Как найти область значения функции тригонометрической функции

Область значения функции

Общая информация

У каждой функции y = f (x) есть два типа переменных: зависимые и независимые. Переменная «х» является независимой, поскольку она может принимать любые значения, кроме тех, которые «превращают» функцию в пустое множество (этого необходимо избегать). Они бывают с одной или несколькими независимыми переменными. Необходимо выяснить все значения зависимой переменной.

Как найти область значений квадратичной функции

Существует несколько методов решения задач такого типа. К ним относятся следующие способы: автоматизированный и ручной. Решение первым подразумевает использование специальных программных оболочек и web-приложений, позволяющих найти область значения функции. Онлайн-калькулятор с решением применяется для тех, кто выполняет большое количество вычислений или проверку вычислений.

В различных дисциплинах необходимо исследовать поведение функций. Например, при проектировании какого-либо программного продукта. Программисты занимаются поиском «багов», при которых происходит некорректная работа приложения. Если заданы недопустимые параметры независимой переменной, то произойдет ошибка. Это называется исключением, и его всегда следует обрабатывать. При проектировании различных устройств нужно также уметь находить область значения функции.

Основные понятия

Область значения функции

Руководствуясь некоторыми данными, можно сделать вывод: областью значений некоторой функции называются все ее допустимые значения. Обозначается она буквой «E», т. е. E (f) или E (y). Когда y = f (x) является сложной (w = f (x, y, z)), тогда можно ее обозначить «E (w)».

Независимая переменная, принимающая некоторые значения, называется аргументом. Для конкретного случая существует определенный алгоритм. Можно сразу определить E (f), но в некоторых ситуациях нужно выполнить некоторые преобразования.

Например, нужно найти область значений квадратичной функции y = 3x 2 — 2x — 1. Следует записать уравнение 3x 2 — 2x — 1 = 0. Ордината вычисляется таким образом: y0 = -D / 4a = -[b 2 — 4ac] / 4a = -[(-2)^2 — 4 * 3 * (-1)] / (4 * 3) = -16 / 12 = -4/3. Если коэффициент а>0, то ветви параболы направлены вверх. Следовательно, E (y) = (-4/3;+бесконечность).

Специалисты-математики утверждают, что важным аспектом является определение типа функции. Следовательно, следует разобраться в их классификации. Для этого необходимо знать их графики и названия.

Типы функций

Перед тем, как найти все допустимые значения, нужно знать область значения некоторых элементарных функций. Для каждой из них существует свой промежуток:

Онлайн калькулятор с решением как находить область значения функции

  1. (-бесконечность;+бесконечность): y =kx + b, y = x^(2n+1), y = x^(1/(2n+1)), y = log (x) с основанием а, y = tg (x) и y = ctg (x).
  2. [0;+бесконечность): y = x^(2n), y = x^(1/(2n)) и y = a^x.
  3. (-бесконечность;0] U [0;+бесконечность) только для y = k / x (гипербола).
  4. [-1;1]: y = sin (x) и y = cos (x).
  5. [0;Pi]: y = arccos (x) и arcsin (x).
  6. [-Pi/2;Pi/2]: y = arctg (x) и arcsin (x).

Если функция является многочленом четной степени, то для нее существует интервал [m;+бесконечность). Значение «m» — наименьшее значение многочлена. На промежутке (-бесконечность;n) число n — наибольшее его значение.

Довольно сложной задачей считается нахождение области значений тригонометрических функций. Примером одной из них считается y = cos (2x) + 2cos (x). Кроме того, при нахождении E (f) необходимо руководствоваться не только табличными значениями. Этих данных мало, поскольку нужно также знать о свойствах некоторых функций и способы нахождения E.

