарифмическая функция, её свойства и график с примерами решения по формуле (4) имеем: Логарифмическая функция, её свойства и график с примерами решения To есть при Логарифмическая функция, её свойства и график с примерами решения можно пользоваться формулой Логарифмическая функция, её свойства и график с примерами решения (можно не запоминать эту формулу, а каждый раз записывать корень из положительного числа как соответствующую степень).

Замечание. Иногда приходится находить логарифм произведения Логарифмическая функция, её свойства и график с примерами решения и в том случае, когда числа Логарифмическая функция, её свойства и график с примерами решения оба отрицательные Логарифмическая функция, её свойства и график с примерами решения Тогда Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения существует, но формулой (2) воспользоваться нельзя — она обоснована только для положительных значений Логарифмическая функция, её свойства и график с примерами решения В случае Логарифмическая функция, её свойства и график с примерами решения имеем Логарифмическая функция, её свойства и график с примерами решения и теперь Логарифмическая функция, её свойства и график с примерами решения

Таким образом, для логарифма произведения Логарифмическая функция, её свойства и график с примерами решения можно воспользоваться формулой (2). Поэтому при Логарифмическая функция, её свойства и график с примерами решения можем записать: Логарифмическая функция, её свойства и график с примерами решения

Отметим, что полученная формула справедлива и при Логарифмическая функция, её свойства и график с примерами решения поскольку в этом случае Логарифмическая функция, её свойства и график с примерами решения Таким образом, при Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения

Аналогично можно обобщить и формулы (3) и (4):

при Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения при Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения

Формула перехода к логарифмам с другим основанием

Пусть Логарифмическая функция, её свойства и график с примерами решения Тогда по определению логарифма Логарифмическая функция, её свойства и график с примерами решения Прологарифмируем обе части последнего равенства по основанию Логарифмическая функция, её свойства и график с примерами решенияЛогарифмическая функция, её свойства и график с примерами решения Получим Логарифмическая функция, её свойства и график с примерами решения

Используя в левой части этого равенства формулу логарифма степени, имеем Логарифмическая функция, её свойства и график с примерами решения Тогда Логарифмическая функция, её свойства и график с примерами решения Учитывая, что Логарифмическая функция, её свойства и график с примерами решения получаем Логарифмическая функция, её свойства и график с примерами решения где Логарифмическая функция, её свойства и график с примерами решения

Таким образом, логарифм положительного числа Логарифмическая функция, её свойства и график с примерами решенияпо одному основанию а равен логарифму этого же числа Логарифмическая функция, её свойства и график с примерами решения по новому основанию Логарифмическая функция, её свойства и график с примерами решения деленному на логарифм прежнего основания а по новому основанию Логарифмическая функция, её свойства и график с примерами решения

С помощью последней формулы можно получить следующие следствия.

  1. Логарифмическая функция, её свойства и график с примерами решения Учитывая, что Логарифмическая функция, её свойства и график с примерами решения имеем Логарифмическая функция, её свойства и график с примерами решениягде Логарифмическая функция, её свойства и график с примерами решения
  2. Аналогично, учитывая формулу перехода от одного основания логарифма к другому и формулу логарифма степени, получаем (при Логарифмическая функция, её свойства и график с примерами решенияЛогарифмическая функция, её свойства и график с примерами решения

Записав полученную формулу справа налево, имеем Логарифмическая функция, её свойства и график с примерами решения где Логарифмическая функция, её свойства и график с примерами решения

Примеры решения задач:

Пример №26

Вычислите: Логарифмическая функция, её свойства и график с примерами решения

Решение:

1) Логарифмическая функция, её свойства и график с примерами решения поскольку Логарифмическая функция, её свойства и график с примерами решения

2) Логарифмическая функция, её свойства и график с примерами решения так как

Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Учитывая определение логарифма, необходимо подобрать такой показатель степени, чтобы при возведении основания логарифма в эту степень получить число, стоящее под знаком логарифма.

Пример №27

Запишите решение простейшего показательного уравнения: Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Для любых положительных чисел Логарифмическая функция, её свойства и график с примерами решения уравнение Логарифмическая функция, её свойства и график с примерами решения имеет единственный корень. Показатель степени Логарифмическая функция, её свойства и график с примерами решения в которую необходимо возвести основание Логарифмическая функция, её свойства и график с примерами решения чтобы получить Логарифмическая функция, её свойства и график с примерами решения называется логарифмом Логарифмическая функция, её свойства и график с примерами решения по основанию Логарифмическая функция, её свойства и график с примерами решения поэтому Логарифмическая функция, её свойства и график с примерами решения

Решение:

По определению логарифма:

Логарифмическая функция, её свойства и график с примерами решения

Пример №28

Выразите логарифм по основанию 3 выражения Логарифмическая функция, её свойства и график с примерами решения (где Логарифмическая функция, её свойства и график с примерами решения и Логарифмическая функция, её свойства и график с примерами решения

через логарифмы по основанию 3 чисел Логарифмическая функция, её свойства и график с примерами решения (Коротко говорят так «Прологарифмируйте заданное выражение по основанию 3».)

Комментарий:

Сначала запишем выражения, стоящие в числителе и знаменателе данного выражения, как степени чисел и букв. Далее учтем, что логарифм частного Логарифмическая функция, её свойства и график с примерами решения положительных чисел равен разности логарифмов числителя и знаменателя, а затем то, что логарифм произведения Логарифмическая функция, её свойства и график с примерами решения равен сумме логарифмов множителей.

После этого учтем, что каждый из логарифмов степеней Логарифмическая функция, её свойства и график с примерами решения равен произведению показателя степени на логарифм основания этой степени, а также то, что Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Пример №29

Известно, что Логарифмическая функция, её свойства и график с примерами решения Выразите Логарифмическая функция, её свойства и график с примерами решения через Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Комментарий Сначала представим число 700 как произведение степеней данных чисел 5 и 7 и основания логарифма 2, а далее используем свойства логарифмов и подставим в полученное выражение значения Логарифмическая функция, её свойства и график с примерами решения

Пример №30

Прологарифмируйте по основанию 10 выражение Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Поскольку логарифмы существуют только для положительных чисел, то мы можем прологарифмировать данное выражение только в случае когда Логарифмическая функция, её свойства и график с примерами решенияИз условия не следует, что в данном выражении значения Логарифмическая функция, её свойства и график с примерами решения с положительны. Поэтому будем пользоваться обобщенными формулами логарифмирования Логарифмическая функция, её свойства и график с примерами решения а также учтем, что Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Иногда приходится искать выражение, зная его логарифм. Такую операцию называют потенцированием.

Пример №31

Найдите х по его логарифму:

Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Пользуясь формулами логарифмирования справа налево, запишем правые части данных равенств в виде логарифма какого-то выражения.

Из полученного равенства Логарифмическая функция, её свойства и график с примерами решения получаем Логарифмическая функция, её свойства и график с примерами решения (значение Логарифмическая функция, её свойства и график с примерами решения удовлетворяющее равенству (1), — единственное).

Пример №32

Вычислите значение выражения Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Попытаемся привести показатель степени данного выражения к виду Логарифмическая функция, её свойства и график с примерами решения чтобы можно было воспользоваться основным логарифмическим тождеством:

Логарифмическая функция, её свойства и график с примерами решения

Для этого перейдем в показателе степени к одному основанию логарифма (к основанию 5).

Решение:

Поскольку Логарифмическая функция, её свойства и график с примерами решения то Логарифмическая функция, её свойства и график с примерами решения

Кроме того,

Логарифмическая функция, её свойства и график с примерами решения

Тогда Логарифмическая функция, её свойства и график с примерами решения

Итак Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, ee свойства и график

Определение. Логарифмической функцией называется функция вида Логарифмическая функция, её свойства и график с примерами решения

График логарифмической функции:

Функции Логарифмическая функция, её свойства и график с примерами решения — взаимно обратные функции, поэтому их графики симметричны относительно прямой Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Свойства логарифмической функции:

1. Область определения: Логарифмическая функция, её свойства и график с примерами решения

2. Область значений: Логарифмическая функция, её свойства и график с примерами решения

3. Функция ни четная, ни нечетная.

4. Точки пересечения с осями координат: с осью Логарифмическая функция, её свойства и график с примерами решения с осью Логарифмическая функция, её свойства и график с примерами решения

5. Промежутки возрастания и убывания:

Логарифмическая функция, её свойства и график с примерами решения

функция Логарифмическая функция, её свойства и график с примерами решения возрастает при Логарифмическая функция, её свойства и график с примерами решения на всей области определения

Логарифмическая функция, её свойства и график с примерами решения

функция Логарифмическая функция, её свойства и график с примерами решения убывает при Логарифмическая функция, её свойства и график с примерами решения на всей области определения

6. Промежутки знакопостоянства:

Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения

7. Наибольшего и наименьшего значений функция не имеет.

8. Логарифмическая функция, её свойства и график с примерами решения

Объяснение и обоснование:

Понятие логарифмической функции и ее график

Логарифмической функцией называется функция вида Логарифмическая функция, её свойства и график с примерами решения

Покажем, что эта функция является обратной к функции Логарифмическая функция, её свойства и график с примерами решения Действительно, показательная функция Логарифмическая функция, её свойства и график с примерами решения возрастает на множестве Логарифмическая функция, её свойства и график с примерами решения а при Логарифмическая функция, её свойства и график с примерами решения — убывает на множестве Логарифмическая функция, её свойства и график с примерами решения. Область значений функции Логарифмическая функция, её свойства и график с примерами решения— промежуток Логарифмическая функция, её свойства и график с примерами решения Таким образом, функция Логарифмическая функция, её свойства и график с примерами решения обратима (с. 141) и имеет обратную функцию с областью определения Логарифмическая функция, её свойства и график с примерами решения и областью значений Логарифмическая функция, её свойства и график с примерами решения Напомним, что для записи формулы обратной функции достаточно из равенства Логарифмическая функция, её свойства и график с примерами решения выразить Логарифмическая функция, её свойства и график с примерами решения через Логарифмическая функция, её свойства и график с примерами решения и в полученной формуле Логарифмическая функция, её свойства и график с примерами решения аргумент обозначить через Логарифмическая функция, её свойства и график с примерами решения а функцию — через Логарифмическая функция, её свойства и график с примерами решения Тогда из уравнения Логарифмическая функция, её свойства и график с примерами решения по определению логарифма получаем Логарифмическая функция, её свойства и график с примерами решения — формулу обратной функции, в которой аргумент обозначен через Логарифмическая функция, её свойства и график с примерами решения а функция — через Логарифмическая функция, её свойства и график с примерами решения Изменяя обозначения на традиционные, имеем формулу Логарифмическая функция, её свойства и график с примерами решения — функции, обратной к функции Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Как известно, графики взаимно обратных функций симметричны относительно прямой Логарифмическая функция, её свойства и график с примерами решения Таким образом, график функции Логарифмическая функция, её свойства и график с примерами решения можно получить из графика функции у = ах симметричным отображением относительно прямой Логарифмическая функция, её свойства и график с примерами решения На рисунке 127 приведены графики логарифмических функций при Логарифмическая функция, её свойства и график с примерами решения и при Логарифмическая функция, её свойства и график с примерами решения График логарифмической функции называют логарифмической кривой.

Свойства логарифмической функции

Свойства логарифмической функции, указанные в пункте 8 таблицы 54. Другие свойства функции Логарифмическая функция, её свойства и график с примерами решения прочитаем из полученного графика этой функции или обоснуем, опираясь на свойства функции Логарифмическая функция, её свойства и график с примерами решения

Поскольку область определения прямой функции является областью значений обратной, а область значений прямой функции — областью определения обратной, то, зная эти характеристики для функции Логарифмическая функция, её свойства и график с примерами решения получаем соответствующие характеристики для функции Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

  1. Областью определения функции Логарифмическая функция, её свойства и график с примерами решения является множество Логарифмическая функция, её свойства и график с примерами решения всех положительных чисел Логарифмическая функция, её свойства и график с примерами решения
  2. Областью значений функции Логарифмическая функция, её свойства и график с примерами решения является множество Логарифмическая функция, её свойства и график с примерами решения всех действительных чисел (тогда функция Логарифмическая функция, её свойства и график с примерами решения не имеет ни наибольшего, ни наименьшего значений).
  3. Функция Логарифмическая функция, её свойства и график с примерами решения не может быть ни четной, ни нечетной, поскольку ее область определения не симметрична относительно точки 0.
  4. График функции Логарифмическая функция, её свойства и график с примерами решения не пересекает ось Логарифмическая функция, её свойства и график с примерами решения поскольку на оси Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения а это значение не принадлежит области определения функции Логарифмическая функция, её свойства и график с примерами решенияГрафик функции Логарифмическая функция, её свойства и график с примерами решения пересекает ось Логарифмическая функция, её свойства и график с примерами решения в точке Логарифмическая функция, её свойства и график с примерами решения поскольку Логарифмическая функция, её свойства и график с примерами решения при всех значениях Логарифмическая функция, её свойства и график с примерами решения
  5. Из графиков функции Логарифмическая функция, её свойства и график с примерами решения приведенных на рисунке 127, видно, что прu Логарифмическая функция, её свойства и график с примерами решения функция Логарифмическая функция, её свойства и график с примерами решения возрастает на всей области определения, а при Логарифмическая функция, её свойства и график с примерами решения — убывает на всей области определения. Это свойство можно обосновать, опираясь не на вид графика, а только на свойства функции Логарифмическая функция, её свойства и график с примерами решения Например, при Логарифмическая функция, её свойства и график с примерами решения возьмем Логарифмическая функция, её свойства и график с примерами решения По основному логарифмическому тождеству можно записать: Логарифмическая функция, её свойства и график с примерами решения Тогда, учитывая, что Логарифмическая функция, её свойства и график с примерами решения имеем Логарифмическая функция, её свойства и график с примерами решения Поскольку при Логарифмическая функция, её свойства и график с примерами решения функция Логарифмическая функция, её свойства и график с примерами решения является возрастающей, то из последнего неравенства получаем Логарифмическая функция, её свойства и график с примерами решения А это и означает, что при Логарифмическая функция, её свойства и график с примерами решения функция Логарифмическая функция, её свойства и график с примерами решения возрастает на всей области определения. Аналогично можно обосновать, что при Логарифмическая функция, её свойства и график с примерами решения функция Логарифмическая функция, её свойства и график с примерами решения убывает на всей области определения.
  6. Промежутки знакопостоянства. Поскольку график функции Логарифмическая функция, её свойства и график с примерами решения пересекает ось Логарифмическая функция, её свойства и график с примерами решения в точке Логарифмическая функция, её свойства и график с примерами решения то, учитывая возрастание функции при Логарифмическая функция, её свойства и график с примерами решения и убывание при Логарифмическая функция, её свойства и график с примерами решения имеем:

Логарифмическая функция, её свойства и график с примерами решения

Примеры решения задач:

Пример №33

Найдите область определения функции:

Логарифмическая функция, её свойства и график с примерами решения

Решение:

  1. Область определения функции Логарифмическая функция, её свойства и график с примерами решения задается неравенством Логарифмическая функция, её свойства и график с примерами решения Отсюда Логарифмическая функция, её свойства и график с примерами решения То есть Логарифмическая функция, её свойства и график с примерами решения
  2. Область определения функции Логарифмическая функция, её свойства и график с примерами решения задается неравенством Логарифмическая функция, её свойства и график с примерами решения Это неравенство выполняется при всех действительных значениях Логарифмическая функция, её свойства и график с примерами решения Таким образом, Логарифмическая функция, её свойства и график с примерами решения
  3. Область определения функции Логарифмическая функция, её свойства и график с примерами решения задается неравенством Логарифмическая функция, её свойства и график с примерами решения Решая это квадратное неравенство, получаем Логарифмическая функция, её свойства и график с примерами решения или Логарифмическая функция, её свойства и график с примерами решения(см. рисунок).

Логарифмическая функция, её свойства и график с примерами решения

То есть Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Поскольку выражение, стоящее под знаком логарифма, должно быть положительным, то для нахождения области определения заданной функции необходимо найти те значения аргумента Логарифмическая функция, её свойства и график с примерами решения при которых выражение, стоящее под знаком логарифма, будет положительным.

Пример №34

Изобразите схематически график функции:

Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Область определения функции Логарифмическая функция, её свойства и график с примерами решения — значения Логарифмическая функция, её свойства и график с примерами решения следовательно, график этой функции всегда расположен справа от оси Логарифмическая функция, её свойства и график с примерами решения Этот график пересекает ось Логарифмическая функция, её свойства и график с примерами решения в точке Логарифмическая функция, её свойства и график с примерами решения

При Логарифмическая функция, её свойства и график с примерами решения логарифмическая функция возрастает, таким образом, графиком функции Логарифмическая функция, её свойства и график с примерами решения будет логарифмическая кривая, точки которой при увеличении аргумента поднимаются.

При Логарифмическая функция, её свойства и график с примерами решения логарифмическая функция убывает, таким образом, графиком функции Логарифмическая функция, её свойства и график с примерами решения будет логарифмическая кривая, точки которой при увеличении аргумента опускаются.

Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Пример №35

Изобразите схематически график функции Логарифмическая функция, её свойства и график с примерами решения

Решение:

Последовательно строим графики:

Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Составим план последовательного построения графика данной функции с помощью геометрических преобразований.

Пример №36

Сравните положительные числа Логарифмическая функция, её свойства и график с примерами решения зная, что: Логарифмическая функция, её свойства и график с примерами решения

Решение:

Комментарий:

В каждом задании данные выражения — это значения логарифмической функции Логарифмическая функция, её свойства и график с примерами решения в точках Логарифмическая функция, её свойства и график с примерами решения

Используем возрастание или убывание соответствующей функции:

Пример №37

Сравните с единицей положительное число Логарифмическая функция, её свойства и график с примерами решения зная, что Логарифмическая функция, её свойства и график с примерами решения

Решение:

Поскольку Логарифмическая функция, её свойства и график с примерами решения а из условия получаем, что Логарифмическая функция, её свойства и график с примерами решения (то есть Логарифмическая функция, её свойства и график с примерами решения то функция Логарифмическая функция, её свойства и график с примерами решения убывающая, поэтому Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Числа Логарифмическая функция, её свойства и график с примерами решения — это два значения функции Логарифмическая функция, её свойства и график с примерами решения Исходя из данного неравенства, выясняем, является эта функция возрастающей или убывающей, и учитываем, что она возрастает при Логарифмическая функция, её свойства и график с примерами решения и убывает при Логарифмическая функция, её свойства и график с примерами решения

  • Заказать решение задач по высшей математике

Решение логарифмических уравнении и неравенств

Основные определения и соотношения:

Определение: Логарифмом положительного числа b по основанию Логарифмическая функция, её свойства и график с примерами решения называется показатель степени, в которую необходимо возвести Логарифмическая функция, её свойства и график с примерами решения чтобы получить Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

График функции Логарифмическая функция, её свойства и график с примерами решенияЛогарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения — возрастает

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения— убывает

Решение простейших логарифмических уравнений:

Если Логарифмическая функция, её свойства и график с примерами решения — число Логарифмическая функция, её свойства и график с примерами решения то Логарифмическая функция, её свойства и график с примерами решения (используем определение логарифма)

Пример №38

Логарифмическая функция, её свойства и график с примерами решения

Ответ: 10.

Если из предположения, что первое равенство верно, следует, что каждое следующее верно, то гарантируем, что получаем уравнения следствия. При использовании уравнений»следствий не происходит потери корней исходного уравнения, но возможно появление по» сторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составной частью решения.

Пример №39

Логарифмическая функция, её свойства и график с примерами решения

По определению логарифма получаем

Логарифмическая функция, её свойства и график с примерами решения

Проверка. Логарифмическая функция, её свойства и график с примерами решения — посторонний корень (в основании логарифма получаем отрицательное число);

Логарифмическая функция, её свойства и график с примерами решения — корень Логарифмическая функция, её свойства и график с примерами решения

Ответ: 2.

Равносильные преобразования логарифмических уравнений:

Если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).

Пример №40

Замена переменных:

Логарифмическая функция, её свойства и график с примерами решения

Замена:

Логарифмическая функция, её свойства и график с примерами решения

Следовательно, Логарифмическая функция, её свойства и график с примерами решения Тогда Логарифмическая функция, её свойства и график с примерами решения

Ответ: Логарифмическая функция, её свойства и график с примерами решения

Пример №41

Уравнение вида Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

(учитываем ОДЗ и приравниваем выражения, стоящие под знаками логарифмов)

Логарифмическая функция, её свойства и график с примерами решения

ОДЗ: Логарифмическая функция, её свойства и график с примерами решения

На этой ОДЗ данное уравнение равносильно уравнениям:

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения — посторонний корень (не удовлетворяет условиям ОДЗ);

Логарифмическая функция, её свойства и график с примерами решения — корень (удовлетворяет условиям ОДЗ).

Ответ: 3.

1. Учитываем ОДЗ данного уравнения (и избегаем преобразований, приводящих к сужению ОДЗ);

2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и обратном направлениях с сохранением верного равенства

Логарифмическая функция, её свойства и график с примерами решения

ОДЗ: Логарифмическая функция, её свойства и график с примерами решения

На этой ОДЗ данное уравнение равносильно уравнениям:

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения — корень (удовлетворяет условиям ОДЗ);

Логарифмическая функция, её свойства и график с примерами решения — посторонний корень (не удовлетворяет условиям ОДЗ).

Ответ:1.

