Как найти образ точки при параллельном переносе

Содержание:

Геометрические преобразования:

В этой лекции вы узнаете, что такое преобразование фигуры. Ознакомитесь с такими видами преобразований, как параллельный перенос, центральная симметрия, осевая симметрия, поворот, гомотетия, подобие.

Вы научитесь применять свойства преобразований при решении задач и доказательстве теорем.

Движение (перемещение) фигуры. Параллельный перенос

Пример:

На рисунке 17.1 изображены отрезок Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Мы указали правило, с помощью которого каждой точке Геометрические преобразования в геометрии с примерами решения отрезка Геометрические преобразования в геометрии с примерами решения поставлена в соответствие единственная точка Геометрические преобразования в геометрии с примерами решения отрезка Геометрические преобразования в геометрии с примерами решения В этом случае говорят, что отрезок Геометрические преобразования в геометрии с примерами решенияполучен в результате преобразования отрезка Геометрические преобразования в геометрии с примерами решения

Пример:

На рисунке 17.2 изображены полуокружность Геометрические преобразования в геометрии с примерами решения и прямая Геометрические преобразования в геометрии с примерами решения параллельная диаметру Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения полуокружности поставим в соответствие точку Геометрические преобразования в геометрии с примерами решения прямой а так, чтобы прямая Геометрические преобразования в геометрии с примерами решения была перпендикулярна прямой Геометрические преобразования в геометрии с примерами решения Понятно, что все такие точки Геометрические преобразования в геометрии с примерами решения образуют отрезок Геометрические преобразования в геометрии с примерами решения В этом случае говорят, что отрезок Геометрические преобразования в геометрии с примерами решения получен в результате преобразования полуокружности Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример:

Пусть даны некоторая фигура Геометрические преобразования в геометрии с примерами решения и вектор Геометрические преобразования в геометрии с примерами решения (рис. 17.3). Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие точку Геометрические преобразования в геометрии с примерами решения такую, что Геометрические преобразования в геометрии с примерами решения В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 17.3). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют параллельным переносом на вектор Геометрические преобразования в геометрии с примерами решения

Обобщим приведенные примеры.

Пусть задана некоторая фигура Геометрические преобразования в геометрии с примерами решения Каждой точке фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие (сопоставим) по определенному правилу некоторую точку. Все полученные сопоставленные точки образуют фигуру Геометрические преобразования в геометрии с примерами решения Говорят, что фигура Геометрические преобразования в геометрии с примерами решенияполучена в результате преобразования фигуры Геометрические преобразования в геометрии с примерами решения При этом фигуру Геометрические преобразования в геометрии с примерами решения называют образом фигуры Геометрические преобразования в геометрии с примерами решения а фигуру Геометрические преобразования в геометрии с примерами решенияпрообразом фигуры Геометрические преобразования в геометрии с примерами решения

Так, в примере 1 отрезок Геометрические преобразования в геометрии с примерами решения является образом отрезка Геометрические преобразования в геометрии с примерами решения Точка Геометрические преобразования в геометрии с примерами решения является образом точки Геометрические преобразования в геометрии с примерами решения Отрезок Геометрические преобразования в геометрии с примерами решения — это прообраз отрезка Геометрические преобразования в геометрии с примерами решения

Обратим внимание на то, что в примере 3 фигура Геометрические преобразования в геометрии с примерами решения равна своему образу Геометрические преобразования в геометрии с примерами решения Преобразования, описанные в примерах 1 и 2, таким свойством не обладают.

Какими же свойствами должно обладать преобразование, чтобы образ и прообраз были равными фигурами? Оказывается, что достаточно лишь одного свойства: преобразование должно сохранять расстояние между точками, то есть если Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения а точки Геометрические преобразования в геометрии с примерами решения — их образы, то должно выполняться равенство Геометрические преобразования в геометрии с примерами решения

Что такое преобразование фигур

Определение. Преобразование фигуры Геометрические преобразования в геометрии с примерами решения сохраняющее расстояние между точками, называют движением (перемещением) фигуры Геометрические преобразования в геометрии с примерами решения

Если каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставлена в соответствие эта же точка Геометрические преобразования в геометрии с примерами решения то такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют тождественным. При тождественном преобразовании образом фигуры Геометрические преобразования в геометрии с примерами решения является сама фигура Геометрические преобразования в геометрии с примерами решения. Очевидно, что тождественное преобразование является движением.

Мы давно используем понятие «равенство фигур», хотя не давали ему строгого определения.

На то, что движение связано с равенством фигур, указывают следующие свойства движения.

Если преобразование является движением, то:

  • образом прямой является прямая,
  • образом отрезка является отрезок, равный данному;
  • образом угла является угол, равный данному,
  • образом треугольника является треугольник, равный данному.

Доказательство этих свойств выходит за рамки рассматриваемого курса геометрии.

Свойства движения подсказывают следующее определение.

Определение. Две фигуры называют равными, если существует движение, при котором одна из данных фигур является образом другой.

Запись Геометрические преобразования в геометрии с примерами решения означает, что фигуры Геометрические преобразования в геометрии с примерами решения равны.

Если существует движение, при котором фигура Геометрические преобразования в геометрии с примерами решения является образом фигуры Геометрические преобразования в геометрии с примерами решения то обязательно существует движение, при котором фигура Геометрические преобразования в геометрии с примерами решения является образом фигуры Геометрические преобразования в геометрии с примерами решения Такие движения называют взаимно обратными.

Замечание. Ранее равными фигурами мы называли такие фигуры, которые совпадали при наложении. Термин «наложение» интуитивно понятен, и в нашем представлении он связывается с наложением реальных тел. Но геометрические фигуры нельзя наложить в буквальном смысле этого слова. Теперь наложение фигуры Геометрические преобразования в геометрии с примерами решения на фигуру Геометрические преобразования в геометрии с примерами решения можно рассматривать как движение фигуры Геометрические преобразования в геометрии с примерами решения при котором ее образом будет фигура Геометрические преобразования в геометрии с примерами решения

Термин «движение» также ассоциируется с определенным физическим действием: изменением положения тела без деформации.

Именно с этим связано появление этого термина в математике. Однако в геометрии предметом исследования является не процесс, происходящий во времени, а лишь свойства фигуры и ее образа.

То, что изображенные на рисунке 17.3 фигуры Геометрические преобразования в геометрии с примерами решения равны, понятно из наглядных соображений. Строгое обоснование этого факта дает следующая теорема.

Теорема 17.1 (свойство параллельного переноса). Параллельный перенос является движением.