Важные свойства

Для качественного исследования нужно знать свойства простых функций: монотонность, непрерывность, дифференцируемость, четность или нечетность, периодичность, область определения и значения. Среди свойств можно выделить несколько основных:

Решение задач

  1. В случае, когда функция f (x) является непрерывной, и наблюдается ее возрастание или убывание на отрезке [a;b], то множество значений — интервал [f (a);f (b)].
  2. Если y = f (x) обладает непрерывностью на промежутке [a;b], и существует некоторое минимальное m и максимальное М ее значения, то множеством ее значений является интервал [m;M].
  3. При непрерывности и дифференцируемости функции на промежутке [a;b], она имеет минимальное и максимальное значения на данном промежутке.

Последние два свойства применяются для непрерывных функций. Простое решение позволяет получить первое свойство. При этом очень важно доказать ее монотонность. Задача существенно упрощается, когда удается доказать четность или нечетность функции, а также ее периодичность. По необходимости следует проверять и использовать некоторые ее свойства: непрерывность (при разрыве нужно определить его точку или интервал), монотонность, дифференцируемость, периодичность, четность или нечетность и т. д.

Методы нахождения

Существует много способов нахождения области значений. Однако для решения задач нужно подбирать оптимальный метод, поскольку следует избегать лишних вычислений. Например, если функция является простой, то нет необходимости применять сложные алгоритмы решения. К методам нахождения относятся следующие:

  1. Отдельное нахождение значений элементов сложной функции.
  2. Оценочный.
  3. Учет непрерывности и монотонности.
  4. Взятие производной.
  5. Использование max и min функции.

Для каждого из методов существует определенный алгоритм. Хотя встречаются случаи, когда целесообразно применить два простых метода. Нужно руководствоваться минимальным количеством вычислений и затраченным временем.

Для каждого элемента

Иногда в задачах следует найти E (f) при условии, когда функция является сложной. Очень распространенная методика разбиения задачи на подзадачи, которая применяется не только в дисциплинах с физико-математическим уклоном, но в экономике, бизнесе и других направлениях. Решение с помощью метода последовательного нахождения E (f) каждой из функций. Алгоритм имеет такой вид:

  1. Выполнить необходимые преобразования — упростить выражение.
  2. Разбить выражение на элементы.
  3. Выполнить поиск E (f) для каждого элемента.
  4. Произвести замену.
  5. Анализ.
  6. Результат решения.

Однако довольно сложно ориентировать по данному алгоритму, поскольку нужно разобрать решение примера с его помощью. Дана функция y = log0.5 (4 — 2 * 3^x — 9^x). Решается задача таким образом:

Методы нахождения

  1. Упростить (выделить квадрат): y = log0.5 (4 — 2 * 3^x — 9^x) = log0.5 [5 — (1 — 2 * 3^x — 9^x)] = log0.5 [5 — (3^x + 1)].
  2. Разбить на элементарные функции: y = 3^x, y = 3^x + 1, y = [-(3^x + 1)]^2 и y = [5 — (3^x + 1)]^2.
  3. Определить для каждого элемента E (f): E (3^x) = (0;+бесконечность), E (3^x + 1) = (1;+бесконечность), E ([-(3^x + 1)]^2) = (-бесконечность;-1) и E ([5 — (3^x + 1)]^2) = (-бесконечность;4).
  4. Произвести замену: t = 5 — (3^x + 1)]^2 (-бесконечность <= t <=4).
  5. Анализ: поскольку E (f) на луче (-бесконечность;4) совпадает с интервалом (0;4), то функция непрерывна и убывает. Необходимо отметить, что интервал (0;4) получен при пересечении луча (-бесконечность;4) с областью определения функции логарифмического типа (0;+бесконечность). На интервале (0;4) эта функция непрерывна и убывает. Если t>0, то она стремится к бесконечности. Когда t = 4, ее значение равно -2.
  6. Результат решения — искомый интервал: E (f) = (-2;+бесконечность).

Необходимо обратить внимание на пункты 1, 3 и 5. Они являются очень важными, поскольку от них зависит правильность решения. Очень важно уметь анализировать полученную функцию в 4 пункте.