Объяснение и обоснование:

Решение простейших логарифмических уравнений

Простейшим логарифмическим уравнением обычно считают уравнение Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция возрастает (или убывает) на всей своей области определения, то есть при Логарифмическая функция, её свойства и график с примерами решения (см. графики в пункте 1 табл. 55), и поэтому каждое свое значение принимает только при одном значении аргумента. Учитывая, что логарифмическая функция принимает все действительные значения, уравнение Логарифмическая функция, её свойства и график с примерами решения всегда имеет единственный корень, который можно записать, исходя из определения логарифма: Логарифмическая функция, её свойства и график с примерами решения

Если рассмотреть уравнение Логарифмическая функция, её свойства и график с примерами решения и выполнить замену переменной: Логарифмическая функция, её свойства и график с примерами решения то получим простейшее логарифмическое уравнение Логарифмическая функция, её свойства и график с примерами решения имеющее единственный корень Логарифмическая функция, её свойства и график с примерами решения Выполняя обратную замену, получаем, что решения уравнения (2) совпадают с корнями уравнения Логарифмическая функция, её свойства и график с примерами решения

Следовательно, уравнения (2) и (3) — равносильны. Таким образом, мы обосновали, что для равносильного преобразования простейшего логарифмического уравнения (1) или уравнения (2) (которое мы также будем относить к простейшим при условии, что основание Логарифмическая функция, её свойства и график с примерами решения — число) достаточно применить определение логарифма. Если обозначить равносильность уравнений значком Логарифмическая функция, её свойства и график с примерами решения то коротко этот результат можно записать так:

  • Логарифмическая функция, её свойства и график с примерами решения

Напомним, что все равносильные преобразования уравнения выполняются на его области допустимых значений (ОДЗ). Для уравнения (2) ОДЗ задается условием Логарифмическая функция, её свойства и график с примерами решения Но для всех корней уравнения (3) это условие выполняется автоматически (потому что Логарифмическая функция, её свойства и график с примерами решения Поэтому в явном виде ОДЗ для простейших логарифмических уравнений можно не записывать (поскольку оно учитывается автоматически при переходе от уравнения (2) к уравнению (3)).

Например, уравнение Логарифмическая функция, её свойства и график с примерами решения равносильно уравнению Логарифмическая функция, её свойства и график с примерами решения корень которого Логарифмическая функция, её свойства и график с примерами решения и является корнем заданного уравнения.

Аналогично записано и решение простейшего уравнения Логарифмическая функция, её свойства и график с примерами решения в таблице 55.

Использование уравнений-следствий при решении логарифмических уравнений

При решении уравнения главное — не потерять его корни, и поэтому важно следить за тем, чтобы каждый корень первого уравнения оставался корнем следующего уравнения — в этом случае получаем уравнения-следствия. Напомним, что каждый корень заданного уравнения обращает его в верное числовое равенство. Используя это определение, можно обосновать, что в случае, когда преобразования уравнений проводятся так: если из предположения, что первое равенство верно, следует, что каждое следующее верно, то мы получаем уравнения-следствия (поскольку каждый корень первого уравнения будет и корнем следующего уравнения). Напомним, что хотя при использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составной частью решения при использовании уравнений-следствий.

Пример решения логарифмического уравнения с помощью уравнений-следствий и оформление такого решения приведены в пункте 3 таблицы 55.

Равносильные преобразования логарифмических уравнений

Одним из часто используемых способов равносильных преобразований уравнений является замена переменной.

Напомним общий ориентир, которого мы придерживались при решении уравнений из других разделов: если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).

Например, в уравнение Логарифмическая функция, её свойства и график с примерами решения переменная входит только в виде Логарифмическая функция, её свойства и график с примерами решения поэтому для его решения целесобразно применить замену Логарифмическая функция, её свойства и график с примерами решения получить квадратное уравнение Логарифмическая функция, её свойства и график с примерами решения имеющее корни Логарифмическая функция, её свойства и график с примерами решения а затем выполнить обратную замену и получить простейшие логарифмические уравнения: Логарифмическая функция, её свойства и график с примерами решения Тогда, по определению логарифма, корнями данных уравнений являются Логарифмическая функция, её свойства и график с примерами решения

Принимая во внимание то, что замена переменной (вместе с обратной заменой) является равносильным преобразованием уравнения на любом множестве, для выполнения замены не обязательно находить ОДЗ данного уравнения. После выполнения обратной замены мы получили простейшие логарифмические уравнения, ОДЗ которых (как было показано выше) учитываются автоматически и могут также не записываться. Таким образом, в приведенном решении ОДЗ данного уравнения учтена автоматически, и поэтому в явном виде ОДЗ можно не записывать в решение. Именно так и оформлено решение этого уравнения в пункте 4 таблицы 55.

Рассмотрим также равносильные преобразования уравнения видаЛогарифмическая функция, её свойства и график с примерами решения

Как уже говорилось, все равносильные преобразования уравнения выполняются на его области допустимых значений. Для уравнения (4) ОДЗ задается системой неравенств Логарифмическая функция, её свойства и график с примерами решения Поскольку логарифмическая функция Логарифмическая функция, её свойства и график с примерами решения возрастает (при Логарифмическая функция, её свойства и график с примерами решения или убывает (при Логарифмическая функция, её свойства и график с примерами решения на всей своей области определения и каждое свое значение принимает только при одном значении аргумента, то равенство (4) может выполняться (на ОДЗ) тогда и только тогда, когда Логарифмическая функция, её свойства и график с примерами решения Учитывая ОДЗ, получаем, что уравнение (4) равносильно системе Логарифмическая функция, её свойства и график с примерами решения Символично полученный результат зафиксирован в пункте 4 таблицы 55, а коротко его можно сформулировать так:

  • чтобы решить уравнение Логарифмическая функция, её свойства и график с примерами решения с помощью равносильных преобразований, учитываем ОДЗ этого уравнения и приравниваем выражения, стоящие под знаками логарифмов.

Пример использования этого ориентира приведен в таблице 55.

Замечание 1. Полученную систему (5)-(7) можно несколько упростить. Если в этой системе выполняется равенство (5), то значения Логарифмическая функция, её свойства и график с примерами решения между собой равны, поэтому, если одно из этих значений будет положительным, то второе также будет положительным. Таким образом, уравнение (4) равносильно системе, состоящей из уравнения (5) и одного из неравенств (6) или (7) (обычно выбирают простейшее из этих неравенств).

Например, уравнение Логарифмическая функция, её свойства и график с примерами решения рассмотренное в таблице 55, равносильно системе Логарифмическая функция, её свойства и график с примерами решения Но, учитывая, что ограничения ОДЗ этого уравнения: Логарифмическая функция, её свойства и график с примерами решения мы не решали, а только проверяли, удовлетворяют ли найденные корни этим ограничениям, то приведенное упрощение не дает существенного выигрыша при решении этого уравнения.

Замечание 2. Как было обосновано выше, если выполняется равенство (4), то обязательно выполняется и равенство (5). Таким образом, уравнение (5) является следствием уравнения (4), и поэтому для нахождения корней уравнения (4): Логарифмическая функция, её свойства и график с примерами решения достаточно найти корни уравнения-следствия (5): Логарифмическая функция, её свойства и график с примерами решения и выполнить проверку найденных корней подстановкой в данное уравнение. (При таком способе решения ОДЗ уравнения (4) будет учтено опосредствованно, в момент проверки полученных корней, и его не придется явно записывать.)

Выполняя равносильные преобразования логарифмических уравнений в более сложных случаях, можно придерживаться следующего ориентира (он следует из определения равносильных уравнений):

  1. Учитываем ОДЗ данного уравнения.
  2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.

Например, решим уравнение Логарифмическая функция, её свойства и график с примерами решения с помощью равносильных преобразований.

Для этого достаточно учесть ОДЗ уравнения Логарифмическая функция, её свойства и график с примерами решения а затем, выполняя каждое преобразование уравнения, все время следить за тем, можно ли на ОДЗ выполнить это преобразование и в обратном направлении. Если ответ положителен, то выполненные преобразования равносильны. Если же какое-то преобразование для всех значений переменной из ОДЗ можно выполнить только в одном направлении (от исходного уравнения к следующему), а для его выполнения в обратном направлении необходимы какие-то дополнительные ограничения, то мы получим только уравнение-следствие, и полученные корни придется проверять подстановкой в исходное уравнение.

Применим этот план к решению уравнения (8).

Чтобы привести это уравнение к простейшему, перенесем все члены уравнения с логарифмами влево. Получим равносильное уравнениеЛогарифмическая функция, её свойства и график с примерами решения

(Равносильность уравнений (8) и (9) следует из известной теоремы: если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное данному на любом множестве. Равносильность этих уравнений следует также из того, что мы можем перейти не только от равенства (8) к равенству (9), но и выполнить обратное преобразование, пользуясь свойствами числовых равенств.)

Учитывая, что сумма логарифмов положительных (на ОДЗ) чисел равна логарифму произведения, получаем уравнениеЛогарифмическая функция, её свойства и график с примерами решения

На ОДЗ данного уравнения можно выполнить и обратное преобразование: поскольку Логарифмическая функция, её свойства и график с примерами решения то логарифм произведения положительных чисел равен сумме логарифмов множителей. Таким образом, от равенства (10) можно вернуться к равенству (9), то есть этот переход также приводит к равносильному уравнению. Уравнение (10) — это простейшее логарифмическое уравнение. Оно равносильно уравнению, которое получается по определению логарифма: Логарифмическая функция, её свойства и график с примерами решения

Выполняя равносильные преобразования полученного уравнения, имеем: Логарифмическая функция, её свойства и график с примерами решения

Поскольку все равносильные преобразования выполнялись на ОДЗ данного уравнения, учтем ее, подставляя полученные корни в ограничения ОДЗ: Логарифмическая функция, её свойства и график с примерами решения — корень, потому что удовлетворяет условиям ОДЗ; Логарифмическая функция, её свойства и график с примерами решения не является корнем (посторонний корень), потому что не удовлетворяет условиям ОДЗ. Таким образом, данное уравнение имеет только один корень Логарифмическая функция, её свойства и график с примерами решения

Замечание. Рассмотренное уравнение можно было решить и с использованием уравнений-следствий.

Примеры решения задач:

Пример №42

Решите уравнение Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Проверка. Логарифмическая функция, её свойства и график с примерами решения — посторонний корень (под знаком логарифма получаем 0),

Логарифмическая функция, её свойства и график с примерами решения — корень, поскольку имеем

Логарифмическая функция, её свойства и график с примерами решения

Ответ: 14

Комментарий:

Решим данное уравнение с помощью уравнений-следствий. Напомним, что при использовании уравнений-следствий главное — гарантировать, что в случае, когда первое равенство будет верным, то и все последующие также будут верными.

Чтобы избавиться от дробного коэффициента, умножим обе части уравнения (1) на 2 (если равенство (1) верно, то и равенство (2) также верно). Если равенства (1) и (2) верны (при тех значениях Логарифмическая функция, её свойства и график с примерами решения которые являются корнями этих уравнений), то при таких значениях Логарифмическая функция, её свойства и график с примерами решения существуют все записанные логарифмы, и тогда выражения Логарифмическая функция, её свойства и график с примерами решения — положительны. Следовательно, для положительных Логарифмическая функция, её свойства и график с примерами решенияЛогарифмическая функция, её свойства и график с примерами решения можно воспользоваться формулами: Логарифмическая функция, её свойства и график с примерами решения таким образом, равенства (3) и (4) также будут верны. Учитывая, что функция Логарифмическая функция, её свойства и график с примерами решения является возрастающей и, следовательно, каждое свое значение принимает только при одном значении аргумента, из равенства логарифмов (4) получаем равенство соответствующих аргументов (5).

Если равенство (5) верно, то знаменатель дроби не равен нулю, и после умножения обеих ее частей на Логарифмическая функция, её свойства и график с примерами решения получаем верное равенство (6) (а значит, и верное равенство (7)). Поскольку мы пользовались уравнениями-следствиями, то в конце необходимо выполнить проверку.

Пример №43

Решите уравнение Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Решим данное уравнение с помощью равносильных преобразований. Напомним, что для этого достаточно учесть ОДЗ данного уравнения и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.

Заметим, что на ОДЗ выражение Логарифмическая функция, её свойства и график с примерами решения может быть как положительным, так и отрицательным, и поэтому мы не имеем права применять к выражению Логарифмическая функция, её свойства и график с примерами решения формулу: Логарифмическая функция, её свойства и график с примерами решенияЛогарифмическая функция, её свойства и график с примерами решения (это приведет к потере корня). Применение обобщенной формулы логарифмирования приведет к уравнению с модулем. Используем другой способ преобразований, учтя, что Логарифмическая функция, её свойства и график с примерами решения Поскольку на ОДЗ все выражения, стоящие под знаками логарифмов, положительны, то все преобразования от уравнения (1) к уравнению (2) будут равносильными. Выполнить равносильные преобразования уравнения (2) можно с использованием ориентира, приведенного на с. 377. Также равносильность уравнений (2) и (3) может быть обоснована через возрастание функции Логарифмическая функция, её свойства и график с примерами решения которая каждое свое значение принимает только при одном значении аргумента.

Решение:

ОДЗ: Логарифмическая функция, её свойства и график с примерами решения Тогда Логарифмическая функция, её свойства и график с примерами решения

На этой ОДЗ данное уравнение равносильно уравнениям:

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Учитывая ОДЗ, получаем, что Логарифмическая функция, её свойства и график с примерами решения входит в ОДЗ, таким образом, является корнем;

Логарифмическая функция, её свойства и график с примерами решения не входит в ОДЗ, следовательно, не является корнем данного уравнения. Ответ: 1.

Пример №44

Решите уравнение Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ Логарифмическая функция, её свойства и график с примерами решения Поскольку в уравнение входят логарифмы с разными основаниями, то приведем их к одному основанию (желательно числовому, иначе можно потерять корни уравнения). В данном случае приводим к основанию 4 по формуле Логарифмическая функция, её свойства и график с примерами решения

После приведения логарифмов к одному основанию переменная входит в уравнение только в одном виде Логарифмическая функция, её свойства и график с примерами решения Выполним замену Логарифмическая функция, её свойства и график с примерами решения Поскольку по ограничениям ОДЗ Логарифмическая функция, её свойства и график с примерами решения Тогда полученное дробное уравнение (1) равно-сильно квадратному уравнению (2).

Поскольку замена и обратная замена являются равносильными преобразованиями на ОДЗ, то для полученных решений достаточно проверить, входят ли они в ОДЗ.

Решение:

ОДЗ: Логарифмическая функция, её свойства и график с примерами решения На ОДЗ данное уравнение равносильно уравнению

Логарифмическая функция, её свойства и график с примерами решения

Замена: Логарифмическая функция, её свойства и график с примерами решения Получаем:

Логарифмическая функция, её свойства и график с примерами решения

(оба корня входят в ОДЗ).

Ответ: 16; 64.

Пример №45

Решите уравнение Логарифмическая функция, её свойства и график с примерами решения

Решение:

ОДЗ: Логарифмическая функция, её свойства и график с примерами решения

На ОДЗ данное уравнение равносильно уравнениям:

Логарифмическая функция, её свойства и график с примерами решения

Замена: Логарифмическая функция, её свойства и график с примерами решения

Получаем:

Логарифмическая функция, её свойства и график с примерами решения

Обратная замена дает

Логарифмическая функция, её свойства и график с примерами решения

Отсюда Логарифмическая функция, её свойства и график с примерами решения или

Логарифмическая функция, её свойства и график с примерами решения

Ответ: 0,1; 1000.

Комментарий:

Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ и используем ориентир: если переменная входит и в основание, и в показатель степени, то для решения такого уравнения можно попытаться прологарифмировать обе части уравнения (только если они положительны). В запись уравнения уже входит десятичный логарифм, поэтому прологарифмируем обе части по основанию 10 (на ОДЗ обе части данного уравнения положительны).

Поскольку функция Логарифмическая функция, её свойства и график с примерами решения является возрастающей, то каждое свое значение она принимает только при одном значении аргумента. Следовательно, если выполняется равенство (1), то выполняется и равенство (2), и наоборот: если выполняется равенство (2), то выполняется и равенство (1). Таким образом, уравнения (1) и (2) равносильны на ОДЗ. При Логарифмическая функция, её свойства и график с примерами решения применение формулы Логарифмическая функция, её свойства и график с примерами решения является равносильным преобразованием, а значит, уравнения (2) и (3) также равносильны.

Обоснование равносильности дальнейших преобразований полностью совпадает с аналогичным обоснованием в предыдущей задаче.

Пример №46

Решите уравнение Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Замена: Логарифмическая функция, её свойства и график с примерами решения Получаем Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Обратная замена дает Логарифмическая функция, её свойства и график с примерами решения— корней нет.

Ответ: 2

Комментарий:

Если сначала рассмотреть данное уравнение как простейшее логарифмическое, то по определению логарифма оно равносильно уравнению Логарифмическая функция, её свойства и график с примерами решения Как уже отмечалось (с. 376), ОДЗ данного уравнения Логарифмическая функция, её свойства и график с примерами решения для всех корней уравнения (1) учитывается автоматически, поскольку Логарифмическая функция, её свойства и график с примерами решения всегда. После этого уравнение (1) решается по схеме решения показательных уравнений.

Поскольку Логарифмическая функция, её свойства и график с примерами решения и поэтому уравнение (2) равносильно уравнению (3).

Пример №47

Решите систему уравнений Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

По определению логарифма имеем Логарифмическая функция, её свойства и график с примерами решения Из второго уравнения последней системы получаем Логарифмическая функция, её свойства и график с примерами решения и подставляем в первое уравнение:

Логарифмическая функция, её свойства и график с примерами решения

Тогда: Логарифмическая функция, её свойства и график с примерами решения

Проверка: Логарифмическая функция, её свойства и график с примерами решения решение заданной системы.

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения — постороннее решение

(под знаком логарифма получаем отрицательные числа).

Ответ: (1; 4).

Комментарий:

Как и логарифмические уравнения, системы логарифмических уравнений можно решать как с помощью систем-следствий (каждое решение первой системы является решением второй), так и с помощью равносильных преобразований систем (все решения каждой из них являются решениями другой).

Кроме того, при решении логарифмических систем можно применить те же способы, что и при решении других видов систем (способ алгебраического сложения, подстановка некоторого выражения из одного уравнения в другое, замена переменных).

Например, решим данную систему с помощью систем-следствий. Для этого достаточно гарантировать, что в случае, когда заданная система состоит из верных равенств, каждая следующая система также будет содержать верные равенства. Как и для уравнений, при использовании систем-следствий необходимо выполнить проверку полученных решений подстановкой в исходную систему.

Замечание. Данную систему можно было решить и с помощью равносильных преобразований систем. При этом пришлось бы учесть ОДЗ данной системы Логарифмическая функция, её свойства и график с примерами решения следить за равносильностью выполненных преобразований (в данном случае все написанные преобразования являются равносильными на ОДЗ), а в конце проверить, удовлетворяют ли полученные решения условиям ОДЗ (пара чисел Логарифмическая функция, её свойства и график с примерами решения удовлетворяет условиям ОДЗ, а Логарифмическая функция, её свойства и график с примерами решения не удовлетворяет условиям ОДЗ).

Пример №48

Решите систему уравнений Логарифмическая функция, её свойства и график с примерами решения

Решение:

ОДЗ: Логарифмическая функция, её свойства и график с примерами решения

Тогда из первого уравнения имеем

Логарифмическая функция, её свойства и график с примерами решения

Замена Логарифмическая функция, её свойства и график с примерами решения дает уравнения

Логарифмическая функция, её свойства и график с примерами решения

Обратная замена дает

Логарифмическая функция, её свойства и график с примерами решения

Тогда из второго уравнения системы имеем Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения (не принадлежит ОДЗ),

Логарифмическая функция, её свойства и график с примерами решения (принадлежит ОДЗ).

Таким образом, решение данной системы

Логарифмическая функция, её свойства и график с примерами решения

Ответ: (5:5)

Комментарий:

Решим данную систему с помощью равносильных преобразований. Для этого достаточно учесть ее ОДЗ Логарифмическая функция, её свойства и график с примерами решенияЛогарифмическая функция, её свойства и график с примерами решения и гарантировать, что на каждом шагу были выполнены именно равносильные преобразования уравнения или всей системы. В первом уравнении системы все логарифмы приведем к одному основанию Логарифмическая функция, её свойства и график с примерами решенияЛогарифмическая функция, её свойства и график с примерами решения

На ОДЗ Логарифмическая функция, её свойства и график с примерами решения следовательно, Логарифмическая функция, её свойства и график с примерами решения Тогда после замены Логарифмическая функция, её свойства и график с примерами решения имеем Логарифмическая функция, её свойства и график с примерами решения и поэтому переход в решении от дробного уравнения к квадратному является равносильным.

Поскольку замена (вместе с обратной заменой) является равносильным преобразованием, то, заменяя первое уравнение системы равносильным ему (на ОДЗ) уравнением Логарифмическая функция, её свойства и график с примерами решения получаем систему, равносильную данной (на ее ОДЗ).

Решение логарифмических неравенств

График функции Логарифмическая функция, её свойства и график с примерами решения:

Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения Логарифмическая функция, её свойства и график с примерами решения

Равносильные преобразования простейших логарифмических неравенств:

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Знак неравенства не меняется, и учитывается ОДЗ:

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Знак неравенства меняется, и учитывается ОДЗ:

Логарифмическая функция, её свойства и график с примерами решения

ОДЗ: Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Функция Логарифмическая функция, её свойства и график с примерами решения возрастающая, тогда Логарифмическая функция, её свойства и график с примерами решения

Учитывая ОДЗ, имеем Логарифмическая функция, её свойства и график с примерами решения

Ответ: Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

ОДЗ: Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Функция Логарифмическая функция, её свойства и график с примерами решения убывающая, тогда Логарифмическая функция, её свойства и график с примерами решения Учитывая ОДЗ, имеем Логарифмическая функция, её свойства и график с примерами решения

Ответ: Логарифмическая функция, её свойства и график с примерами решения

Решение более сложных логарифмических неравенств:

I. С помощью равносильных преобразований данное неравенство приводится к неравенству известного вида.

Схема равносильных преобразований неравенства:

1. Учитываем ОДЗ заданного неравенства (и избегаем преобразований, приводящих к сужению ОДЗ).

2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.

Логарифмическая функция, её свойства и график с примерами решения

ОДЗ: Логарифмическая функция, её свойства и график с примерами решения На этой ОДЗ данное неравенство равносильно неравенствам: Логарифмическая функция, её свойства и график с примерами решения Замена Логарифмическая функция, её свойства и график с примерами решения Тогда Логарифмическая функция, её свойства и график с примерами решения то есть Логарифмическая функция, её свойства и график с примерами решения Решение этого неравенства Логарифмическая функция, её свойства и график с примерами решения (см. рисунок).