Геометрические преобразования в геометрии с примерами решения

Доказательство: Пусть Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения (рис. 17.4), точки Геометрические преобразования в геометрии с примерами решения — их соответствующие образы при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения Докажем, что Геометрические преобразования в геометрии с примерами решения

Имеем: Геометрические преобразования в геометрии с примерами решения Векторы Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения имеют координаты Геометрические преобразования в геометрии с примерами решенияСледовательно, координатами точек Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения являются соответственно пары чисел Геометрические преобразования в геометрии с примерами решения

Найдем расстояние между точками Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Найдем расстояние между точками Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Следовательно, мы показали, что Геометрические преобразования в геометрии с примерами решения то есть параллельный перенос сохраняет расстояние между точками. Геометрические преобразования в геометрии с примерами решения

Следствие. Если фигура Геометрические преобразования в геометрии с примерами решения — образ фигуры Геометрические преобразования в геометрии с примерами решения при параллельном переносе, то Геометрические преобразования в геометрии с примерами решения

Это свойство используется при создании рисунков на тканях, обоях, покрытиях для пола и т. п. (рис. 17.5). Геометрические преобразования в геометрии с примерами решения

Если фигура Геометрические преобразования в геометрии с примерами решения является образом фигуры Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения то фигура Геометрические преобразования в геометрии с примерами решения является образом фигуры Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения (рис. 17.6).

Геометрические преобразования в геометрии с примерами решения

Параллельные переносы на векторы Геометрические преобразования в геометрии с примерами решенияявляются взаимно обратными движениями.

Пример №1

Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения ставится в соответствие точка Геометрические преобразования в геометрии с примерами решения — заданные числа. Докажите, что такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения является параллельным переносом на вектор Геометрические преобразования в геометрии с примерами решения

Решение:

Рассмотрим вектор Геометрические преобразования в геометрии с примерами решения Заметим, что координаты вектора Геометрические преобразования в геометрии с примерами решенияравны Геометрические преобразования в геометрии с примерами решения то есть Геометрические преобразования в геометрии с примерами решения Следовательно, описанное преобразование фигуры Геометрические преобразования в геометрии с примерами решения — параллельный перенос на вектор Геометрические преобразования в геометрии с примерами решения

Пример №2

Точка Геометрические преобразования в геометрии с примерами решения является образом точки Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения Найдите координаты вектора Геометрические преобразования в геометрии с примерами решения и координаты образа точки Геометрические преобразования в геометрии с примерами решения

Решение:

Из условия следует, что Геометрические преобразования в геометрии с примерами решения Отсюда Геометрические преобразования в геометрии с примерами решения

Пусть Геометрические преобразования в геометрии с примерами решения — образ точки Геометрические преобразования в геометрии с примерами решения Тогда Геометрические преобразования в геометрии с примерами решения то есть Геометрические преобразования в геометрии с примерами решения Отсюда Геометрические преобразования в геометрии с примерами решения

Ответ: Геометрические преобразования в геометрии с примерами решения

Пример №3

Даны угол Геометрические преобразования в геометрии с примерами решения и прямая Геометрические преобразования в геометрии с примерами решения не параллельная ни одной из сторон этого угла (рис. 17.7). Постройте прямую Геометрические преобразования в геометрии с примерами решения параллельную прямой Геометрические преобразования в геометрии с примерами решения так, чтобы стороны угла отсекали на ней отрезок заданной длины Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Решение:

Рассмотрим вектор Геометрические преобразования в геометрии с примерами решениятакой, что Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения (рис. 17.8). Построим луч Геометрические преобразования в геометрии с примерами решения являющийся образом луча Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения Обозначим точку пересечения лучей Геометрические преобразования в геометрии с примерами решения буквой Геометрические преобразования в геометрии с примерами решения Пусть Геометрические преобразования в геометрии с примерами решения — прообраз точки Геометрические преобразования в геометрии с примерами решения при рассматриваемом параллельном переносе. Тогда Геометрические преобразования в геометрии с примерами решения

Приведенные рассуждения подсказывают следующий алгоритм построения:

  1. найти образ луча Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения
  2. отметить точку пересечения луча Геометрические преобразования в геометрии с примерами решения с построенным образом;
  3. через найденную точку провести прямую Геометрические преобразования в геометрии с примерами решения параллельную прямой Геометрические преобразования в геометрии с примерами решения Прямая Геометрические преобразования в геометрии с примерами решения будет искомой.

Осевая симметрия

Определение. Точки Геометрические преобразования в геометрии с примерами решения называют симметричными относительно прямой Геометрические преобразования в геометрии с примерами решения если прямая Геометрические преобразования в геометрии с примерами решения является серединным перпендикуляром отрезка Геометрические преобразования в геометрии с примерами решения (рис. 18.1). Если точка Геометрические преобразования в геометрии с примерами решения принадлежит прямой Геометрические преобразования в геометрии с примерами решения то ее считают симметричной самой себе относительно прямой Геометрические преобразования в геометрии с примерами решения

Например, точки Геометрические преобразования в геометрии с примерами решения у которых ординаты равны, а абсциссы — противоположные числа, симметричны относительно оси ординат (рис. 18.2).

Рассмотрим фигуру Геометрические преобразования в геометрии с примерами решения и прямую Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие симметричную ей относительно прямой Геометрические преобразования в геометрии с примерами решения точку Геометрические преобразования в геометрии с примерами решения

В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 18.3). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют осевой симметрией относительно прямой Геометрические преобразования в геометрии с примерами решения Прямую Геометрические преобразования в геометрии с примерами решения называют осью симметрии. Говорят, что фигуры Геометрические преобразования в геометрии с примерами решения симметричны относительно прямой Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Теорема 18.1 (свойство осевой симметрии). Осевая симметрия является движением.

Доказательство: Выберем систему координат так, чтобы ось симметрии совпала с осью ординат. Пусть Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения Тогда точки Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — их соответствующие образы при осевой симметрии относительно оси ординат. Имеем:

Геометрические преобразования в геометрии с примерами решения

Мы получили, что Геометрические преобразования в геометрии с примерами решения то есть осевая симметрия сохраняет расстояние между точками. Следовательно, осевая симметрия является движением. Геометрические преобразования в геометрии с примерами решения

Следствие. Если фигуры Геометрические преобразования в геометрии с примерами решения симметричны относительно прямой, то Геометрические преобразования в геометрии с примерами решения

Определение. Фигуру называют симметричной относительно прямой Геометрические преобразования в геометрии с примерами решения если для каждой точки данной фигуры точка, симметричная ей относительно прямой Геометрические преобразования в геометрии с примерами решения также принадлежит этой фигуре.

Прямую Геометрические преобразования в геометрии с примерами решения называют осью симметрии фигуры. Также говорят, что фигура имеет ось симметрии.

Геометрические преобразования в геометрии с примерами решения

Приведем примеры фигур, имеющих ось симметрии. На рисунке 18.4 изображен равнобедренный треугольник. Прямая, содержащая его высоту, проведенную к основанию, является осью симметрии треугольника.

Любой угол имеет ось симметрии — это пря-Рис. 18.5 мая, содержащая его биссектрису (рис. 18.5). Геометрические преобразования в геометрии с примерами решения

Равносторонний треугольник имеет три оси симметрии (рис. 18.6). Две оси симметрии имеет отрезок: это его серединный перпендикуляр и прямая, содержащая этот отрезок (рис. 18.7).

Геометрические преобразования в геометрии с примерами решения

Квадрат имеет четыре оси симметрии (рис. 18.8).