Оценочный способ

Еще одним методом определения E (f) является способ оценки. Необходимо оценить непрерывную функцию в нижнем и верхнем направлениях. Еще следует доказать достижение нижней и верхней границ. Для этой цели существует также алгоритм. Он немного проще предыдущего. Суть его заключается в следующем:

  1. Доказать непрерывность.
  2. Составить неравенство или неравенства для нескольких функций.
  3. Узнать оценку.
  4. Записать интервал.

Необходимо разобрать алгоритм на примере функции y = cos (7x) + 5 * cos (x). Следует учитывать, что известен только один знак неравенства. Второй нужно доказать оценочным методом. Решение задачи имеет такой вид:

  1. Функция вида y = cos (x) является непрерывной.
  2. Неравенства: -1<=cos (7x)?1 и -5<=5 * cos (x)?5.
  3. Оценка получает при объединении неравенств: -6<=y?6. При значениях независимой переменной x = Pi и x = 0 функция принимает значения -6 и 6 соответственно (нижняя и верхняя границы). Функция состоит из двух элементов, следовательно, она является линейной и непрерывной.
  4. Интервал: E (y) = [-6;6].

Метод позволяет найти решение без использования дополнительных вычислений. Но при его использовании легко ошибиться.

Учет непрерывности и монотонности

Одним из простых способов решения, который специалисты рекомендуют новичкам, является метод учета непрерывности и монотонности. Для этого существует специальный алгоритм:

Решается задача таким образом

  1. Упростить выражение.
  2. Выполнить замену при необходимости.
  3. Найти вершину графика.
  4. Определить промежуток.
  5. Вычислить максимальное и минимальное значения.
  6. Записать E (f).

Например, существует некоторая функция y = cos (2x) + 2cos (x). Необходимо найти ее E. Искать следует по алгоритму решения методом учета монотонности и непрерывности:

  1. Упростить (по формуле двойного угла): y = 2 * (cos (x))^2 + 2cosx — 1.
  2. Замена t = cos (x): y = 2 * t 2 + 2 * t — 1 = 2 * (t + 0,5)^2 — 1,5.
  3. Показательная функция является параболой. Она монотонна, непрерывна и имеет вершину по оси ОУ -1,5. Промежуток, который рассматривается — [-1;1], поскольку E (cos (x)) = [-1;1].
  4. Минимальное значение равно -1,5, так как ветви направлены вверх. Максимальное на промежутке [-1;1] — MAX (y) = 3. Для его нахождения нужно построить график параболы y = 2 * (t + 0,5)^2 — 1,5.
  5. Искомый интервал — E (cos (2x) + 2cos (x)) = [-1,5;3].

Чтобы построить график параболы, нужно найти ее вершину и точки пересечения с осью абсцисс. Последние находятся при решении уравнения 2 * (t + 0,5)^2 — 1,5 = 0. Однако существует способ намного проще. Для этого следует привести выражение к виду 2 * (t + 0,5)^2 = 1,5. Отсюда t = — 0,5. Следовательно, координаты вершины — (-0,5;-1,5). Корни уравнения при его решении: t1 = -[(1 + (3)^0.5)] / 2 и t2 = -[(1 — (3)^0.5)] / 2.

Производная, min и max

Одним из простейших способов нахождения E (f) является взятие производной функции. Этот метод можно комбинировать с определением максимального и минимального значений. Математики рекомендуют простейший алгоритм:

  1. Найти производную.
  2. Анализ.
  3. Указать MAX (f) и MIN (f).
  4. Запись интервала в формате (MIN (f);MAX (f)).

Практическое применение алгоритма — решение задачи этим методом. Например, нужно найти E (arcsin (x)). Решение выполняется по нескольким этапам:

  1. Производная: y’ = [arcsin (x)]’ = 1 / [(1 — x 2 )^0.5].
  2. Функция возрастает на интервале (-1;1).
  3. Минимум и максимум на отрезке (-1;1): MIN (arcsin (-1)) = -Pi/2 MAX (arcsin (1)) = Pi/2.
  4. Интервал: E (arcsin (x)) = [-Pi/2;Pi/2].

