Как найти обороты на выходе

19 минут назад, квершлаг сказал:

Анурьев пишет.как меняется момент на червячном редукторе.

Анурьев дает правила и методы расчетов. Если конкретно про червячные механизмы — т.2, со страницы 384. 

Очевидно, что понижающий редуктор увеличивает крутящий момент на величину, равную коэффициенту передачи редуктора. Но при этом из-за трения не может иметь КПД = 1, поэтому существуют потери при передаче мощности или момента. При этом не важно, какого типа редуктор используется, цилиндрический, червячный. конический, …

Вот тут еще почитайте, там букаф меньше )))

Любое подвижное соединение, передающее усилие и меняющее направление движения, имеет свои технические характеристики. Основным критерием, определяющим изменение угловой скорости и направления движения, является передаточное число. С ним неразрывно связано изменение силы – передаточное отношение. Оно вычисляется для каждой передачи: ременной, цепной, зубчатой при проектировании механизмов и машин.

Передаточное число

Перед тем как узнать передаточное число, надо посчитать количество зубьев на шестернях. Затем разделить их количество на ведомом колесе на аналогичный показатель ведущей шестерни. Число больше 1 означает повышающую передачу, увеличивающую количество оборотов, скорость. Если меньше 1, то передача понижающая, увеличивающая мощность, силу воздействия.

Общее определение

Наглядный пример изменения числа оборотов проще всего наблюдать на простом велосипеде. Человек медленно крутит педали. Колесо вращается значительно быстрее. Изменение количества оборотов происходит за счет 2 звездочек, соединенных в цепь. Когда большая, вращающаяся вместе с педалями, делает один оборот, маленькая, стоящая на задней ступице, прокручивается несколько раз.

Передачи с крутящим моментом

В механизмах используют несколько видов передач, изменяющих крутящий момент. Они имеют свои особенности, положительные качества и недостатки. Наиболее распространенные передачи:

  • ременная;
  • цепная;
  • зубчатая.

Ременная передача самая простая в исполнении. Используется при создании самодельных станков, в станочном оборудование для изменения скорости вращения рабочего узла, в автомобилях.

Ремень натягивается между 2 шкивами и передает вращение от ведущего в ведомому. Производительность низкая, поскольку ремень скользит по гладкой поверхности. Благодаря этому, ременной узел является самым безопасным способом передавать вращение. При перегрузке происходит проскальзывание ремня, и остановка ведомого вала.

Передаваемое количество оборотов зависит от диаметра шкивов и коэффициента сцепления. Направление вращения не меняется.

Передача с крутящим моментом

Переходной конструкцией является ременная зубчатая передача.

На ремне имеются выступы, на шестерне зубчики. Такой тип ремня расположен под капотом автомобиля и связывает звездочки на осях коленвала и карбюратора. При перегрузе ремень рвется, так как это самая дешевая деталь узла.

Цепная состоит из звездочек и цепи с роликами. Передающееся число оборотов, усилие и направление вращения не меняются. Цепные передачи широко применяются в транспортных механизмах, на конвейерах.

Характеристика зубчатой передачи

В зубчатой передаче ведущая и ведомая детали взаимодействуют непосредственно, за счет зацепления зубьев. Основное правило работы такого узла – модули должны быть одинаковыми. В противном случае механизм заклинит. Отсюда следует, что диаметры увеличиваются в прямой зависимости от количества зубьев. Одни значения можно в расчетах заменить другими.

Модуль – размер между одинаковыми точками двух соседних зубьев.

Например, между осями или точками на эвольвенте по средней линии Размер модуля состоит из ширины зуба и промежутка между ними. Измерять модуль лучше в точке пересечения линии основания и оси зубца. Чем меньше радиус, тем сильнее искажается промежуток между зубьями по наружному диаметру, он увеличивается к вершине от номинального размера. Идеальные формы эвольвенты практически могут быть только на рейке. Теоретически на колесе с максимально бесконечным радиусом.

Деталь с меньшим количеством зубьев называют шестерней. Обычно она ведущая, передает крутящий момент от двигателя.

Зубчатая передача

Зубчатое колесо имеет больший диаметр и в паре ведомое. Оно соединено с рабочим узлом. Например, передает вращение с необходимой скоростью на колеса автомобиля, шпиндель станка.

Обычно посредством зубчатой передачи уменьшается количество оборотов и увеличивается мощность. Если в паре деталь, имеющая больший диаметр, ведущая, на выходе шестерня имеет большее количество оборотов, вращается быстрее, но мощность механизма падает. Такие передачи называют понижающими.

Зачем нужна паразитка

При взаимодействии шестерни и колеса происходит изменение сразу нескольких величин:

  • количества оборотов;
  • мощности;
  • направление вращения.

Только в планетарных узлах с нарезкой зубьев по внутреннему диаметру венца сохраняется направление вращения. При наружном зацеплении ставится две одинаковые шестерни подряд. Их взаимодействие не меняет ничего, кроме направления движения. В этом случае обе зубчатые детали называются шестернями, колеса нет. Вторая, промежуточная, получила название «паразитка», поскольку в вычислениях не участвует, меняет только знак.

Паразитка

Виды зубчатых соединений

Зубчатое зацепление может иметь различную форму зуба на деталях. Это зависит от исходной нагрузки и расположения осей сопрягаемых деталей. Различают виды зубчатых подвижных соединений:

  • прямозубая;
  • косозубая;
  • шевронная;
  • коническая;
  • винтовая;
  • червячная.

Самое распространенное и простое в исполнении прямозубое зацепление. Наружная поверхность зуба цилиндрическая. Расположение осей шестерни и колеса параллельное. Зуб расположен под прямым углом к торцу детали.

Когда нет возможности увеличить ширину колеса, а надо передать большое усилие, зуб нарезают под углом и за счет этого увеличивают площадь соприкосновения. Расчет передаточного числа при этом не изменяется. Узел становится более компактным и мощным.

Недостаток косозубых зацеплений в дополнительной нагрузки на подшипники. Сила от давления ведущей детали действует перпендикулярно плоскости контакта. Кроме радиального, появляется осевое усилие.

Компенсировать напряжение вдоль оси и еще больше увеличить мощность позволяет шевронное соединение. Колесо и шестерня имеют 2 ряда косых зубьев, направленных в разные стороны. Передающее число рассчитывается аналогично прямозубому зацеплению по соотношению количества зубьев и диаметров. Шевронное зацепление сложное в исполнении. Оно ставится только на механизмах с очень большой нагрузкой.

В конической зубчатой передачи оси расположены под углом. Рабочий элемент нарезается по конической плоскости. Передаточное число таких пар может равняться 1, когда надо только изменить плоскость действия силы. Для увеличения мощности нарезается полукруглый зуб. Передающееся количество оборотов считается только по зубу, диаметр в основном используется при расчетах габаритов узла.

Винтовая передача имеет зуб, нарезанный под углом 45⁰. Это позволяет располагать оси рабочих элементов перпендикулярно в разных плоскостях. У червячной передачи нет шестерни, ее заменяет червяк. Оси деталей не пересекаются. Они расположены перпендикулярно в пространстве, но разных плоскостях. Передаточное число пары определяется количеством заходов резьбы на червяке.

Кроме перечисленных производят и другие виды передач, но они встречаются крайне редко и к стандартным не относятся.

Многоступенчатые редукторы

Как подобрать нужное передаточное число. Двигатель обычно выдает несколько тысяч оборотов в минуту. На выходе – колесах автомобиля и шпинделе станка, такая скорость вращения приведет к аварии. Мощности исполняющего механизма не хватит, чтобы рабочий инструмент мог резать металл, а колеса сдвинули автомобиль. Одна пара зубчатого зацепления не сможет обеспечить требуемое понижение или ведомая деталь должна иметь огромные размеры.

Создается многоступенчатый узел с несколькими парами зацеплений. Передаточное число редуктора считается как произведение чисел каждой пары.

Uр = U1×U2 × … ×Un;

Где:

Uр – передаточное число редуктора;

U1,2,n – каждой из пар.

Перед тем как подобрать передаточное число редуктора, надо определиться с количеством пар, направлением вращения выходного вала, и делать расчет в обратном порядке, исходя из максимально допустимых габаритов колес.

Многоступенчатый редуктор

В многоступенчатом редукторе все зубчатые детали, находящиеся между ведущей шестерней на входе в редуктор и ведомым зубчатым венцом на выходном валу, называются промежуточными. Каждая отдельная пара имеет свое передающееся число, шестерню и колесо.

Редуктор и коробка скоростей

Любая коробка скоростей с зубчатым зацеплением является редуктором, но обратное утверждение неверно.

Коробка скоростей представляет собой редуктор с подвижным валом, на котором расположены шестерни разного размера. Смещаясь вдоль оси, он включает в работу то одну, то другую пару деталей. Изменение происходит за счет поочередного соединения различных шестерен и колес. Они отличаются диаметром и передающимся количеством оборотов. Это дает возможность изменять не только скорость, но и мощность.

Трансмиссия автомобиля

В машине поступательное движение поршня преобразуется во вращательное коленвала. Трансмиссия представляет собой сложный механизм с большим количеством различных узлов, взаимодействующих между собой. Ее назначение — передать вращение от двигателя на колеса и регулировка количества оборотов – скорости и мощности автомобиля.

В состав трансмиссии входит несколько редукторов. Это, прежде всего:

  • коробка передач – скоростей;
  • дифференциал.

Коробка передач в кинематической схеме стоит сразу за коленвалом, изменяет скорость и направление вращения.

Посредством переключения – перемещения вала, шестерни на валу соединяются поочередно с разными колесами. При включении задней скорости, через паразитку меняется направление вращения, автомобиль в результате движется назад.

Автомобильная трансмиссия

Дифференциал представляет собой конический редуктор с двумя выходными валами, расположенными в одной оси напротив друг друга. Они смотрят в разные стороны. Передаточное число редуктора – дифференциала небольшое, в пределах 2 единиц. Он меняет положение оси вращения и направление. Благодаря расположению конических зубчатых колес напротив друг друга, при зацеплении с одной шестерней они крутятся в одном направлении относительно положения оси автомобиля, и передают вращательный момент непосредственно на колеса. Дифференциал изменяет скорость и направление вращения ведомых коничек, а за ними и колес.

Как рассчитать передаточное число

Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

Расчет без учета сопротивления

В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

u12 = ± Z2/Zи u21 = ± Z1/Z2,

Где u12 – передаточное число шестерни и колеса;

Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».

При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.

Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.

Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:

u16 = u12×u23×u45×u56 = z2/z1×z3/z2×z5/z4×z6/z5 = z3/z1×z6/z4

Способ расчета передаточного числа позволяет спроектировать редуктор с заранее заданными выходными значениями количества оборотов и теоретически найти передаточное отношение.

Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.

КПД зубчатой передачи

Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:

  • трение соприкасаемых поверхностей;
  • изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
  • потери на шпонках и шлицах;
  • трение в подшипниках.

Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.

Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.

При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.

Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.

Передаточное отношение зубчатой передачи

Значение передаточного числа зубчатой передачи совпадает передаточным отношением. Величина угловой скорости и момента силы изменяется пропорционально диаметру, и соответственно количеству зубьев, но имеет обратное значение.

Чем больше количество зубьев, тем меньше угловая скорость и сила воздействия – мощность.

При схематическом изображении величины силы и перемещения шестерню и колесо можно представить в виде рычага с опорой в точке контакта зубьев и сторонами, равными диаметрам сопрягаемых деталей. При смещении на 1 зубец их крайние точки проходят одинаковое расстояние. Но угол поворота и крутящий момент на каждой детали разный.

Например, шестерня с 10 зубьями проворачивается на 36°. Одновременно с ней деталь с 30 зубцами смещается на 12°. Угловая скорость детали с меньшим диаметром значительно больше, в 3 раза. Одновременно и путь, который проходит точка на наружном диаметре имеет обратно пропорциональное отношение. На шестерне перемещение наружного диаметра меньше. Момент силы увеличивается обратно пропорционально соотношению перемещения.