Логарифмическая функция, её свойства и график с примерами решения

Обратная замена дает Логарифмическая функция, её свойства и график с примерами решения Тогда Логарифмическая функция, её свойства и график с примерами решения Учитывая, что функция Логарифмическая функция, её свойства и график с примерами решения является возрастающей, получаем: Логарифмическая функция, её свойства и график с примерами решения С учетом ОДЗ имеем: Логарифмическая функция, её свойства и график с примерами решения

Ответ: Логарифмическая функция, её свойства и график с примерами решения

II. Применяется общий метод интервалов (данное неравенство приводится к неравенству Логарифмическая функция, её свойства и график с примерами решения и используется схема:

  1. Найти ОДЗ;
  2. Найти нули Логарифмическая функция, её свойства и график с примерами решения
  3. Отметить нули функции на ОДЗ и найти знак Логарифмическая функция, её свойства и график с примерами решения на каждом из промежутков, на которые разбивается ОДЗ;
  4. Записать ответ, учитывая знак неравенства.

Логарифмическая функция, её свойства и график с примерами решения

Решим неравенство методом интервалов. Оно равносильно неравенству Логарифмическая функция, её свойства и график с примерами решения Обозначим Логарифмическая функция, её свойства и график с примерами решения

1. ОДЗ: Логарифмическая функция, её свойства и график с примерами решения

2. Нули функции: Логарифмическая функция, её свойства и график с примерами решения Тогда Логарифмическая функция, её свойства и график с примерами решения На ОДЗ это уравнение равносильно уравнению Логарифмическая функция, её свойства и график с примерами решения (полученному по определению логарифма). То есть Логарифмическая функция, её свойства и график с примерами решения В ОДЗ входит только x = 3. Итак, f(x) имеет единственный нуль функции Логарифмическая функция, её свойства и график с примерами решения

3. Отмечаем нули функции на ОДЗ, находим знак Логарифмическая функция, её свойства и график с примерами решения на каждом из промежутков, на которые разбивается ОДЗ, и записываем решения неравенства Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Ответ: Логарифмическая функция, её свойства и график с примерами решения

Объяснение и обоснование:

Решение простейших логарифмических неравенств

Простейшими логарифмическими неравенствами обычно считают неравенства вида Логарифмическая функция, её свойства и график с примерами решения

Для решения такого неравенства можно применять равносильные преобразования. Для этого необходимо учесть его ОДЗ: Логарифмическая функция, её свойства и график с примерами решения и рассмотреть два случая: основание логарифма больше 1 и основание меньше 1 (но больше 0).

I. При Логарифмическая функция, её свойства и график с примерами решения логарифмическая функция Логарифмическая функция, её свойства и график с примерами решения возрастает на всей своей области определения (то есть при Логарифмическая функция, её свойства и график с примерами решения и поэтому большему значению функции соответствует большее значение аргумента. Таким образом, переходя в неравенстве (1) от значений функции к значениям аргумента (в данном случае переходя к выражениям, стоящим под знаком логарифма), мы должны оставить тот же знак неравенства, то есть Логарифмическая функция, её свойства и график с примерами решения

Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (большему положительному значению аргумента соответствует большее значение функции), получаем, что на ОДЗ неравенство (1) равносильно неравенству (2). Коротко это можно записать так: Логарифмическая функция, её свойства и график с примерами решения

II. При Логарифмическая функция, её свойства и график с примерами решения логарифмическая функция Логарифмическая функция, её свойства и график с примерами решения убывает на всей своей области определения (то есть при Логарифмическая функция, её свойства и график с примерами решения и поэтому большему значению функции соответствует меньшее значение аргумента. Следовательно, переходя в неравенстве (1) от значений функции к значениям аргумента, мы должны знак неравенства изменить на противоположный, то есть Логарифмическая функция, её свойства и график с примерами решения

Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (меньшему положительному значению аргумента соответствует большее значение функции), получаем, что при Логарифмическая функция, её свойства и график с примерами решения неравенство (1) на его ОДЗ равносильно неравенству (5). Коротко это можно записать так: Логарифмическая функция, её свойства и график с примерами решения

Суммируя полученные результаты, отметим, что для решения неравенства вида Логарифмическая функция, её свойства и график с примерами решения с помощью равносильных преобразований необходимо учесть его ОДЗ, а при переходе от значений функции к значениям аргумента (то есть к выражениям, стоящим под знаком логарифма) — значение Логарифмическая функция, её свойства и график с примерами решения

Примеры использования этих ориентиров приведены в таблице 56.

Замечание. Системы неравенств, полученные для случаев I и II, можно несколько упростить. Например, если в системе выполняются неравенство (2): Логарифмическая функция, её свойства и график с примерами решения и неравенство (4): Логарифмическая функция, её свойства и график с примерами решения то из этих неравенств следует, что Логарифмическая функция, её свойства и график с примерами решения Следовательно, неравенство (3) этой системы выполняется автоматически, когда выполняются неравенства (2) и (4), и его можно не записывать в эту систему (см. пункт 2 табл. 56).

Аналогично обосновывается, что в случае II в системе неравенство (4) является следствием неравенств (3) и (5), и его также можно не записывать в систему.

Например, решим неравенство Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

(ОДЗ данного неравенства Логарифмическая функция, её свойства и график с примерами решения учтено автоматически, поскольку, если Логарифмическая функция, её свойства и график с примерами решения то выполняется и неравенство Логарифмическая функция, её свойства и график с примерами решения

Решаем неравенство Логарифмическая функция, её свойства и график с примерами решения Тогда Логарифмическая функция, её свойства и график с примерами решения отсюда (см. рисунок) Логарифмическая функция, её свойства и график с примерами решения — решение заданного неравенства (его можно записать и так: Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Решение более сложных логарифмических неравенств

Решение более сложных логарифмических неравенств выполняется или с помощью равносильных преобразований данного неравенства (и приведения его к известному виду неравенств), или с помощью метода интервалов.

Схема равносильных преобразований логарифмических неравенств полностью аналогична схеме равносильных преобразований логарифмических уравнений:

  1. учитываем ОДЗ данного неравенства;
  2. следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.

В этом случае на ОДЗ каждое решение данного неравенства будет и решением второго и, наоборот, каждое решение второго неравенства будет решением первого, то есть эти неравенства будут равносильными (на ОДЗ).

Примеры решения логарифмических неравенств с помощью равносильных преобразований и методом интервалов и оформления такого решения приведены в таблице 56. Рассмотрим еще несколько примеров.

Примеры решения задач:

Пример №49

Решите неравенство Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

Решим данное неравенство с помощью равносильных преобразований. Как и для уравнений, для этого достаточно учесть ОДЗ данного неравенства и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства. Поскольку на ОДЗ выражения, стоящие под знаком логарифмов, положительны, то формулу Логарифмическая функция, её свойства и график с примерами решения для положительных Логарифмическая функция, её свойства и график с примерами решения можно применить как в прямом, так и в обратном направлениях. Таким образом, выполняя преобразование неравенства по этой формуле, получим неравенство, равносильное данному (на его ОДЗ).

Чтобы применить свойства логарифмической функции, запишем число (-1) как значение логарифмической функции: Логарифмическая функция, её свойства и график с примерами решения (понятно, что эту формулу можно применить как в прямом, так и в обратном направлении и учтем, что Логарифмическая функция, её свойства и график с примерами решения

Решение:

ОДЗ: Логарифмическая функция, её свойства и график с примерами решения Тогда Логарифмическая функция, её свойства и график с примерами решения

На этой ОДЗ данное неравенство равносильно неравенству

Логарифмическая функция, её свойства и график с примерами решения

Функция Логарифмическая функция, её свойства и график с примерами решения убывающая, таким образом, Логарифмическая функция, её свойства и график с примерами решения

Получаем Логарифмическая функция, её свойства и график с примерами решения Последнее неравенство имеет решения:

Логарифмическая функция, её свойства и график с примерами решения (см. рисунок).

Логарифмическая функция, её свойства и график с примерами решения

Учитывая ОДЗ, получаем Логарифмическая функция, её свойства и график с примерами решения

Ответ: Логарифмическая функция, её свойства и график с примерами решения

Пример №50

Решите неравенство Логарифмическая функция, её свойства и график с примерами решения

Решение:

Логарифмическая функция, её свойства и график с примерами решения

Учитывая ОДЗ данного неравенства и то, что функция Логарифмическая функция, её свойства и график с примерами решения убывающая, получаем

Логарифмическая функция, её свойства и график с примерами решения

то есть Логарифмическая функция, её свойства и график с примерами решения

Тогда Логарифмическая функция, её свойства и график с примерами решения

Учитывая, что функция Логарифмическая функция, её свойства и график с примерами решения возрастающая, получаем

Логарифмическая функция, её свойства и график с примерами решения

Это неравенство равносильно системе Логарифмическая функция, её свойства и график с примерами решениякоторая равносильна системе Логарифмическая функция, её свойства и график с примерами решения

Решаем неравенства (4) и (5) методом интервалов и находим их общее решение (см. рисунок).

Для неравенства (4) ОДЗ: Логарифмическая функция, её свойства и график с примерами решения нули функции Логарифмическая функция, её свойства и график с примерами решения

Для неравенства (5) ОДЗ: Логарифмическая функция, её свойства и график с примерами решения нули функции Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Ответ: Логарифмическая функция, её свойства и график с примерами решения

Комментарий:

ОДЗ данного неравенства задается системой Логарифмическая функция, её свойства и график с примерами решения

При выполнении равносильных преобразований главное не записать ОДЗ, а учесть ее в ходе решения. При переходе от неравенства (1) к неравенству (2) в записи последнего неравенства остается выражение

Логарифмическая функция, её свойства и график с примерами решения для которого ОДЗ: Логарифмическая функция, её свойства и график с примерами решения

Следовательно, при таком переходе ограничение (7) будет неявно учтено и поэтому достаточно учесть только ограничение (6) (что и сделано в левой части неравенства (2)). Чтобы применить свойства соответствующих логарифмических функций, записываем сначала Логарифмическая функция, её свойства и график с примерами решения (и учитываем, что Логарифмическая функция, её свойства и график с примерами решения а затем — Логарифмическая функция, её свойства и график с примерами решения При переходе от неравенства (2) к неравенству (3) получаем Логарифмическая функция, её свойства и график с примерами решения таким образом, и в этом случае неравенство (7) учтено автоматически. Для нахождения общих решений неравенств (4) и (5) удобно их решения методом интервалов разместить одно над другим так, чтобы одинаково обозначенные точки находились одна над другой. Тогда из приведенного рисунка легко увидеть общее решение системы неравенств.

Логарифмические функции и их нахождение

Как известно, если Логарифмическая функция, её свойства и график с примерами решения то каждому положительному значению Логарифмическая функция, её свойства и график с примерами решения соответствует единственное значение Логарифмическая функция, её свойства и график с примерами решения Поэтому равенство Логарифмическая функция, её свойства и график с примерами решениязадаёт некоторую функцию с областью определения Логарифмическая функция, её свойства и график с примерами решения

 Функцию, заданную формулой Логарифмическая функция, её свойства и график с примерами решения называют логарифмической функцией с основанием Логарифмическая функция, её свойства и график с примерами решения

Примеры логарифмических функций: Логарифмическая функция, её свойства и график с примерами решенияЛогарифмическая функция, её свойства и график с примерами решения

Как связаны между собой функции Логарифмическая функция, её свойства и график с примерами решения

Равенство Логарифмическая функция, её свойства и график с примерами решения выражает ту же зависимость между Логарифмическая функция, её свойства и график с примерами решения что и Логарифмическая функция, её свойства и график с примерами решения этим двум равенствам отвечает один и тот же график {рис. 29). Чтобы от равенства Логарифмическая функция, её свойства и график с примерами решения перейти к Логарифмическая функция, её свойства и график с примерами решения нужно поменять местами переменные Логарифмическая функция, её свойства и график с примерами решения Поэтому и на графике следует поменять местами оси Логарифмическая функция, её свойства и график с примерами решения (рис. 30). Этот рисунок —

Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

график функции Логарифмическая функция, её свойства и график с примерами решения только его оси размещены не так, как принято. Чтобы изобразить график функции Логарифмическая функция, её свойства и график с примерами решения в общепринятой системе координат, нужно весь рисунок отразить симметрично относительно прямой Логарифмическая функция, её свойства и график с примерами решения (рис. 31).

Итак, графики функций Логарифмическая функция, её свойства и график с примерами решения построенные в одной системе координат, симметричны относительно прямой  Логарифмическая функция, её свойства и график с примерами решения

Последовательность описанных преобразований рассматриваемых функций для Логарифмическая функция, её свойства и график с примерами решения схематически изображена на рисунке 32.

Функции, графики которых симметричны относительно прямой Логарифмическая функция, её свойства и график с примерами решенияявляются взаимно обратными. В частности, функция Логарифмическая функция, её свойства и график с примерами решения обратная для функции Логарифмическая функция, её свойства и график с примерами решения

Если две функции взаимно обратные, то область определения одной из них является областью значений другой и наоборот.

Следует обратить внимание и на такое. Если одна из двух взаимно обратных функций на всей области определения возрастает, то и другая возрастает. Например, если функция Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

возрастает, то большему значению Логарифмическая функция, её свойства и график с примерами решения соответствует большее значение Логарифмическая функция, её свойства и график с примерами решения а большему значению Логарифмическая функция, её свойства и график с примерами решения — большее значение Логарифмическая функция, её свойства и график с примерами решения Тогда и в соотношениях  Логарифмическая функция, её свойства и график с примерами решения большему значению Логарифмическая функция, её свойства и график с примерами решения соответствует большее значение Логарифмическая функция, её свойства и график с примерами решения т. е. функция Логарифмическая функция, её свойства и график с примерами решения также возрастает.

Из всего сказанного вытекают следующие свойства функции Логарифмическая функция, её свойства и график с примерами решения

  1. Область определения — промежуток Логарифмическая функция, её свойства и график с примерами решения
  2. Область значений — множество Логарифмическая функция, её свойства и график с примерами решения
  3. Функция возрастает на всей области определения, если Логарифмическая функция, её свойства и график с примерами решения а если Логарифмическая функция, её свойства и график с примерами решенияубывает.
  4. Функция ни чётная, ни нечётная, ни периодическая.
  5. Если Логарифмическая функция, её свойства и график с примерами решения то значения функции Логарифмическая функция, её свойства и график с примерами решения положительные при Логарифмическая функция, её свойства и график с примерами решения и отрицательные при Логарифмическая функция, её свойства и график с примерами решения
  6. Если Логарифмическая функция, её свойства и график с примерами решения то значения функции Логарифмическая функция, её свойства и график с примерами решения положительные при Логарифмическая функция, её свойства и график с примерами решения и отрицательные при Логарифмическая функция, её свойства и график с примерами решения
  7. График функции всегда проходит через точку Логарифмическая функция, её свойства и график с примерами решения

Несколько графиков логарифмических функций показано на рисунке 33.

Если известно значение основания логарифма, то график логарифмической функции можно построить по точкам, составив предварительно таблицу значений. Постройте таким образом графики функций Логарифмическая функция, её свойства и график с примерами решения и убедитесь, что первая из них — возрастающая, а вторая — убывающая.

Обратите внимание на такие утверждения:

  1. если Логарифмическая функция, её свойства и график с примерами решения
  2. если Логарифмическая функция, её свойства и график с примерами решения
  3. если Логарифмическая функция, её свойства и график с примерами решения

Логарифмическая функция, её свойства и график с примерами решения

Вы уже знаете, что графики функций Логарифмическая функция, её свойства и график с примерами решения симметричны относительно прямой Логарифмическая функция, её свойства и график с примерами решения А как расположены графики функций Логарифмическая функция, её свойства и график с примерами решения

Поскольку Логарифмическая функция, её свойства и график с примерами решения то понятно, что функции Логарифмическая функция, её свойства и график с примерами решения для одинаковых значений аргументов принимают противоположные значения. Это означает, что их графики симметричны относительно оси Логарифмическая функция, её свойства и график с примерами решения Примером являются графики функций Логарифмическая функция, её свойства и график с примерами решения изображённые на рисунке 34. 

Логарифмическая функция, её свойства и график с примерами решения

Показательные и логарифмические функции удобны для моделирования процессов, связанных с ростом населения, капитала, размножением бактерий, изменением атмосферного давления, радиоактивным распадом и т. п.

Пример №51

Найдите область определения функции Логарифмическая функция, её свойства и график с примерами решения

Решение:

Областью определения логарифмической функции является промежуток Логарифмическая функция, её свойства и график с примерами решения поэтому Логарифмическая функция, её свойства и график с примерами решения Корни уравнения Логарифмическая функция, её свойства и график с примерами решения равны Логарифмическая функция, её свойства и график с примерами решения поэтому множество решений неравенства такое: Логарифмическая функция, её свойства и график с примерами решения

Ответ. Логарифмическая функция, её свойства и график с примерами решения

Пример №52

Сравните числа: Логарифмическая функция, её свойства и график с примерами решения

Решение:

а) Функция Логарифмическая функция, её свойства и график с примерами решения убывающая, ибо Логарифмическая функция, её свойства и график с примерами решения Поскольку Логарифмическая функция, её свойства и график с примерами решения б) Приведём второй логарифм к основанию 0,5:

Логарифмическая функция, её свойства и график с примерами решения

Из последнего неравенства следует, что Логарифмическая функция, её свойства и график с примерами решения Поскольку Логарифмическая функция, её свойства и график с примерами решения

  • Логарифмические выражения
  • Показательная функция, её график и свойства
  • Производные показательной и логарифмической функций
  • Показательно-степенные уравнения и неравенства
  • Дифференциал функции
  • Дифференцируемые функции
  • Техника дифференцирования
  • Дифференциальная геометрия

Логарифмом числа b по основанию а называется показатель степени, в который нужно возвести число а чтобы получить число b.

Если Свойства логарифмов, то Свойства логарифмов.

Логарифм крайне важная математическая величина, поскольку логарифмическое исчисление позволяет не только решать показательные уравнения, но и оперировать с показателями, дифференцировать показательные и логарифмические функции, интегрировать их и приводить к более приемлемому виду, подлежащему расчету….

Свойства логарифмов

Все свойства логарифмов связаны напрямую со свойствами показательных функций. Например, тот факт, что Свойства логарифмов  означает, что:

Свойства логарифмов.

Следует заметить, что при решении конкретных задач, свойства логарифмов могут оказаться более важными и полезными, чем правила работы со степенями.

Приведем некоторые тождества:

Свойства логарифмов,

Свойства логарифмов,

Свойства логарифмов.

Приведем основные алгебраические выражения:

Свойства логарифмов,

Свойства логарифмов,

Свойства логарифмов,

Свойства логарифмов.

Внимание! Свойства логарифмов может существовать только при x&gt,0, x≠1, y&gt,0.

Постараемся разобраться с вопросом, что такое натуральные логарифмы. Отдельный интерес в математике представляют два вида первый имеет в основании число 10, и носит название десятичный логарифм. Второй называется натуральным. Основание натурального логарифма число е. Именно о нем мы и будем детально говорить в этой статье.

Обозначения:

  • lg x десятичный,
  • ln x натуральный.

Используя тождество   Свойства логарифмовможно увидеть, что ln e = 1, как и то, что lg 10=1.

График натурального логарифма

Построим график натурального логарифма стандартным классическим способом по точкам. При желании, проверить правильно ли мы строим функцию, можно при помощи исследования функции. Однако, есть смысл научится строить его вручную, чтобы знать, как правильно посчитать логарифм.

Функция: y = ln x. Запишем таблицу точек, через которые пройдет график:

х у
1 0
е 1
е2≈7,34 2
 Свойства логарифмов 0,5
e-1≈0.36 -1

Поясним, почему мы выбрали именно такие значения аргумента х. Всё дело в тождестве: Свойства логарифмов . Для натурального логарифма это тождество будет выглядеть таким образом:

Свойства логарифмов.

Для удобства мы можем взять пять опорных точек:

Свойства логарифмов,

Свойства логарифмов,

Свойства логарифмов,

Свойства логарифмов,

Свойства логарифмов.

Как посчитать логарифмы от этих пяти значений? Очень просто, ведь:

Свойства логарифмов,

Свойства логарифмов,

Свойства натуральных логарифмов: график, основание, функции, предел, формулы и область определения,

Свойства логарифмов,

Свойства логарифмов,

Свойства логарифмов.

Таким образом, подсчет натуральных логарифмов довольно несложное занятие, более того, он упрощает подсчеты операций со степенями, превращая их в обычное умножение.

Построив по точкам график, получаем приблизительный график:

Свойства логарифмов

Область определения натурального логарифма (т.е. все допустимые значения аргумента Х) все числа больше нуля.

Внимание! В область определения натурального логарифма входят только положительные числа! В область определения не входит х=0. Это невозможно исходя из условий существования логарифма Свойства логарифмов .

Область значений (т.е. все допустимые значения функции y = ln x) все числа в интервале Свойства логарифмов .

Предел натурального log

Изучая график, возникает вопрос как ведет себя функция при y&lt,0.

Свойства логарифмов

Очевидно, что график функции стремится пересечь ось у, но не сможет этого сделать, поскольку натуральный логарифм при х&lt,0 не существует.

Внимание! При стремлении к нулю аргументу, функция y = ln x стремится к Свойства логарифмов  (минус бесконечности).

Предел натурального log можно записать таким образом:

Свойства логарифмов

Это интересно! Азы геометрии: правильная пирамида — это

Формула замены основания логарифма

Иметь дело с натуральным логарифмом намного проще, чем с логарифмом, имеющим произвольное основание. Именно поэтому попробуем научиться приводить любой логарифм к натуральному, либо выражать его по произвольному основанию через натуральные логарифмы.

Начнем с логарифмического тождества:

Свойства натуральных логарифмов: график, основание, функции, предел, формулы и область определения.

Тогда любое число, либо переменную у можно представить в виде:

Свойства логарифмов,

где х любое число (положительное согласно свойствам логарифма).