В некоторых случаях рекомендуется вычислять пределы, поскольку часть задач решается только с их применением. Существует определенный тип задач, в которых нужно доказать, что отрезок является E (f) конкретной функции. Например, следует выяснить принадлежность [-1;1] функции sin (x). Для этого необходимо воспользоваться вышеописанным алгоритмом:

Укажите область значения функции

  1. Производная: y’ = [sin (x)]’ = cos (x).
  2. Период функции равен 2Pi. Следует взять отрезок [0;2Pi]. Для нахождения множества значений на нем нужно приравнять производную функции к 0, т. е. cos (x) = 0. Найти х = Pi/2 + Pi * к, где «к» принадлежит Z. Точки экстремума равны Pi/2 и 3Pi/2.
  3. Минимум и максимум на отрезке [0;2Pi): MIN ([sin (3Pi/2)]) = -1 и MAX ([sin (3Pi/2)]) = 1.
  4. E (sin (x)) = [-1;1].

Отрезок [-1;1] является E (sin (x)). Оптимальный метод — нахождение производной и определение E (f). В этом примере необходимо знать и проверить периодичность.

Таким образом, существует несколько способов нахождения E (f), но всегда необходимо выбирать метод, приводящий к минимуму вычислений. Нет смысла усложнять решение, поскольку большинство алгоритмов направлены на оптимизацию вычислений.

ВИДЕО УРОК

Области определения
тригонометрических функций.

Всякая функция имеет свою
собственную совокупность значений аргумента, при которых она определена, то
есть существует. Эта совокупность всех допустимых значений аргумента, при
которых функция определена, называется
областью определения или областью существования функции.

Функции  sin α  и  соs α  определены при любом значении  α. В самом деле, любая точка  М, лежащая на единичной окружности, имеет вполне
определённые координаты 
х  и  у, первая из которых
есть косинус угла 
α, составленного с
осью 
Ох  подвижным радиусом  ОМ, а вторая – синус угла  α.

Функция  tg α  определена
при всех значениях 
α, за исключением
случая, когда подвижной радиус перпендикулярен к оси 
Ох, то есть кроме значений  α, равных

± π/2, ± 3π/2, ± 5π/2,

И вообще кроме значений  α, равных

 π/2 + ,

где  k – любое целое
число.

В самом деле, при этих (и
только при этих) значениях 
α  подвижной радиус лежит на оси  Оу, абсцисса  х  конца подвижного радиуса равна нулю  (х = 0)  и поэтому
делить 
у  на  х  нельзя.

Функция  сtg α  определена
при всех значениях 
α, за исключением
следующих:

0, ±π,
±2π, ±3π,

И вообще – за исключением
значений 
α, равных  , где  k – любое целое
число, так как при этих (и только при этих) значениях
α  подвижной радиус лежит на оси  Ох, ордината  у  его конца равна нулю  (у = 0)  и поэтому
делить 
х  на  у  нельзя.

ПРИМЕР:

Найдите область определения функции

f(x) = tg 2x.

РЕШЕНИЕ:

В область определения не войдут следующие точки:

2х π/2 + .

или

В
результате получим
:

х π/4 + πk/2, k Z.

Отразим графически.

ОТВЕТ:

Область определения функции  tg 2x  все
действительные числа за исключением

х π/4 + πk/2, k Z.

Области значения
тригонометрических функций.

Функции  sin α  и  соs α  принимают все значения между  –1  и  +1, включая и эти числа. В самом деле, синус угла  α, составленного с осью  Ох  подвижным
радиусом 
ОМ  единичной окружности, есть ордината  у  точки  М  единичной
окружности, которая, как легко видеть, принимает все значения между 
–1  и  +1, включая и эти числа.

Задача нахождения угла  α, имеющего данный синус  у, при условии, что число  у  заключено в
пределах от 
–1  до  +1, имеет бесконечное множество решений.