Крутящий момент увеличивается вместе с радиусом детали. Он прямо пропорционален размеру плеча воздействия – длине воображаемого рычага.

Передаточное отношение показывает, насколько изменился момент силы при передаче его через зубчатое зацепление. Цифровое значение совпадает с переданным числом оборотов.

Передаточное отношение редуктора вычисляется по формуле:

U12 = ±ω12=±n1/n2

где U12 – передаточное отношение шестерни относительно колеса;

ω1 и ω2 – угловые скорости ведущего и ведомого элемента соединения; n1 и n2 – частота вращения.

Отношение угловых скоростей можно считать через число зубьев. При этом направление вращения не учитывается и все цифры с положительным знаком.

Зубчатая передача имеет самый высокий КПД и наименьшую защиту от перегруза – ломается элемент приложения силы, приходится делать новую дорогостоящую деталь со сложной технологией изготовления.

Если этот параметр Вам не известен, то можно рассчитать его по формуле:

М2 = 9550 х Р1 х і х КПД / 100 х n1

Где: P1(кВт) входная мощность редуктора; i — передаточное отношение; КПД (%) — коэффициент полезного действия; n1(об/мин) — обороты на входном валу (вал электродвигателя).

  • КПД=98% (для одноступенчатых редукторов)
  • КПД=97% (для двухступенчатых редукторов)
  • КПД=96% (для трехступенчатых редукторов)
  • КПД=95% (для четырехступенчатых редукторов, а так же для червячных одноступенчатых редукторов)
  • КПД=94% (для редукторов с количеством ступеней 5 и более, а так же для червячных двухступенчатых редукторов).

Определить необходимую мощность Р1 (кВт) для редуктора (входная мощность редуктора)

Если этот параметр Вам не известен, то можно рассчитать его по формуле:

Р1= М2 х n1 х 100 / 9550 х КПД

Где: M2(Нм) крутящий момент редуктора; n1(об/мин) — обороты на входном валу (вал электродвигателя); КПД (%) — коэффициентполезного действия.

  • КПД=98% (для одноступенчатых редукторов)
  • КПД=97% (для двухступенчатых редукторов)
  • КПД=96% (для трехступенчатых редукторов)
  • КПД=95% (для четырехступенчатых редукторов, а так же для червячных одноступенчатых редукторов)
  • КПД=94% (для редукторов с количеством ступеней 5 и более, а так же для червячных двухступенчатых редукторов).

Определить номинальную мощность Рe (кВт) для редуктора (номинальная мощность редуктора)

Если этот параметр Вам не известен, то можно рассчитать его по формуле:

Где: P1 (кВт) — входная мощность редуктора; Sf — коэффициент эксплуатации (коэффициент надежности).

Определить необходимые обороты n2 (об/мин) для вашего оборудования или передаточное отношение i редуктора (обороты на выходном валу редуктора).

Если этот параметр Вам не известен, то можно рассчитать его по формуле:

n1(об/мин) — обороты на входном валу (вал электродвигателя); n1(об/мин) — обороты на выходном валу (вал редуктора).

Рассчитать необходимую радиальную нагрузку Fq (Н) на выходной вал редуктора (в зависимости от вида соединения редуктора с оборудованием).

Радиальную нагрузку на вал редуктора можно рассчитать его по формуле:

  • Fq = 2100 х М2 / D зубчатая передача (рабочий угол – 20 градусов)
  • Fq = 2100 х М2 / D цепная передача (на малых оборотах z > 17)
  • Fq = 2500 х М2 / D зубчатая ременная передача
  • Fq = 5000 х М2 / D клиноременная передача
  • Fq = 5000 х М2 / D ременная передача через ролик натяжителя

Где: Fq(Н) — радиальная нагрузка на вал редуктора; М2(Нм) — крутящий момент редуктора; D (мм) — диаметр шестерни или шкива; при выборе редуктора необходимо учитывать, что:

Любое подвижное соединение, передающее усилие и меняющее направление движения, имеет свои технические характеристики. Основным критерием, определяющим изменение угловой скорости и направления движения, является передаточное число. С ним неразрывно связано изменение силы – передаточное отношение. Оно вычисляется для каждой передачи: ременной, цепной, зубчатой при проектировании механизмов и машин.

Как рассчитать обороты редуктора

Перед тем как узнать передаточное число, надо посчитать количество зубьев на шестернях. Затем разделить их количество на ведомом колесе на аналогичный показатель ведущей шестерни. Число больше 1 означает повышающую передачу, увеличивающую количество оборотов, скорость. Если меньше 1, то передача понижающая, увеличивающая мощность, силу воздействия.

Общее определение

Наглядный пример изменения числа оборотов проще всего наблюдать на простом велосипеде. Человек медленно крутит педали. Колесо вращается значительно быстрее. Изменение количества оборотов происходит за счет 2 звездочек, соединенных в цепь. Когда большая, вращающаяся вместе с педалями, делает один оборот, маленькая, стоящая на задней ступице, прокручивается несколько раз.

Передачи с крутящим моментом

В механизмах используют несколько видов передач, изменяющих крутящий момент. Они имеют свои особенности, положительные качества и недостатки. Наиболее распространенные передачи:

Ременная передача самая простая в исполнении. Используется при создании самодельных станков, в станочном оборудовании для изменения скорости вращения рабочего узла, в автомобилях.

Ремень натягивается между 2 шкивами и передает вращение от ведущего в ведомому. Производительность низкая, поскольку ремень скользит по гладкой поверхности. Благодаря этому, ременной узел является самым безопасным способом передавать вращение. При перегрузке происходит проскальзывание ремня, и остановка ведомого вала.

Передаваемое количество оборотов зависит от диаметра шкивов и коэффициента сцепления. Направление вращения не меняется.

Как рассчитать обороты редуктора

Переходной конструкцией является ременная зубчатая передача.

На ремне имеются выступы, на шестерне зубчики. Такой тип ремня расположен под капотом автомобиля и связывает звездочки на осях коленвала и карбюратора. При перегрузе ремень рвется, так как это самая дешевая деталь узла.

Цепная состоит из звездочек и цепи с роликами. Передающееся число оборотов, усилие и направление вращения не меняются. Цепные передачи широко применяются в транспортных механизмах, на конвейерах.

Характеристика зубчатой передачи

В зубчатой передаче ведущая и ведомая детали взаимодействуют непосредственно, за счет зацепления зубьев. Основное правило работы такого узла – модули должны быть одинаковыми. В противном случае механизм заклинит. Отсюда следует, что диаметры увеличиваются в прямой зависимости от количества зубьев. Одни значения можно в расчетах заменить другими.

Модуль – размер между одинаковыми точками двух соседних зубьев.

Например, между осями или точками на эвольвенте по средней линии Размер модуля состоит из ширины зуба и промежутка между ними. Измерять модуль лучше в точке пересечения линии основания и оси зубца. Чем меньше радиус, тем сильнее искажается промежуток между зубьями по наружному диаметру, он увеличивается к вершине от номинального размера. Идеальные формы эвольвенты практически могут быть только на рейке. Теоретически на колесе с максимально бесконечным радиусом.

Деталь с меньшим количеством зубьев называют шестерней. Обычно она ведущая, передает крутящий момент от двигателя.

Как рассчитать обороты редуктора

Зубчатое колесо имеет больший диаметр и в паре ведомое. Оно соединено с рабочим узлом. Например, передает вращение с необходимой скоростью на колеса автомобиля, шпиндель станка.

Обычно посредством зубчатой передачи уменьшается количество оборотов и увеличивается мощность. Если в паре деталь, имеющая больший диаметр, ведущая, на выходе шестерня имеет большее количество оборотов, вращается быстрее, но мощность механизма падает. Такие передачи называют понижающими.

Расчет элементов корпуса редуктора

Толщина стенки корпуса редуктора
= 0,025+ 1=5 мм

Полученное значение округляем до целого числа с учетом того, что толщина стенки должна быть не меньшего 8 мм. Примем

= 8

Диаметр фундаментного болта

d

б1 = 0,036
+ 12 =17,76 мм
округлим расчетное значение до стандартного диаметра резьбы:

Диаметры болтов крепления крышки корпуса к основанию равны:

После округления до стандартных значений: d

б2 = 16 мм,
d
б3 =12 мм

Расстояние от внутренней стенки корпуса до края лапы

L

1= 3 +
+b
1 =51 мм

где b

1 = 40 мм, определяется по табл. 5 в зависимости от диаметра болта
d
б1.

Расстояние от внутренней стенки корпуса до оси фундаментного болта

P

1 = 3 +
+a
1 = 28 мм

где a

1 = 17 мм, определяется по табл. 5 в зависимости от диаметра болта
d
б1.

Расстояние от внутренней стенки корпуса до оси болта у подшипника

P

2= 3 +
+a
2= 24 мм

где a

2 = 13 мм, определяется по табл. 5 в зависимости от диаметра болта
d
б2.

Расстояние от внутренней стенки корпуса до оси фундаментного болта

P

3= 3 +
+a
3= 21 мм

где a

3 = 9 мм, определяется по табл. 5 в зависимости от диаметра болта
d
б3.

h=

2.5
=20 мм
h

1
=
1.6
= 14 мм
Минимальное расстояние от окружности вершин зубчатого колеса до стенки корпуса редуктора

f

= 1.2
=10 мм
C

=
= 8
Для уменьшения потерь мощности на трение и снижения интенсивности износа трущих­ся поверхностей, а также для предохранения их от заедания, коррозии и лучшего от­вода теплоты трущиеся поверхности деталей должны иметь надежную смазку.

Как рассчитать передаточное число

Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

Расчет без учета сопротивления

В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

Где u12 – передаточное число шестерни и колеса;

Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».

При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.

Передаточное отношение зубчатой передачи

Значение передаточного числа зубчатой передачи совпадает передаточным отношением. Величина угловой скорости и момента силы изменяется пропорционально диаметру, и соответственно количеству зубьев, но имеет обратное значение.

Чем больше количество зубьев, тем меньше угловая скорость и сила воздействия – мощность.

При схематическом изображении величины силы и перемещения шестерню и колесо можно представить в виде рычага с опорой в точке контакта зубьев и сторонами, равными диаметрам сопрягаемых деталей. При смещении на 1 зубец их крайние точки проходят одинаковое расстояние. Но угол поворота и крутящий момент на каждой детали разный.

Например, шестерня с 10 зубьями проворачивается на 36°. Одновременно с ней деталь с 30 зубцами смещается на 12°. Угловая скорость детали с меньшим диаметром значительно больше, в 3 раза. Одновременно и путь, который проходит точка на наружном диаметре имеет обратно пропорциональное отношение. На шестерне перемещение наружного диаметра меньше. Момент силы увеличивается обратно пропорционально соотношению перемещения.

Крутящий момент увеличивается вместе с радиусом детали. Он прямо пропорционален размеру плеча воздействия – длине воображаемого рычага.

Передаточное отношение показывает, насколько изменился момент силы при передаче его через зубчатое зацепление. Цифровое значение совпадает с переданным числом оборотов.

Передаточное отношение редуктора вычисляется по формуле:

где U12 – передаточное отношение шестерни относительно колеса;

ω1 и ω2 – угловые скорости ведущего и ведомого элемента соединения;

Как рассчитать обороты редуктора

Отношение угловых скоростей можно считать через число зубьев. При этом направление вращения не учитывается и все цифры с положительным знаком.

Зубчатая передача имеет самый высокий КПД и наименьшую защиту от перегруза – ломается элемент приложения силы, приходится делать новую дорогостоящую деталь со сложной технологией изготовления.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Покупка моторного редуктора – инвестиции в технико-технологические бизнес-процессы, которые должны быть не только обоснованными, но и окупаемыми. А окупаемость во многом зависит от выбора мотор-редуктора для конкретных целей. Осуществляется он на основе профессионального расчета мощности, размерности, производительной эффективности, требуемого уровня нагрузки для конкретных целей использования.