Данное выражение можно прологарифмировать с обеих сторон. Произведем это при помощи произвольного основания z:

Свойства логарифмов.

Воспользуемся свойствомСвойства логарифмов  (только вместо с у нас выражениеСвойства логарифмов):

Свойства логарифмов

Отсюда получаем универсальную формулу:

Свойства натуральных логарифмов: график, основание, функции, предел, формулы и область определения.

В частности, если z=e, то тогда:

Свойства логарифмов.

Нам удалось представить логарифм по произвольному основанию через отношение двух натуральных логарифмов.

Это интересно! Уравнение по трем точкам: как найти вершину параболы, формула

Решаем задачи

Для того чтобы лучше ориентироваться в натуральных логарифмах, рассмотрим примеры нескольких задач.

Задача 1. Необходимо решить уравнение ln x = 3.

Решение: Используя определение логарифма: если Свойства логарифмов, то Свойства логарифмов , получаем:

Свойства логарифмов.

Задача 2. Решите уравнение (5 + 3 * ln (x 3)) = 3.

Решение: Используя определение логарифма: если Свойства логарифмов, то Свойства логарифмов , получаем:

Свойства логарифмов.

Тогда:

Свойства логарифмов.

Свойства логарифмов.

Еще раз применим определение логарифма:

Свойства логарифмов.

Таким образом:

Свойства логарифмов.

Можно приближенно вычислить ответ, а можно оставить его и в таком виде.

Задача 3. Решите уравнение Свойства логарифмов.

Решение: Произведем подстановку: t = ln x. Тогда уравнение примет следующий вид:

Свойства логарифмов.

Перед нами квадратное уравнение. Найдем его дискриминант:

Свойства логарифмов.

Первый корень уравнения:

Свойства логарифмов.

Второй корень уравнения:

Свойства логарифмов.

Вспоминая о том, что мы производили подстановку t = ln x, получаем:

Свойства логарифмов.

Используя определение логарифма: если Свойства логарифмов , то Свойства логарифмов, получаем оба корня:

Свойства логарифмов

Свойства логарифмов.

Вспомним, что область определения: Свойства логарифмов. Оба корня больше нуля, так что оба решения верны и подходят.

Внимание! Когда в логарифмических уравнениях у вас получается два корня или больше, не забывайте про область определения. Аргумент, стоящий под логарифмом никогда не может быть меньше нуля. Если одно из решений делает выражение под логарифмом меньше либо равным нулю такой корень вам не подходит, исключите его.

Интересные сведения

Логарифмы (особенно натуральные и десятичные) широко применимы почти во всех сферах деятельности.

Например, в теории простых чисел, количество простых чисел в интервале от 0 до n будет равно приблизительно: Свойства логарифмов , при этом s-ое простое число приблизительно будет равно Свойства логарифмов .

В математическом анализе, как мы уже убедились ранее, натуральные логарифмы встречаются сплошь и рядом, при этом они объединяют тригонометрические и логарифмические функции при помощи интегралов, например интеграл от тангенса:

Свойства логарифмов.

В статистике и теории вероятности логарифмические величины встречаются очень часто. Это неудивительно, ведь число е зачастую отражает темп роста экспоненциальных величин.

В информатике, программировании и теории вычислительных машин, логарифмы встречаются довольно часто, например для того чтобы сохранить в памяти натуральное число N понадобится Свойства логарифмов битов.

В теориях фракталов и размерностях логарифмы используются постоянно, поскольку размерности фракталов определяются только с их помощью.

В механике и физике нет такого раздела, где не использовались логарифмы. Барометрическое распределение, все принципы статистической термодинамики, уравнение Циолковского и прочее процессы, которые математически можно описать только при помощи логарифмирования.

В химии логарифмирование используют в уравнениях Нернста, описаниях окислительно-восстановительных процессов.

Поразительно, но даже в музыке, с целью узнать количество частей октавы, используют логарифмы.

Натуральный логарифм Функция y=ln x ее свойства

Доказательство основного свойства натурального логарифма

Определение натурального логарифма

Определение.

Натуральным мы будем называть логарифм с основанием .

Напоминание: Что такое ? Давайте вспомним. Итак, рассмотрим функцию . Число иррациональное. В чем его особенность? К графику  касательная в точке  наклонена под градусом  к оси . Рис. 1.

Рис. 1. Касательная к графику функции

Так вот, если касательная наклонена под градусом  к оси , то основание этой функции есть число .

Производная в точке : .

И то есть скорость роста функции в точке  равна значению функции в этой же точке.

Мы вспомнили, что такое число  – основание натурального логарифма.

Теперь дадим строгое определение и обозначение.

Определение.

Натуральным логарифмом (обозначается ln) называется логарифм по основанию .

Несколько примеров, чтобы привыкнуть к новому обозначению.

Примеры:

Итак, мы дали строгое определение натуральному логарифму и привели несколько примеров.

Теперь изучим логарифмическую функцию с натуральным основанием, то есть

Функция y=ln x

Функция . Во-первых, допускаются только положительные значения . Напомним, ≈2,72 – иррациональное число. Для начала, чтобы построить график, используем таблицу.

1

0

1

2

-1

-2

Если ;

Если ;

то вычисляем:

;

Если , то

.

Таким образом, построим график функции по точкам и понимаем характер изменения функции: рис. 2.

Рис. 2. График функции

Прочтем график функции и перечислим ее свойства:

Свойства функции y=ln x

Вот график:

Рис. 3. График функции

Функция определена, когда ;

Функция возрастает на всей области определения (0,∞);

Функция не ограничена ни снизу, ни сверху;

Не существует ,

Функция непрерывна;

;

Функция выпукла. Если рассмотреть отрезок (A;B), то функция находится над отрезком;

Функция дифференцируема. То есть в любой точке есть касательная.

Дифференцирование функции y=ln x

Логарифмическую функцию с натуральным основанием можно дифференцировать. Давайте научимся это делать.

Для этого докажем формулу .

Доказательство.

Мы знаем, что ;

Значит, производная от сложной функции ;

Также знаем основное логарифмическое тождество:

;

Продифференцируем тождество :

1=

1=

Выразим :

.

Формула доказана. Теперь дифференцировать логарифмические функции с натуральным основанием мы можем.

В итоге имеем две важные формулы:

;

Значит, мы умеем решать любые типовые задачи на производную логарифмической функции с основанием .

Некоторые примеры на нахождение производной

Найти производную.

=;

Типовая задача на нахождение производной в точке

Найти производную функции в точке:

Дано:

Найти:

Решение:

1. Напомним формулу производной от дроби:

Найдем отдельно производные от числителя и знаменателя:

;

;

2.

3. Можно упрощать, а можно просто подставить 0.

Ответ:

Задача на касательную

Найти касательную:

Дано:

Найти: уравнение касательной к данной прямой в данной точке

Решение.

У нас есть стандартная методика.

Есть уравнение касательной:

Все действия данной методики направлены на то, чтобы найти нужные нам элементы касательной:

Находим точку касания. Так как , то

Точка касания найдена.

Находим производную в любой точке

Находим производную в конкретной точке :

Находим уравнение касательной:

 – таково уравнение касательной.

Теперь дадим иллюстрацию на чертеже:

Как построить график функции ?

Надо стандартную кривую  сдвинуть влево на единицу по оси  (рис. 4).

Рис. 4. Иллюстрация примера

Получим кривую. Ее асимптота . Получили и саму кривую и касательную. То есть, иллюстрация дана.

Итак, мы познакомились с натуральными логарифмами, изучили функцию y=ln x. На следующем уроке мы рассмотрим дифференцирование показательной и логарифмической функций.

Список литературы

  1. Мордкович А.Г. Алгебра и начала математического анализа. – М.: Мнемозина.
  2. Муравин Г.К., Муравина О.В. Алгебра и начала математического анализа. – М.: Дрофа.
  3. Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала математического анализа. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Ru.wikipedia.org (Источник).
  2. Mathprofi.ru (Источник).
  3. Ru.wikipedia.org (Источник).

Домашнее задание

1. Найти производную функции:

а) ;

б) .

2.

a) Найти уравнение касательной к прямой  в точке ;

б) Найти уравнение касательной к прямой  в точке .

3. Алгебра и начала анализа, Мордкович А.Г.: № 1648, 1656.

Область определения функции с примерами решения

Содержание:

  1. Область определения функции
  2. Примеры с решением

Функции являются одним из наиболее важных математических понятий. Напомним, что функции вызывают такие зависимости переменных от переменной при которой каждому значению переменной соответствует единственное значение переменной

Переменную называют независимой переменной или аргументом. Переменную называют зависимой переменной. Говорят также, что переменная является функцией от переменной Значения зависимой переменной называют значениями функции.

Если зависимость переменной от переменной является функцией, то коротко это записывают так: (Читают: равно от ) Символом обозначают значение функции, соответствующее значению аргумента, равному

Пусть, например, функция задается формулой Тогда можно записать, что Найдем значения функции для значений равных, например, т. е. найдем

Заметим, что в записи вида вместо употребляют и другие буквы: и т.

п.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Высшая математика: лекции, формулы, теоремы, примеры задач с решением

Все значения независимой переменной образуют область определения функции. Все значения которые принимает зависимая переменная, образуют область значений функции.

Если функция задана формулой и ее область определения не указана, то считают, что область определения функции состоит из всех значений аргумента, при которых формула имеет смысл. Например, областью определения функции является множество всех чисел; областью определения функции служит множество всех чисел, кроме

Область определения функции, описывающей реальный процесс, зависит от конкретных условий его протекания. Например, зависимость длины железного стержня от температуры нагревания выражается формулой где — начальная длина стержня, а — коэффициент линейного расширения.

Указанная формула имеет смысл при любых значениях

Однако областью определения функции является промежуток в несколько десятков градусов, для которого справедлив закон линейного расширения.

Напомним, что график функции — это множество всех точек в координатной плоскости, абсцисса равна значению аргумента, а ордината — это соответствующее значение функции.

На рисунке 1 изображен график функции областью определения которой является промежуток С помощью графика можно найти, например, что Наименьшее значение функции равно а наибольшее равно при этом любое число от до является значением данной функции. Таким образом, областью значений функции служит промежуток

Мы изучили некоторые важные виды функций: линейную функцию, т. е. функцию, задаваемую формулой где и — некоторые числа; прямую пропорциональность — это частный случай линейной функции, она задается формулой обратную пропорциональность — функцию

Возможно вам будут полезны данные страницы:

Обратная матрица примеры решения

Определенный интеграл примеры решений

Нормальное распределение примеры решения

Пределы функций примеры решения

Область определения функции

Областью определения функции называется совокупность значений независимой переменной, при которых эта функция определена, т. е. область изменения независимой переменной (п. 1.5). Обычно эта переменная является непрерывной, и тогда, как было указано в п. 1.5, эта область определения состоит из одного или нескольких интервалов.

В некоторых случаях область определения функции выясняется из физического или геометрического смысла этой функции. Например, если рассматривать зависимость площади круга от длины его радиуса, то областью определения этой функции будет интервал так как по геометрическому смыслу может принимать именно такие значения.

Если рассматривается зависимость плотности р атмосферы надданной точкой земной поверхности от высоты над уровнем моря, то областью определения этой функции будет интервал где — высота земной поверхности, а — условная высота, принимаемая за границу атмосферы, и т. д. Если функция задана просто формулой, то областью определения служит совокупность значений аргумента, при которых формула дает определенное вещественное (действительное) значение функции. (Мы пока будем рассматривать только вещественные функции от вещественного аргумента, т. е. функции, у которых зависимая и независимая переменные принимают лишь вещественные значения.)

Например, если то может принимать любые значения, т. е. областью определения служит вся числовая ось Если то при вычислении у встретится препятствие в извлечении корня, если окажется, что значит, должно быть а это справедливо при или т. е. область определения в данном случае состоит из двух интервалов: (на рис. 1.10 эта область заштрихована).

При нахождении области определения в аналогичных случаях надо выяснить, что может препятствовать получению значения функции, после чего выписывать неравенства (как в последнем примере ), гарантирующие возможность этого получения. Тогда задача сведется к решению этих неравенств.

Если независимая переменная дискретна, то область определения функции состоит из дискретных (отдельных)точек. Например, если то может принимать только значения 1,2, 3,.

.. Если, как в этом примере, дискретный аргумент принимает лишь целые значения, то обычно его обозначают не а буквами и т. п., а вместо пишут и говорят, что дана последовательность; например, последовательностью служит геометрическая прогрессия и т. п. График функции от дискретного аргумента не является линией, а состоит из дискретных точек (рис. 1.11).

Область изменения самой функции называется иначе множеством значений этой функции. Например, для функции областью определения служит интервал а множеством значений — интервал так как в данном случае принимает только такие значения.Выяснение области определения функции важно для построения ее графика, так как эта область — это та часть оси абсцисс, над или под которой пройдет график; точнее говоря, это — проекция графика на ось абсцисс. На рис. 1.12 показаны три простых графика; области определения этих функций заштрихованы. Ясно, что если область определения состоит из нескольких частей, то и график состоит из нескольких кусков.

Если функция задана аналитическим выражением (формулой) без каких-либо дополнительных условий, то под ее областью определения понимают область существования аналитического выражения, т. е. совокупность всех точек, в которых данное аналитическое выражение определено и принимает только действительные значения. Область называется замкнутой, если она включает в себя все свои границы.

Область определения функции 3 переменных представляет собой некоторую пространственную область, в частности некоторый объем. Площадь равна определенным интеграл от функции чьи пределы интеграции являются перехватами.

Если функция положительна на интервале и график функции выше осей, то площадь от функции может быть определена.

Примеры с решением
Пример 1.

Указать область определения функции, выражающей объем кругового конуса через образующую и радиус основания

Решение:

Функция, найденная в примере 1 (п. 3.1), выглядит так: По смыслу задачи переменные и могут принимать только положительные значения, и при этом всегда так как гипотенуза больше катета (рис. 3.2). Следовательно, область определения задается неравенствами т. е. состоит из всех тех точек первой четверти на плоскости которые лежат ниже биссектрисы (рис. 3.3). Границами области служат прямые

которые сами в область не входят, так что эта область незамкнутая.

Пример 2.

Найти область определения функции

Решение:

Поскольку никаких дополнительных ограничений на аргументы и не наложено, область определения будет состоять из всех тех точек плоскости, для которых данное аналитическое выражение принимает действительные значения.

Для этого подкоренное выражение должно быть неотрицательным, т.е. или

Если оставить здесь только знак равенства, то получится уравнение границы области или Эта граница состоит из двух биссектрис координатных углов. Для внутренних точек области должно соблюдаться неравенство или Следовательно, эти точки расположены между биссектрисами ближе к оси так как — расстояние точки до оси и оно меньше расстояния точки до оси Таким образом, область состоит из всех точек 2 углов между биссектрисами заключающими внутри себя ось (рис. 3.4).

Область замкнутая, так как включает в себя обе свои границы.

Замечание.

Хотя аналитические выражения функции в примерах 1 и 2 одинаковые, их области определения разные. Па переменные и в примере 1 были наложены дополнительные условия вытекающие из их геометрического смысла.

Пример 3.

Найти область определения функции

Решение:

Выражение, стоящее справа, теряет смысл при тех значениях и при которых знаменатель обращается в нуль. Отсюда областью определения нашей функции является вся плоскость, из которой выброшена прямая (рис. 3.5).

Пример 4.

Найти область опреде-ления функции

Решение:

Для того чтобы квадратный корень имел вещественные значения, его подкоренное выражение должно быть неотрицательным. Решая неравенство находим, что либо либо

Решением первой системы неравенств является Чтобы получить изображение искомой области на координатной плоскости, достаточно провести две прямые и Область состоит из 2 квадрантов с общей вершиной в точке (1, —2) (рис. З.б).

Пример 5.

Найти область определения функции

Решение:

Логарифм определен только при положительном значении его аргумента, поэтому или Чтобы изобразить геометрически область найдем сначала ее границу или Полученное уравнение определяет параболу, вершина которой расположена в точке а ось направлена в положительную сторону оси Точки пересечения параболы с осью получаются из условия откуда т.е. (рис.3.7).

Парабола делит всю плоскость на две части — внутреннюю и внешнюю по отношению к параболе. Для точек одной из этих частей выполняется неравенство а для другой (на самой параболе Чтобы установить, какая из этих 2 частей является областью определения данной функции, т.е. удовлетворяет условию достаточно проверить это условие для какой-нибудь одной точки, не лежащей на параболе.

Например, начало координат лежит внутри параболы и удовлетворяет нужному условию Следовательно, рассматриваемая область состоит из внутренних точек параболы. Сама парабола в область входить не может, так как для точек параболы и логарифм не определен.

Функции и свойства натуральных логарифмов: область определения, график

Логарифмом числа b по основанию а называется показатель степени, в который нужно возвести число а чтобы получить число b.

Если , то .

Логарифм крайне важная математическая величина, поскольку логарифмическое исчисление позволяет не только решать показательные уравнения, но и оперировать с показателями, дифференцировать показательные и логарифмические функции, интегрировать их и приводить к более приемлемому виду, подлежащему расчету….

Содержание

Свойства логарифмов

Все свойства логарифмов связаны напрямую со свойствами показательных функций. Например, тот факт, что   означает, что:

.

Следует заметить, что при решении конкретных задач, свойства логарифмов могут оказаться более важными и полезными, чем правила работы со степенями.

Приведем некоторые тождества:

,

,

.

Приведем основные алгебраические выражения:

,

,

,

.

Внимание!  может существовать только при x&gt,0, x≠1, y&gt,0.

Постараемся разобраться с вопросом, что такое натуральные логарифмы. Отдельный интерес в математике представляют два вида первый имеет в основании число 10, и носит название десятичный логарифм. Второй называется натуральным. Основание натурального логарифма число е. Именно о нем мы и будем детально говорить в этой статье.

Обозначения:

  • lg x десятичный,
  • ln x натуральный.

Используя тождество   можно увидеть, что ln e = 1, как и то, что lg 10=1.

График натурального логарифма

Построим график натурального логарифма стандартным классическим способом по точкам. При желании, проверить правильно ли мы строим функцию, можно при помощи исследования функции. Однако, есть смысл научится строить его вручную, чтобы знать, как правильно посчитать логарифм.

Функция: y = ln x. Запишем таблицу точек, через которые пройдет график:

х у
1
е 1
е2≈7,34 2
  0,5
e-1≈0.36 -1

Поясним, почему мы выбрали именно такие значения аргумента х. Всё дело в тождестве:  . Для натурального логарифма это тождество будет выглядеть таким образом:

.

Для удобства мы можем взять пять опорных точек:

,

,

,

,

.

Как посчитать логарифмы от этих пяти значений? Очень просто, ведь:

,

,

,

,

,

.

Таким образом, подсчет натуральных логарифмов довольно несложное занятие, более того, он упрощает подсчеты операций со степенями, превращая их в обычное умножение.

Построив по точкам график, получаем приблизительный график:

Область определения натурального логарифма (т. е. все допустимые значения аргумента Х) все числа больше нуля.

Внимание! В область определения натурального логарифма входят только положительные числа! В область определения не входит х=0. Это невозможно исходя из условий существования логарифма  .

Область значений (т.е. все допустимые значения функции y = ln x) все числа в интервале  .

Предел натурального log

Изучая график, возникает вопрос как ведет себя функция при y&lt,0.

Очевидно, что график функции стремится пересечь ось у, но не сможет этого сделать, поскольку натуральный логарифм при х&lt,0 не существует.

Внимание! При стремлении к нулю аргументу, функция y = ln x стремится к   (минус бесконечности).

Предел натурального log можно записать таким образом:

Это интересно! Азы геометрии: правильная пирамида — это

Формула замены основания логарифма

Иметь дело с натуральным логарифмом намного проще, чем с логарифмом, имеющим произвольное основание. Именно поэтому попробуем научиться приводить любой логарифм к натуральному, либо выражать его по произвольному основанию через натуральные логарифмы.

Начнем с логарифмического тождества:

.

Тогда любое число, либо переменную у можно представить в виде:

,

где х любое число (положительное согласно свойствам логарифма).

Данное выражение можно прологарифмировать с обеих сторон. Произведем это при помощи произвольного основания z:

.

Воспользуемся свойством  (только вместо с у нас выражение):

Отсюда получаем универсальную формулу:

.

В частности, если z=e, то тогда:

.

Нам удалось представить логарифм по произвольному основанию через отношение двух натуральных логарифмов.

Это интересно! Уравнение по трем точкам: как найти вершину параболы, формула

Решаем задачи

Для того чтобы лучше ориентироваться в натуральных логарифмах, рассмотрим примеры нескольких задач.

Задача 1. Необходимо решить уравнение ln x = 3.

Решение: Используя определение логарифма: если , то  , получаем:

.

Задача 2. Решите уравнение (5 + 3 * ln (x 3)) = 3.

Решение: Используя определение логарифма: если , то  , получаем:

.

Тогда:

.

.

Еще раз применим определение логарифма:

.

Таким образом:

.

Можно приближенно вычислить ответ, а можно оставить его и в таком виде.

Задача 3. Решите уравнение .

Решение: Произведем подстановку: t = ln x. Тогда уравнение примет следующий вид:

.

Перед нами квадратное уравнение. Найдем его дискриминант:

.

Первый корень уравнения:

.

Второй корень уравнения:

.

Вспоминая о том, что мы производили подстановку t = ln x, получаем:

.

Используя определение логарифма: если  , то , получаем оба корня:

.

Вспомним, что область определения: . Оба корня больше нуля, так что оба решения верны и подходят.

Внимание! Когда в логарифмических уравнениях у вас получается два корня или больше, не забывайте про область определения. Аргумент, стоящий под логарифмом никогда не может быть меньше нуля. Если одно из решений делает выражение под логарифмом меньше либо равным нулю такой корень вам не подходит, исключите его.

Интересные сведения

Логарифмы (особенно натуральные и десятичные) широко применимы почти во всех сферах деятельности.

Например, в теории простых чисел, количество простых чисел в интервале от 0 до n будет равно приблизительно:  , при этом s-ое простое число приблизительно будет равно  .