И действительно,
построим на оси 
Оу  точку  Р,

ордината
которой равна 
у, и через эту точку
проведём прямую параллельную оси 
Ох. Пусть  М1  и  М2 – точки, в которых эта прямая пересекает единичную
окружность. Если обозначим через 
α  любой угол, составленный с осью  Ох  любым из
подвижных радиусов 
ОМ1  и  ОМ2, то  sin α =
у
.
На чертеже

отмечено несколько углов,
составленных с осью 
Ох  одним из подвижных радиусов  ОМ1  и  ОМ2.

Аналогично убеждаемся в том,
что 
соs α  принимает
все значения  от 
–1  до  +1, включая и эти числа.

В самом деле, косинус
угла 
α, составленного с осью  Ох  подвижным
радиусом 
ОМ  единичной окружности, есть абсцисса  х  конца  М  подвижного
радиуса 
ОМ, а абсцисса  х  точки
единичной окружности, принимает все значения от 
–1  до  +1, включая и эти числа.

Так же как и для функции  sin α, для заданного числового значения косинуса

соs α = х,

при условии, что число  х  по
абсолютной величине не больше единицы,

–1 ≤ х ≤  +1,

существует бесконечное
множество углов, косинус которых равен 
х.

И действительно, построим на
оси 
Ох  точку  Q, абсцисса которой
равна 
х, и проведя через эту точку
прямую, параллельную оси 
Оу. Пусть  М1  и  М2 – точки, в которых эта прямая пересекает единичную
окружность. Если через 
α  мы обозначим любой угол, составленный с
осью 
Ох  любым из подвижных радиусов  ОМ1  или  ОМ2, то  соs α = х.

На чертеже

отмечено несколько углов,
составленных с осью 
Ох  одним из подвижных радиусов  ОМ1  или  ОМ2.

На чертеже

мы взяли  0 < у
< 1
.

На чертеже

мы берём

–1 < х
< 0
.

Функция  tg α  принимает
все действительные значения. В самом деле, пусть 
р – любое действительное число. Докажем, что
существует и притом бесконечное множество углов, тангенсы которых равны 
р.

Построим на оси
тангенсов точку 
Р,

ордината которой равна  р. Соединим точку 
Р  с началом
координат и продолжим 
РО  за центр до пересечения с единичной
окружностью. Пусть 
М1  и 
М2 – точки, в которых прямая  РО  пересекает
окружность. Тогда, если  
α – угол, составленный
с осью 
Ох  любым из подвижных радиусов  ОМ1  или  ОМ2, то

tg α = р.

На чертеже

мы считали, что  р ˃ 0. На этом же чертеже отмечено несколько углов,
составленных с осью 
Ох  радиусами 
ОМ1  или  ОМ2. Тангенсы всех этих углов равны  р.

Наконец, функция  сtg α, как и  tg α, принимает все действительные значения.

В самом деле, пусть  q – любое число. Построим на оси котангенсов
точку 
Q, абсцисса которой
равна 
q, соединим эту точку  Q  с началом
координат и продолжим 
QО  за центр до
пересечения с единичной окружностью.

Обозначим через  М1  и  М2  точки пересечения прямой  QО  с единичной окружностью. Тогда котангенс
любого из углов, составленных с осью 
Ох  радиусом 
ОМ1  или  ОМ2, будет равен  q.

ПРИМЕР:

Найти область значений функции:

у = 5 – 4 sin х.

РЕШЕНИЕ:

Из определения синуса следует,

–1 ≤ sin х ≤ 1.

Далее воспользуемся свойствами числовых неравенств.

Умножим все три части двойного неравенства на  –4.

–4 ≤ –4 sin х ≤ 4.

Прибавим к трём частям двойного неравенства  5.

1 ≤ 5 – 4 sin х ≤ 9.

Так как данная функция непрерывна на всей области определения, то
множество её значений заключено между наименьшим и наибольшим её значением на
всей области определения, если таковые существуют. В данном случае множество
значений функции

у = 5 – 4 sin х

есть множество  [1; 9].

ОТВЕТ:  [1; 9]

ПРИМЕР:

Найти область определения и область значений функции:

y = tg x.

РЕШЕНИЕ:

Функция  y = tg x  определяется формулой

Эта функция определена при значениях х, для которых  соs х ≠ 0.