Во избежание ошибок, которые могут привести к раннему износу оборудования и дорогостоящим финансовым потерям, расчет мотор-редуктора должны производить квалифицированные специалисты. При необходимости его и другие исследования для выбора редуктора могут провести эксперты .

Выбор по основным характеристикам

Длительный срок службы при обеспечении заданного уровня работы оборудования, с которым работает мотор-редуктор, – ключевая выгода при правильном выборе привода. Наша многолетняя практика показывает, что при определении требований исходить стоит из следующих параметров:

  • минимум 7 лет безремонтной работы для червячного механизма;
  • от 10–15 лет для цилиндрического привода.

В ходе определения данных для подачи заказа на производство мотор-редуктора ключевыми характеристиками являются:

  • мощность подключенного электродвигателя,
  • скорость вращения подвижных элементов системы,
  • тип питания мотора,
  • условия эксплуатации редуктора – режим работы и загрузки.

При расчете мощности электродвигателя для мотор-редуктора за основу берут производительность техники, с которой он будет работать. Производительность редукторного мотора во многом зависит от выходного момента силы и скоростью его работы. Скорость, как и КПД, может меняться при колебаниях напряжения в системе питания двигателя.

Скорость моторного редуктора – это зависимая величина, на которую влияют две характеристики:

  • передаточное число;
  • частота вращательных движений мотора.

В нашем каталоге есть редукторы с разными скоростными параметрами. Имеются модели с одним или несколькими скоростными режимами. Второй вариант предусматривает наличие системы регулирования скоростных параметров и применяется в случаях, когда во время эксплуатации редуктора необходима периодическая смена скоростных режимов.

Определение понятия

Что же такое передаточное число редуктора? Любой редуктор служит для передачи крутящего момента с коробки передач на колеса. При этом скорость вращения всегда понижается. Передаточное число как раз и является показателем, во сколько раз это уменьшение происходит. К примеру, число 5,125, встречающееся в газелевских редукторах, показывает, что скорость вращения с входного вала на колеса уменьшается в 5,125 раза.

Как вычислить передаточное число редуктора

Практически редуктор в автомобиле располагается на ведущей оси. Если речь идёт о полноприводных вариантах – там имеется два редуктора, по одному на каждую ось. Отечественные автомобили производства ВАЗ и ГАЗ имеют задний редуктор, за некоторым исключением. Чтобы определить передаточное число редуктора, можно поступить несколькими способами:

  • теоретический;
  • практический;
  • расчётный.

Выбор по типу редуктора для привода

Профессиональный расчет с целью выбора редуктора всегда начинается с проработки схемы привода (кинематической). Именно она лежит в основе соответствия выбранного оборудования условиях будущей эксплуатации. Согласно данной схеме, вы можете выбрать класс мотор-редуктора. Варианты следующие.

  • Червячный механизм:
  • одноступенчатая передача, входной вал под прямым углом к выходному валу (скрещенное положение входного вала и выходного вала);
  • двухступенчатый механизм с расположением входного вала параллельно или перпендикулярно выходному валу (оси могут располагаться вертикально/горизонтально).
  • Цилиндрический мотор-редуктор:
  • с параллельным положением входного вала и выходного вала и горизонтальным размещением осей (выходной вал с органом на входе находятся в одной плоскости);
  • с размещением осей входного вала и выходного в одной плоскости, но соосно (расположены под любым углом).
  • Конически-цилиндрический. В нем ось входного вала пересекается с осью выходного вала под углом 90 градусов.
  • Ключевое значение при выборе мотор-редуктора имеет положение выходного вала. При комплексном подходе к подбору устройства следует учитывать следующее:

  • Цилиндрический и конический моторный редуктор, имея аналогичные червячному приводу вес и размеры, демонстрирует более высокий КПД.
  • Передаваемая цилиндрическим редуктором нагрузка в 1,5–2 раза выше, чем у червячного аналога.
  • Использование конической и цилиндрической передачи возможно только при размещении по горизонтали.

Определение уровня масла.

В цилиндрических редукторах:

При окунании в масляную ванну колеса m≤ hм≤0.25d2, где m – модуль зацепления; при нижнем расположении шестерни hм=(0,1….0,5)d1, при этом hmin=2,2m. Желательно, чтобы уровень масла проходил через центр нижнего тела качения подшипника (шарика или ролика).

При нижнем расположении шестерни цилиндрической передачи и высокой частоте вращения для уменьшения тепловыделения и потери мощности, уровень масла понижают так, чтобы вывести шестерню из масляной ванны. В этом случае, для смазывания, на шестерню устанавливают разбрыгиватели.

Классификация по числу ступеней и типу передачи

Тип редуктора Число ступеней Тип передачи Расположение осей
Цилиндрический 1 Одна или несколько цилиндрических Параллельное
2 Параллельное/соосное
3
4 Параллельное
Конический 1 Коническая Пересекающееся
Коническо-цилиндрический 2 Коническая Цилиндрическая (одна или несколько) Пересекающееся/ Скрещивающееся
3
4
Червячный 1 Червячная(одна или две) Скрещивающееся
2 Параллельное
Цилиндро-червячный или червячно- цилиндрический 2 Цилиндрическая (одна или две) Червячная (одна) Скрещивающееся
3
Планетарный 1 Два центральных зубчатых колеса и сателлиты (для каждой ступени) Соосное
2
3
Цилиндрическо-планетарный 2 Цилиндрическая (одна или несколько) Планетарная (одна или несколько) Параллельное/соосное
3
4
Коническо-планетарный 2 Коническая (одна) Планетарная (одна или несколько) Пересекающееся
3
4
Червячно-планетарный 2 Червячная (одна) Планетарная (одна или несколько) Скрещивающееся
3
4
Волновой 1 Волновая (одна) Соосное

Передаточное число

Определение передаточного отношения выполняют по формуле вида:

  • nвх– обороты входного вала (характеристика электродвигателя) в минуту;
  • nвых– требуемое число оборотов выходного вала в минуту.

Полученное частное округляется до передаточного числа из типового ряда для конкретных типов мотор-редукторов. Ключевое условие удачного выбора электродвигателя – ограничение по частоте вращения входного вала. Для всех типов приводных механизмов она не должна превышать 1,5 тыс. оборотов в минуту. Конкретный критерий частоты указывается в технических характеристиках двигателя.

Расчётный способ

А можно ли узнать передаточное число неизвестного автомобиля, не разбирая редуктор? Оказывается, есть такой способ. Для этого ось, на которой установлен редуктор, вывешивается на опорах. Запоминается положение ведущего вала и колес. Это удобно сделать простыми метками. Затем колеса крутят до тех пор, пока метки снова не совпадут, подсчитывая число оборотов колес и вала отдельно. Удобнее эту процедуру проводить с помощником.

Как вычислить передаточное число редуктора

После получения экспериментальных данных следует рассчитать число путем деления количества оборотов вала на количество оборотов колес. Точность такого способа примерная и повышается только внимательностью при подсчете и совмещении меток.

Диапазон передаточных чисел для редукторов

Тип редуктора Передаточные числа
Червячный одноступенчатый 8-80
Червячный двухступенчатый 25-10000
Цилиндрический одноступенчатый 2-6,3
Цилиндрический двухступенчатый 8-50
Цилиндрический трехступенчатый 31,5-200
Конческо-цилиндрический одноступенчатый 6,3-28
Конческо-цилиндрический двухступенчатый 28-100

Мощности

При вращательных движениях рабочих органов механизмов возникает сопротивление, которое приводит к трению – истиранию узлов. При грамотном выборе редуктора по показателю мощности он способен преодолевать это сопротивление. Потому этот момент имеет большое значение, когда нужно купить мотор-редуктор с долгосрочными целями.

Сама мощность – Р – считается как частное от силы и скорости редуктора. Формула выглядит так:

  • где: M – момент силы;
  • N – обороты в минуту.

Для выбора нужного мотор-редуктора необходимо сопоставить данные по мощности на входе и выходе – Р1 и Р2 соответственно. Расчет мощности мотор-редуктора на выходе рассчитывается так:

  • где: P – мощность редуктора; Sf – эксплуатационный коэффициент, он же сервис-фактор.

На выходе мощность редуктора (P1 > P2) должна быть ниже, чем на входе. Норма данного неравенства объясняется неизбежными потерями производительности при зацеплении в результате трения деталей между собой.

При расчете мощностей обязательно применять точные данные: из-за разных показателей КПД вероятность ошибки выбора при использовании приблизительных данных близится к 80%.

Крутящий момент редуктора

Крутящий момент на выходном валу [M2] — вращающий момент на выходном валу. Учитывается номинальная мощность [Pn], коэффициент безопасности [S], расчетная продолжительность эксплуатации (10 тысяч часов), КПД редуктора.

Номинальный крутящий момент [Mn2] — максимальный крутящий момент, обеспечивающий безопасную передачу. Его значение рассчитывается с учетом коэффициента безопасности — 1 и продолжительность эксплуатации — 10 тысяч часов.

Максимальный вращающий момент [M2max] — предельный крутящий момент, выдерживаемый редуктором при постоянной или изменяющейся нагрузках, эксплуатации с частыми пусками/остановками. Данное значение можно трактовать как моментальную пиковую нагрузку в режиме работы оборудования.

Необходимый крутящий момент [Mr2] — крутящий момент, удовлетворяющим критериям заказчика. Его значение меньшее или равное номинальному крутящему моменту.

Расчетный крутящий момент [Mc2] — значение, необходимое для выбора редуктора. Расчетное значение вычисляется по следующей формуле:

Mc2 = Mr2 x Sf <= Mn2

где Mr2 — необходимый крутящий момент; Sf — сервис-фактор (эксплуатационный коэффициент); Mn2 — номинальный крутящий момент.

Расчет КПД

КПД мотор-редуктора является частным деления мощности на выходе и на входе. Рассчитывается в процентах, формула имеет вид:

При определении КПД следует опираться на следующие моменты:

  • величина КПД прямо зависит от передаточного числа: чем оно выше, тем выше КПД;
  • в ходе эксплуатации редуктора его КПД может снизиться – на него влияет как характер или условия эксплуатации, так и качество используемой смазки, соблюдение графика плановых ремонтов, своевременное обслуживание и т. д.

Показатели надежности

В таблице ниже приведены нормы ресурса основных деталей мотор-редуктора при длительной работе устройства с постоянной активностью.

Ресурс

Показатель Тип редуктора Значение, ч
90% ресурса валов и передач Цилиндрический, планетарный, конический, коническо-цилиндрический 25000
90% ресурса подшибников Червячный, волновой, глобоидный 10000
Цилиндрический, планетарный, конический, коническо-цилиндрический 12500
Червячный 5000
Глобоидный,волновой 10000

Купить мотор-редуктор

ПТЦ «Привод» – производитель редукторов и мотор-редукторов с разными характеристиками и КПД, которому не безразличны показатели окупаемости его оборудования. Мы постоянно работаем не только над повышением качества нашей продукции, но и над созданием самых комфортных условий ее приобретения для вас.

Специально для минимизации ошибок выбора нашим клиентам предлагается интеллектуальный конфигуратор. Чтобы воспользоваться этим сервисом, не нужны специальные навыки или знания. Инструмент работает в режиме онлайн и поможет вам определиться с оптимальным типом оборудования. Мы же предложим лучшую цену мотор-редуктора любого типа и полное сопровождение его доставки.

Типы взрывозащищенного исполнения

Выделяют 3 основные категории редукторов и мотор-редукторов по классу взрывозащищенности:

  • Е – устройства с повышенной степенью защищенности. Пригодны для эксплуатации в любых условиях, в том числе при возникновении внештатных ситуаций. Благодаря высокой герметичности корпуса подходят для использования в средах взрывоопасных и горючих газов и газо-воздушных смесей без риска воспламенения последних;
  • D – мотор-редукторы со взрывонепроницаемым корпусом, неразрушимым в случае взрыва самого агрегата. Отличаются полной герметичностью оболочки и безопасностью, которая позволяет использовать их в средах любых взрывоопасных газов и смесей, а также при предельно высоких эксплуатационных температурах;
  • I – устройства с увеличенной искробезопасностью. Подразумевают поддержку взрывобезопасного тока в питающей цепи в соответствии с конкретными производственными условиями.