В математическом анализе, как мы уже убедились ранее, натуральные логарифмы встречаются сплошь и рядом, при этом они объединяют тригонометрические и логарифмические функции при помощи интегралов, например интеграл от тангенса:

.

В статистике и теории вероятности логарифмические величины встречаются очень часто. Это неудивительно, ведь число е зачастую отражает темп роста экспоненциальных величин.

В информатике, программировании и теории вычислительных машин, логарифмы встречаются довольно часто, например для того чтобы сохранить в памяти натуральное число N понадобится  битов.

В теориях фракталов и размерностях логарифмы используются постоянно, поскольку размерности фракталов определяются только с их помощью.

В механике и физике нет такого раздела, где не использовались логарифмы. Барометрическое распределение, все принципы статистической термодинамики, уравнение Циолковского и прочее процессы, которые математически можно описать только при помощи логарифмирования.

В химии логарифмирование используют в уравнениях Нернста, описаниях окислительно-восстановительных процессов.

Поразительно, но даже в музыке, с целью узнать количество частей октавы, используют логарифмы.

Натуральный логарифм Функция y=ln x ее свойства

Как найти область определения функции заданной формулой

В этом вопросе следует разбираться, поскольку понятие не только встречается в школьной и университетской программах, но и широко применяется в науке и программировании (разработке программного обеспечения и прошивки контроллеров).

Общие сведения

Областью определения произвольной функции является множество значений переменных, от которых она зависит и принимает определенное значение. Встречаются функции с одной или несколькими переменными. Для простоты исследования нужно рассмотреть первый тип. Для того чтобы найти область определения и множество значений функции, необходимо использовать простые примеры. Специалисты рекомендуют применять метод изучения «от простого к сложному».

Первый раз этот термин упоминается в школьной программе. Книга «Алгебра и начало анализа» дает базовые знания в этой области. Однако она написана не для всех понятным языком.

Обучаемый часто ищет информацию в интернете. В некоторых случаях ученики занимаются поиском готовых решений, а это не совсем правильно, поскольку математические дисциплины пригодятся при поступлении в высшие учебные заведения. Исследование функции — естественный процесс, который встречается в различных дисциплинах.

Программирование на разных языках пользуется огромной популярностью. В нем нужны математические знания для написания некоторых программ и игр. В последних следует производить точные расчеты и описывать некоторые функции героя. Например, удар мечом подчиняется определенному математическому закону или функции. Для корректной ее работы и тестирования следует находить грамотно ее область определения.

Основные понятия

Область определения функции обозначается буквой «D». Кроме того, указывается ее имя D (f). Допускается также следующее обозначение «D (y)». Если необходимо ее найти для нескольких функций, можно изменить обозначение. Для сложного типа функций z = f (a, b, x, y) эта величина обозначается таким образом: D (z). Аргумент — независимая переменная, принимающая определенные значения.

Существуют также сложные функции, которые включают в число своих переменных и другие функции. Пример, z = f (x, k, l, w, y). В нем величины x, k, l являются переменными, а w и y — следующими функциями: w = 2 * x1 + 5 и y = 2 / (x2 — 6). Для каждого типа функции существует определенный алгоритм, по которому следует находить D (f). Он основывается на многолетнем опыте специалистов и придуман для оптимизации вычислений.

Важно уметь правильно определять тип функции

, поскольку от этого зависит процесс выбора алгоритма. Для одних можно сразу определить D (f), для других — решить уравнение или неравенство, для третьих следует решить систему уравнений и т. д.

Можно воспользоваться специальными программными модулями. Простым примером программы является онлайн-калькулятор, позволяющий не только вычислить D (f), но и начертить ее график. Кроме того, D (f) записывается в виде множества значений.

Например, D (y) = [0, 157). Это значит следующее: областью определения функции вида y = 3*x / sqrt (156 — |x|) является множество чисел, которые находятся в интервале от 0 включительно (скобка «[«) до 157 не включительно.

Типы функций

Функций существует огромное разнообразие. Они бывают простыми и сложными. Первые в математических дисциплинах классифицируются на несколько типов: алгебраические, тригонометрические и трансцендентные. Алгебраические классифицируются на рациональные и иррациональные. Рациональные бывают целыми и дробными. Тригонометрические включают в свой состав все функции с sin, cos, tg, ctg и т. д. Трансцендентные делятся на степенные, показательные и логарифмические.

Рациональные целые — выражения полиномиального типа (линейные). Они без корней и степеней, дробей и логарифмов, а также без тригонометрических функций. Областью их определения является множество всех действительных чисел (Z) от бесконечно малого до бесконечно большого числа.

Дробный тип — функции, в числителе и знаменателе которых находится переменная. Для нахождения D (f) нужно исключить все значения переменных в нем, приводящие к 0. Если встречается тригонометрические функции, то нужно вычислить все значения, приводящие к отсутствию D (f) на определенном интервале. Этот тип функций может быть иррациональным, дробным, линейным, а также использоваться вместе со степенью и логарифмом.

К иррациональным функциям относят выражения, которые содержат переменную величину под корнем. Значение D (f) — все Z, кроме переменных, приводящих к отрицательным значениям выражений с четными степенями корней. D (f) степенной функции являются все действительные числа. Однако если степень представлена дробным выражением, то значения переменных не должны приводить к неопределенности (например, 4/0, т. к. на 0 делить нельзя). Для функций с натуральным логарифмом выражение, находящееся под ним, должно быть больше 0.

Правильное обозначение

Очень важно правильно обозначать D (f), поскольку это существенно влияет на результат. Это позволит избежать многих ошибок в любой сфере.

Следует руководствоваться такими правилами:

  1. Использовать скобку «[» и/или «]», когда нужно указать принадлежность к множеству.
  2. Круглые скобки используются в двух случаях: указывание границы бесконечности и значения, которое не входит в интервал.
  3. Для объединения нескольких множеств нужно применять специальный символ «U».
  4. Допускается использование круглых и квадратных скобок в одном множестве.

Примером в первом случае является множество [0, 100]: от 0 включительно и до 100 не включительно. Во втором случае — (8, 10): значение, равное 9, поскольку 8 и 10 — нижняя и верхняя границы, не принадлежащие множеству.

Два предыдущих множества можно объединить: [0, 100] U (8, 10). Пример записи последнего случая следующий: (20, 50].

Алгоритмы определения

Для удобства определения D (f) необходимо применять специальные алгоритмы, которые упрощают операцию. Целая рациональная функция, как уже было описано ранее, имеет D (f), принадлежащую множеству Z (весь ряд действительных чисел). Кроме того, степенная функция также имеет D (f), которая соответствует Z.

Если функция является дробной, то следует использовать следующий алгоритм:

  1. Обратить внимание на знаменатель, который не должен быть равен 0.
  2. Выписать выражение знаменателя и решить его, приравнивая к 0.
  3. Записать интервал.

Если она представлена в виде четного корня, следует решить неравенство. Значение подкоренного выражения должно быть больше 0. В противном случае область определения под корнем не будет существовать (неопределенность).

Однако если корень нечетный, то D (f) — множество действительных чисел. Для функций с натуральным логарифмом (ln) значение выражения, которое находится под логарифмом, должно быть всегда больше 0. При отрицательных значениях ln «превращается» в неопределенность. Необходимо составить неравенство. Оно должно быть больше 0.

Для тригонометрических выражений синуса sin (x) и косинуса cos (x) множество всех Z является D (f). Однако для тангенса tg (x) и котангенса ctg (x) необходимо исключить значения переменной x = (Pi / 2) + Pi * k и x = Pi * k соответственно. В этих выражениях k является множеством действительных чисел.

Другие методы

Существуют также и другие методы определения D (f). Ее можно выяснить при помощи следующих инструментов: онлайн-калькулятора, специальных программ и построения графика. Первый способ позволяет довольно быстро найти необходимую величину. Но это не все его возможности. Можно с его помощью строить графики и находить все свойства функции.

Однако первый метод уступает второму, суть которого сводится к использованию специализированного программного обеспечения. В этом случае можно легко изобразить графики заданной функции, исследовать и найти ее основные свойства, а также D (f), представленных в виде функций. Например, зависимость амплитудных значений переменного электрического тока от времени.

В некоторых случаях можно найти D (f), построив ее график. Для этого следует подставить значение аргумента функции и получить ее значение. Построение таблицы зависимости значения функции от ее аргумента позволяет правильно построить графическое представление. Чтобы быстро строить графики, нужно знать их базовые виды: линейный, степенной (квадратичный, кубический и т. д. ), а также другие. Чем точнее графическая иллюстрация, тем легче определить D (f).

После заполнения таблицы значений следует приступать к построению графика. Для этого берутся точки с координатами из таблицы (x, y), и отмечаются на декартовой системе координат.

Затем их следует соединить. Получится график заданной функции, по которому не составит труда сделать определенные выводы.

Примеры решения

Теоретические знания необходимы, но некоторые люди делают огромную ошибку. Они не закрепляют их при помощи практики. Необходимо регулярно решать задачи на нахождения D (f), поскольку в этом случае набирается опыт. Наиболее простыми задачами считаются следующие: нахождения D (f) линейной, степенной, показательной и тригонометрической функций. Важным аспектом считается упрощение выражения. Для этого следует вспомнить также и формулы сокращенного умножения.

С дробными и иррациональными функциями могут возникнуть некоторые сложности, поскольку нужно решить уравнение или неравенство. Однако в последнем случае нельзя путать знак неравенства.

Для линейного вида

Нужно найти D (f) для y = 2*x — 3 * (x — 5). Для решения следует применить такой алгоритм:

  1. Упростить выражение.
  2. Определить D (f).

Для упрощения выражения следует раскрыть скобки. Конечно, это делать необязательно, поскольку ответ очевиден D (y) = (-бесконечность, +бесконечность). Но по правилам «хорошего тона» любое математическое выражение следует упрощать: y = 2 * x — 3 * x + 15 = — x + 15 = 15 — x. При решении следует правильно раскрывать скобки, а также следить за знаками. Малейшая ошибка может привести к значительному искажению графика.

В некоторых задачах следует также построить график функции. Для конкретного случая создается таблица зависимости значения «y» от аргумента. Не имеет смысла брать много значений «х», поскольку графиком является прямая. Известно, что необходимы только две точки для ее проведения. Подстановка количества значений «х», превышающих двух, является грубой и распространенной ошибкой.

Дробные и иррациональные

Пусть существует выражение вида y = 1 / [(x — 4) * (x + 4)]. Нужно определить D (f).

Решается задача таким способом:

  1. Приравнивается знаменатель к 0.
  2. Решается уравнение.
  3. Определяется интервал допустимых значений.

Нужно решить уравнение (x — 4) * (x + 4) = 0. Из него видно, что x1 = 4 и x2 = -4, поскольку эти значения «превращают» знаменатель в неопределенность. 2] — (4 * 4 * 9) = 144 — 144 = 0.

  • D = 0 — только одно решение.
  • x = (-b) / (2 * a) >= 12 / (2 * 4) >= 12 / 8 >= 6 / 4 >= 1,5.
  • Множество чисел D (y) ограничивается следующим интервалом (-бесконечность, 1.5) U (1.5, +бесконечность).

    Таким образом, для нахождения множества значений D (f) для конкретного выражения следует воспользоваться специальными алгоритмами. На первоначальном этапе исследования функции следует определить ее тип, поскольку это поможет избежать многих сложностей в процессе решения.

    Как найти область определения функции

    ‘).insertAfter(«#intro»),$(‘

    ‘).insertBefore(«.youmightalsolike»),$(‘

    ‘).insertBefore(«#quiz_container»),$(‘

    ‘). insertBefore(«#newsletter_block_main»),fa(!
    0),b=document.getElementsByClassName(«scrolltomarker»),a=0;a

    В этой статье:

    Основы

    Область определения дробных функций

    Область определения функции с корнем

    Область определения функции с натуральным логарифмом

    Поиск области определения с помощью графика

    Поиск области определения с помощью множества

    Показать еще 3…

    Показать меньше…

    Дополнительные статьи

    Область определения функции — это множество чисел, на котором задается функция. Другими словами, это те значения х, которые можно подставить в данное уравнение. Возможные значения у называются областью значений функции. Если вы хотите найти область определения функции в различных ситуациях, выполните следующие действия.


    Шаги

    1. 1

      Запомните, что такое область определения. Область определения — это множество значений х, при подставлении которых в уравнение мы получаем область значений у.

    2. 2

      Научитесь находить область определения различных функций. Тип функции определяет метод нахождения области определения. Вот основные моменты, которые вы должны знать о каждом типе функции, о которых пойдет речь в следующем разделе:

      • Полиномиальная функция без корней или переменных в знаменателе. Для этого типа функции областью определения являются все действительные числа.
      • Дробная функция с переменной в знаменателе. Чтобы найти область определения данного типа функции, знаменатель приравняйте к нулю и исключите найденные значения х.
      • Функция с переменной внутри корня. Чтобы найти область определения данного типа функции, задайте подкоренное выражение больше или равно 0 и найдите значения х.
      • Функция с натуральным логарифмом (ln). Задайте выражение под логарифмом > 0 и решите.
      • График. Нарисуйте график для нахождения х.
      • Множество. Это будет список координат х и у. Область определения — список координат х.
    3. 3

      Правильно обозначайте область определения. Легко научиться правильному обозначению области определения, но важно, чтобы вы правильно записывали ответ и получали высокую оценку. Вот несколько вещей, которые вы должны знать о написании области определения:

      • Один из форматов написания области определения: квадратная скобка, 2 конечных значения области, круглая скобка.
        • Например, [-1; 5). Это означает область определения от -1 до 5.
      • Используйте квадратные скобки [ и ] , чтобы указать, что значение принадлежит области определения.

        • Таким образом, в примере [-1; 5) область включает -1.
      • Используйте круглые скобки ( и ) , чтобы указать, что значение не принадлежит области определения.

        • Таким образом, в примере [-1; 5) 5 не принадлежит области. Область включает только значения, бесконечно близкие к 5, то есть 4,999(9).
      • Используйте знак U для объединения областей, разделенных промежутком.

        • Например, [-1; 5 ) U (5; 10]. Это означает, что область проходит от -1 до 10 включительно, но не включает 5. Это может быть у функции, где в знаменателе стоит «х — 5».
        • Вы можете использовать несколько U по мере необходимости, если область имеет несколько разрывов/промежутков.
      • Используйте знаки «плюс бесконечность» и «минус бесконечность», чтобы выразить, что область бесконечна в любом направлении.

        • Со знаком бесконечности всегда используйте ( ), а не [ ].

      Реклама

    1. 1

      Запишите пример. Например, вам дана следующая функция:

      • f(x) = 2x/(x2 — 4)
    2. 2

      Для дробных функций с переменной в знаменателе надо приравнять знаменатель к нулю. При нахождении области определения дробной функции необходимо исключить все значения х, при которых знаменатель равен нулю, потому что нельзя делить на ноль. Запишите знаменатель как уравнение и приравняйте его к 0. Вот как это делается:

      • f(x) = 2x/(x2 — 4)
      • x2 — 4 = 0
      • (x — 2 )(x + 2) = 0
      • x ≠ 2; — 2
    3. 3

      Запишите область определения:

      • х = все действительные числа, кроме 2 и -2

      Реклама

    1. 1

      Запишите пример. Дана функция y =√(x-7)

    2. 2

      Задайте подкоренное выражение больше или равным 0. Вы не можете извлечь квадратный корень из отрицательного числа, хотя вы можете извлечь квадратный корень 0. Таким образом, задайте подкоренное выражение больше или равным 0. Заметим, что это относится не только к квадратным корням, но и ко всем корням с четной степенью. Тем не менее, это не относится к корням с нечетной степенью, так как отрицательное число может стоять под корнем нечетной степени.

      • х — 7 ≧ 0
    3. 3

      Выделите переменную. Для этого перенесите 7 в правую часть неравенства:

      • x ≧ 7
    4. 4

      Запишите область определения. Вот она:

      • D = [7; +∞)
    5. 5

      Найдите область определения функции с корнем, когда есть несколько решений. Дано: y = 1/√( ̅x2 -4). Приравняв знаменатель к нулю и решив это уравнение, вы получите х ≠ (2; -2). Вот как вы действуете далее:

      • Проверьте область за -2 (например, подставив -3), чтобы удостовериться, что подстановка в знаменатель чисел меньше -2 в результате дает число больше 0. И это так:
        • (-3)2 — 4 = 5
      • Теперь проверьте область между -2 и +2. Подставьте, например, 0.
        • 02 — 4 = -4, так что числа между -2 и 2 не подходят.
      • Теперь попробуйте числа больше 2, например 3.
        • 32 — 4 = 5, так что числа больше 2 подходят.
      • Запишите область определения. Вот как записывается эта область:
        • D = (-∞; -2) U (2; +∞)

      Реклама

    1. 1

      Запишите пример. Допустим, дана функция:

      • f(x) = ln(x — 8)
    2. 2

      Задайте выражение под логарифмом больше нуля. Натуральный логарифм должен быть положительным числом, поэтому задаем выражение внутри скобок больше нуля.

      • x — 8 > 0
    3. 3

      Решите. Для этого обособьте переменную х, прибавив к обеим частям неравенства 8.

      • x — 8 + 8 > 0 + 8
      • x > 8
    4. 4

      Запишите область определения. Область определения этой функции есть любое число больше 8. Вот так:

      • D = (8; +∞)

      Реклама

    1. 1

      Посмотрите на график.

    2. 2

      Проверьте значения х, которые отображены на графике. Это может быть легче сказать, чем сделать, но вот несколько советов:

      • Линия. Если на графике вы видите линию, которая уходит в бесконечность, то все значения х верны, и область определения включает все действительные числа.
      • Обычная парабола. Если вы видите параболу, которая смотрит вверх или вниз, то область определения — все действительные числа, потому что подходят все числа на оси х.
      • Лежачая парабола. Теперь, если у вас есть парабола с вершиной в точке (4; 0), которая простирается бесконечно вправо, то область определения D = [4; +∞)
    3. 3

      Запишите область определения. Запишите область определения в зависимости от типа графика, с которым вы работаете. Если вы не уверены в типе графика и знаете функцию, описывающую его, для проверки подставьте координаты х в функцию.

      Реклама

    1. 1

      Запишите множество. Множество — это набор координат х и у. Например, вы работаете со следующими координатами: {(1; 3), (2; 4), (5; 7)}

    2. 2

      Запишите координаты х. Это 1; 2; 5.

    3. 3

      Область определения: D = {1; 2; 5}

    4. 4

      Убедитесь, что множество является функцией. Для этого необходимо, чтобы каждый раз, когда вы подставляете значение х, вы получали одно и то же значение y. Например, подставляя х = 3, вы должны получить у = 6, и так далее. Приведенное в примере множество не является функцией, потому что дано два разных значения у: {(1; 4), (3; 5), (1; 5)}.

      Реклама

    Об этой статье

    На других языках

    Как найти область определения функции — Wiki How Русский

    Область определения функции — это множество чисел, на котором задается функция. {log_ba}\
    &&\
    log_a{bc}=log_a{|b|}+log_a{|c|}&& log_a{dfrac bc}=log_a{|b|}-log_a{|c|}\
    &&\
    log_abcdot log_bc=log_ac & Longleftrightarrow & log_bc=dfrac{log_ac}{log_ab}\
    &&\
    log_abcdot log_ba=1 & Longleftrightarrow & log_ab=dfrac1{log_ba}\
    &&\
    hline
    end{array}}]

    (blacktriangleright) Стандартное логарифмическое неравенство [{Large{log_a{h(x)}geqslant log_a{g(x)} quad
    (*)}}] где (a>0, ane 1)
    (на месте знака (geqslant) может стоять любой из знаков (leqslant,
    >, <))

    Логарифмическая функция (f(x)=log_ax) является возрастающей, если число (a>1), и убывающей, если (0<a<1), и определена при всех положительных (x) (то есть ее область определения (xin (0;+infty))).

    На графике приведен пример возрастающей логарифмической функции (f_1(x)=log_2x) и убывающей логарифмической функции (f_2(x)=log_{,0,5}x).

    Напомним, что функция возрастает, если при увеличении (x) увеличивается и (f(x)). Функция убывает, если при увеличении (x) уменьшается (f(x)).

    Таким образом, неравенство ((*)) есть не что иное, как сравнение (f(h)) и (f(g)). Если функция (f) — возрастает, то неравенство (f(h)geqslant f(g)) равносильно неравенству (hgeqslant g), а если убывает — то неравенству (hleqslant g).

    Поэтому для того, чтобы решить неравенство ((*)), нужно сравнить основание (a) с единицей:

    если ({large{a>1}}), то данное неравенство равносильно системе (не забываем про ОДЗ!) [{Large{begin{cases} h(x)geqslant g(x)\ g(x)>0 end{cases}}}] Заметим, что условие (h(x)>0) учитывается автоматически в такой системе, т.к. если (hgeqslant g), а (g>0), то и (h>0).

    если ({large{0<a<1}}), то данное неравенство равносильно системе [{Large{begin{cases} h(x)leqslant g(x)\ h(x)>0 end{cases}}}]
    Заметим, что условие (g(x)>0) учитывается автоматически в такой системе. 2-9>0 Leftrightarrow
    (x-3)(x+3)>0 Rightarrow xin (-infty;-3)cup(3;+infty)).

    Таким образом, после пересечения решений обоих неравенств системы решением исходного неравенства будут (xin
    (-infty;-3)cup(3;+infty)).

    (blacktriangleright) Рассмотрим неравенства вида [{Large{log_{h(x)}{f(x)}geqslant log_{h(x)}{g(x)}}}] (на месте знака (geqslant) может стоять любой из знаков (leqslant,
    >, <))
    То есть когда в основании логарифма находится не конкретное число, а функция, зависящая от (x).