Существуют фигуры, имеющие бесконечно много осей симметрии, например окружность. Любая прямая, проходящая через центр окружности, является ее осью симметрии (рис. 18.9).

Бесконечно много осей симметрии имеет и прямая: сама прямая и любая прямая, ей перпендикулярная, являются ее осями симметрии.

Пример №4

Начертили неравнобедренный треугольник Геометрические преобразования в геометрии с примерами решения Провели прямую Геометрические преобразования в геометрии с примерами решениясодержащую биссектрису угла Геометрические преобразования в геометрии с примерами решения Потом рисунок стерли, оставив только точки Геометрические преобразования в геометрии с примерами решения и прямую Геометрические преобразования в геометрии с примерами решения Восстановите треугольник Геометрические преобразования в геометрии с примерами решения

Решение:

Поскольку прямая Геометрические преобразования в геометрии с примерами решения является осью симметрии угла Геометрические преобразования в геометрии с примерами решения то точка Геометрические преобразования в геометрии с примерами решения— образ точки Геометрические преобразования в геометрии с примерами решения при симметрии относительно прямой Геометрические преобразования в геометрии с примерами решения — принадлежит лучу Геометрические преобразования в геометрии с примерами решения Тогда пересечением прямых Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения является вершина Геометрические преобразования в геометрии с примерами решения искомого треугольника Геометрические преобразования в геометрии с примерами решения (рис. 18.10).

Эти соображения подсказывают, как построить искомый треугольник: строим точку Геометрические преобразования в геометрии с примерами решения симметричную точке Геометрические преобразования в геометрии с примерами решения относительно прямой Геометрические преобразования в геометрии с примерами решения Находим вершину Геометрические преобразования в геометрии с примерами решения как точку пересечения прямых Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример №5

Точка Геометрические преобразования в геометрии с примерами решения принадлежит острому углу Геометрические преобразования в геометрии с примерами решения (рис. 18.11). На сторонах Геометрические преобразования в геометрии с примерами решения угла найдите такие точки Геометрические преобразования в геометрии с примерами решения чтобы периметр треугольника Геометрические преобразования в геометрии с примерами решения был наименьшим.

Решение:

Пусть точки Геометрические преобразования в геометрии с примерами решения — образы точки Геометрические преобразования в геометрии с примерами решения при симметриях относительно прямых Геометрические преобразования в геометрии с примерами решения соответственно (рис. 18.12), а прямая Геометрические преобразования в геометрии с примерами решения пересекает стороны Геометрические преобразования в геометрии с примерами решения в точках Геометрические преобразования в геометрии с примерами решения соответственно. Докажем, что точки Геометрические преобразования в геометрии с примерами решения — искомые.

Геометрические преобразования в геометрии с примерами решения

Заметим, что отрезки Геометрические преобразования в геометрии с примерами решения симметричны относительно прямой Геометрические преобразования в геометрии с примерами решенияСледовательно, Геометрические преобразования в геометрии с примерами решения Аналогично Геометрические преобразования в геометрии с примерами решения Тогда периметр треугольника Геометрические преобразования в геометрии с примерами решения равен длине отрезка Геометрические преобразования в геометрии с примерами решения

Покажем, что построенный треугольник имеет наименьший периметр из возможных.

Рассмотрим треугольник Геометрические преобразования в геометрии с примерами решения где Геометрические преобразования в геометрии с примерами решения — произвольные точки соответственно лучей Геометрические преобразования в геометрии с примерами решения причем точка Геометрические преобразования в геометрии с примерами решения не совпадает с точкой Геометрические преобразования в геометрии с примерами решения или точка Геометрические преобразования в геометрии с примерами решения не совпадает с точкой Геометрические преобразования в геометрии с примерами решения

Понятно, что Геометрические преобразования в геометрии с примерами решения

Тогда периметр треугольника Геометрические преобразования в геометрии с примерами решения равен сумме Геометрические преобразования в геометрии с примерами решения Однако Геометрические преобразования в геометрии с примерами решения

Центральная симметрия. Поворот

Определение. Точки Геометрические преобразования в геометрии с примерами решения называют симметричными относительно точки Геометрические преобразования в геометрии с примерами решения если точка Геометрические преобразования в геометрии с примерами решения является серединой отрезка Геометрические преобразования в геометрии с примерами решения (рис. 19.1). Точку Геометрические преобразования в геометрии с примерами решения считают симметричной самой себе.

Геометрические преобразования в геометрии с примерами решения Например, точки Геометрические преобразования в геометрии с примерами решения у которых как абсциссы, так и ординаты — противоположные числа, симметричны относительно начала координат (рис. 19.2).

Рассмотрим фигуру Геометрические преобразования в геометрии с примерами решения и точку Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие симметричную ей относительно точки Геометрические преобразования в геометрии с примерами решения точку Геометрические преобразования в геометрии с примерами решения В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 19.3). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют центральной симметрией относительно точки Геометрические преобразования в геометрии с примерами решения Точку Геометрические преобразования в геометрии с примерами решения называют центром симметрии. Также говорят, что фигуры Геометрические преобразования в геометрии с примерами решения симметричны относительно точки Геометрические преобразования в геометрии с примерами решения

Теорема 19.1 (свойство центральной симметрии). Центральная симметрия является движением.

Доказательство: Выберем систему координат так, чтобы центр симметрии совпал с началом координат. Пусть Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения Точки Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — соответственно их образы при центральной симметрии относительно начала координат. Имеем: Геометрические преобразования в геометрии с примерами решения

Мы получили, что Геометрические преобразования в геометрии с примерами решения то есть центральная симметрия сохраняет расстояние между точками. Следовательно, центральная симметрия является движением. Геометрические преобразования в геометрии с примерами решения

Следствие. Если фигуры Геометрические преобразования в геометрии с примерами решения симметричны относительно точки, то Геометрические преобразования в геометрии с примерами решения

Определение. Фигуру называют симметричной относительно точки Геометрические преобразования в геометрии с примерами решения если для каждой точки данной фигуры точка, симметричная ей относительно точки Геометрические преобразования в геометрии с примерами решениятакже принадлежит этой фигуре.

Точку Геометрические преобразования в геометрии с примерами решения называют центром симметрии фигуры. Также говорят, что фигура имеет центр симметрии.

Приведем примеры фигур, имеющих центр симметрии.

Центром симметрии отрезка является его середина (рис. 19.4).

Точка пересечения диагоналей параллелограмма является его центром симметрии (рис. 19.5).

Существуют фигуры, имеющие бесконечно много центров симметрии. Например, каждая точка прямой является ее центром симметрии.

Также бесконечно много центров симметрии имеет фигура, состоящая из двух параллельных прямых. Любая точка прямой, равноудаленной от двух данных, является центром симметрии рассматриваемой фигуры (рис. 19.6).

Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример №6

Докажите, что образом данной прямой Геометрические преобразования в геометрии с примерами решения при симметрии относительно точки Геометрические преобразования в геометрии с примерами решения не принадлежащей прямой Геометрические преобразования в геометрии с примерами решения является прямая, параллельная данной.