Как рассчитать передаточное отношение шестерен механической передачи.

В этой статье я приведу пример расчета передаточного отншения шестерен разного диаметра, с разным количеством зубьев. Данный расчет применяется в том случае, когда важно определить к примеру скорость вращения вала редуктора при известной скорости привода и характеристиках зубьев.

Естественно, можно произвести замеры частоты вращения выходного вала, однако в некоторых случаях требуется именно расчет. Помимо этого, в теоретической механике, при конструировании различных узлов и механизмов требуется рассчитать шестерни, чтобы получить заданную скорость вращения.

                Термин передаточное число является весьма неоднозначным. Он перекликается с термином передаточное отношение, что не совсем верно. Говоря о передаточном числе, мы подразумеваем сколько оборотов совершит ведомое колесо (шестерня) относительно ведущего.

Для правильного понимания процессов и строения шестерни – следует предварительно ознакомится с ГОСТ 16530-83.

Итак, рассмотрим пример расчета с использованием двух шестерен.

Чтобы рассчитать передаточное отношение мы должны иметь как минимум две шестерни. Это называется зубчатая передача. Обычно первая шестерня является ведущей и находится на валу привода, вторая шестерня называется ведомой и вращается входя в зацепление с ведущей.  Пи этом между ними может находится множество других шестерен, которые называются промежуточными. Для упрощения расчета рассмотрим зубчатую передачу с двумя шестернями.

В примере мы имеем две шестерни: ведущую (1) и ведомую (2). Самый простой способ заключается в подсчете количества зубьев на шестернях. Посчитаем количество зубьев на ведущей шестерне. Так же можно посмотреть маркировку на корпусе шестерни.

Представим, что ведущая шестерня (красная)  имеет 40 зубьев, а ведомая(синяя) имеет 60 зубьев.

Разделим количество зубьев ведомой шестерни на количество зубьев ведущей шестерни, чтобы вычислить передаточное отношение. В нашем примере: 60/40 = 1,5. Вы также можете записать ответ в виде 3/2 или 1,5:1.

Такое передаточное отношение означает, что красная, ведущая шестерня должна совершить полтора оборота, чтобы синяя, ведомая шестерня совершила один оборот.

Теперь усложним задачу, используя большее количество шестерен. Добавим в нашу зубчатую передачу еще одну шестерню с 14 зубьями. Сделаем ее ведущей.

Начнем с желтой, ведущей шестерни и будем двигаться в направлении ведомой шестерни. Для каждой пары шестерен рассчитываем свое передаточное отношение. У нас две пары: желтая-красная; красная-синяя. В каждой паре рассматриваем первую шестерню как ведущую, а вторую как ведомую.

В нашем примере передаточные числа для промежуточной шестерни: 40/14 = 2,9 и 60/40 = 1,5.

Умножаем значения передаточных отношений каждой пары и получаем общее передаточное отношение зубчатой передачи: (20/7) × (30/20) = 4,3. То есть для вычисления передаточного отношения всей зубчатой передачи необходимо перемножить значения передаточных отношений для промежуточных шестерен.

Определим теперь частоту вращения.

Используя передаточное отношение и зная частоту вращения желтой шестерни, можно запросто вычислить частоту вращения ведомой шестерни. Как правило, частота вращения измеряется в оборотах в минуту (об/мин) Рассмотрим пример зубчатой передачи с тремя шестернями. Предположим, что частота вращения желтой шестерни 340 оборотов в минуту. Вычислим частоту вращения красной шестерни.

Будем использовать формулу: S1 × T1 = S2 × T2,

 Где:

 S1 – частота вращения желтой (ведущей) шестерни,

Т1 – количество зубьев желтой (ведущей) шестерни;

S2- частота вращения красной шестерни,

Т2 – количество зубьев красной шестерни.

В нашем случае нужно найти S2, но по этой формуле вы можете найти любую переменную.

340 rpm × 7 = S2 × 40

2 380 =S2 × 40

2 380 40 = S2

59,5 об/мин = S2

Получается, если ведущая, желтая шестерня вращается с частотой 340 об/мин, тогда ведомая, красная шестерня будет вращаться со скоростью примерно 60 об/мин.  Таким же образом рассчитываем частоту вращения пары красная-синяя. Полученный результат – частота вращения синей шестерни – будет являться искомой частотой вращения всей зубчатой передачи.

Введение

Редуктором называют
механизм, выполненный в виде отдельного
агрегата и служащий для понижения
частоты вращения и повышения крутящего
момента на выходе.

Редуктор состоит
из корпуса (литого чугунного или сварного
стального), в котором помещают элементы
передачи — зубчатые колёса, валы,

Лист

Лист

подшипники и т.д. В отдельных случаях
в корпусе редуктора размещают также
устройства для смазывания подшипников
и зацеплений (например, внутри корпуса
редуктора может быть помещён шестеренный
масляный насос или устройства для
охлаждения (например, змеевик с охлаждающей
водой в корпусе червячного редуктора).

Работа
выполнена в рамках дисциплины «Теория
механизмов и машин и детали машин» на
основании задания кафедры механики.
Согласно заданию, необходимо сконструировать
соосный двухступенчатый цилиндрический
редуктор с раздвоением мощности для
привода

к
исполнительному механизму с мощностью
на выходе 3.6 кВт и частотой вращения 40
об/мин.

Редуктор выполняется
в закрытом варианте, срок службы
неограничен. Разработанный редуктор
должен быть удобным в эксплуатации,
должны максимально использоваться
стандартизированные элементы, а также
редуктор должен иметь как можно меньшие
габариты и вес.

1. Подбор электродвигателя и энерго-кинематический расчёт редуктора.

Привод исполнительного
механизма может быть представлен
следующей схемой (Рис.1.1.).

Рис. 1.1 — Схема
передачи

Рис.1.2. — Кинематическая
схема редуктора.

Заданная передача
представляет собой двухступенчатый
редуктор. Соответственно, рассматриваем
3 вала: первый – входной с угловой
скоростью
,
моментом,
мощностью,
частотой вращения;
второй – промежуточный с,,
,,
и третий – выходной,,,

1
Энерго-кинематический расчет редуктора.

Согласно исходным
данных,

об/мин,
КВт,

.

Крутящий момент
на третьем валу:

Коэффициент
полезного действия редуктора:

КПД пары цилиндрических
зубчатых колес

,


КПД подшипников качения (см. таблица
1.1) ,

Требуемая мощность
электродвигателя:

Зная общее КПД и
мощность N 3
на выходом валу, находим требуемую
мощность двигателя, который сидит на
первом валу:

.

Находим частоту
вращения двигателя:

n дв =n 3 *u max:
.

Принимаем по ГОСТу
19523-81 электродвигатель:

Тип 112МВ6,
с параметрами:

;

;
%.
(смотри
табл. П.1- 1),

где s,%
— скольжение.

Частота вращения
ведущего вала редуктора:

Теперь можем
заполнить первую строку таблицы: n 1 =n дв,

,
величину мощности оставляем равной
требуемой, момент определяем по формуле:

Взяв его частоту
вращения за n 1 ,
находим общее передаточное отношение.

Передаточное
отношение редуктора:

.

Передаточное
отношение ступеней редуктора:

Первая ступень

.

Частота вращения
промежуточного вала:

;

Угловые скорости
валов:

входящего:

;

промежуточного:

.

Определение
вращающих моментов валов редуктора:

входящего:

промежуточного:

Проверка:

;

;

Результаты
вычислений приведены в таблице 1.3.

Таблица 1.3. Значение
параметров нагрузки валов редуктора

,

,


2. Расчёт зубчатых колес редуктора

Для редуктора РЦД
расчет зубчатых передач необходимо
начинать с более нагруженой — второй
ступени.

II
ступень:

Выбор материала

Т.к. в задании нет
особых требований в отношении габаритов
передачи, выбираем материалы со средними
механическими характеристиками (см.
гл. III,
табл.3.3 ): для шестерни: сталь 30ХГС до
150 мм, термическая обработка – улучшение,
твёрдость по Бринелю НВ 260.

Для колеса: сталь
40Х свыше 180 мм, термическая обработка –
улучшение, твердость по Бринелю НВ 230.

Допускаемое
контактное напряжение для зубчатых
колёс [формула(3.9) — 1]:

,

где


предел контактной выносливости при
базовом числе циклов, К Н L —
коэффициент долговечности (при длительной
эксплуатации K
HL
=1
)

1,1 – коэффициент безопасности для
улучшенной стали .

Для углеродистых
сталей с твердостью поверхностей зубьев
менее НВ 350 и термической обработкой
(улучшением):

;

Для косозубых
колес расчетная допускаемое контактное
напряжение определяется

для шестерни
;

для колеса
.

Контактное
напряжение
.

Требуемое условие

выполнено.

Межосевое расстояние
определяем по формуле:

.

В соответствии с
подберем коэффициенты K Hβ ,
K a .

Коэффициент K Hβ
учитывает
неравномерность распределения нагрузки
по ширине венца. K Hβ =1.25.

Принимаем для
косозубых колес коэффициент ширины
венца по межосевому расстоянию:

Межосевое
расстояние из условия контактной
выносливости активных поверхностей
зубьев

.
u
=4,4

передаточное
число.

Ближайшее значение
межосевого расстояния по ГОСТ 2185-66

(см. стр.36 лит. ).

принимаем по
ГОСТ 9563-60*

(см.с.36,
лит. ).

Примем предварительно
угол наклона зубьев

и определим числа зубьев шестерни и
колеса :

шестерни

.

Принимаем

,
тогда для колеса

Принимаем

.

Уточненное значение
угла наклона зубьев

диаметры делительные:

,
где

— угол наклона зуба по отношению к
образующей делительного цилиндра.

;

.

диаметры вершин
зубьев:

;

эта величина
укладывается в погрешность ±2%, которую
мы получили в результате округления
числа зубьев до целой величины;

ширина колеса:

ширина шестерни:

.

.

При такой скорости
для косозубых колес следует принять
8-ю степень точности по ГОСТ 1643-81(см. с.
32 – лит).

Коэффициент
нагрузки:

,

где

— коэффициент ширины венца,

коэффициент типа зубьев,

коэффициент
зависимости от окружной скорости колес
и степени точности их изготовления.(см.
стр. 39 – 40 лит.)

По таблице 3.5
.

По таблице 3.4

.

По таблице 3.6

.

Таким образом,

Проверка контактных
напряжений по формуле 3.6 лит.:

т.к.

<

условие выполнено.

Силы, действующие
в зацеплении [формулы (8.3) и (8.4) лит.1]:

окружная:

;

радиальная:

;

Проверяем зубья
на выносливость по напряжениям изгиба:

(формула (3.25) лит.1),

где
,

— коэффициент нагрузки(см. стр.43 лит1),

учитывает неравномерность распределения
нагрузки по длине зуба,

коэффициент динамичности,

=0,92.

По таблице 3.7,

.

По таблице 3.8,

,

.


учитывает форму зуба и зависит от
эквивалентного числа зубьев [формула
(3.25 лит.1)]:

у шестерни
;

у колеса

.

Для колеса принимаем

=4.05,
для шестерни
=3.60
[см. стр.42 лит. 1].

Допускаемое
напряжение по формуле (3.24 лит. 1):

По табл.
3.9 лит. 1 для сатали 45 улучшеной при
твердости НВ ≤ 350

σ 0 F
lim
b =1.8HB.

Для шестерни σ 0 F
lim
b =1.8·260=486
МПа;

для колеса σ 0 F
lim
b =1.8·230=468
МПа.

=
»
«»
– коэффициент
безопасности [см.пояснения к
формуле(3.24)лит. 1], где » =1.75
(по табл.3.9 лит. 1), «» =1
(для поковок и штамповок). Следовательно

= 1.75.