    Данное неравенство равносильно совокупности: [{Large{left[begin{gathered}
    begin{aligned}
    &begin{cases}
    h(x)>1\
    f(x)geqslant g(x)\
    g(x)>0
    end{cases}\[4pt]
    &begin{cases}
    0<h(x)<1\
    f(x)leqslant g(x)\
    f(x)>0
    end{cases}
    end{aligned}
    end{gathered}
    right.}}]

    Иногда удобно выписать ОДЗ отдельно. Тогда неравенство будет равносильно системе: [{Large{begin{cases}
    f(x)>0 quad (textbf{ОДЗ})\
    g(x)>0 quad (textbf{ОДЗ})\[3pt]
    left[begin{gathered}
    begin{aligned}
    &begin{cases}
    h(x)>1\
    f(x)geqslant g(x)
    end{cases}\[3pt]
    &begin{cases}
    0<h(x)<1\
    f(x)leqslant g(x)
    end{cases}
    end{aligned}
    end{gathered}
    right. 2geqslant 0
    end{cases}
    end{aligned}
    end{gathered}
    right.quad Leftrightarrow quad left[
    begin{gathered}
    begin{aligned}
    &begin{cases}
    (x-1)(x+1)>0\
    (x+1-x)(x+1+x)leqslant 0
    end{cases}\[2pt]
    &begin{cases}
    (x-1)(x+1)<0\
    xne 0\
    (x+1-x)(x+1+x)geqslant 0
    end{cases}
    end{aligned}
    end{gathered}
    right.quad Leftrightarrow quad]
    [quad Leftrightarrow quad
    left[
    begin{gathered}
    begin{aligned}
    &begin{cases}
    xin (-infty;-1)cup(1;+infty)\
    xin (-infty;-dfrac12big]
    end{cases}\[2pt]
    &begin{cases}
    xin (-1;1)\
    xne 0\
    xinbig[-dfrac12;+infty)
    end{cases}
    end{aligned}
    end{gathered}
    right. quad Leftrightarrow quad xin
    Big(-infty;-1Big)cupBig[-dfrac12;0Big)cupBig(0;1Big)]

    Пересекая данный ответ с ОДЗ ((xne -1)), получим тот же ответ.

    (blacktriangleright) Таким образом, как правило, для того, чтобы система (совокупность) не выглядела слишком огромной, удобно записывать ОДЗ неравенства отдельно, а затем просто пересекать решение системы (совокупности) с этим ОДЗ. Что мы и сделали в примере (3).

    Трансформировать поля (Управление данными)—ArcGIS Pro

    В этом разделе
    1. Краткая информация
    2. Иллюстрация
    3. Использование
    4. Параметры
    5. Параметры среды
    6. Информация о лицензиях

    Краткая информация

    Трансформирует непрерывные значения в одно или несколько полей, путем применения математических функций к каждому значению и изменению формы распределения. Методы трансформирования в инструменте включают логарифм, квадратный корень, Box-Cox, множественную инверсию, квадрат, экспоненты и обратный Box-Cox.

    Трансформирование можно применить для сокращения перекосов в распределении и приближении его к нормальному (Гауссову) распределению.

    Иллюстрация

    Исходные значения трансформируются таким образом, чтобы они стали ближе к нормальному распределению.

    Использование

    • Этот инструмент принимает на вход классы объектов или представление таблицы.

    • В параметре Методы трансформирования доступно 7 вариантов.

      • Логарифм—применяет естественную функцию логарифма, log(x) с исходному значению (x) в выбранных полях.
        • Преобразование по типу логарифма можно применить только к положительным значениям. Если у вас есть отрицательные или нулевые значения в выбранных полях, по умолчанию к данным перед трансформированием добавляется «сдвиг» log(x+shift), чтобы значения стали положительными. По умолчанию значение «сдвига» равно максимальному абсолютному отрицательному значению в полях плюс небольшая положительная величина (~10-6). Например, если максимальное отрицательное число в выбранном поле равно -25, то все значения будут сдвинуты на 25.000001, чтобы они стали положительными.
      • Квадратный корень—берет квадратный корень из каждого значения в выбранных полях.
        • Трансформирование методом квадратного корня нельзя применить к отрицательным значениям. Если у вас есть отрицательные значения в выбранных полях, по умолчанию к данным перед трансформированием добавляется «сдвиг», чтобы значения стали положительными. По умолчанию значение «сдвига» равно максимальному абсолютному отрицательному значению в полях.
      • Box-Cox—применяет следующую степенную функцию для нормального распределения данных в выбранных полях:

        где x’ — это трансформированное значение, x — исходное значение, λ1 — параметр степени (экспоненты), а λ2 — параметр сдвига.

        • Преобразование по типу Box-Cox можно применить только к положительным значениям. Если у вас есть отрицательные или нулевые значения в выбранных полях, по умолчанию к данным перед трансформированием добавляется «сдвиг», чтобы значения стали положительными. По умолчанию значение «сдвига» равно максимальному абсолютному отрицательному значению в полях плюс небольшое значение (~10-6), чтобы полученные значения были ненулевыми. Параметр Степень можно использовать для настройки значения степени, которая может быть от -5 до 5. Если значение не указано, будет использоваться наилучшее приближение кривой нормального распределения и оно же будет отображаться в сообщениях геообработки.
      • Множественная инверсия—принимает обратную величину (1 / x) каждого значения (x) в выбранных полях.
        • Трансформирование методом множественной инверсии нельзя применить к нулевым значениям. Если в выбранных полях есть нулевые значения, в трансформированном поле они будут идти как null. Сдвиги в этом методе не используются.
      • Экспонента—применяет функцию экспоненты (ex) с исходному значению (x) в выбранных полях. Трансформирование методом экспоненты по сути является обратным вычислением для метода логарифма, а это значит, что применение экспоненциальной трансформации и к полю, трансформированному методом логарифма, приведет к вычислению исходных значений данных.
        • По умолчанию к выбранному полю сдвиг не применяется. Чтобы вернуться к исходным значениям для трансформированных методом логарифма полей, укажите то же значение сдвига, которое использовали для создания логарифмических полей. Этот сдвиг будет вычитаться после того, как будет применена трансформация методов экспоненты: ex — сдвиг.
      • Квадратный—применяет функцию квадрата к каждому значению в выбранных полях. Трансформирование методом квадрата по сути является обратным вычислением для метода квадратного корня, а это значит, что применение трансформации квадратом к полю, трансформированному методом квадратного корня, приведет к вычислению исходных значений данных.
        • По умолчанию к выбранному полю сдвиг не применяется. Чтобы вернуться к исходным значениям для трансформированных методом квадрата полей, укажите то же значение сдвига, которое использовали для создания полей методом квадратного корня. Этот сдвиг будет вычитаться после того, как будет применена трансформация методов квадрата: x2 — сдвиг.
      • Обратный Box-Cox — применяет обратную трансформацию Box-Cox, а это значит, что применение трансформации методом обратного Box-Cox к полю, трансформированному методом Box-Cox, приведет к вычислению исходных значений данных. Функция степени обратного Box-Cox вычисляется по формуле:

        где x’ — это трансформированное значение, x — исходное значение, λ1 — параметр степени (экспоненты), а λ2 — параметр сдвига.

        • По умолчанию к выбранному полю сдвиг или степень не применяется. Чтобы вернуться к исходным значениям для трансформированных методом Box-Cox, укажите те же значения сдвига и степени, которые использовали для создания полей Box-Cox.
    • Если вы не хотите, чтобы в методах логарифма, квадратного корня и Box-Cox использовался сдвиг по умолчанию, вы можете указать значение 0 в параметре Сдвиг, тогда он не будет применяться.

    • Если в запуске инструмента используется несколько полей, то выбранный метод трансформации будет применен к каждому из них. Если не указано значение сдвига или степени, то одни и те же значения будут применены ко всем выбранным полям. Если для параметров Сдвиг и Степень значения не указаны, то значения по умолчанию вычисляются независимо для каждого выбранного поля на основе выбранного метода трансформирования.

    • Инструмент изменяет входные данные и присоединяет новые созданные поля трансформирования к входной таблице или классу объектов.

    • В параметре Поле для трансформирования можно задать имена для входного и выходного поля. Если имя выходного поля уже существует в данных, инструмент перезапишет значения в этом поле.

    • Для каждого трансформированного поля и для поля-источника в сообщениях результатов геообработки приводится суммарная статистика. В эту статистику входят: минимум, максимум, сумма, среднее, стандартное отклонение, медиана, асимметрия и эксцесс.

    • Также в сообщениях геообработки будут показаны значения параметров Степень и Сдвиг, вычисленные инструментом. Эти значения можно использовать для получения исходных значений данных с использованием обратных методов трансформирования.

    • Инструмент создает гистограмму для каждого нового созданного трансформированного поля для визуализации распределения.

    Параметры

    Поля, содержащие значения, которые будут трансформированы. Для каждого поля можно указать имя выходного поля. Если имя выходного поля не указано, инструмент создает выходное поле с именем, созданным на основе имени входного поля и метода трансформирования.

    Подпись Описание Тип данных

    Входная таблица

    Входная таблица или класс пространственных объектов, содержащее поля, которые нужно трансформировать. Новые трансформированные поля добавляются к входной таблице.

    Table View; Raster Layer; Mosaic Layer
    Value Table

    Методы трансформирования

    (Дополнительный)

    Определяет метод, который используется для преобразования значений, содержащихся в выбранных полях.

    • Множественная инверсия—Метод множественной инверсии (1/x) применяется к исходному значению (x) в выбранных полях.
    • Квадратный корень—Метод квадратного корня применяется к исходному значению в выбранных полях.
    • Логарифм—Метод естественной функции логарифма, log(x) применяется к с исходному значению (x) в выбранных полях.
    • Box-Cox—Метод функции степени Box-Cox применяется к нормально распределенным исходном значениям в выбранных полях. Это значение по умолчанию
    • Обратный Box-Cox—Метод преобразования обратный Box-Cox применяется к исходным значениям в выбранных полях.
    • Квадрат (обратный квадратный корень)—Метод квадрата применяется к исходным значениям в выбранных полях. Это преобразование является обратным по отношению к квадратному корню.
    • Экспонента (обратный логарифм)—Функция экспоненты, exp(x) применяется к с исходному значению (x) в выбранных полях. Это преобразование является обратным по отношению к логарифму.
    String

    Степень

    (Дополнительный)

    Параметр степени ( λ1) для трансформации Box-Cox. Если значение не указано, будет определено оптимальное значение с использованием оценки максимального правдоподобия (MLE).

    Double

    Сдвиг

    (Дополнительный)

    Значение, на которое смещаются все данные (добавление постоянного значения). Если указано 0, ничего не добавляется.

    Для трансформаций логарифма, Box-Cox и квадратного корня перед преобразованием добавляется значение сдвига по умолчанию, если в данных нет отрицательных или нулевых значений.

    Для трансформаций методами экспоненты (обратный логарифм), обратный Box-Cox и квадрат (обратный квадратный корень) по умолчанию сдвиг не применяется. Если задано значение сдвига, то это значение вычитается после того, как применен метод трансформирования. Это позволяет использовать то же значение сдвига для преобразований и связанных с ними обратных преобразований.

    Double

    Производные выходные данные

    Подпись Описание Тип данных
    Обновленная входная таблица

    Обновленная таблица, содержащая преобразованные поля.

    Представление таблицы
    arcpy.management.TransformField(in_table, fields, {method}, {power}, {shift})
    Имя Описание Тип данных

    in_table

    Входная таблица или класс пространственных объектов, содержащее поля, которые нужно трансформировать. Новые трансформированные поля добавляются к входной таблице.

    Table View; Raster Layer; Mosaic Layer

    fields

    [[input_field, output_field_name],…]

    Поля, содержащие значения, которые будут трансформированы. Для каждого поля можно указать имя выходного поля. Если имя выходного поля не указано, инструмент создает выходное поле с именем, созданным на основе имени входного поля и метода трансформирования.

    Value Table

    method

    (Дополнительный)

    Определяет метод, который используется для преобразования значений, содержащихся в выбранных полях.

    • INVX—Метод множественной инверсии (1/x) применяется к исходному значению (x) в выбранных полях.
    • SQRT—Метод квадратного корня применяется к исходному значению в выбранных полях.
    • LOG—Метод естественной функции логарифма, log(x) применяется к с исходному значению (x) в выбранных полях.
    • BOX-COX—Метод функции степени Box-Cox применяется к нормально распределенным исходном значениям в выбранных полях. Это значение по умолчанию
    • INV_BOX-COX—Метод преобразования обратный Box-Cox применяется к исходным значениям в выбранных полях.
    • INV_SQRT—Метод квадрата применяется к исходным значениям в выбранных полях. Это преобразование является обратным по отношению к квадратному корню.
    • INV_LOG—Функция экспоненты, exp(x) применяется к с исходному значению (x) в выбранных полях. Это преобразование является обратным по отношению к логарифму.
    String

    power

    (Дополнительный)

    Параметр степени ( λ1) для трансформации Box-Cox. Если значение не указано, будет определено оптимальное значение с использованием оценки максимального правдоподобия (MLE).

    Double

    shift

    (Дополнительный)

    Значение, на которое смещаются все данные (добавление постоянного значения). Если указано 0, ничего не добавляется.

    Для трансформаций логарифма, Box-Cox и квадратного корня перед преобразованием добавляется значение сдвига по умолчанию, если в данных нет отрицательных или нулевых значений.

    Для трансформаций методами экспоненты (обратный логарифм), обратный Box-Cox и квадрат (обратный квадратный корень) по умолчанию сдвиг не применяется. Если задано значение сдвига, то это значение вычитается после того, как применен метод трансформирования. Это позволяет использовать то же значение сдвига для преобразований и связанных с ними обратных преобразований.

    Double

    Производные выходные данные

    Имя Описание Тип данных
    updated_table

    Обновленная таблица, содержащая преобразованные поля.

    Представление таблицы

    Пример кода

    TransformField пример 1 (окно Python)

    В следующем скрипте окна Python показано, как используется инструмент TransformField.

    import arcpy
    arcpy.management.TransformField("County_Data", "Income", "LOG")

    TransformField пример 2 (автономный скрипт)

    Следующий автономный скрипт Python демонстрирует, как использовать инструмент TransformField.

    # Import system modules. 
    import arcpy 
     
    try: 
        # Set the workspace and input features. 
        arcpy.env.workspace = r"C:\Transform\MyData.gdb" 
        inputFeatures = "County_Data" 
     
        # Set the input fields that will be standardized 
        fields = "population_total;unemployment_rate;income" 
     
        # Set the standardization method. 
        method = "BOX-COX" 
     
        # Run the Transform Field tool 
        arcpy.management.TransformField(inputFeatures, fields, method) 
     
    except arcpy.ExecuteError: 
        # If an error occurred when running the tool, print the error message. 
        print(arcpy.GetMessages())

    Параметры среды

    Экстент

    Особые случаи

    Информация о лицензиях

    • Basic: Да
    • Standard: Да
    • Advanced: Да
    Связанные разделы

    Отзыв по этому разделу?

    ч4_4

    СОДЕРЖАНИЕ

    3. 4   Графы и области логарифмических
    Функции

    Цели:

    ·
    График от руки a
    логарифмическая функция

    ·
    Обсудить
    характеристики, общие для графиков логарифмических функций с разным основанием

    ·
    Запись функционального правила
    для дайте логарифмический график

    ·
    Найти домен данного
    логарифмическая функция

    Необходимые навыки и
    знания:

    ·
    практические знания
    логарифмы по любому основанию

    Термины, которые нужно знать:

    ·
    область определения функции

    ·
    и

    ·
    экспоненциальная функция

    ·
    логарифм

    ·
    натуральный логарифм

    ·
    знак диаграммы

    ·
    вертикальная асимптота

    Концепция
    Подготовка: Графики функций журнала

    Пример 1.   Сделайте эскиз
    график функции, заданной

    Первый
    составим таблицу значений. Примечание
    значение  не определено, потому что основание 10 – это
    положительное число и нет показателя степени, который даст нам:     10 ??   =
    -10.

    Аналогично,
    журнал любой отрицательный номер не определен. Если мы попытаемся вычислить log(0), мы получим
    та же проблема.

    Мы
    скажи домен
    функции, заданной  is .

    В
    В приведенной ниже таблице мы выбрали числа, с которыми легко работать ( x = 0,01, 0,1, 1 и 10).
    В других случаях мы можем использовать наши калькуляторы для приблизительного расчета.
    ценности.

    х

    г

    0,01

    0,1

    -2

    -1

    1

    0

    2

    .30

    5

    . 70

    7

    .85

    8

    .90

    10

    1

    100

    2

    Далее наносим точки и соединяем их. Ваш график должен выглядеть примерно так:

    Уведомление
    что, поскольку журнал 0 не определен, график охватывает вертикальную ось. Этот
    происходит потому, что входные данные могут быть очень, очень близки к 0, но не равны
    0. Пишем:   

    который
    мы читаем «поскольку x приближается к 0 от
    Правильно.» Обратите внимание, что по мере ввода
    значения становятся очень маленькими, например,
    выходные значения становятся большими в отрицательном направлении. Заполните следующую таблицу, чтобы убедить
    себя в этом факте.

    х

    Мы
    говорят, что вертикальная ось является вертикальной асимптотой
    потому что как   ,
    значения функции,   .

    Пример 2.  Постройте график каждого из
    функции, заданные  и  

    Наш
    таблица значений для  следующая. Обратите внимание, что, как и в случае с логарифмической функцией по основанию 10,
    только положительные числа имеют выходные значения.
    Обратите также внимание, что использование степеней двойки упрощает вычисления.

    х

    -2

    Не определено

    -1

    Не определено

    0

    Не определено

    1/4

    -2

     1/2

    -1

    1

    0

    2

    1

    4

    2

    8

    3

    Примечание
    что график этой функции шире (дальше от х-), чем график, когда основание было равно 10. Обсудите с коллегами, почему это так.
    так.

    Уведомление
    опять же, что вертикальная ось (ось y )
    является вертикальным
    асимптота графика функции
    потому что  как   ,
    значения функции,   .

    график функции, заданной  , находится между двумя графиками выше:

    .

    Объяснить
    почему это так.

           Контрольно-пропускной пункт:
    Графики логарифмических функций

    Пример 3.   Обратите внимание, как график
    сравнивается с графиком .

    Объяснить
    почему это так.

    Пример 4.   Сравнить
    графики   и  на одном и том же графике. Как они связаны?

    графики являются зеркальными отражениями друг друга поперек линии.

    Если
    мы смотрим на таблицу значений для каждой из вышеуказанных функций, мы замечаем, что если мы используем выходные данные в качестве входных данных для ,
    мы получаем входы .

           Контрольно-пропускной пункт:
    Графики логарифмических функций 2

    Домен
    Функция журнала

    Как
    мы заметили выше, логарифм отрицательного числа не определен. Напомним, что
    независимо от того, каково значение положительного основания a  , оно положительно.
    Убедитесь сами в этом факте, попробовав оценить следующее
    логарифмы.

    Пример 5.  

    а)                                                                     

    c)                                                                            

    РАСТВОР

    а)   Используя
    определение логарифма,    

         это показатель степени, который нам нужен
    поднять 10 до порядка

         для получения:

    b)   Используя
    определение логарифма,    

         это показатель степени, который нам нужен
    поднять 2 до порядка

         для получения  :

    c) Использование
    определение логарифма,    

         это показатель степени, который нам нужен
    поднять 3 до порядка

         чтобы получить  0:

    г) Использование
    определение логарифма,    

         это показатель степени, который нам нужен
    поднять e до порядка

         для получения:                                                                 

    Пример 6.   Найдите
    область определения каждой из следующих функций.

    а)                                                      b)    

    c)                                                  

    e)                                       f)                                         

    РАСТВОР

    а)     Поскольку журнал отрицательного числа не
    существует, домен .

    б)      

          Выражение
    после  должно быть положительным,

          поэтому мы устанавливаем его и решаем:                                                                                                                900

         Следовательно, домен         

    c)                                             

           Выражение
    после  должно быть положительным,

            поэтому мы устанавливаем его и решаем:                                         

            Таким образом, домен равен  

    г)   

            Выражение после
    должен быть положительным,

            поэтому мы устанавливаем его и решаем:                                             

          Таким образом, домен .

          Обратите внимание, что некоторые отрицательные числа
    в этом домене. Например,  находится в     

    .

          домен, так как выражение после ,
    что    

          положительный.

    д)  

         Поиск домена для этой функции
    требует больше работы, так как выражение нелинейно.

        Возможно, вам потребуется обновить использование таблиц знаков,
    которые мы кратко рассмотрим здесь. Для

        подробнее см. раздел 2.4
    Фундаментальная математика V электронная книга.

       Найдите критические числа
    для функции по

       установка выражения  после «log» = 0:                             

       Используйте эти важные
    числа как конечные точки интервала на

       таблица знаков, а затем используйте тестовые числа для определения знака  

       факторов в этих
    интервалы:

       Выбираем интервалы, в которых произведение  положительно.

       Домен, следовательно,
     

    е)    

           Здесь снова используется таблица знаков:

       Найдите критические числа
    для функции по

       установка выражения  после «log» = 0:                             

       Используйте эти важные
    числа как конечные точки интервала на

       таблица знаков, а затем используйте тестовые числа для определения знака  

       факторов в этих
    интервалы:

     Выбираем интервалы, в которых произведение  положительно.

     Таким образом, домен
     

           Контрольно-пропускной пункт:
    Области определения логарифмических функций

    Больше обработанных примеров

    Проблемы с домашним заданием

    Предыдущий раздел
    Следующий Раздел

    Деловой расчет

    Логарифмы обратны экспоненциальным функциям — они позволяют нам отменить экспоненциальные функции и найти показатель степени. х). 9х=10 ) для (х).

    Переписав это выражение в виде логарифма, мы получим ( x=log_2(10) ).

    Для просмотра этого видео включите JavaScript и рассмотрите возможность обновления до веб-браузера, поддерживающего видео HTML5

    Хотя это и определяет решение, причем точное решение, оно может показаться вам несколько неудовлетворительным, поскольку трудно сравнить это выражение с десятичной оценкой, которую мы сделали ранее. Кроме того, давать точное выражение для решения не всегда полезно — часто нам действительно требуется десятичная аппроксимация решения. К счастью, с этой задачей хорошо справляются калькуляторы и компьютеры. К несчастью для нас, большинство калькуляторов и компьютеров вычисляют только логарифмы по двум основаниям. К счастью, в конечном итоге это не проблема, как мы вскоре увидим.