Решение:

Поскольку центральная симметрия — это движение, то образом прямой Геометрические преобразования в геометрии с примерами решения будет прямая. Для построения прямой достаточно найти две любые ее точки.

Выберем на прямой Геометрические преобразования в геометрии с примерами решения произвольные точки Геометрические преобразования в геометрии с примерами решения (рис. 19.7). Пусть точки Геометрические преобразования в геометрии с примерами решения — их образы при центральной симметрии относительно точки Геометрические преобразования в геометрии с примерами решения Тогда прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения

Поскольку Геометрические преобразования в геометрии с примерами решения углы Геометрические преобразования в геометрии с примерами решения равны как вертикальные, то треугольники Геометрические преобразования в геометрии с примерами решения равны по первому признаку равенства треугольников. Отсюда Геометрические преобразования в геометрии с примерами решения (рис. 19.7). Следовательно, по признаку параллельных прямых Геометрические преобразования в геометрии с примерами решения

Пример №7

Точка Геометрические преобразования в геометрии с примерами решения принадлежит углу Геометрические преобразования в геометрии с примерами решения (рис. 19.8). На сторонах Геометрические преобразования в геометрии с примерами решения угла постройте такие точки Геометрические преобразования в геометрии с примерами решения чтобы точка Геометрические преобразования в геометрии с примерами решения была серединой отрезка Геометрические преобразования в геометрии с примерами решения

Решение:

Пусть прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения при центральной симметрии относительно точки Геометрические преобразования в геометрии с примерами решения (рис. 19.9). Обозначим буквой Геометрические преобразования в геометрии с примерами решения точку пересечения прямых Геометрические преобразования в геометрии с примерами решения

Найдем прообраз точки Геометрические преобразования в геометрии с примерами решения Очевидно, что он лежит на прямой Геометрические преобразования в геометрии с примерами решения Поэтому достаточно найти точку пересечения прямых Геометрические преобразования в геометрии с примерами решения

Обозначим эту точку буквой Геометрические преобразования в геометрии с примерами решения Тогда Геометрические преобразования в геометрии с примерами решения — искомые точки.Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Изучая окружающий мир, мы часто видим примеры проявления симметрии в природе (рис. 19.10). Объекты, имеющие ось или центр симметрии, легко воспринимаются и радуют взгляд. Недаром в Древней Греции слово «симметрия» служило синонимом слов «гармония», «красота». Геометрические преобразования в геометрии с примерами решения

Идея симметрии широко используется в изобразительном искусстве, архитектуре и технике (рис. 19.11).

Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

На рисунке 19.12 изображены точки Геометрические преобразования в геометрии с примерами решения такие, что Геометрические преобразования в геометрии с примерами решения

Говорят, что точка Геометрические преобразования в геометрии с примерами решения является образом точки Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения

Так же говорят, что точка Геометрические преобразования в геометрии с примерами решения — это образ точки Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения по часовой стрелке на угол Геометрические преобразования в геометрии с примерами решения

Точку Геометрические преобразования в геометрии с примерами решения называют центром поворота, угол Геометрические преобразования в геометрии с примерами решенияуглом поворота.

Рассмотрим фигуру Геометрические преобразования в геометрии с примерами решения точку Геометрические преобразования в геометрии с примерами решения и угол Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие точку Геометрические преобразования в геометрии с примерами решения являющуюся образом точки Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения (если точка Геометрические преобразования в геометрии с примерами решения принадлежит фигуре Геометрические преобразования в геометрии с примерами решения то ей сопоставляется она сама). В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 19.13). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют поворотом вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения Точку Геометрические преобразования в геометрии с примерами решения называют центром поворота. Геометрические преобразования в геометрии с примерами решения

Аналогично определяют преобразование поворота фигуры Геометрические преобразования в геометрии с примерами решения по часовой стрелке на угол Геометрические преобразования в геометрии с примерами решения (рис. 19.14).

Заметим, что центральная симметрия является поворотом вокруг центра симметрии на угол Геометрические преобразования в геометрии с примерами решения

Теорема 19.2 (свойство поворота). Поворот является движением.

Докажите эту теорему самостоятельно.

Следствие. Если фигура Геометрические преобразования в геометрии с примерами решения — образ фигуры Геометрические преобразования в геометрии с примерами решения при повороте, то Геометрические преобразования в геометрии с примерами решения

Пример №8

Даны прямая Геометрические преобразования в геометрии с примерами решения и точка Геометрические преобразования в геометрии с примерами решения вне ее. Постройте образ прямой Геометрические преобразования в геометрии с примерами решения при повороте вокруг точки Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Решение:

Поскольку поворот — это движение, то образом прямой Геометрические преобразования в геометрии с примерами решения будет прямая. Для построения прямой достаточно найти две любые ее точки. Выберем на прямой Геометрические преобразования в геометрии с примерами решения произвольные точки Геометрические преобразования в геометрии с примерами решения (рис. 19.15). Построим точки Геометрические преобразования в геометрии с примерами решения — их образы при повороте вокруг точки Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения Тогда прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения

Пример №9

Точка Геометрические преобразования в геометрии с примерами решения принадлежит углу Геометрические преобразования в геометрии с примерами решения но не принадлежит его сторонам. Постройте равносторонний треугольник, одна вершина которого является точкой Геометрические преобразования в геометрии с примерами решения а две другие принадлежат сторонам Геометрические преобразования в геометрии с примерами решения

Решение:

Пусть прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения (рис. 19.16). Обозначим буквой Геометрические преобразования в геометрии с примерами решения точку пересечения прямых Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пусть точка Геометрические преобразования в геометрии с примерами решения — прообраз точки Геометрические преобразования в геометрии с примерами решения при рассматриваемом повороте. Точка Геометрические преобразования в геометрии с примерами решения принадлежит стороне Геометрические преобразования в геометрии с примерами решения угла Геометрические преобразования в геометрии с примерами решения

Эти соображения подсказывают, как построить искомый треугольник.