Допускаемые
напряжения:

для шестерни
[σ F1 ]=

;

для колеса [σ F2 ]=

.

Дальнейший расчет
ведем для зубьев колеса, т.к. для них
данное отношение меньше.

Определяем
коэффициенты

и[см.гл
III,
лит. 1].

;

(для 8-ой степени
точности).

Проверяем прочность
зуба колеса [формула (3.25), лит 1]

;

Условие прочности
выполнено.

I
ступень:

Выбор материала

Т.к. в задании нет
особых требований в отношении габаритов
передачи, выбираем материалы со средними
механическими характеристиками.

Для шестерни: сталь
30ХГС до 150 мм, термическая обработка —
улучшение, твёрдость НВ 260.

Для колеса: сталь
30ХГС свыше 180 мм, термическая обработка
– улучшение, твёрдость НВ 230.

Нахождение
межосевого расстояния:

Т.к. рассчитывается
двухступенчатый соосный цилиндрический
редуктор с раздвоением мощности, то
принимаем:

.

Нормальный модуль
зацепления принимают по следующим
рекомендациям:

принимаем по
ГОСТ 9563-60*
=3мм.

Примем предварительно
угол наклона зубьев β=10 о

Определим число
зубьев шестерни и колеса:

Уточним угол
наклона зубьев:

,
тогда β=17.

Основные размеры
шестерни и колеса:

диаметры делительные
находим по формуле:

;

;

;

диаметры вершин
зубьев:

Проверка межосевого
расстояния: a w =
,
эта величина укладывается в погрешность
±2%, которую мы получили в результате
округления числа зубьев до целой
величины, а так же округления значения
тригонометрической функции.

Ширина колеса:

ширина шестерни:

Определим
коэффициент ширины шестерни по диаметру:

.

Окружная скорость
колёс и степень точности передачи:

.

При такой скорости
для косозубых колес следует принять
8-ю степень точности по ГОСТ 1643-81.

Коэффициент
нагрузки:

,

где

— коэффициент ширины венца,

коэффициент типа зубьев,

коэффициент зависимости от окружной
скорости колес и степени точности их
изготовления.

По таблице 3.5

;

По таблице 3.4

;

По таблице 3.6

.Таким
образом,.

Проверка контактных
напряжений по формуле:

<


условие выполнено.

Силы, действующие
в зацеплении:[формулы (8.3) и (8.4) лит.1]

окружная:

;

радиальная:

;

Проверяем зубья
на выносливость по напряжениям изгиба
[формула (3.25) лит.1]:

,

где

— коэффициент нагрузки(см. стр.43 ),

учитывает неравномерность распределения
нагрузки по длине зуба,

коэффициент динамичности,

учитывает неравномерность распределения
нагрузки между зубьями. В учебном расчете
принимаем величину
=0,92.

По таблице 3.7

;

По таблице 3.8

;

Коэффициент
следует
выбирать по эквивалентному числу зубьев
(см. с.46 ):

у колеса

;

у шестерни

.


коэффициент учитывающий форму зуба.
Для колеса принимаем

=4,25
для шестерни
=3.6
(см. с.42 лит.1);

Допускаемые
напряжения:

[ F ]=
(формула
(3.24), 1).

По
табл. (3.9), лит 1 для стали 30ХГС улучшенной
при твердости НВ ≤
350

σ 0 F
lim
b =1.8HB.

Для шестерни σ 0 F
lim
b =1.8·260=468
МПа; для колеса σ 0 F
lim
b =1.8·250=450
МПа.

=
»
«»
– коэффициент
безопасности [см.пояснения к
формуле(3.24),1],где » =1.75
(по табл.3.9 лит. 1), «» =1(для
поковок и штамповок). Следовательно=
1.75.

Допускаемые
напряжения:

для шестерни
[σ F3 ]=

;

для колеса [σ F4 ]=

.

Находим отношения
:

для колеса:

;

для шестерни:

.

Дальнейший расчет
ведем для зубьев шестерни, т.к. для них
данное отношение меньше.

Определяем
коэффициенты

и[см.гл
III,
лит. 1]:

;

(для 8-ой степени
точности).

Проверяем прочность
зуба шестерни [формула (3.25), лит 1]

;

Условие прочности
выполнено.

Расчет мощности и подбор мотор — редуктора

Мощность двигателя для преодоления сопротивлений передвижению определяем по формуле

где: V — скорость передвижения крана, м/с.

з — КПД привода. Ориентировочно — 0,9, /3/;

Так как привод механизма состоит из двух раздельных мотор-редукторов, то мощность каждого определяем по формуле:

Подбор мотор-редуктора производим, также по такой величине, как частота вращения выходного вала, которую определяем через частоту вращения колеса, определяемую по формуле

где — диаметр колеса, м;

V — скорость передвижения крана, м/мин;

Принимаем мотор — редуктор типа МП 3 2 ГОСТ 21356 — 75:

МП 3 2 — 63, /1/, имеющего следующие характеристики:

Номинальная мощность, кВт 5,50

Номинальная частота вращения выходного вала, мин- 1 45

Допустимый вращающий момент на выходном валу, Н*м 1000

Тип электродвигателя 4А112М4Р3

Частота вращения электродвигателя, мин- 1 1450

Диаметр конца выходного вала, мм 55

Масса мотор — редуктор, кг 147

Очевидно, что применение мотор — редуктора вместо обычной схемы позволяет снизить вес привода почти в три раза, и тем самым снизить стоимость реконструкции.

Подбор муфты

Для соединения валов мотор — редуктора и колеса принимаем муфту упругую втулочно-пальцевую МУВП-320. Проверим муфту по крутящему моменту, по формуле:

Где К — коэффициент режима работы, К=2,25, /3/;

Крутящий момент на валу муфты, Н*М;

Максимальный крутящий момент, передаваемый муфтой, Нм 4000

Момент инерции муфты, кг·м 2; 0,514

Масса, кг 13,3

Расчет тормозного момента и выбор тормоза

Тормозной момент, по которому подбирается тормоз механизма передвижения, должен быть таким, чтобы обеспечить остановку крана на определенном тормозном пути.

С другой стороны, он не должен быть слишком большим, иначе в процессе торможения может произойти пробуксовывание колес относительно рельса. Поэтому максимальный тормозной момент определяется из условия достаточного сцепления ходовых колес с рельсом.

Максимально допустимое значение, при котором обеспечивается заданный запас сцепления колес с рельсом, равный 1,2; для механизмов передвижения мостовых кранов /3/, определяем по формуле (10):

Принимаем движение при торможении равнозамедленным, получим минимальное время торможения по формуле (11):

Зная время торможения, определим необходимый тормозной момент по формуле:

Где — общая масса крана, кг;

Диаметр ходового колеса, м;

Частота вращения двигателя, мин- 1 ;

Передаточное число редуктора;

з — КПД привода;

(?J)I — суммарный момент инерции;

Где момент инерции ротора, кг*м 2 ;0,040. /10/;

Момент инерции муфты и тормозного шкива: 0,095 кг*м 2 , /3/;

(?J)I = 0,040+0,095=0,135 ;

Определим диаметр тормозного шкива по формуле (28):

Ширина тормозного шкива, мм 95

Диаметр вала, мм 42

Масса, кг 9,2

По определенному тормозному моменту принимаем тормоз ТКГ — 200, имеющего следующие характеристики /11/:

Номинальный тормозной момент, Н*М 250

Диаметр тормозного шкива, мм 200

Ход толкателя, мм 32

Отход колодки, мм 1,0

Тип толкателя, ТГМ-25

Масса, кг 37,6

Проверка на сцепление ходовых колес с рельсом

Проверку на сцепление ходовых колес с рельсом осуществляем по условию (3.13); ускорение пуска определяем по формуле (3.14); для этого по формуле (3.15) определим время пуска; по формуле (3.16) определим момент сопротивления движению крана без груза:

Определим средний пусковой момент по формуле

Где — номинальный момент двигателя, Нм;

Определим номинальный момент по формуле:

Где — мощность двигателя,кВт;

Частота вращения вала двигателя, мин — 1 ;


Условие К сц?1,2 выполняется, пробуксовка ведущих колес крана исключена.

Проверка электродвигателя по условию пуска

Полученное значение времени пуска может удовлетворять условию сцепления ходовых колес с рельсом, но не удовлетворять условию пуска электродвигателя.

Осуществим проверку двигателя по условию пуска, которое записывается:

Где [f] — допустимый коэффициент перегрузки,

[f] = 2,0; /10/;

Пусковой момент двигателя, Нм.

Условие f < [f] выполняется. По условию пуска электродвигатель подходит.

Курсовая

Расчет редуктора

Введение

1.3 Кинематический расчет редуктора

2. Расчет закрытой червячной передачи

2.1 Выбор материалов

2.2 Определение допускаемых напряжений

3. Расчет цепной передачи

3.1. Выбор цепи

3.2. Проверка цепи.

3.3. Число звеньев цепи

3.5. Диаметры делительных окружностей звездочек

3.6. Диаметры наружных окружностей звездочек

3.7. Определение сил, действующих на цепь

4. Нагрузки валов редуктора

5.1 Выбор материала валов

6. Проверочный расчет валов

6.1 Расчет червячного вала

9. Смазка редуктора

10. Выбор и расчет муфты

Исходные данные:

Потребляемая мощность привода —

Частота вращения выходного вала —

Ресурс работы —

Коэффициент годового использования — .

Коэффициент суточного использования — .

Кинематическая схема привода

Введение

Привод механизма служит для передачи вращения от вала электродвигателя на исполнительный механизм.

1. Определение исходных данных к расчету редуктора

1.1 Выбор и проверка электродвигателя

Предварительно определим КПД привода.

В общем виде к.п.д. передачи определяется по формуле:

где — к.п.д. отдельных элементов привода.

Для привода данной конструкции к.п.д. определяется по формуле:

где — к.п.д. подшипников качения; ;

К.п.д. червячной передачи; ;

К.п.д. цепной передачи; ;

К.п.д. муфты; .

Рассчитаем требуемую мощность двигателя:

Выбираем двигатель серии АИР с номинальной мощностью Р
ном
= 5,5 кВт, применив для расчета четыре варианта типа двигателя (см. таблицу 1.1)

Таблица 1.1

Вариант

Тип двигателя

Номинальная мощность Р
ном
, кВт

Частота вращения, об/мин

синхронная

при номинальном режиме n
ном

АИР100
L
2У3

5
,5

3000

2
850

АИР
112M4
У3

5
,5

1500

14
32

АИР
132S
6У3

5
,5

1000

9
60

АИР
132M8
У3

5
,5

1.2 Определение передаточного числа привода и его ступеней

Находим общее передаточное число для каждого из вариантов:

u = n
ном
/n
вых
= n
ном
/70.

Производим разбивку общего передаточного числа, принимая для всех вариантов передаточное число редуктора u
чп
= 20:

U
рп
= u/u
зп
= u/20.

Данные расчета сводим в таблицу 1.2

Таблица 1.2

Передаточное число

Варианты

Общее для привода

40
,
7

20
,
5

13,7

10
,2

Плоскоременной передачи

2
,
04

1
,
02

0
,
685

0
,
501

Зубчатого редуктора

Из рассмотренных четырех вариантов выбираем первый (u=2,04; n
ном
= 3000 об/мин).

1.
3 Кинематический расчет редуктора

Согласно заданию общее передаточное число привода равно:

Частота вращения вала электродвигателя и входного вала редуктора.

Частота вращения выходного вала редуктора

Частота вращения вала транспортера

Процент фактического передаточного числа относительно номинального:

Так как при выполняется условие, то делаем вывод, что кинематический расчет выполнен удовлетворительно.

Мощности, передаваемые отдельными частями привода:

Угловые скорости зубчатых колес:

Вращающие моменты:

Результаты расчетов сведем в таблицу 1.3.

Таблица 1.3

Результаты кинематического расчета.