    Обычный и натуральный логарифмы

    Обычный логарифм представляет собой логарифм с основанием 10 и обычно записывается ( log(x) ). x=1000. ] 9гсправа)=г,log_b(A) )

    Решение экспоненциальных уравнений:
    1. По возможности изолируйте экспоненциальные выражения.
    2. Логарифмируйте обе части.
    3. Используйте свойство экспоненты для логарифмов, чтобы извлечь переменную из экспоненты.
    4. Используйте алгебру, чтобы найти переменную.

    Для просмотра этого видео включите JavaScript и рассмотрите возможность обновления до веб-браузера, поддерживающего видео HTML5 9тсправа))
    Возьмем логарифм обеих частей уравнения.
    (lnleft(dfrac{2}{1.14}right)=t,ln(1.0134))
    Примените свойство экспоненты справа.
    ( t = dfrac{lnleft(dfrac{2}{1.14}right)}{ln(1.0134)})
    Разделить обе части на (ln(1.0134))
    ( токоло 42,23 текст{ лет} )

    9{-0.3t}right)=lnleft(dfrac{2}{5}right))
    Возьмите натуральное бревно с обеих сторон.
    (-0.3t=lnleft(dfrac{2}{5}right))
    Использование обратного свойства для журналов.
    ( t = dfrac{lnleft(dfrac{2}{5}right)}{-0,3})
    Теперь делим на -0,3.
    ( токоло 3,054 )

    Помимо решения показательных уравнений, логарифмические выражения распространены во многих физических ситуациях. 9{-7}=0,0000001text{моль на литр}.]

    Хотя нам не часто приходится рисовать график логарифма, полезно понять его основную форму.

    Графические особенности логарифма

    Графически, учитывая функцию (g(x)=log_b(x) ).

    • График имеет горизонтальную точку пересечения в точках (1, 0).
    • График имеет вертикальную асимптоту в точке ( x = 0).
    • График увеличивается и вогнут вниз.
    • Область определения функции равна ( x gt 0) или ( (0, infty) ) в интервальной записи.
    • Диапазон функции — все действительные числа или ( (-infty, infty) ) в интервальной записи.

    При построении общего логарифма с основанием (b) полезно помнить, что график будет проходить через точки (left(frac{1}{b}, -1right)), ((1, 0)) и ((b, 1)).

    Чтобы понять, как основание влияет на форму графика, изучите приведенные ниже графики:

    Другим важным сделанным наблюдением была область логарифмирования: (x gt 0). Подобно функциям обратного и квадратного корня, логарифм имеет ограниченную область определения, которую необходимо учитывать при нахождении области определения композиции, включающей бревно.

    Пример 8

    Найдите область определения функции ( f(x)=log(5-2x) ).

    Логарифм определяется только при положительном входе, поэтому эта функция будет определена только при ( 5-2x gt 0 ). Решая это неравенство, ( -2x gt -5 ), поэтому ( xlt frac{5}{2} ).

    Область определения этой функции: ( xlt frac{5}{2} ), или, в интервальной записи, ( left(-infty, frac{5}{2} right) ).

    Объяснение урока: Логарифмические функции | Nagwa

    В этом эксплейнере мы научимся определять, записывать и вычислять логарифмические
    функция, обратная экспоненциальной функции.

    Логарифмическая функция — это просто обратная экспоненциальная функция. Однако прежде чем рассматривать логарифмические функции, давайте рассмотрим линейную функцию, такую ​​как 𝑓(𝑥)=3𝑥−1, и ее обратную. Напомним, что для того, чтобы найти обратную функцию, мы сначала перепишем ее как 𝑦=3𝑥−1. Затем мы поменяем переменные 𝑥 и 𝑦, чтобы получить 𝑥=3𝑦−1, и найдем 𝑦, что даст нам 𝑦=𝑥+13. Наши расчеты показывают, что обратным 𝑓(𝑥)=3𝑥−1 является 𝑓(𝑥)=𝑥+13. Вы также можете определить обратное как 𝑔(𝑥)=𝑥+13. Поскольку 𝑓(𝑥) и 𝑔(𝑥) обратны друг другу, если точка (𝑥,𝑦) удовлетворяет 𝑓(𝑥), то точка (𝑦,𝑥) должна удовлетворять 𝑔(𝑥). Например, мы можем видеть, что точка (1,2) удовлетворяет 𝑓(𝑥), потому что 𝑓(1)=3(1)−1=2, а точка (2,1) удовлетворяет 𝑔(𝑥), потому что
    𝑔(2)=2+13=33=1.

    Изучение графиков 𝑦=𝑓(𝑥) и 𝑦=𝑔(𝑥)
    для двух функций ниже мы видим, что они являются отражением друг друга в строке
    𝑦=𝑥.

    Теперь рассмотрим экспоненциальную функцию 𝑓(𝑥)=5. Обратной этой функцией является логарифмическая
    функция 𝑓(𝑥)=𝑥log или
    𝑔(𝑥)=𝑥log. Предположим, нас попросили найти 𝑓(1) для экспоненциальной функции
    𝑓(𝑥)=5. Мы бы заменили 1 на
    𝑥, чтобы получить 𝑓(1)=5=5. Далее, предположим, нас просят найти
    𝑔(5) для логарифмической функции
    𝑔(𝑥)=𝑥log. Мы бы заменили 5 на
    𝑥 чтобы получить 𝑔(5)=5log и спросить
    себе следующий вопрос: «В какую степень возводится основание числа 5, чтобы
    равняться 5?» Поскольку ответ на вопрос равен 1, мы
    известно, что 𝑔(5)=1. Обратите внимание, что точка (1,5) удовлетворяет экспоненциальной функции,
    а точка (5,1) удовлетворяет логарифмической функции. Как и в случае с линейной функцией и ее обратной выше, координаты точек, которые
    две функции меняются местами, а графики двух функций являются отражениями
    друг от друга в строке 𝑦=𝑥, как показано.

    Это верно для любого основания 𝑎 экспоненциальной функции и ее обратной
    логарифмическая функция.

    Определение: логарифмическая функция

    Логарифмическая функция является обратной экспоненциальной функцией. Для показательной функции 𝑓(𝑥)=𝑎 ее
    обратная логарифмическая функция 𝑓(𝑥)=𝑥log или
    𝑔(𝑥)=𝑥log. Если точка (𝑥,𝑦) удовлетворяет
    экспоненциальная функция, то точка
    (𝑦,𝑥) удовлетворяет логарифмической функции. То есть, если
    𝑦=𝑎, тогда 𝑥=𝑦log. Графики
    две функции являются отражениями в прямой 𝑦=𝑥.

    Имейте в виду, что согласно этому определению экспоненциальная функция
    𝑓(𝑥)=10 будет иметь обратную логарифмическую функцию
    𝑓(𝑥)=𝑥log или
    𝑔(𝑥)=𝑥log. Однако, когда основание равно 10, по соглашению,
    нет необходимости указывать его в логарифмической функции. То есть мы можем просто написать
    𝑔(𝑥)=𝑥log, так что log𝑥 принимается равным
    log𝑥 (который можно прочитать как логарифм по основанию 10 из 𝑥 или,
    просто, как журнал 𝑥). Аналогично, для показательной функции
    𝑓(𝑥)=𝑒, обратную логарифмическую функцию нужно записать в
    особый способ. Вместо записи 𝑓(𝑥)=𝑥log или
    𝑔(𝑥)=𝑥log, мы бы написали
    𝑓(𝑥)=𝑥ln или
    𝑔(𝑥)=𝑥ln (что можно прочитать как натуральное
    журнал 𝑥).

    Определение: Натуральная логарифмическая функция

    Натуральная логарифмическая функция является обратной экспоненциальной функцией с основанием
    𝑒. При условии
    𝑓(𝑥)=𝑒, его обратная натуральная логарифмическая функция
    равно 𝑓(𝑥)=𝑥ln или 𝑔(𝑥)=𝑥ln.

    Теперь давайте рассмотрим некоторые задачи, связанные с логарифмическими функциями.

    Пример 1. Нахождение функции обратного логарифма

    Функция 𝑓(𝑥)=2𝑒+3
    имеет обратный вид 𝑔(𝑥)=(𝑎𝑥+𝑏)ln. Каковы значения 𝑎 и 𝑏?

    Ответ

    Напомним, что при нахождении обратной линейной функции мы меняем местами переменные
    𝑥 и 𝑦 и
    затем решить для 𝑦. Чтобы найти обратнологарифмическую функцию, нам нужно
    следовать той же процедуре. Начнем с того, что перепишем данную экспоненциальную функцию как
    𝑦=2𝑒+3. После замены переменных 𝑥 и
    𝑦, получаем 𝑥=2𝑒+3. Вычитание 3 с обеих сторон
    уравнение дает нам 𝑥−3=2𝑒, а затем деление обеих частей на 2 дает
    𝑥−32=𝑒.

    Теперь, поскольку основание натурального логарифма равно 𝑒, возьмем натуральное
    лог с обеих сторон
    уравнение. После переписывания уравнения в виде
    lnln𝑥−32=𝑒,
    мы можем задать себе следующий вопрос, чтобы упростить правую часть:
    «В какую степень возводится основание 𝑒, чтобы равняться
    𝑒?» Ответ на вопрос 𝑦,
    поэтому уравнение можно переписать как
    ln𝑥−32=𝑦 или 𝑦=𝑥−32ln. Затем мы можем заменить 𝑦 на 𝑔(𝑥), чтобы получить
    𝑔(𝑥)=𝑥−32ln и перепишем функцию в виде
    𝑔(𝑥)=12𝑥−32ln
    представить его в виде 𝑔(𝑥)=(𝑎𝑥+𝑏)пер. Это показывает, что 𝑎=12 и 𝑏=-32.

    Примечание

    Помните, что если точка (𝑥,𝑦) удовлетворяет экспоненциальной функции, то точка (𝑦,𝑥)
    удовлетворяет своей обратной логарифмической функции. Найдем точку (𝑥,𝑦), удовлетворяющую 𝑓(𝑥)=2𝑒+3, и проверим, удовлетворяет ли точка (𝑦,𝑥) 𝑔(𝑥)=12𝑥−32ln. Если (𝑦,𝑥) удовлетворяет 𝑔(𝑥)=12𝑥−32ln,
    не докажет, что наш ответ правильный, но если (𝑦,𝑥)
    не удовлетворяет функции, мы точно будем знать, что допустили ошибку.

    Поскольку 𝑓(1)=2𝑒+3=2𝑒+3,
    точка (1,2𝑒+3) удовлетворяет
    𝑓(𝑥). Это означает, что точка (2𝑒+3,1)
    должно удовлетворять 𝑔(𝑥). Мы можем определить, так ли это, найдя
    𝑔(2𝑒+3) следующим образом:
    𝑔(2𝑒+3)=12(2𝑒+3)−32=𝑒+32−32=𝑒=1.lnlnln

    Это показывает, что точка (2𝑒+3,1) действительно удовлетворяет 𝑔(𝑥), как и должно быть.

    В следующем примере мы продемонстрируем связь между доменом и диапазоном
    экспоненциальная функция, а также область определения и область значений, обратная ей. Напомним, что если точка (𝑥,𝑦) удовлетворяет
    экспоненциальная функция, то точка (𝑦,𝑥) удовлетворяет своей обратной логарифмической функции. Таким образом, если 𝑥 является
    элемент области экспоненциальной функции, он также является элементом диапазона логарифмической
    функция. Точно так же, если 𝑦 является элементом диапазона экспоненциальной функции, то он также является элементом
    области определения логарифмической функции. Это верно для любой точки (𝑥,𝑦), поэтому мы знаем, что область определения
    экспоненциальная функция должна быть такой же, как диапазон логарифмической функции. Так же и диапазон
    экспоненциальной функции должно быть таким же, как область определения логарифмической функции.

    Пример 2. Нахождение области определения обратной экспоненциальной функции

    Рассмотрим функцию 𝑓(𝑥)=𝑏, где 𝑏 — положительное действительное число, не равное 1. Чему равно
    домен 𝑓(𝑥)?

    Ответ

    Напомним, что область определения функции — это множество всех возможных входных значений, а диапазон функции — это множество всех возможных выходных значений. Сначала рассмотрим область определения и область значений функции 𝑓(𝑥)=𝑏. Поскольку показатель степени в определении функции может быть любым отрицательным значением, любым положительным значением или 0, областью определения функции являются все действительные числа. Нам было дано, что 𝑏 положительна, поэтому, чтобы помочь определить диапазон функции, давайте возьмем конкретное положительное значение для использования в качестве примера, 𝑏=2, что даст нам функцию 𝑓(𝑥)=2. Отрицательное значение 𝑥, например -3, дает 𝑓(-3)=2=18; положительное значение 𝑥, например 3, дает 𝑓(3)=2=8; а значение 0 для 𝑥 дает 𝑓(0)=2=1. Обратите внимание, что выходное значение в каждом случае положительное, поэтому мы знаем, что диапазон
    𝑓(𝑥)=𝑏 должно быть 𝑓(𝑥)>0.

    Поскольку показатель степени в 𝑓(𝑥)=𝑏 является переменной, мы также знаем, что функция является экспоненциальной
    функция. Напомним, что обратная экспоненциальная функция является логарифмической функцией. То есть, если
    𝑓(𝑥)=𝑏, тогда 𝑓(𝑥)=𝑥лог. Также напомним, что диапазон экспоненциальной функции — это область определения ее обратной функции. Другими словами, область определения логарифмической функции 𝑓(𝑥)=𝑥log должна быть 𝑥>0.

    Примечание

    Мы можем проверить наш ответ, снова предположив, что 𝑏=2, а затем изобразив графически оба 𝑦=𝑓(𝑥)
    и 𝑦=𝑓(𝑥) для функций 𝑓(𝑥)=2 и 𝑓(𝑥)=𝑥log следующим образом:

    Мы видим, что графики являются отражениями друг друга в прямой 𝑦=𝑥 ​​и что график 𝑦=𝑓(𝑥) расположен только в первом и четвертом квадрантах. Другими словами, он имеет ось 𝑦 как асимптоту и имеет только положительные входные значения. Это подтверждает, что область определения функции 𝑓 на самом деле равна 𝑥>0.

    Теперь давайте посмотрим, как мы можем вычислить логарифмическую функцию.

    Пример 3. Вычисление логарифмической функции в заданной точке

    Рассмотрим функцию 𝑓(𝑥)=(3𝑥−1)log. Если 𝑓(𝑎)=3, найдите значение 𝑎.

    Ответ

    Чтобы найти значение 𝑎, мы можем начать с подстановки 𝑎 в заданную функцию вместо 𝑥 и 3 вместо 𝑓(𝑥), чтобы получить
    3=(3𝑎−1). log

    Напомним, что логарифмическая функция является обратной показательной функции и что если 𝑦=𝑎, то 𝑥=𝑦log. Отсюда следует, что если 𝑥=𝑦log, то 𝑦=𝑎.

    Мы видим, что в этой задаче основание 𝑎 равно 2, значение 𝑥 равно 3, а значение 𝑦 равно 3𝑎−1. Подстановка этих значений в уравнение 𝑦=𝑎 дает нам 3𝑎−1=2.

    Упрощение дает 3𝑎−1=8, а нахождение 𝑎 дает решение 𝑎=3.

    Примечание

    Найдя 𝑓(3) для функции 𝑓(𝑥)=(3𝑥−1)log, мы можем проверить наш ответ. Подстановка 3 вместо 𝑥 дает нам 𝑓(3)=(3(3)−1)log. После умножения 3 на 3 получаем 𝑓(3)=(9−1)log, а после вычитания 1 из 9 получаем 𝑓(3)=8log. Чтобы упростить правую часть этого уравнения, мы должны задать себе следующий вопрос: «В какую степень возвести основание числа 2, чтобы оно равнялось 8?» Ответ равен 3, поэтому мы знаем, что 𝑓(3)=3 и что наш ответ правильный.

    В следующем примере мы определим основание логарифмической функции по точке, через которую проходит график функции.

    Пример 4.

    Выполнение функции через заданную точку

    Зная, что график функции 𝑓(𝑥)=𝑥log проходит через точку (1024,5), найдите значение 𝑎.

    Ответ

    Чтобы найти значение 𝑎, сначала нам нужно переписать логарифмическую функцию 𝑓(𝑥)=𝑥log как 𝑦=𝑥log. Поскольку график функции проходит через точку (1024,5), мы знаем, что когда 𝑥=1024, то 𝑦=5. Это позволяет подставить эти значения в функцию, чтобы получить уравнение
    5=1024.log

    Мы знаем, что если 𝑦=𝑥log, то 𝑥=𝑎, отсюда следует, что 1024=𝑎. Один из способов решить это уравнение для 𝑎 — взять корень пятой степени с каждой стороны следующим образом:
    1024=𝑎√1024=√𝑎4=𝑎.

    Это показывает, что значение 𝑎 равно 4. Однако без калькулятора нам может быть трудно определить, что корень пятой степени из 1‎ ‎024 равно 4. Одна из стратегий, которую мы можем использовать для нахождения корня пятой степени из 1‎ ‎024, состоит в том, чтобы признать, что 1‎ ‎024 является степенью числа 2. Мы можем перечислить степени числа 2 следующим образом:
    2=22=2×2=42=2×2×2=82=2×2×2×2=162=2×2×2×2×2=322=2×2×2×2×2× 2=642=2×2×2×2×2×2×2=1282=2×2×2×2×2×2×2×2=2562=2×2×2×2×2×2× 2×2×2=5122=2×2×2×2×2×2×2×2×2×2=1024. 

    Имея эту информацию, мы можем решить уравнение 1024=𝑎 для 𝑎, подставив 1‎ ‎024 и
    сгруппируйте 2, как показано:
    1024=𝑎√2×2×2×2×2×2×2×2×2×2=√𝑎√(2×2)×(2×2)×(2×2)×(2×2) ×(2×2)=√𝑎2×2=√𝑎4=𝑎.

    Этот метод дает нам то же значение 4 для 𝑎, которое мы получили ранее.

    В качестве последнего примера давайте рассмотрим реальную проблему.

    Пример 5. Решение реальной задачи с использованием логарифмических функций

    pH раствора определяется формулой pHlog=−(𝑎)H+,
    где 𝑎H+ — концентрация ионов водорода. Определить концентрацию ионов водорода в растворе, рН которого равен 8,4.

    Ответ

    Концентрация ионов водорода представлена ​​𝑎H+, поэтому мы должны найти эту переменную, чтобы ответить на вопрос. Поскольку нам дано, что
    рН раствора равен 8,4, мы можем начать с подстановки 8,4 в формулу для рН, чтобы получить 8,4=-(𝑎).logH+

    После подстановки мы можем затем умножить обе части уравнения на -1, чтобы получить -8,4 =(𝑎)logH+. Напомним, что если основание логарифма не показано, предполагается, что оно равно 10, поэтому, чтобы помочь найти 𝑎H+, теперь мы можем переписать уравнение как
    −8,4=(𝑎).logH+

    Мы знаем, что логарифмическая функция является обратной экспоненциальной функцией и что если 𝑥=𝑦log, то 𝑦=𝑎, поэтому на основе имеющейся у нас информации мы можем написать показательное уравнение, подставив значения или переменные в 𝑦 =𝑎 для 𝑎, 𝑥 и 𝑦. Поскольку 𝑎=10, 𝑥=−8,4 и 𝑦=𝑎H+, получаем уравнение
    𝑎=10.H+

    Отсюда видно, что концентрация ионов водорода в растворе с рН 8,4 равна 10.

    Напомним, что область определения логарифмической функции 𝑥>0, поэтому в этом случае 𝑎H+ должно быть положительным числом. На самом деле его значение положительно, потому что 10 в любой степени больше или равно 0. Отрицательный показатель степени в 10 означает только то, что значение 𝑎H+ меньше 1. С помощью калькулятора мы можем видим, что его приблизительное значение равно 3,98×10 или 0,00000000398.

    Теперь давайте закончим, повторив некоторые ключевые моменты.

    Ключевые моменты

    • Логарифмическая функция является обратной экспоненциальной функцией.
    • Для показательной функции 𝑓(𝑥)=𝑎,
      его обратно-логарифмическая функция равна 𝑓(𝑥)=𝑥log или
      𝑔(𝑥)=𝑥log.
    • Если основание логарифмической функции равно 10, указывать его не нужно. Если
      𝑓(𝑥)=10, тогда 𝑓(𝑥)=𝑥log.
    • Натуральная логарифмическая функция является обратной экспоненциальной функцией с основанием 𝑒. Если 𝑓(𝑥)=𝑒, то 𝑓(𝑥)=𝑥ln. 93-8

      9
      Оценка
      квадратный корень из 12

      10
      Оценка
      квадратный корень из 20

      11
      Оценка
      квадратный корень из 50

      94

      18
      Оценка
      квадратный корень из 45

      19
      Оценка
      квадратный корень из 32

      20
      Оценка
      квадратный корень из 18

      92

      Логарифмические функции

      ЛОГАРИТМИЧЕСКИЕ ФУНКЦИИ

      Обзор устройства
      Этот модуль посвящен свойствам экспоненциальных и логарифмических функций и решению уравнений с использованием этих свойств. Логарифмические функции используются для решения экспоненциальных и логарифмических уравнений. Формула замены базы используется для оценки экспоненциальных и логарифмических уравнений. Приложения логарифмических функций включают шкалу pH в химии, интенсивность звука, шкалу Рихтера для землетрясений и закон охлаждения Ньютона.

      Примечание : На снимке изображен Сан-Франциско в 1906 году после разрушительного землетрясения.

      Логарифмические функции

      Логарифм числа — это показатель степени, до которого необходимо возвести фиксированное значение, называемое основанием, чтобы получить это число. Например, логарифм 1000 по основанию 10 равен 3, потому что 1000 — это 10 в третьей степени.

      экспоненциальная форма

       

      логарифмическая форма

      база мощность = значение

       

      журнал база значение = мощность

      В общем случае логарифмическая функция обратна экспоненциальной функции.