Строим прямую Геометрические преобразования в геометрии с примерами решения как образ прямой Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения Пусть Геометрические преобразования в геометрии с примерами решения— точка пересечения прямых Геометрические преобразования в геометрии с примерами решения

Строим угол Геометрические преобразования в геометрии с примерами решения равный Геометрические преобразования в геометрии с примерами решения Пусть прямые Геометрические преобразования в геометрии с примерами решения пересекаются в точке Геометрические преобразования в геометрии с примерами решения Эта точка и является прообразом точки Геометрические преобразования в геометрии с примерами решения

Имеем: Геометрические преобразования в геометрии с примерами решения Следовательно, треугольник Геометрические преобразования в геометрии с примерами решения равносторонний. Геометрические преобразования в геометрии с примерами решения

Подобие фигур

На рисунке 20.1 изображены точки Геометрические преобразования в геометрии с примерами решения такие, что Геометрические преобразования в геометрии с примерами решения Говорят, что точка Геометрические преобразования в геометрии с примерами решения — это образ точки Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом 2. Геометрические преобразования в геометрии с примерами решения

На рисунке 20.2 изображены точки Геометрические преобразования в геометрии с примерами решения такие, что Геометрические преобразования в геометрии с примерами решения Говорят, что точка Геометрические преобразования в геометрии с примерами решения — это образ точки Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения

Вообще, если точки Геометрические преобразования в геометрии с примерами решения таковы, что Геометрические преобразования в геометрии с примерами решения то говорят, что точка Геометрические преобразования в геометрии с примерами решения — это образ точки Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения

Точку Геометрические преобразования в геометрии с примерами решения называют центром гомотетии, число Геометрические преобразования в геометрии с примерами решениякоэффициентом гомотетии, Геометрические преобразования в геометрии с примерами решения

Рассмотрим фигуру Геометрические преобразования в геометрии с примерами решения и точку Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие точку Геометрические преобразования в геометрии с примерами решения являющуюся образом точки Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения (если точка Геометрические преобразования в геометрии с примерами решения принадлежит фигуре Геометрические преобразования в геометрии с примерами решения то ей сопоставляется она сама). В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 20.3). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют гомотетией с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения Также говорят, что фигура Геометрические преобразования в геометрии с примерами решения гомотетична фигуре Геометрические преобразования в геометрии с примерами решения с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Например, на рисунке 20.4 треугольник Геометрические преобразования в геометрии с примерами решения гомотетичен треугольнику Геометрические преобразования в геометрии с примерами решения с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом, равным -3.

можно сказать, что треугольник Геометрические преобразования в геометрии с примерами решения гомотетичен треугольнику Геометрические преобразования в геометрии с примерами решения с тем же центром, но коэффициентом гомотетии, равным Геометрические преобразования в геометрии с примерами решения

Отметим, что при Геометрические преобразования в геометрии с примерами решения гомотетия с центром Геометрические преобразования в геометрии с примерами решения является центральной симметрией с центром Геометрические преобразования в геометрии с примерами решения (рис. 20.5). Если Геометрические преобразования в геометрии с примерами решения то гомотетия является тождественным преобразованием.

Очевидно, что при Геометрические преобразования в геометрии с примерами решения гомотетия не является движением.

Геометрические преобразования в геометрии с примерами решения

Теорема 20.1. При гомотетии фигуры Геометрические преобразования в геометрии с примерами решения с коэффициентом Геометрические преобразования в геометрии с примерами решения все расстояния между ее точками изменяются в Геометрические преобразования в геометрии с примерами решения раз, то есть если Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения а точки Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — их соответствующие образы при гомотетии с коэффициентом Геометрические преобразования в геометрии с примерами решения то Геометрические преобразования в геометрии с примерами решения

Доказательство: Пусть точка Геометрические преобразования в геометрии с примерами решения — центр гомотетии. Тогда Геометрические преобразования в геометрии с примерами решения Имеем: Геометрические преобразования в геометрии с примерами решенияГеометрические преобразования в геометрии с примерами решения

Следствие. Если треугольник Геометрические преобразования в геометрии с примерами решения гомотетичен треугольнику Геометрические преобразования в геометрии с примерами решения с коэффициентом гомотетии Геометрические преобразования в геометрии с примерами решения

Для доказательства этого утверждения достаточно воспользоваться теоремой 20.1 и третьим признаком подобия треугольников.

Гомотетия обладает целым рядом других свойств.

При гомотетии:

Эти свойства вы можете доказать на занятиях математического кружка.

Перечисленные свойства гомотетии указывают на то, что это преобразование может изменить размеры фигуры, но не меняет ее форму, то есть при гомотетии образ и прообраз являются подобными фигурами. Заметим, что в курсе геометрии 8 класса, говоря о подобии фигур, мы давали определение только подобных треугольников. Сейчас определим понятие подобия для произвольных фигур.

На рисунке 20.6 фигура Геометрические преобразования в геометрии с примерами решения гомотетична фигуре Геометрические преобразования в геометрии с примерами решения а фигура Геометрические преобразования в геометрии с примерами решения симметрична фигуре Геометрические преобразования в геометрии с примерами решения относительно прямой Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Говорят, что фигура Геометрические преобразования в геометрии с примерами решения получена из фигуры Геометрические преобразования в геометрии с примерами решения в результате композиции двух преобразований: гомотетии и осевой симметрии.

Поскольку Геометрические преобразования в геометрии с примерами решения то фигуры Геометрические преобразования в геометрии с примерами решения имеют одинаковые формы, но разные размеры, то есть они подобны. Говорят, что фигура Геометрические преобразования в геометрии с примерами решения получена из фигуры Геометрические преобразования в геометрии с примерами решения в результате преобразования подобия.

На рисунке 20.7 фигура Геометрические преобразования в геометрии с примерами решения гомотетична фигуре Геометрические преобразования в геометрии с примерами решения а фигура Геометрические преобразования в геометрии с примерами решения — образ фигуры Геометрические преобразования в геометрии с примерами решенияпри некотором движении. Здесь также можно утверждать, что фигуры Геометрические преобразования в геометрии с примерами решения подобны.

Геометрические преобразования в геометрии с примерами решения

Из сказанного следует, что целесообразно принять такое определение.

Определение. Две фигуры называют подобными, если одну из них можно получить из другой в результате композиции двух преобразований: гомотетии и движения.

Это определение иллюстрирует схема, изображенная на рисунке 20.8. Геометрические преобразования в геометрии с примерами решения

Запись Геометрические преобразования в геометрии с примерами решения означает, что фигуры Геометрические преобразования в геометрии с примерами решения подобны. Также говорят, что фигура Геометрические преобразования в геометрии с примерами решения — образ фигуры Геометрические преобразования в геометрии с примерами решения при преобразовании подобия.

Из приведенного определения следует, что при преобразовании подобия фигуры Геометрические преобразования в геометрии с примерами решения расстояния между ее точками изменяются в одно и то же количество раз.

Так как тождественное преобразование является движением, то из схемы, изображенной на рисунке 20.8, следует, что гомотетия — частный случай преобразования подобия.

Пусть Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения а точки Геометрические преобразования в геометрии с примерами решения — их образы при преобразовании подобия. Точки Геометрические преобразования в геометрии с примерами решения принадлежат фигуре Геометрические преобразования в геометрии с примерами решения которая подобна фигуре Геометрические преобразования в геометрии с примерами решения Число Геометрические преобразования в геометрии с примерами решения называют коэффициентом подобия. Говорят, что фигура Геометрические преобразования в геометрии с примерами решения подобна фигуре Геометрические преобразования в геометрии с примерами решения с коэффициентом подобия Геометрические преобразования в геометрии с примерами решения а фигура Геометрические преобразования в геометрии с примерами решения подобна фигуре Геометрические преобразования в геометрии с примерами решения с коэффициентом подобия Геометрические преобразования в геометрии с примерами решения

Заметим, что преобразование подобия с коэффициентом Геометрические преобразования в геометрии с примерами решения является движением. Отсюда следует, что движение — частный случай преобразования подобия.