Параметры

Вал
№1

Вал №2

Вал №
3

2850

142,5

4,92

4,091

3,
8

16,5

274,3

519,8

2,04

ω
, рад/с

298,3

14,915

7,31

Определим время работы привода:

Часов.

2
.
Расчет закрытой червячной передачи

2.1
Выбор материалов

Принимаем для червяка сталь 40Х с закалкой до твёрдости Н
RC
45 и последующим шлифованием.

Примем предварительно скорость скольжения в зацеплении

М/с.

Для венца червячного колеса принимаем бронзу Бр010Ф1Н1 (отливка центробежная) .

Таблица 2.1

Материалы зубчатых колес

Твердость и термическая обработка

Предел прочности

Предел текучести

Червяк

Н
RC
45-закалка

900 МПа

750 МПа

Колесо

Бр010Ф1Н1 –отливка центробежная

285МПа

1
65 МПа

2.2
Определение допускаемых напряжений

Для колес, изготовленных из материалов группы I /1,
c
. 31/:

где, 0,9 для червяков с твердостью на поверхности витков >45H
RC

МПа

МПа.

Допускаемое напряжение на изгиб

где
T
и
ВР
– пределы текучести и прочности бронзы при растяжении; N
FE
– эквивалентное число циклов нагружения зубьев по изгибной выносливости.

Эквивалентное число циклов нагружения:

Расчет допускаемого напряжения на изгиб:

2.3 Определение геометрических параметров передачи

Межосевое расстояние

Принимаем а
w
= 160 мм .

Для передаточного числа
U
=20 принимаем
Z
1
=2.

Откуда число зубьев червячного колеса
Z
2
=
U
·
Z
1
=20·2=40.

Определим модуль зацепления
.

Принимаем
m
=6,3 мм.

Коэффициент диаметра червяка
q
=(0,212…0,25) ·
Z
2
=8,48…10 .

Принимаем
q
=10.

Межосевое расстояние при стандартных значениях и:

Основные размеры червяка:

делительный диаметр червяка

диаметр вершин витков червяка

диаметр впадин витков червяка

длина нарезанной части шлифованного червяка

принимаем

делительный угол подъёма витка

Основные размеры венца червячного колеса:

делительный диаметр червячного колеса

диаметр вершин зубьев червячного колеса

диаметр впадин зубьев червячного колеса

наибольший диаметр червячного колеса

ширина венца червячного колеса

2.4 Проверочные расчеты передачи по напряжениям

Окружная скорость червяка

Проверка контактного напряжения.

Уточняем КПД червячной передачи:

Коэффициент трения, угол трения при данной скорости скольжения.

По ГОСТ 3675-81 назначаем 8 степень точности передачи.

Коэффициент динамичности

Коэффициент распределения нагрузки: , где коэффициент деформации червяка, вспомогательный коэффициент.

Отсюда:

Коэффициент нагрузки

Проверяем контактное напряжение

Проверка прочности зубьев червячного колеса на изгиб:

Эквивалентное число зубьев

Коэффициент формы зуба

Напряжение изгиба, что ниже вычисленного ранее.

Результаты расчета заносим в табл. 2.2.

Таблица 2.2

Параметр

Значение

Параметр

Значение

Межосевое

расстояние, мм

КПД

0,845

Модуль, мм

ширина венца червячного колеса, мм

Коэффициент диаметра червяка
q

длина нарезанной части шлифованного червяка, мм

Делительный угол подъема витков червяка

Диаметры червяка, мм:

75,6

47,88

Диаметры червяка, мм:

264,6

236,88

3. Расчет цепной передачи.

Таблица 3.1.

Передача

Передаточное отношение

2,04

Крутящий момент на ведущей звездочке Т
23
, Нм

2743
00

Крутящий момент на ведомой звездочке Т
4
, Нм

5198
00

Угловая скорость ведущей звездочки, рад/с

14,91
5

Частота вращения ведомой звездочки, рад/с

7,31

3.1. Выбор цепи.

Выбираем цепь приводную роликовую (по ГОСТ 13568–75) и определяем ее шаг по формуле:

Предварительно вычисляем величины, входящие в эту формулу:

Вращающий момент на валу ведущей звездочки

Коэффициент
K
э=
k
д
k
а
k
н
k
р
k
см
k
п
;

из источника /2/ принимаем:
k
д
=1,25(передача характеризуется умеренными ударами);

k
а
=1[так как следует принять а=(30-50)
t
];

k
н
=1(при любом наклоне цепи);

k
р
=1(регулирование натяжения цепи автоматическое);

k
см
=1,5(смазывание цепи периодическое);

k
п
=1(работа в одну смену).

Следовательно, Кэ=1,25

1,5=1,875;

Числа зубьев звездочек:

ведущей
z
2
=1-2

u
=31-2

2,04=27

ведомой
z
3
=1

u
=27

2,04=54;

Среднее значение [
p
] принимаем ориентировочно по таблице /2/: [
p
]=36МПа; число рядов цепи
m
=2;

Находим шаг цепи

22,24 мм.

По таблице /2/ принимаем ближайшее большее значение
t
=25,4 мм; проекция опорной поверхности шарнира А
оп
=359 мм
Q
=113,4 кН;
q
=5,0 кг/м.

3.2. Проверка цепи.

Проверяем цепь по двум показателям:

По частоте вращения – допускаемая для цепи с шагом
t
=25,4 мм частота вращения [
n
1
]=800 об/мин, условие
n
1
[
n
1
] выполнено;

По давлению в шарнирах – для данной цепи значение [
p
]=29 МПа, а с учетом примечания уменьшаем на 15% [
p
]=24,7; расчетное давление:

где

Условие
p
[
p
] выполнено.

3.3. Число звеньев цепи.

Определяем число звеньев цепи.

Округляем до четного числа
L
t
=121.

3.4. Уточнение межосевого расстояния

Для свободного провисания цепи предусматриваем возможность уменьшения межосевого расстояния на 0.4%, 1016

0,004=4,064 мм.

3.5. Диаметры делительных окружностей звездочек.

3.6. Диаметры наружных окружностей звездочек.

здесь
d
1
–диаметр ролика цепи: по таблице /2/
d
1
=15,88 мм.

3.7. Определение сил, действующих на цепь.

окружная
F
t
= 2512 Н;

центробежная
F
v
=
qv
2
= 5

1,629
2
=13,27 Н;

от провисания цепи
F
f
=9,81
k
f
qa
=9,81

1,5

5

1,016=74,75
H
;

3.8. Проверка коэффициента запаса прочности

По таблице /2/ [
s
]=7,6

Условие
s
[
s
] выполнено.

Таблица 3.2. Результаты расчета

Рассчитываемый параметр

Обозначение

Размерность

Численное значение

1. Межосевое расстояние

А
23

мм

1
016

2. Число зубьев ведущей звездочки

3. Число зубьев ведомой звездочки

6. Диаметр делительный окружности ведущей звездочки

d
д2

мм

218,
7
9

7. Диаметр делительной окружности ведомой звездочки

d
д3

мм

43
6
,84

9. Диаметр наружной окружности ведущей звездочки

D
e
2

мм

230,17

10. Диаметр наружной окружности ведомой звездочки

D
e
3

мм

448,96

16. Окружная сила

2512

17. Центробежная сила

13,27

18. Сила от провисания цепи

74
,
75

F
п

2661,
5

4. Нагрузки валов редуктора

Определение сил в зацеплении закрытой передачи

а) Окружные силы

б) Радиальные силы

в) Осевые силы

Определение консольных сил

Определим силы, действующие со стороны открытой передачи:

Со стороны муфты

F
м
= 75

=75

= 1242 Н.

Силовая схема нагружения валов редуктора представлена на рисунке 4.1.

Рисунок 4.1. Схема нагружения валов червячного редуктора.

5. Проектный расчет. Эскизная компоновка редуктора

5.1 Выбор материала валов

5.2 Выбор допускаемых напряжений на кручение

Проектный расчет выполняем по напряжениям кручения, при этом принимаем [
к
]= 15…25Н/мм
2
.

5.3 Определение геометрических параметров ступеней валов

Схема к расчету представлена на Рисунке 5.1

Рисунок 5.1 – Червяк.

Диаметр выходного конца ведущего вала находим по формуле

мм,

где [τ
К
] — допускаемое напряжение на кручение; [τ
К
] = 15 МПа.

Согласовав с диаметром выходного участка электродвигателя (d
эд
= 28 мм) подустановку стандартной муфты, принимаем
d
в1
= 30 мм.

где
t
– высота буртика

t
(h
–
t
1
)+0.5,

h
–высота шпонки,
h
=8 мм

t
1
–глубина паза ступицы,
t
1
=5 мм, значит
t
(8–5)+0.5,
t
3,5, принимаем
t
=4.

принимаем

мм, принимаем 45 мм
.

где
r
–радиус скругления внутреннего кольца подшипника,
r
=1.5

принимаем.

Червяк конструируем заодно с валом – вал-червяк.

Вал колеса редуктора рассчитываем аналогично.

Схема к расчету вала колеса представлена на рисунке 5.2

Рисунок 5.2 – Вал колеса

Диаметр выходного конца вала

Принимаем

– ориентировочное значение диаметра буртика вала:

Высота шпонки
h
=10 мм, глубина шпоночного паза
t
1
=6 мм,

значит
t
(10–6)+0.5,
t
4,5, принимаем
t
=5.

принимаем

–диаметр вала под подшипники:

мм, принимаем 70 мм
.

–
ориентировочное значение диаметра буртика для упора подшипников:

где
r
=
2
.5

принимаем

Червячное колесо исполняется сборным – центр из серого чугуна СЧ-21-40, а зубчатый венец – с бронзы Бр010Ф1Н1. Зубчатый венец соединен с центром колеса посадкой с натягом и винтовым креплением.

Определим конструктивные элементы центра колеса.

Толщина обода центра колеса.

мм.

Принимаем
мм.

Толщина
диска центра колеса.

Мм.

Принимаем
мм.

Диаметр
центрального
отверстия
центра колеса

Мм.

Наружный диаметр ступицы колеса

Мм.

Принимаем
мм.

Длина
ступицы

мм.

Принимаем мм.

Рисунок 5.3
Конструкция
червячного
колеса

Определим толщину обода для червячного колеса в самом тонком месте.

Мм.

Принимаем
мм.

Диаметр соединения зубчатого венца с центром колеса

Принимаем
мм.

5.4 Предварительный выбор подшипников качения

Предварительно намечаем радиальные шарикоподшипники средней серии по ГОСТ 4338-75; габариты подшипников выбираем по диаметру вала в месте посадки подшипников
d
п1
= 45 мм и d
п2
= 70 мм.

По каталогу подшипников выбираем подшипники .

Таблица 5.1 – Характеристики выбранных подшипников

Условное обозначение подшипника

Размеры, мм

Грузоподъемность, кН

Со

7309А

7214А

26,25

52,7

5.5 Эскизная компоновка редуктора

Определяем размеры для построения эскизной компоновки.

а) зазор между внутренней стенкой корпуса и вращающимся колесом:

х=8…10 мм, принимаем х=10 мм.

б) расстояние между дном корпуса и червячным колесом:

у=30 мм

6. Проверочный расчет валов

6.1 Расчет червячного вала

6.1.1 Схема нагружения червяка

Рисунок 6.1 – Схема нагружения ведущего вала

в плоскости
xy

в плоскости
yz

Суммарные изгибающие моменты

6.1.2 Уточненный расчет вала

Проверим правильность определения диаметра вала в сечении под червяком

Для вала принимаем сталь 45 ГОСТ 1050-88. Термообработка улучшение – НВ 240…255

Пределы выносливости

d
=45мм

Момент сопротивления сечения

6.1.3 Расчет вала на усталость

Среднее напряжение изгиба

где, — масштабные факторы,

где согласно табл.

При проточке.

Тогда

Окончательно получим

6.1.4 Расчет подшипников

где:
V
V
=1 – при вращении внутреннего кольца.- коэффициент безопасности для редукторов всех конструкций. — температурный коэффициент, при t≤100°С

Для опоры В как наиболее нагруженной

Тогда

так как то X=1, Y=0.