Известно, что  соs х = 0  при

х = π/2 + πn, n Z.

Следовательно, областью определения функции  y = tg x  является множество чисел кроме

х = π/2 + πn, n Z.

Так как уравнение  tg x = а  имеет корни при любом
действительном значении 
а, то множеством значений функции  y = tg x  является множество  R  всех действительных чисел.

ПРИМЕР:

Найти область определения функции:

y = sin 3х + tg 2x.

РЕШЕНИЕ:

Нужно выяснить, при каких значениях 
х  выражение

y = sin х + tg 2x

имеет смысл. Выражение  sin 3х  имеет
смысл при любом значении 
х, а выражение  tg 2x – при всех значениях 
х  кроме

2х = π/2 + πn, n Z  или

х = π/4 + πn/2, n Z.

Следовательно, областью определения данной функции является множество
действительных чисел, кроме

х = π/4 + πn/2, n Z.

ПРИМЕР:

Найти
область значения тригонометрической функции
:

у = 3 соs х – 2.

РЕШЕНИЕ:

Для нахождения
области значения функции

у = 3 соs х – 2

используем
тот факт, что функция 
у = соs х  изменяет своё значение от  –1  до  1, то есть имеет место двойное неравенство:

–1 ≤ соs х ≤ 1.

Умножим
все части этого неравенства на 
3:

–3 ≤ 3 соs х ≤ 3.

Вычтем
из всех частей полученного неравенства 
2, получим:

–3 – 2 ≤ 3 соs х – 2 ≤ 3 – 2,

–5 ≤ 3 соs х – 2 ≤ 1.

Таким
образом, область значений функции будет промежуток

[–5; 1].

ОТВЕТ:  [–5; 1]

ПРИМЕР:

Найти
область значения тригонометрической функции
:

у = 3 соs х – 4 sin х.

РЕШЕНИЕ:

Для нахождения
области значения функции

у = 3 соs х – 4 sin х

воспользуемся следующей формулой:

В нашем случае 
а = 3, b = –4, то есть
:

Следовательно,
областью значений является промежуток
:

[–5; 5].

ОТВЕТ:  [–5; 5]

Задания к уроку 6

  • Задание 1
  • Задание 2
  • Задание 3

ДРУГИЕ УРОКИ

  • Урок 1. Градусное измерение угловых величин
  • Урок 2. Радианное измерение угловых величин
  • Урок 3. Основные тригонометрические функции
  • Урок 4. Натуральные тригонометрические таблицы
  • Урок 5. Периодичность тригонометрических функций
  • Урок 7. Знаки тригонометрических функций
  • Урок 8. Чётность и нечётность тригонометрических функций
  • Урок 9. Тригонометрические функции некоторых углов
  • Урок 10. Построение угла по данному значению его тригонометрической функции
  • Урок 11. Основные тригонометрические тождества
  • Урок 12. Выражение всех тригонометрических функций через одну из них
  • Урок 13. Решение прямоугольных и равнобедренных треугольников с помощью тригонометрических функций
  • Урок 14. Теорема синусов
  • Урок 15. Теорема косинусов
  • Урок 16. Решение косоугольных треугольников
  • Урок 17. Примеры решения задач по планиметрии с применением тригонометрии
  • Урок 18. Решение практических задач с помощью тригонометрии
  • Урок 19. Формулы приведения (1)
  • Урок 20. Формулы приведения (2)
  • Урок 21. Формулы сложения и вычитания аргументов тригонометрических функций
  • Урок 22. Формулы двойных и тройных углов (аргументов)
  • Урок 23. Формулы половинного аргумента
  • Урок 24. Формулы преобразования суммы тригонометрических функций в произведение  
  • Урок 25. Графики функций  y = sin x и y = cos x
  • Урок 26. Графики функций y = tg x и y = ctg x
  • Урок 27. Обратные тригонометрические функции
  • Урок 28. Основные тождества обратных тригонометрических функций
  • Урок 29. Выражение одной из аркфункций через другие
  • Урок 30. Графики обратных тригонометрических функций
  • Урок 31. Построение графиков тригонометрических функций методом геометрических преобразований

Алгебра и начала математического анализа, 11 класс

Урок №1. Область определения и множество значений тригонометрических функций.