С преобразованием подобия мы часто встречаемся в повседневной жизни (рис. 20.9). Например, в результате изменения масштаба карты получаем карту, подобную данной. Фотография — это преобразование негатива в подобное изображение на фотобумаге. Перенося в свою тетрадь рисунок, сделанный учителем на доске, вы также выполняете преобразование подобия. Геометрические преобразования в геометрии с примерами решения Теорема 20.2. Отношение площадей подобных многоугольников равно квадрату коэффициента подобия.

Доказательство этой теоремы выходит за рамки рассматриваемого курса геометрии. Мы докажем ее для частного случая, рассмотрев подобные треугольники.

Геометрические преобразования в геометрии с примерами решения

Доказательство: Пусть треугольник Геометрические преобразования в геометрии с примерами решения — образ треугольника Геометрические преобразования в геометрии с примерами решения при преобразовании подобия с коэффициентом Геометрические преобразования в геометрии с примерами решения (рис. 20.10). Сторона Геометрические преобразования в геометрии с примерами решения — образ стороны Геометрические преобразования в геометрии с примерами решения Тогда Геометрические преобразования в геометрии с примерами решения Проведем высоту Геометрические преобразования в геометрии с примерами решения Пусть точка Геометрические преобразования в геометрии с примерами решения — образ точки Геометрические преобразования в геометрии с примерами решения

Поскольку при преобразовании подобия сохраняются углы, то отрезок Геометрические преобразования в геометрии с примерами решения — высота треугольника Геометрические преобразования в геометрии с примерами решения

Тогда Геометрические преобразования в геометрии с примерами решения Имеем:

Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример №10

Докажите, что образом прямой Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения не принадлежащим прямой Геометрические преобразования в геометрии с примерами решения является прямая, параллельная данной.

Решение:

Из свойств гомотетии следует, что образом прямой Геометрические преобразования в геометрии с примерами решения будет прямая. Для построения прямой достаточно найти две любые ее точки. Выберем на прямой Геометрические преобразования в геометрии с примерами решения произвольные точки Геометрические преобразования в геометрии с примерами решения (рис. 20.11). Пусть точки Геометрические преобразования в геометрии с примерами решения— их образы при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения (рисунок 20.11 соответствует случаю, когда Геометрические преобразования в геометрии с примерами решения Тогда прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения

При доказательстве теоремы 20.1 мы показали, что Геометрические преобразования в геометрии с примерами решения Следовательно, Геометрические преобразования в геометрии с примерами решения

Пример №11

В остроугольный треугольник Геометрические преобразования в геометрии с примерами решения впишите квадрат так, чтобы две его вершины лежали соответственно на сторонах Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения а две другие — на стороне Геометрические преобразования в геометрии с примерами решения

Решение:

Из произвольной точки Геометрические преобразования в геометрии с примерами решения стороны Геометрические преобразования в геометрии с примерами решения опустим перпендикуляр Геометрические преобразования в геометрии с примерами решения на сторону Геометрические преобразования в геометрии с примерами решения (рис. 20.12). Построим квадрат Геометрические преобразования в геометрии с примерами решения так, чтобы точка Геометрические преобразования в геометрии с примерами решения лежала на луче Геометрические преобразования в геометрии с примерами решения Пусть луч Геометрические преобразования в геометрии с примерами решения пересекает сторону Геометрические преобразования в геометрии с примерами решения в точке Геометрические преобразования в геометрии с примерами решения

Рассмотрим гомотетию с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения Тогда точка Геометрические преобразования в геометрии с примерами решения образ точки Геометрические преобразования в геометрии с примерами решения при этой гомотетии. Образом отрезка Геометрические преобразования в геометрии с примерами решения является отрезок Геометрические преобразования в геометрии с примерами решения где точка Геометрические преобразования в геометрии с примерами решения принадлежит лучу Геометрические преобразования в геометрии с примерами решения причем Геометрические преобразования в геометрии с примерами решения Аналогично отрезок Геометрические преобразования в геометрии с примерами решения такой, что точка Геометрические преобразования в геометрии с примерами решения принадлежит лучу Геометрические преобразования в геометрии с примерами решения является образом отрезка Геометрические преобразования в геометрии с примерами решения Следовательно, отрезки Геометрические преобразования в геометрии с примерами решения — соседние стороны искомого квадрата. Для завершения построения осталось опустить перпендикуляр Геометрические преобразования в геометрии с примерами решения на сторону Геометрические преобразования в геометрии с примерами решения

Пример №12

Отрезок Геометрические преобразования в геометрии с примерами решения — высота прямоугольного треугольника Геометрические преобразования в геометрии с примерами решения Найдите радиус Геометрические преобразования в геометрии с примерами решения вписанной окружности треугольника Геометрические преобразования в геометрии с примерами решения если радиусы окружностей, вписанных в треугольники Геометрические преобразования в геометрии с примерами решения соответственно равны Геометрические преобразования в геометрии с примерами решения

Решение:

Поскольку угол Геометрические преобразования в геометрии с примерами решения — общий для прямоугольных треугольников Геометрические преобразования в геометрии с примерами решения то эти треугольники подобны (рис. 20.13). Пусть коэффициент подобия равен Геометрические преобразования в геометрии с примерами решения Очевидно, что Геометрические преобразования в геометрии с примерами решения Аналогично Геометрические преобразования в геометрии с примерами решения с коэффициентом подобия Геометрические преобразования в геометрии с примерами решения

Обозначим площади треугольников Геометрические преобразования в геометрии с примерами решения соответственно Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения Имеем:

Геометрические преобразования в геометрии с примерами решения

Отсюда Геометрические преобразования в геометрии с примерами решения Получаем, что Геометрические преобразования в геометрии с примерами решения

Ответ: Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Применение преобразований фигур при решении задач

Преобразование фигур — эффективный метод решения целого ряда геометрических задач. Проиллюстрируем это на примерах.

Пример №13

На сторонах Геометрические преобразования в геометрии с примерами решения остроугольного треугольника Геометрические преобразования в геометрии с примерами решенияпостройте такие точки Геометрические преобразования в геометрии с примерами решения соответственно, чтобы периметр треугольника Геометрические преобразования в геометрии с примерами решения был наименьшим.