        Введение в логарифмические функции 

      Основание логарифма b положительного числа x удовлетворяет следующему определению.

      Вот анимация, которая поможет понять, что такое бревно.
      Выражение log b x читается как «логарифмическая база b из x ». Другими словами, логарифм y является показателем степени, в которой b нужно увеличить, чтобы получить x .

      *Because y = log b x  is the inverse of   y = b x and y = log b x  is a function, the exponential function y = b x  является однозначной функцией**.

      **Значение: для каждого элемента в домене ( x -значений), в диапазоне ( y -значений) есть ровно один соответствующий элемент.

       Журналы и показатели (05:11) 

      Пример №1 :  5 3 = 125 становится логарифмом 5 125 = 3


      Еще примеры
      : черный (темный) шрифт представляет то, что дано; красный (светлый) отпечаток представляет результаты.
      Стоп!   Перейдите к вопросам 1–3 по этому разделу, затем вернитесь, чтобы перейти к следующему разделу.

      Свойство показателей степени «один к одному»

      Давайте рассмотрим, как свойство степени «один к одному» может помочь в решении логарифмических уравнений, выраженных в экспоненциальной форме.

      Вот анимация, которая поможет понять свойство One-to-one.




      Пример #1 : Решить log 2 1 = r   для r.

      лог 2 1 = г

      — представить в экспоненциальной форме

      2 р = 1  – спросите себя: «2 в какой степени равно 1?»
      2 r = 2 0

      -с 2 0 = 1, р = 0

      г = 0  

      Пример № 2 : Решение log V 32 = 5 для против.

      — представить в экспоненциальной форме

      v 5 = 32 -спросите «Можно ли написать 32 с основанием в 5-й степени?»
      v 5 = 2 5 0

      — основание 2 в 5-й степени равно 32

      v = 2 -т.к. 2 5 = 32, v = 2

      Пример №3 : Решите log b 9 = для b.

      лог б 9 =

      — представить в экспоненциальной форме

      — умножить оба показателя степени на 2

      — Упростите переменную до первой степени ( b ): 

      б 1 = 9 2  
      б = 81  

      Давайте попрактикуемся в вычислении нескольких логарифмов, применяя свойство экспонент один к одному.

      Журнал оценки 2 8 = x

      x = 3, потому что 2 3 = 8

      «Нажмите здесь», чтобы проверить ответ.

      Журнал оценки 9 9 = v

      v = 1, потому что 9 1 = 9

      «Нажмите здесь», чтобы проверить ответ.

      Журнал оценки 7 49 = q

      кв = 2, потому что 7 2 = 49

      «Нажмите здесь», чтобы проверить ответ.

      Журнал оценки 2   = м

      м = 2, потому что 5 2 = 1/25

      «Нажмите здесь», чтобы проверить ответ.


      Останавливаться!
        Перейдите к вопросам 4–7 по этому разделу, затем вернитесь, чтобы перейти к следующему разделу.

      Графики логарифмических функций

      Чтобы нарисовать график логарифмической функции, используйте тот факт, что логарифмическая функция является обратной экспоненциальной функцией.

      Помните , что обратная функция получается путем переключения x и y координаты. Это отражает график о линии y = x .

      В таблице ниже показано, как x и y координаты точек на экспоненциальной кривой y = 2 x x можно переставить, чтобы найти координаты точек на логарифмической кривой y = log 2 х.

      Давайте внимательно изучим логарифмическую функцию.

      Область ( x -координаты) логарифмической функции

      Посмотрите на левую часть логарифмического графика (синяя). Обратите внимание, что координаты x точек очень близки к нулю, но никогда не равны нулю и не пересекают ось y . В правой части графика x -координаты точек растут бесконечно.

      Таким образом, область определения логарифмической функции равна x > 0 .

      Диапазон ( y -координаты) логарифмической функции

      Поскольку y -координаты точек не ограничены и могут быть как бесконечно малыми, так и бесконечно большими, диапазон логарифмической функции равен всех действительных чисел .

      Особенности логарифмической функции

      -нет у -перехват.

       
      -Вертикальная асимптота равна x = 0,

      * Примечание : Асимптота – это линия, к которой график приближается по мере увеличения абсолютного значения x или y .

      — Логарифмическая функция не имеет горизонтальной асимптоты.

      x — пересечение равно 1.

      — Функция увеличивается по домену.

      * Примечание : Если основание находится в диапазоне от 0 до 1, функция уменьшается по домену.

        Графики логарифмических функций

      Преобразование логарифмической функции

      Зная форму логарифмического графика, его можно сдвинуть по вертикали и/или горизонтали, растянуть или сжать, а также отразить.

      Журнал функции b x является родительским графиком для логарифмической функции.

      When working with the logarithmic function, y = log b ( x – h ) + k , the graph of the parent function, y = log b x , можно перевести по горизонтали на х единиц и по вертикали на к единиц.

      a в стандартной форме логарифмической функции y = a log b ( x – h ) + k 94 | ), компрессия
      (если 0 < | a | <1 ) или отражение (если a < 0).

      Пример № 1 : как график y = log 3 ( x + 2) + 4 по сравнению с графиком родительской функции
      г = логарифм 3 x ? Укажите домен, диапазон и определите асимптоту (вертикальную линию, к которой приближается график).

      y = a log b ( x – h ) + k

      — стандартная форма логарифмической функции

      у = log 3 ( х + 2) + 4 -данная функция
      y = log 3 ( x – ( 2) + 4 -переписать данную функцию в стандартной форме
      h = –2, поэтому график смещается на 2 единицы влево
      k = 4, поэтому график переводит 4 единицы вверх
      Домен меняется с 9от 3420 x > 0 до x > –2.
      Вертикальная асимптота равна x = –2.
      В диапазоне остаются все действительные числа.

      На графике ниже показаны сдвиги по горизонтали (–2) и по вертикали (+4).

      Пример № 2 : Как график y = 3log 4 ( x ) – 2 соотносится с графиком родительской функции y = log 4 2 4 x ?  Укажите домен, диапазон и определите асимптоту (вертикальную линию, к которой приближается график).

      y = a log b ( x – h ) + k

      -стандартная форма логарифмической функции

      y = 3log 4 ( x ) – 2 -данная функция
      y = 3log 4 ( x – 0) + (–2) -переписать данную функцию в стандартной форме

      a = 3, поэтому график растягивается в 3 раза

      h = 0, значит нет смещения по горизонтали

      k = –2, поэтому график сдвинется вниз на 2 единицы

      Поскольку смещения по горизонтали нет, область остается x > 0, и, таким образом, вертикальная асимптота x = 0,

      В диапазоне остаются все действительные числа.

      На приведенном ниже графике сравнивается родительская функция (красная) с функцией, которая показывает только сжатие a = 3 (синяя), а затем вся заданная функция (зеленая), которая сжата на 3 и сдвинута вниз на две единицы.

      Стоп!   Перейдите к вопросам 8–11 по этому разделу, затем вернитесь, чтобы перейти к следующему разделу.

      Свойства логарифмических функций

      Логарифмы по определению являются показателями степени ; таким образом, свойства логарифмов аналогичны свойствам показателей.

      Свойство продукта: Логарифм продукта равен сумме логарифма первого основания и логарифма второго основания.

      Частное Свойство:   Логарифм частного равен разности логарифмов числителя и знаменателя дроби, представляющей деление.

      Пример №1 : Перепишите выражение журнала как log 5 2 + log 5 6 x как один журнал.

      *Обратите внимание, что сложение превратилось в умножение.

      Пример № 2 :  Перепишите выражение журнала как log 8 12 – log 8 4 одним бревном.

      *Обратите внимание, что вычитание превратилось в деление.

      Example #3 :  Rewrite the log expression as log b 4 x – log b 3 y + log b y as one журнал.

      *Обратите внимание, что вычитание превратилось в деление, а сложение превратилось в умножение.

      Пример № 40221 8

      Степень Свойство:   Логарифм степени равен произведению степени на логарифм основания.

      = 8log 3 27

      Переместите питание перед бревном

        Умножить логарифм 8 раз 3 27
      = 8 ⋅ 3   С 3 3 = 27, log 3 27 равно 3.
      = 24        

      Показательная функция и логарифмическая функция с одинаковым основанием являются обратными друг другу.

      .

      Пример № 5 :  Упрощение:  + log 5 25

      Шаг № 1 8 : 
      так как основания одинаковые результат 4
      4 + журнал 5 25
      Шаг № 2 25 нужно записать с основанием 5
      4 + журнал 5 5 2
      Шаг № 3 Теперь, когда основания одинаковы для бревна 5 5 2 , результат равен 2
      4 + 2 = 6

      Следовательно, значение + log 5 25 равно 6,

      .

      Пример #6 :  Упрощение: log 2 32 –

      Шаг №1 : переписать 32, используя основание 2
      журнал 2 2 5
      Шаг № 2 : так как основания одинаковые в результате 3
      журнал 2 2 5 – 3
      Шаг № 3 так как основания одинаковые в журнале 2 2 5 результат 5
      5 – 3 = 2

      Следовательно, значение журнала 2 32 – равно 2,

        Правила и свойства журнала (04:34) 

      Вот анимация, которая поможет понять свойство логарифмов «один к одному».

      Если основания эквивалентных логарифмов одинаковы, то и значения равны.

      Example #7 :  Solve for x :  log 2 (2 x 2 + 8 x 11) = log 2 (2 x + 9)

      Шаг № 1 : Поскольку основания одинаковы, мы можем приравнять выражения друг к другу и решить.


      Шаг № 2
      :  Оба этих числа возвращаются в исходное логарифмическое уравнение для проверки решения. Если какое-либо число дает отрицательный логарифм, этот ответ должен быть исключен, поскольку домен логарифмических функций исключает отрицательные числа.

      Чек: (–5)

      Поскольку –5 дает отрицательный логарифм, это не может быть решением.

      Чек: (2)

      Поскольку 2 дает положительный логарифм, то решение этой задачи равно 2.



      Стоп!   Перейдите к вопросам № 12–21 по этому разделу, затем вернитесь, чтобы перейти к следующему разделу.

      Применение десятичных логарифмов

      Десятичный логарифм — это логарифм по основанию 10. Десятичный десятичный логарифм log 10 x можно записать просто как log x , не показывая 10.

      Чтобы решить уравнения, где x — это показатель степени:

      Example #1 :  Solve for x :  3 x 4 = 5 x –1

      log 3 x – 4 = log 5 x –1 1. ) Составьте журнал обеих сторон
      ( x – 4) журнал 3 = ( x – 1) журнал 5 2.) используйте свойство power для перезаписи
      x журнал 3 – 4 журнал 3 = x журнал 5 – журнал 5 3.) распределите x  – 4 и x  – 1
      x журнал 3 – x журнал 5 = 4 журнал 3 – журнал 5 4.)  соедините одинаковые термины с одной стороны (поставьте x’ с слева и константы справа.
      x (лог. 3 – лог. 5) = 4 лог. 3 – лог. 5

      5.)  слева, вычтите x

      6. )  разделить обе стороны на бревно 3 – бревно 5
      x = –5,45        

      7.)  используйте графический калькулятор для решения*

      *Используйте графический калькулятор (например, TI-83 или TI-84) для решения логарифмических уравнений. Обязательно заключайте в скобки весь числитель и весь знаменатель при вводе числителей или знаменателей.

      9Формула изменения базы 2127 хорошо работает с графическими калькуляторами, потому что база по умолчанию для журналов на калькуляторе равна 10. Значение журнала в другой базе ( b ) можно найти, взяв журнал значения ( х ) и делим на бревно основания ( б ).

      Пример №2 : Оценить: log 8 97

      Пример №3 : Оценить: log 7

      *Используйте графический калькулятор, чтобы найти значение выражения, используя формулу изменения основания.

      Логарифмы и землетрясения

      Шкала Рихтера — это логарифмическая шкала, используемая для выражения общего количества энергии, выделяемой землетрясением. Каждое увеличение числа по шкале Рихтера указывает на увеличение интенсивности в десять раз. Например, землетрясение силой 5 баллов в десять раз сильнее, чем землетрясение силой 4 балла. Землетрясение силой 6 баллов в 10 × 10 раз сильнее. Как правило, землетрясение менее 5 баллов по шкале Ричера считается незначительным землетрясением, а значение более 7 баллов указывает на серьезные разрушения.
      Формула сравнивает уровни интенсивности землетрясений, где I  – это уровень интенсивности, определенный сейсмографом, а M – магнитуда по шкале Рихтера.

      Пример №4 : В 1906 году землетрясение в Сан-Франциско было оценено в 7,8 балла. В 1989 году в Сан-Франциско произошло землетрясение магнитудой 6,9. Во сколько раз сильнее было землетрясение 1906 г., чем землетрясение 19 г.89 землетрясение?

      Примечание . На обзорном снимке изображен Сан-Франциско в 1906 году после землетрясения.

      Землетрясение 1906 года в Сан-Франциско было в 8 раз сильнее, чем землетрясение 1989 года.


      Останавливаться!
        Перейдите к вопросам № 22–32 по этому разделу, затем вернитесь, чтобы перейти к следующему разделу.

      Решение экспоненциального уравнения с помощью графика

      Графический калькулятор также можно использовать для решения экспоненциальных уравнений.

      Пример №1 : Решите 2 x x = 300 с помощью графического калькулятора.

       
      Пусть Y 1 = 2 x

      Пусть Y 2 = 300

      Отрегулируйте окно, чтобы найти точку пересечения.

      Решение x ≈ 8,23.

      Чтобы определить точку пересечения, проследите до точки пересечения или выполните следующие действия: 

      -В графическом калькуляторе введите 2ND CALC 5: пересечение.

      -Нажмите ENTER, чтобы принять значение по умолчанию для первой кривой. Нажмите ENTER еще раз, чтобы принять значение по умолчанию второй кривой. Нажмите ENTER в третий раз и подтвердите предположение калькулятора. Нажмите ENTER в последний раз, чтобы просмотреть координаты точки пересечения.

      Решение x ≈ 8,23. Это x координата точки пересечения.

      При необходимости используйте приведенные ниже вопросы в качестве руководства для настройки окна графического калькулятора.

      Каковы разумные значения домена?

      От Xmin = 0 до Xmax = 20

      «Нажмите здесь», чтобы проверить ответ.

      Каковы разумные значения диапазона?

      От Ymin = 0 до Ymax = 400

      «Нажмите здесь», чтобы проверить ответ.

      Каковы разумные значения шкалы?

      От Xscl = 20 до Yscl = 20

      «Нажмите здесь», чтобы проверить ответ.

      «Нажмите здесь», чтобы проверить ответ.

      Стоп!   Перейдите к вопросам 33–35, чтобы завершить этот модуль.

      8.2- Преобразования логарифмических функций

      . одной переменной (ex:x) для получения значений другой переменной (ex:y). Затем нанесите точки на график и соедините точки.

      ☆Примечание. Помните, что при построении графиков логарифмических функций вручную значения x обычных журналов больше нуля и не определены при нуле. Следовательно, все значения x общей логарифмической функции должны быть больше нуля.

                  ~Using graphing calculators such as Texas instruments TI-84 or 🌟 Desmos

      Common logarithmic graph: y=log 10 (x)                                                 

      Domain and Range of Logarithms

      •Domain: All возможных значений x, которыми может быть функция. Поскольку x должен быть больше нуля, как правило, областью определения десятичных логарифмических функций является {x>0}.

      • Диапазон: все возможные значения y, которыми может быть функция. В общих логарифмических уравнениях y — все действительные числа, {yER}   

      Transformation Rules

      The standard transformation equation is shown as followed:

      Logarithmic:

      y=a log10[k(x-d)]+c

      Exponential:

      y=a b ( k(x-d)) +c

                  Где a = вертикальное растяжение/сжатие; если a<0, функция претерпела вертикальное отражение по оси x.

                  Где c = сдвиг по вертикали (вверх или вниз)

                  Где k = горизонтальное растяжение/сжатие; если k<0, функции претерпели горизонтальное отражение по оси y.

                  Where d =the horizontal shift (left or right)

      y=log 10 (x):

      Therefore…Logarithmic transformation rules are as followed:

      Преобразование

      Обозначение функций

      Примеры

      .

      Горизонтальный трансляция

      F (X-D)

      Y = log (x-4) 4 единицы справа

      Y = log (x+8) 8 единицы слева

      .

      Вертикальная растяжка

      AF (x)

      y = 2log x растяжение в 2

      Y = ½ log x сжатие

      Компресс 1/2

      Horizontal Compression

      998

      . Растяжение

      F ((1/k) x)

      y = log (1/9) x СТРЕСЬ КАКТЕР НА ДЕРЕВАНИЕ

      Y = LOG (9x) Сжатие

      Фактор

      Отражение через оси Y

      Отражение через оси X

      -F (x)

      F (x)

      Y = -log x Отражение через

      x-axis

      y = -log x.

      y = log (-x) Отражение через

      Аси Y

      🌟 Видео-трансформации логарифмических функций

      Сочетание различных преобразований:

      .0007

      • При преобразовании родительских функций, содержащих вместе несколько различных преобразований (вертикальное растяжение и сжатие + отражение), всегда делайте это по пунктам; преобразование преобразованиями, чтобы успешно применить преобразования к родительской функции!

        ✩Очень важно, чтобы вертикальное и/или горизонтальное растяжение/сжатие применялось до вертикального/горизонтального смещения!

      Написание и описание алгебраических представлений в соответствии с геометрическими описаниями.

      Пример 1: Родительская функция: y=log10 x была растянута по горизонтали в 5 раз и смещена на 2 единицы влево. Функция также была сжата по вертикали в ⅓ раза, смещена на 6 единиц вниз и отражена по оси x. Напишите новое уравнение логарифмической функции в соответствии с указанными преобразованиями, а также областью определения и областью значений.

      Шаг 1: Запишите родительскую функцию y=log10 x

      Шаг 2: Запишите логарифмическое уравнение в общем виде

      y= a log 10 (k(x-d)) +c Шаг

      4 3: Вставьте значения в общую форму в соответствии с описаниями:

      • Поскольку функция была растянута по горизонтали в 5 раз, k=⅕

      • Поскольку функция была сдвинута по горизонтали на 2 единицы влево, d=-2

      • Поскольку функция была сжата по вертикали в ⅓ раз, a=⅓

      • Поскольку функция была смещена по вертикали на 6 единиц вниз, c=-6

      • Из-за того, что функция была отражена по оси X, a будет отрицательным значением, таким образом, a теперь будет равно — ⅓.

      Шаг 4: Подставьте известные значения в общую форму логарифмического уравнения -2))]+(-6)

      ∴ уравнение преобразованной функции будет y=-⅓ log 10 [⅕ (x+2)]-6

      Шаг 5: Запишите домен и диапазон

      • В логарифмических функциях диапазон преобразованной функции будет таким же, как диапазон преобразованной функции. Таким образом, диапазон y=-⅓ log 10 (⅕(x+2))-6 равен {yER}

      • Поскольку кривая находится справа от асимптоты (где x=-2), домен будет больше чем х=-2. Таким образом, домен y=-⅓ log 10 (⅕(x+2))-6 равен {xR│x>-2}

      ∴ D: {xER│x>-2}; R: {yER}

      Графики логарифмических функций согласно заданному уравнению

      Пример 2: Используя y=log10(x), s , найдите функцию 3log 10(x+9)-8 с помощью преобразований и укажите домен и диапазон.

      Шаг 1: Постройте график родительской функции (y=log10(x)) и извлеките несколько точек выборки:

      Шаг 2: Примените преобразование, одно преобразование за раз!

      ~1. Примените вертикальное растяжение (с коэффициентом 3) — таким образом, умножьте (растяните) все значения y на коэффициент 3.

      9999999999

    • 111111111111111118 9000 9000 9000 918
    • 1111111118

      9000 9000 9000 9000

    • 1111111111111111111111111111111111111. -1)
    • точки от родительской функции

      y = log10 (x)

      Новая точка в соответствии с преобразованием

      Y = 3Log10 (x)

      (-1(3))= -3 (1/10, -3)

      (1,0)

      (0(3))=0 (1 , 0)

      (10,1)

      (1(3))=3 (10, 3)

      (32, 1,5)

      (9/2(м)) (32, 9/2)

      ~2. Примените сдвиг по вертикали (8 единиц вниз) – таким образом, вычтите все значения y на 8

      9114

      y=3log10(x)-8

      точек из функции вертикального растяжения

      y=3log10(x)

      (1/10, -3)

      (-3-8)= -11(1/10, -11)

      (1, 0)

      (0-8)= -8(1, -8)

      (10, 3)

      (3-8)=-5(10, -5)

      (32, 9/2) 9-0007 8 (

      8) )=-7/2(32, -7/2)

      ~3. Примените сдвиг по горизонтали (осталось 9 единиц) — таким образом вычтите все значения x на 9

      /

      (1 , -11)

      Точки из вертикально растянутой и сдвинутой функции

      y=3log10(x)-8

      Новая точка согласно преобразованию

      y=3log10(x+9)-8

      (1/10-9)= -89/10 (-89/10, -11)

      (1, -8)

      (1-

      ) = -8 (-8, -8)

      (10, -5)

      (10-9)=1 (1, -5)

      (32, -7/2)

      (32-9)=23 (23, -7/2)

      ∴ Новые точки преобразованной функции будут (-89 /10, -11), (-8, -8), (1, -5) и (23, -7/2)

      Шаг 3: График новой функции с использованием новых преобразованных точек

      Шаг 4: Укажите домен и диапазон

      ~ Поскольку диапазон остается таким же, как у родительской функции, диапазон преобразованной функции будет {yER}

      ~ Как видно из графика, поскольку кривая находится справа от асимптоты (где x=-9), график будет больше, чем x=-9.

    Понравилась статья? Поделить с друзьями:
  • Как найти площадь четырехугольника 4 класс впр
  • Как найти бету для фанфика в фикбуке
  • Разбалансировка стиральной машины как исправить
  • Как найти значение производной синуса
  • Microsoft excel как найти среднее значение