Перечень вопросов, рассматриваемых в теме

  • Овладение понятиями «область определения», «область определения тригонометрических функций», «множество значений функции», «множество значений тригонометрических функций»;
  • Нахождение области определения и множества значений тригонометрических функций вида y=af(kx+b)+c и y=|f(k|x|+b)|, где f(x) — косинус, синус, тангенс или котангенс действительного числа от значения коэффициентов a, k, b.;
  • Объяснение зависимости области определения и множества значений функции вида y=af(kx+b)+c и y=|f(k|x|+b)|, где f(x) — косинус, синус, тангенс или котангенс действительного числа от значения коэффициентов a, k, b.

Глоссарий по теме

Областью определения функций y = sin x и y = cos x является множество R всех действительных чисел.

Множеством значений функции y = sin x и y = cos x  является отрезок -1 ≤ y ≤ 1. Данные функции ограничены сверху и снизу.

Областью определения функции y = tg x  является множество чисел x ≠ π/2 + πk, kЄ Z.

Областью определения функции y = сtg x  является множество чисел x ≠ πk, kЄ Z.

Множеством значений функции y = tg x и y =сtg x  является множество R всех действительных чисел, т.к. уравнения tg x = a  и сtg x = a  имеют корни при любом действительном значении a. Функции неограниченные.

Основная литература:

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2010.–336 с.

Дополнительная литература:

Шахмейстер, А.Х. Тригонометрия / А.Х. Шахмейстер.— СПб.: Петроглиф, 2014. — 750 с.

Открытые электронные ресурсы:

Открытый банк заданий ЕГЭ ФИПИ [Электронный ресурс].– Режим доступа: http://ege.fipi.ru/

Решу ЕГЭ образовательный портал для подготовки к экзаменам [Электронный ресурс].– Режим доступа: https://ege.sdamgia.ru/

Теоретический материал для самостоятельного изучения

Актуализация знаний

Вопросы:

  1. Что такое функция?
  2. Что такое область определения функции? Чем является область определения функции геометрически?
  3. Что такое множество значений функции? Чем является множество значений функции геометрически?

Ответы на вопросы:

  1. Если каждому значению x из некоторого множества чисел поставлено в соответствие по определенному правилу число y, то говорят, что на этом множестве задана функция. При этом х называют независимой переменной или аргументом, а у – зависимой переменной или функцией. Зависимость переменной у от переменной х называют функциональной зависимостью. Записывают y=f(x).
  2. Областью определения функции называют множество всех допустимых значений переменной x. Геометрически – это проекция графика функции на ось Ох.

Множество значений функции — множество всех значений, которые функция принимает на области определения. Геометрически – это проекция графика функции на ось Оy.

Найдите область определения функции и множество значений функции:

1) ; 2) ; 3) .

Ответы:

D(f): 1) ; 2) ; 3)

E(f): 1); 2) ; 3) .

Объяснение нового материала

С помощью единичной окружности сделайте выводы об области определения и множестве значений тригонометрических функций.

Заполните таблицу:

Функция

Область определения

Множество значений

Ответ:

Функция

Область определения

Множество значений

Итак, Областью определения функций y = sin x и y = cos x является множество R всех действительных чисел.

 Множеством значений функции y = sin x и y = cos x  является отрезок -1 ≤ y ≤ 1. Данные функции ограничены сверху и снизу.

Областью определения функции y = tg x  является множество чисел x ≠ π/2 + πk, kЄ Z.

Областью определения функции y = сtg x  является множество чисел x ≠ πk, kЄ Z.

Множеством значений функции y = tg x и y =сtg x  является множество R всех действительных чисел, т.к. уравнения tg x = a  и сtg x = a  имеют корни при любом действительном значении a. Функции неограниченные.