Решение:

Пусть Геометрические преобразования в геометрии с примерами решения — произвольная точка стороны Геометрические преобразования в геометрии с примерами решения треугольника Геометрические преобразования в геометрии с примерами решения точки Геометрические преобразования в геометрии с примерами решения — ее образы при симметрии относительно прямых Геометрические преобразования в геометрии с примерами решениясоответственно (рис. 20.34). Прямая Геометрические преобразования в геометрии с примерами решения пересекает стороны Геометрические преобразования в геометрии с примерами решения соответственно в точках Геометрические преобразования в геометрии с примерами решения Из решения задачи 2 п. 18 следует, что из периметров всех треугольников, для которых точка Геометрические преобразования в геометрии с примерами решения фиксирована, а точки Геометрические преобразования в геометрии с примерами решения принадлежат сторонам Геометрические преобразования в геометрии с примерами решения периметр треугольника Геометрические преобразования в геометрии с примерами решения является наименьшим. Этот периметр равен длине отрезка Геометрические преобразования в геометрии с примерами решения

Заметим, что отрезок Геометрические преобразования в геометрии с примерами решения — средняя линия треугольника Геометрические преобразования в геометрии с примерами решения

Тогда Геометрические преобразования в геометрии с примерами решения

Поскольку Геометрические преобразования в геометрии с примерами решения то точки Геометрические преобразования в геометрии с примерами решения лежат на одной окружности с диаметром Геометрические преобразования в геометрии с примерами решения Отсюда Геометрические преобразования в геометрии с примерами решения Следовательно, длина отрезка Геометрические преобразования в геометрии с примерами решения будет наименьшей при наименьшей длине отрезка Геометрические преобразования в геометрии с примерами решения то есть тогда, когда Геометрические преобразования в геометрии с примерами решения — высота треугольника Геометрические преобразования в геометрии с примерами решения

На рисунке 20.35 отрезок Геометрические преобразования в геометрии с примерами решения— высота треугольника Геометрические преобразования в геометрии с примерами решения Алгоритм построения точек Геометрические преобразования в геометрии с примерами решения понятен из рисунка.

Из построения следует, что периметр любого другого треугольника, вершины которого лежат на сторонах треугольника Геометрические преобразования в геометрии с примерами решения больше периметра треугольника Геометрические преобразования в геометрии с примерами решения Поэтому искомый треугольник является единственным — это построенный треугольник Геометрические преобразования в геометрии с примерами решения

Можно показать (сделайте это самостоятельно), что точки Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения являются основаниями высот, проведенных соответственно из вершин Геометрические преобразования в геометрии с примерами решения треугольника Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Следовательно, вершины искомого треугольника — это основания высот данного треугольника Геометрические преобразования в геометрии с примерами решения Такой треугольник называют ортоцентрическим.

Пример №14

Точка Геометрические преобразования в геометрии с примерами решения — центр правильного Геометрические преобразования в геометрии с примерами решенияугольника Геометрические преобразования в геометрии с примерами решения (рис. 20.36). Докажите, что Геометрические преобразования в геометрии с примерами решения

Решение:

Пусть Геометрические преобразования в геометрии с примерами решения Рассмотрим поворот с центром Геометрические преобразования в геометрии с примерами решения на угол Геометрические преобразования в геометрии с примерами решения например, против часовой стрелки. При таком преобразовании образом данного Геометрические преобразования в геометрии с примерами решения-угольника будет этот же Геометрические преобразования в геометрии с примерами решенияугольник. Следовательно, искомая сумма не изменится. А это возможно лишь тогда, когда Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример №15

Внутри треугольника Геометрические преобразования в геометрии с примерами решения все углы которого меньше Геометрические преобразования в геометрии с примерами решения найдите такую точку Геометрические преобразования в геометрии с примерами решения чтобы сумма Геометрические преобразования в геометрии с примерами решения была наименьшей.

Решение:

Пусть Геометрические преобразования в геометрии с примерами решения — произвольная точка данного треугольника Геометрические преобразования в геометрии с примерами решения (рис. 20.37). Рассмотрим поворот с центром Геометрические преобразования в геометрии с примерами решения на угол Геометрические преобразования в геометрии с примерами решения по часовой стрелке. Пусть точки Геометрические преобразования в геометрии с примерами решения — образы точек Геометрические преобразования в геометрии с примерами решения соответственно (рис. 20.37). Поскольку поворот является движением, то Геометрические преобразования в геометрии с примерами решения Очевидно, что треугольник Геометрические преобразования в геометрии с примерами решения равносторонний. Тогда Геометрические преобразования в геометрии с примерами решения

Имеем: Геометрические преобразования в геометрии с примерами решения

Понятно, что сумма Геометрические преобразования в геометрии с примерами решения будет наименьшей, если точки Геометрические преобразования в геометрии с примерами решения лежат на одной прямой. Поскольку Геометрические преобразования в геометрии с примерами решения то это условие будет выполнено тогда, когда Геометрические преобразования в геометрии с примерами решения

Так как угол Геометрические преобразования в геометрии с примерами решения — образ угла Геометрические преобразования в геометрии с примерами решения при указанном повороте, то должно выполняться равенство Геометрические преобразования в геометрии с примерами решения

Итак, точки Геометрические преобразования в геометрии с примерами решения будут принадлежать одной прямой тогда и только тогда, когда Геометрические преобразования в геометрии с примерами решения Отсюда Геометрические преобразования в геометрии с примерами решения

Таким образом, сумма Геометрические преобразования в геометрии с примерами решения будет наименьшей, если Геометрические преобразования в геометрии с примерами решения

Найти точку Геометрические преобразования в геометрии с примерами решения можно, например, построив ГМТ, из которых отрезки Геометрические преобразования в геометрии с примерами решения видны под углами Геометрические преобразования в геометрии с примерами решения (рис. 20.38).

Понятно, что если один из углов треугольника Геометрические преобразования в геометрии с примерами решения не меньше Геометрические преобразования в геометрии с примерами решения то точка пересечения построенных дуг не будет расположена внутри треугольника. Можно показать, что в треугольнике с углом, не меньшим Геометрические преобразования в геометрии с примерами решенияточка Геометрические преобразования в геометрии с примерами решения сумма расстояний от которой до вершин треугольника является наименьшей, совпадает с вершиной тупого угла. Геометрические преобразования в геометрии с примерами решения

Пример №16

Отрезки Геометрические преобразования в геометрии с примерами решения — высоты остроугольного треугольника Геометрические преобразования в геометрии с примерами решения Докажите, что радиус описанной окружности треугольника Геометрические преобразования в геометрии с примерами решения в два раза больше радиуса описанной окружности треугольника Геометрические преобразования в геометрии с примерами решения

Решение:

Пусть прямые Геометрические преобразования в геометрии с примерами решения пересекают описанную окружность треугольника Геометрические преобразования в геометрии с примерами решения соответственно в точках Геометрические преобразования в геометрии с примерами решения (рис. 20.39). Докажем, что Геометрические преобразования в геометрии с примерами решения где точка Геометрические преобразования в геометрии с примерами решения — ортоцентр треугольника Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Имеем: Геометрические преобразования в геометрии с примерами решения

Углы 2 и 3 равны как вписанные, опирающиеся на дугу Геометрические преобразования в геометрии с примерами решения Следовательно, Геометрические преобразования в геометрии с примерами решения

Тогда в треугольнике Геометрические преобразования в геометрии с примерами решения отрезок Геометрические преобразования в геометрии с примерами решения является биссектрисой и высотой, а следовательно, и медианой. Отсюда Геометрические преобразования в геометрии с примерами решения

Аналогично можно доказать, что Геометрические преобразования в геометрии с примерами решения

Теперь понятно, что треугольник Геометрические преобразования в геометрии с примерами решения гомотетичен треугольнику Геометрические преобразования в геометрии с примерами решения с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом 2. Тогда радиус описанной окружности треугольника Геометрические преобразования в геометрии с примерами решения в два раза больше радиуса описанной окружности треугольника Геометрические преобразования в геометрии с примерами решения Осталось заметить, что треугольники Геометрические преобразования в геометрии с примерами решения вписаны в одну и ту же окружность. 