6.2. Расчет тихоходного вала.

6.2.1 Схема нагружения тихоходного вала

Рисунок 6.2 – Схема нагружения тихоходного вала.

в плоскости
x
у.

в плоскости
yz

Суммарные изгибающие моменты

6.2.2 Уточненный расчет вала

Проверим правильность определения диаметра вала в сечении под червячным колесом

Эквивалентный изгибающий момент в сечении

Для вала принимаем сталь 45 ГОСТ 1050-88. Термообработка улучшение – НВ 240…255,

Пределы выносливости

Допускаемое напряжение изгиба

где: — масштабный фактор. При
d
=70мм

Коэффициент запаса прочности. Принимаем

Коэффициент концентрации напряжения, для шпоночного соединения

Момент сопротивления сечения

Напряжение в сечении меньше допускаемого, поэтому окончательно принимаем диаметр вала в месте установки подшипника.

6.2.3 Расчет вала на усталость

Принимаем, что нормальные напряжения от изгиба изменяются по симметричному циклу, а касательные от кручения – по пульсирующему.

Наиболее опасным является сечение в месте расположения червяка.

Моменты сопротивления сечения

Амплитуда и среднее напряжение цикла касательных напряжений

Амплитуда нормальных напряжений изгиба

Среднее напряжение изгиба

Коэффициенты запаса усталостной прочности по нормальным и касательным напряжениям

где, — масштабные факторы,

Коэффициенты концентрации напряжений с учетом влияний шероховатости поверхности.

где согласно табл.

Коэффициенты влияния шероховатости поверхности

При проточке.

Тогда

При отсутствии упрочнения вала.

Коэффициенты чувствительности материала к асимметрии цикла напряжений.

Окончательно получим

Так как, то вал достаточно прочен.

6.2.4 Расчет подшипников

Эквивалентную динамическую нагрузку подшипника определим по формуле:

где:
V
– коэффициент вращения кольца.
V
=1 – при вращении внутреннего кольца.

— коэффициент безопасности. для редукторов всех конструкций.

— температурный коэффициент, при t≤100°С.

Для опоры
D
как наиболее нагруженной

тогда

Так как то X=1, Y=0.

Расчетная долговечность подшипника

Так как срок службы редуктора, то подшипник подобран правильно.


7. Конструктивная компоновка привода

Толщина стенки корпуса и крышки

принимаем

принимаем

Толщина нижнего пояса (фланца)

Толщина верхнего пояса (фланца)

Толщина нижнего пояса корпуса

Толщина рёбер основания корпуса

Толщина рёбер крышки

Диаметр фундаментных болтов

принимаем

Ширина лапы при установке винта с шестигранной головкой

Расстояние от оси винта до края лапы

принимаем

Толщина лапы корпуса

принимаем

Остальные размеры принимаем конструктивно при построении чертежа.


8. Проверка шпоночных соединений

Размеры шпонок выбираем, в зависимости от диаметра вала

Принимаем шпонки призматические по ГОСТ 23360-78. Материал шпонок – сталь 45 нормализованная. Допускаемое напряжение смятия боковой поверхности, длину шпонки принимаем на 5…10мм меньше длины ступицы.

Условие прочности

Соединение вала с зубчатым колесом 2, диаметр соединения 45мм.

Сечение шпонки, длина шпонки 40 мм.

Расчет остальных шпонок в редукторе представим в виде таблицы

Таблица 8.1 – Расчет шпоночных соединений.

№ вала

, Нм

d
в,мм

L, мм

I

16,5

30

10х8

5

40

12,2

II

274,3

50

16х10

6

80

42,6

II

274,3

80

22х14

9

70

28,6

Таким образом, все шпоночные соединения обеспечивают заданную прочность и передают вращающий момент.


9. Смазка редуктора

Смазка зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение колес примерно на 15…20мм.

Объем масляной ванны V, м
3
, определяем из расчета масла на 1 кВт передаваемой мощности.

При внутренних размерах корпуса редуктора: В=415 мм L=145 мм, определим необходимую высоту масла в корпусе редуктора

Принимаем масло индустриальное Н100А ГОСТ 20799-75.

При окружной скорости колес более 1м/с брызгами масла покрываются все детали передач и внутренних поверхностей стенок, стекающие с этих элементов капли масла попадают в подшипники.


10. Выбор и расчет муфты

Исходя из условий работы данного привода выбираем муфту упругую втулочно — пальцевую, со следующими параметрами Т = 125Нм,
d
= 30мм,
D
= 120мм,
L
= 165 мм,
l
= 82 мм.

Рис 10.1.Эскиз муфты

Предельные смещения валов:

-радиальные;

-угловые;

-осевые.

10.1. Проверяем на смятие упругие элементы, в предположении равномерного распределения нагрузки между пальцами:

,

где — вращающий момент, Нм,

— диаметр пальца,

— длина упругого элемента,

— число пальцев, = 6, потому что < 125 Нм

10.2 Рассчитываем на изгиб пальцы (Сталь 45).

с – зазор между полумуфтами, с = 3…5 мм.

Выбранная муфта пригодна для использования в данном приводе.


Заключение

Электродвигатель превращает электрическую энергию в механическую, вал двигателя совершает вращательное движение, но число оборотов вала двигателя очень велико для скорости движения рабочего органа. Для снижения числа оборотов и увеличения момента вращения и служит данный редуктор.

В данном курсовом проекте разработан одноступенчатый червячный редуктор. Цель работы выучить основы конструирования и получить навыки инженера-конструктора.

К важным требованиям проектирования относится экономичность в изготовлении и эксплуатации, удобство в обслуживании и ремонте, надежность и долговечность редуктора.

В пояснительной записке выполнен расчет необходимый для конструирования привода механизма.


Список использованных источников

1. Дунаев П.Ф. Конструирование узлов и деталей машин- М.: Высшая школа, 2008, — 447 с.

2. Киркач Н.Ф., Баласанян Р.А. Расчет и проектирование деталей м
а
шин.- Х.: Основа, 2010, — 276 с.

3. Чернавский С.А. Курсовое проектирование деталей машин.- М.: Машиностроение, 2008, — 416 с.

4. Шейнблит А.Е. Курсовое проектирование деталей машин: Учеб пособие для техникумов. – М.: Высш. шк., 2010. – 432с.

Курсовая работа

Дисциплина Детали машин

Тема «Расчёт редуктора»

Введение

1. Кинематическая схема и исходные данные

2. Кинематический расчет и выбор электродвигателя

3. Расчет зубчатых колес редуктора

4. Предварительный расчет валов редуктора и выбор подшипников

5. нструктивные размеры шестерни и колеса

6. Конструктивные размеры корпуса редуктора

7. Первый этап компоновки редуктора

8. Проверка долговечности подшипника

9. Второй этап компоновки. Проверка прочности шпоночных соединений

10. Уточненный расчет валов

11. Вычерчивание редуктора

12. Посадки шестерни, зубчатого колеса, подшипника

13. Выбор сорта масла

14. Сборка редуктора

Введение

Редуктором называют механизм, состоящий из зубчатых или червячных передач, выполненный в виде отдельного агрегата и служащий для передачи вращения от вала двигателя к валу рабочей машины. Кинематическая схема привода может включать, помимо редуктора, открытые зубчатые передачи, цепные или ременные передачи. Указанные механизмы являются наиболее распространенной тематикой курсового проектирования.

Назначение редуктора – понижение угловой скорости и соответственно повышение вращающего момента ведомого вала по сравнению с ведущим. Механизмы для повышения угловой скорости, выполненные в виде отдельных агрегатов, называют ускорителями или мультипликаторами.

Редуктор состоит из корпуса (литого чугунного или сварного стального), в котором помещают элементы передачи – зубчатые колеса, валы, подшипники и т. д. В отдельных случаях в корпусе редуктора размещают также устройства для смазывания зацеплений и подшипников (например, внутри корпуса редуктора может быть помещен шестеренный масляный насос) или устройства для охлаждения (например, змеевик с охлаждающей водой в корпусе червячного редуктора).

Редуктор проектируют либо для привода определенной машины, либо по заданной нагрузке (моменту на выходном валу) и передаточному числу без указания конкретного назначения. Второй случай характерен для специализированных заводов, на которых организовано серийное производство редукторов.

Кинематические схемы и общие виды наиболее распространенных типов редукторов представлены на рис. 2.1-2.20 [Л.1]. На кинематических схемах буквой Б обозначен входной (быстроходный) вал редуктора, буквой Т – выходной (тихоходный).

Редукторы классифицируют по следующим основным признакам: типу передачи (зубчатые, червячные или зубчато-червячные); числу ступеней (одноступенчатые, двухступенчатые и т. д.); типу – зубчатых колес (цилиндрические, конические, коническо-цилиндрические и т. д.); относительному расположению валов редуктора в пространстве (горизонтальные, вертикальные); особенностям кинематической схемы (развернутая, соосная, с раздвоенной ступенью и т. д.).

Возможности получения больших передаточных чисел при малых габаритах обеспечивают планетарные и волновые редукторы.

1. Кинематическая схема редуктора

Исходные данные:

Мощность на ведущем валу транспортера

;

Угловая скорость вала редуктора

;

Передаточное число редуктора

;

Отклонение от передаточного числа

;

Время работы редуктора

.

1 – электромотор;

2 – ременная передача;

3 – муфта упругая втулочно-пальцевая;

4 – редуктор;

5 – ленточный транспортёр;

I – вал электромотора;

II – ведущий вал редуктора;

III – ведомый вал редуктора.

2. Кинематический расчет и выбор электродвигателя

2.1 По табл. 1.1 коэффициент полезного действия пары цилиндрических зубчатых колес η 1 = 0,98; коэффициент, учитывающий потери пары подшипников качения, η 2 = 0,99; КПД клиноременной передачи η 3 = 0,95; КПД плоскоременной передачи в опорах приводного барабана, η 4 = 0,99

2.2 ОбщийКПДпривода

η = η 1 η2 η 3 η 4 = 0,98∙0,99 2 ∙0,95∙0,99= 0,90

2.3 Требуемая мощность электродвигателя

= =1,88 кВт.

где P III -мощность выходного вала привода,

h-общий КПД привода.

2.4 По ГОСТ 19523-81 (см. табл. П1 приложениях [Л.1]) по требуемой мощности Р дв = 1,88кВт выбираем электродвигатель трехфазный асинхронный короткозамкнутый серии 4А закрытый, обдуваемый, с синхронной частотой вращения 750 об/мин 4А112МА8с параметрами Р дв = 2,2кВт и скольжением 6,0%.

Номинальная частота вращения

n дв.= n c (1-s)

где n c -синхронная частота вращения,

s- скольжение

2.5 Угловая скорость

= = 73,79рад/с.

2.6 Частота вращения

= = 114,64об/мин

2.7Передаточное отношение

= = 6,1

где w I -угловая скорость двигателя,

w III -угловая скорость выходного привода

2.8 Намечаем для редуктора u =1,6; тогда для клиноременной передачи

= =3,81– что находиться в пределах рекомендуемого

2.9 Крутящий момент, создаваемый на каждом валу.

кН×м.

Крутящий момент на 1-м валу М I =0,025кН×м.

P II =P I ×h p =1,88×0,95=1,786 Н×м.

рад/с кН×м.

Крутящий момент на 2-м валу М II =0,092 кН×м.

кН×м.

Крутящий момент на 3-м валу М III =0,14 кН×м.

2.10 Выполним проверку:

Определим частоту вращения на 2-м валу:

Частоты вращения и угловые скорости валов

3. Расчет зубчатых колес редуктора

Выбираем материалы для зубчатых колес такие же, как в § 12.1 [Л.1].

Для шестерни сталь 45, термообработка – улучшение, твердость НВ 260; для колеса сталь 45, термообработка – улучшение, твердость НВ 230.

Допускаемое контактное напряжение для прямозубых колес из указанных материалов определим с помощью формулы 3.9, , стр.33:

где s H limb – предел контактной выносливости;Для колеса

= МПа.