Примеры и разборы решения заданий тренировочного модуля:

Пример 1. Найти область определения функции .

;

;

;

Ответ: .

Пример 2. Найти все решения уравнения

;

;

Ответ:

.

Каждому действительному числу

x

 соответствует единственная точка единичной окружности

A

, получаемая поворотом точки ((1;0)) на угол

x

 рад.

Значит, каждому действительному числу

x

 соответствует число, равное

sinx

, и каждому действительному числу

x

 соответствует число, равное

cosx

. Так заданы функции

y=sinx

и

y=cosx

 на множестве

.

Сегодня на уроке мы с вами вспомним, как устанавливается
соответствие между действительными точками и точками окружности с помощью
поворота точки окружности, а также вспомним, что называют синусом, косинусом и
тангенсом произвольного угла. Скажем, какие функции называются
тригонометрическими функциями. Выясним, что является областью определения и
множеством значений тригонометрических функций.

Прежде чем приступить к рассмотрению новой темы, давайте возьмём окружность
единичного радиуса с центром в начале координат и отметим на ней точку .

Тогда при повороте точки  на угол  радиан мы получим точку . При этом помним, что ордината точки  – это синус угла , а абсцисса этой точки – это косинус угла .

Далее считаем, что все углы измерены в радианной мере, и поэтому
обозначение «радиан», как правило, опускается. Договорившись считать единицу
измерения углов (1 радиан) фиксированной, определяем, например, синус числа x как синус угла в x радиан; косинус числа x как косинус угла в x радиан и так далее.

Так, каждому действительному числу x поставлены в соответствие
числа синус x и косинус x, то есть на множестве действительных чисел определены функции  и .

Получается, что областью определения функций игрек  и  является множество  всех действительных чисел.

Давайте найдём множество значений функции . Для этого надо выяснить, какие значения может принимать y при различных значениях x, то есть надо установить, для
каких значений y существуют такие значения x, при которых  равен y.

Мы знаем, что уравнение  имеет корни, если . И уравнение не имеет корней, если . Из этого следует, что множеством значений функции  является отрезок .

Найдём множество значений функции . Для этого надо выяснить, какие значения может принимать y при различных значениях x, то есть надо установить, для
каких значений y существуют такие значения x, при которых  равен y.

Знаем, что уравнение  имеет корни, если . И уравнение не имеет корней, если .

А значит, множеством значений функции  является отрезок .

Таким образом, можно сказать, что функции  и  являются ограниченными.

Теперь поговорим про функцию . Она определяется формулой .

 не должен обращаться в нуль, так как делить на нуль нельзя.

Функция  определена при тех значениях x, для которых .

Мы знаем, что решением уравнения  является .

Тогда областью определения функции  является множество  всех действительных чисел, кроме .

Известно, что уравнение  имеет корни при любом действительном значении . Следовательно, множеством значений функции  является множество  всех действительных чисел.

Осталось выяснить, что является областью определения и множеством
значений функции . Запишем: . Здесь  не должен обращаться в нуль, так как делить на нуль нельзя. А
значит, функция  определена при тех значениях x, для которых .

Корнем уравнения  является . Тогда областью определения функции  является множество  всех действительных чисел, кроме , .

Уравнение  имеет корни при любом действительном значении a, а значит, множеством
значений функции
 является множество  всех действительных чисел.

Таким образом, мы с вами выяснили, что является областью
определения и множеством значений функций , ,  и . Эти функции называются тригонометрическими функциями.

А сейчас давайте выполним несколько заданий.

Задание первое. Найдите область определения
функций:

а) ; б) ; в) .

Решение.

Задание второе. Найдите множество
значений функций:

а) ; б) .

Решение.

Задание третье. Найдите наибольшее и
наименьшее значения функции

.

Решение.

Понравилась статья? Поделить с друзьями:
  • Как найти человека в социальных сетях россии
  • Gpg no valid openpgp data found как исправить
  • Как найти предохранитель days gone
  • Резюме учителя дефектолога образец как правильно составить
  • Как хорошую тачку найти