Допускаемое контактное напряжение принимаю

= 442 МПа.

Принимаю коэффициент ширины венца ψ bRe = 0,285 (по ГОСТ 12289-76).

Коэффициент К нβ , учитывающий неравномерность распределения нагрузки по ширине венца, примем по табл. 3.1 [Л.1]. Несмотря на симметричное расположение колес относительно опор, примем значение этого коэффициента, как в случае несимметричного расположения колес, так как со стороны клиноременной передачи действует сила давления на ведущий вал, вызывающая его деформацию и ухудшающая контакт зубьев: К нβ = 1,25.

В этой формуле для прямозубых передач К d = 99;

Передаточное число U=1,16;

М III -крутящий момент на 3-м валу.

Редуктор червячный — один из классов механических редукторов. Редукторы классифицируются по типу механической передачи . Винт, который лежит в основе червячной передачи, внешне похож на червяка, отсюда и название.

Мотор-редуктор
— это агрегат, состоящий из редуктора и электродвигателя, которые состоят в одном блоке. Мотор-редуктор червячный
создан
для того, чтобы работать в качестве электромеханического двигателя в различных машинах общего назначения. Примечательно то, что данный вид оборудования отлично работает как при постоянных, так и при переменных нагрузках.

В червячном редукторе увеличение крутящего момента и уменьшение угловой скорости выходного вала происходит за счет преобразования энергии, заключенной в высокой угловой скорости и низком крутящем моменте на входном валу.

Ошибки при расчете и выборе редуктора могут привести к преждевременному выходу его из строя и, как следствие, в лучшем случае к финансовым потерям.

Поэтому работу по расчету и выбору редуктора необходимо доверять опытным специалистам-конструкторам, которые учтут все факторы от расположения редуктора в пространстве и условий работы до температуры нагрева его в процессе эксплуатации. Подтвердив это соответствующими расчетами, специалист обеспечит подбор оптимального редуктора под Ваш конкретный привод.

Практика показывает, что правильно подобранный редуктор обеспечивает срок службы не менее 7 лет — для червячных и 10-15 лет для цилиндрических редукторов.

Выбор любого редуктора осуществляется в три этапа:

1. Выбор типа редуктора

2. Выбор габарита (типоразмера) редуктора и его характеристик.

3. Проверочные расчеты

1. Выбор типа редуктора

1.1 Исходные данные:

Кинематическая схема привода с указанием всех механизмов подсоединяемых к редуктору, их пространственного расположения относительно друг друга с указанием мест крепления и способов монтажа редуктора.

1.2 Определение расположения осей валов редуктора в пространстве.

Цилиндрические редукторы:

Ось входного и выходного вала редуктора параллельны друг другу и лежат только в одной горизонтальной плоскости — горизонтальный цилиндрический редуктор.

Ось входного и выходного вала редуктора параллельны друг другу и лежат только в одной вертикальной плоскости — вертикальный цилиндрический редуктор.

Ось входного и выходного вала редуктора может находиться в любом пространственном положении при этом эти оси лежат на одной прямой (совпадают) — соосный цилиндрический или планетарный редуктор.

Коническо-цилиндрические редукторы:

Ось входного и выходного вала редуктора перпендикулярны друг другу и лежат только в одной горизонтальной плоскости.

Червячные редукторы:

Ось входного и выходного вала редуктора может находиться в любом пространственном положении, при этом они скрещиваются под углом 90 градусов друг другу и не лежат в одной плоскости — одноступенчатый червячный редуктор.

Ось входного и выходного вала редуктора может находиться в любом пространственном положении, при этом они параллельны друг другу и не лежат в одной плоскости, либо они скрещиваются под углом 90 градусов друг другу и не лежат в одной плоскости — двухступенчатый редуктор.

1.3 Определение способа крепления, монтажного положения и варианта сборки редуктора.

Способ крепления редуктора и монтажное положение (крепление на фундамент или на ведомый вал приводного механизма) определяют по приведенным в каталоге техническим характеристикам для каждого редуктора индивидуально.

Вариант сборки определяют по приведенным в каталоге схемам. Схемы «Вариантов сборки» приведены в разделе «Обозначение редукторов».

1.4 Дополнительно при выборе типа редуктора могут учитываться следующие факторы

1) Уровень шума

  • наиболее низкий — у червячных редукторов
  • наиболее высокий — у цилиндрических и конических редукторов

2) Коэффициент полезного действия

  • наиболее высокий — у планетарных и одноступенчатых цилиндрических редукторах
  • наиболее низкий — у червячных, особенно двухступенчатых

Червячные редукторы предпочтительно использовать в повторно-кратковременных режимах эксплуатации

3) Материалоемкость для одних и тех же значений крутящего момента на тихоходном валу

  • наиболее низкая — у планетарных одноступенчатых

4) Габариты при одинаковых передаточных числах и крутящих моментах:

  • наибольшие осевые — у соосных и планетарных
  • наибольшие в направлении перпендикулярном осям — у цилиндрических
  • наименьшие радиальные — к планетарных.

5) Относительная стоимость руб/(Нм) для одинаковых межосевых расстояний:

  • наиболее высокая — у конических
  • наиболее низкая — у планетарных

2. Выбор габарита (типоразмера) редуктора и его характеристик

2.1. Исходные данные

Кинематическая схема привода, содержащая следующие данные:

  • вид приводной машины (двигателя);
  • требуемый крутящий момент на выходном валу Т треб, Нхм, либо мощность двигательной установки Р треб, кВт;
  • частота вращения входного вала редуктора n вх, об/мин;
  • частота вращения выходного вала редуктора n вых, об/мин;
  • характер нагрузки (равномерная или неравномерная, реверсивная или нереверсивная, наличие и величина перегрузок, наличие толчков, ударов, вибраций);
  • требуемая длительность эксплуатации редуктора в часах;
  • средняя ежесуточная работа в часах;
  • количество включений в час;
  • продолжительность включений с нагрузкой, ПВ %;
  • условия окружающей среды (температура, условия отвода тепла);
  • продолжительность включений под нагрузкой;
  • радиальная консольная нагрузка, приложенная в середине посадочной части концов выходного вала F вых и входного вала F вх;

2.2. При выборе габарита редуктора производиться расчет следующих параметров:

1) Передаточное число

U= n вх /n вых (1)

Наиболее экономичной является эксплуатация редуктора при частоте вращения на входе менее 1500 об/мин, а с целью более длительной безотказной работы редуктора рекомендуется применять частоту вращения входного вала менее 900 об/мин.

Передаточное число округляют в нужную сторону до ближайшего числа согласно таблицы 1.

По таблице отбираются типы редукторов удовлетворяющих заданному передаточному числу.

2) Расчетный крутящий момент на выходном валу редуктора

Т расч =Т треб х К реж, (2)

Т треб — требуемый крутящий момент на выходном валу, Нхм (исходные данные, либо формула 3)

К реж — коэффициент режима работы

При известной мощности двигательной установки:

Т треб = (Р треб х U х 9550 х КПД)/ n вх, (3)

Р треб — мощность двигательной установки, кВт

n вх — частота вращения входного вала редуктора (при условии что вал двигательной установки напрямую без дополнительной передачи передает вращение на входной вал редуктора), об/мин

U — передаточное число редуктора, формула 1

КПД — коэффициент полезного действия редуктора

Коэффициент режима работы определяется как произведение коэффициентов:

Для зубчатых редукторов:

К реж =К 1 х К 2 х К 3 х К ПВ х К рев (4)

Для червячных редукторов:

К реж =К 1 х К 2 х К 3 х К ПВ х К рев х К ч (5)

К 1 — коэффициент типа и характеристик двигательной установки, таблица 2

К 2 — коэффициент продолжительности работы таблица 3

К 3 — коэффициент количества пусков таблица 4

К ПВ — коэффициент продолжительности включений таблица 5

К рев — коэффициент реверсивности, при нереверсивной работе К рев =1,0 при реверсивной работе К рев =0,75

К ч — коэффициент, учитывающий расположение червячной пары в пространстве. При расположении червяка под колесом К ч = 1,0, при расположении над колесом К ч = 1,2. При расположении червяка сбоку колеса К ч = 1,1.

3) Расчетная радиальная консольная нагрузка на выходном валу редуктора

F вых.расч = F вых х К реж, (6)

F вых — радиальная консольная нагрузка, приложенная в середине посадочной части концов выходного вала (исходные данные), Н

К реж — коэффициент режима работы (формула 4,5)

3. Параметры выбираемого редуктора должны удовлетворять следующим условиям:

1) Т ном > Т расч, (7)

Т ном — номинальный крутящий момент на выходном валу редуктора, приводимый в данном каталоге в технических характеристиках для каждого редуктора, Нхм

Т расч — расчетный крутящий момент на выходном валу редуктора (формула 2), Нхм

2) F ном > F вых.расч (8)

F ном — номинальная консольная нагрузка в середине посадочной части концов выходного вала редуктора, приводимая в технических характеристиках для каждого редуктора, Н.

F вых.расч — расчетная радиальная консольная нагрузка на выходном валу редуктора (формула 6), Н.

3) Р вх.расч < Р терм х К т, (9)

Р вх.расч — расчетная мощность электродвигателя (формула 10), кВт

Р терм — термическая мощность, значение которой приводится в технических характеристиках редуктора, кВт

К т — температурный коэффициент, значения которого приведены в таблице 6

Расчетная мощность электродвигателя определяется:

Р вх.расч =(Т вых х n вых)/(9550 х КПД), (10)

Т вых — расчетный крутящий момент на выходном валу редуктора (формула 2), Нхм

n вых — частота вращения выходного вала редуктора, об/мин

КПД — коэффициент полезного действия редуктора,

А) Для цилиндрических редукторов:

  • одноступенчатых — 0,99
  • двухступенчатых — 0,98
  • трехступенчатых — 0,97
  • четырехступенчатых — 0,95

Б) Для конических редукторов:

  • одноступенчатых — 0,98
  • двухступенчатых — 0,97

В) Для коническо-цилиндрических редукторов — как произведение значений конической и цилиндрической частей редуктора.

Г) Для червячных редукторов КПД приводиться в технических характеристиках для каждого редуктора для каждого передаточного числа.

Купить редуктор червячный, узнать стоимость редуктора, правильно подобрать необходимые компоненты и помочь с вопросами, возникающими во время эксплуатации, Вам помогут менеджеры нашей компании.

Таблица 1

Таблица 2

Ведущая машина

Генераторы, элеваторы, центробежные компрессоры, равномерно загружаемые конвейеры, смесители жидких веществ, насосы центробежные, шестеренные, винтовые, стреловые механизмы, воздуходувки, вентиляторы, фильтрующие устройства.

Водоочистные сооружения, неравномерно загружаемые конвейеры, лебедки, тросовые барабаны, ходовые, поворотные, подъемные механизмы подъемных кранов, бетономешалки, печи, трансмиссионные валы, резаки, дробилки, мельницы, оборудование для нефтяной промышленности.

Пробойные прессы, вибрационные устройства, лесопильные машины, грохот, одноцилиндровые компрессоры.

Оборудование для производства резинотехнических изделий и пластмасс, смесительные машины и оборудование для фасонного проката.

Электродвигатель,

паровая турбина

4-х, 6-ти цилиндровые двигатели внутреннего сгорания, гидравлические и пневматические двигатели

1-х, 2-х, 3-х цилиндровые двигатели внутреннего сгорания

Таблица 3

Таблица 4

Таблица 5

Таблица 6

охлаждения

Температура окружающей среды, С о

Продолжительность включения, ПВ %.

Редуктор без

постороннего

охлаждения.

Редуктор со спиралью водяного охлаждения.

Понравилась статья? Поделить с друзьями:
  • Как найти все корни многочлена если
  • Ошибка а02 на котле беретта как исправить
  • Как найти одинаковые рисунки в интернете
  • Как найти скрипт в роблокс студио
  • Как найти имя пользователя стим