  • Планиметрия — формулы, определение и вычисление
  • Стереометрия — формулы, определение и вычисление
  • Возникновение геометрии
  • Призма в геометрии
  • Перпендикулярность прямых и плоскостей в пространстве
  • Ортогональное проецирование
  • Декартовы координаты на плоскости
  • Декартовы координаты в пространстве

Если при параллельном переносе одна точка переходит в другую точку, какую информацию можно получить из этих данных, если координаты обеих точек известны?

Параллельный перенос, при котором точка A (x;y) переходит в точку

A1 (x1; y1), задаётся формулами:

    [left{ {begin{array}{*{20}{l}} {{x_1} = x + a}\ {{y_1} = y + b} end{array}} right.]

1) При параллельном переносе точка A (-2;7) переходит в точку B (4;-3). Найти формулы параллельного переноса.

Решение:

Чтобы найти числа a и b в формулах параллельного переноса, подставим в них координаты точек A и B:

x=-2, y=7; x1=4, y1=-3:

    [left{ {begin{array}{*{20}{l}} {4 =  - 2 + a}\ { - 3 = 7 + b} end{array}} right.]

Отсюда a=6, b= -4. Следовательно, формулы параллельного переноса

    [left{ {begin{array}{*{20}{l}} {{x_1} = x + 6}\ {{y_1} = y - 4.} end{array}} right.]

2) При параллельном переносе точка A (-9; 4) переходит в точку B (2; -2). В какую точку при этом параллельном переносе переходит точка C (0; 7)?

Решение:

Сначала найдём формулы параллельного переноса, который переводит точку A в точку B. Для этого в формулы подставим координаты точек A и B:

    [left{ begin{array}{l} 2 =  - 9 + a\ - 2 = 4 + b end{array} right.]

Отсюда a=11, b=-6. Значит, данный параллельный перенос задаётся формулами

    [left{ {begin{array}{*{20}{l}} {{x_1} = x + 11}\ {{y_1} = y - 6} end{array}} right.]

Чтобы найти, в какую точку переходит C, подставим её координаты x=0, y=7 в формулы параллельного переноса и найдём x1и y1:

    [left{ {begin{array}{*{20}{l}} {{x_1} = 0 + 11 = 11}\ {{y_1} = 7 - 6 = 1} end{array}} right.]

Таким образом, точка C переходит в точку (11; 1).

Ответ: (11; 1).

3) Найти координаты точки, являющейся образом точки A (-8; 5) при параллельном переносе на вектор

    [overline a (3;4).]

Решение:

    [{x_1} = x + {a_1};{y_1} = y + {a_2}]

x=-8; y=5; a1=3; a2=4:

    [{x_1} =  - 8 + 3 =  - 5;]

    [{y_1} = 5 + 4 = 9.]

Ответ: (5;9).

Сегодня на уроке мы вспомним, какое отображение
плоскости на себя мы называли параллельным переносом, введём понятие
параллельного переноса в пространстве. Проверим, будет ли параллельный перенос
движением пространства.

Вернёмся в планиметрию и вспомним, что параллельным
переносом
мы называли преобразование, при котором каждая точка фигуры
перемещается в одном и том же направлении и на одно и то же расстояние. Мы
говорили, что для того, чтобы задать перенос достаточно задать вектор.

Другими словами, параллельным переносом на
вектор  называется
отображение плоскости на себя, при котором каждая точка  отображается
в такую точку ,
что вектор  равен
вектору .

То, что параллельный перенос является примером
движения плоскости, мы уже доказывали. Давайте вспомним это доказательство.

Пусть при параллельном переносе на вектор  точки
 и
 отображаются
в точки  и
.
Так как векторы  и
,
то значит, эти векторы равны между собой .
То есть они параллельны  и
их длины равны, поэтому четырёхугольник  –
параллелограмм. Следовательно, ,
то есть расстояние между точками  и
 равно
расстоянию между точками  и
.

Случай, когда точки  и
 лежат
на прямой параллельной вектору ,
вы можете рассмотреть самостоятельно. Но и в этом случае расстояние между
точками  и
 будет
равно расстоянию между точками  и
.

Таким образом, параллельный перенос сохраняет
расстояние между точками и поэтому представляет собой движение
. Это
движение можно представить себе как сдвиг всей плоскости в направлении данного
вектора  на
его длину.

В планиметрии мы говорили, что параллельный перенос
обладает некоторыми свойствами.

Свойства параллельного переноса:

·              
При
параллельном переносе отрезок переходит в равный ему отрезок.

·              
Угол
переходит в равный ему угол.

·              
Окружность
переходит в равную ей окружность.

·              
Любой
многоугольник переходит в равный ему многоугольник.

·              
Параллельные
прямые переходят в параллельные прямые.

·              
Перпендикулярные
прямые переходят в перпендикулярные прямые.

Теперь давайте определим, что мы будем понимать под
параллельным переносом в пространстве.

Определение:

Параллельным переносом на вектор  называется
такое отображение пространства на себя, при котором любая точка  переходит
в такую точку  что
.

Проверим, будет ли параллельный перенос в
пространстве примером движения пространства.

При параллельном переносе точки пространства  и
 переходят
в такие точки  и
,
что вектора  и
.

Сложим по правилу треугольника векторы

Поскольку левые части равенств равны, значит, равны
и правые части равенств.

Значит, можно записать, что .

Заменим вектора  и
 на
вектор .
Получим, что .
Отсюда получаем, что вектор .
Поскольку векторы равны, значит, равны и их длины, то есть .
То есть расстояние между точками при параллельном переносе в пространстве
сохраняется, значит, параллельный перенос в пространстве также является
движением
, но уже не плоскости, а пространства.

Сформулируем свойства параллельного переноса.

Свойства параллельного переноса:

·                  
Параллельный
перенос является примером движения пространства.

·                  
При
параллельном переносе точки смещаются по параллельным или совпадающим прямым на
одно и то же расстояние.

·                  
При
параллельном переносе прямая переходит в параллельную прямую (или сама в себя).

·                  
Каковы
бы не были две точки  и
,
существует, и притом единственный, параллельный перенос, при котором точка  переходит
в точку .

·                  
При
параллельном переносе в пространстве каждая плоскость переходит либо в себя,
либо в параллельную ей плоскость.

Движение в пространстве обладает теми же свойствами,
что и движение плоскости.

Свойства движения пространства:

·                  
Движение
сохраняет расстояние между точками.

·                  
При
любом движении пространства отрезок отображается на отрезок, прямая – в прямую,
плоскость – в плоскость.

Решим несколько задач.

Задача:
начертить отрезок  и
вектор .
Построить отрезок ,
который получится из отрезка параллельным
переносом на вектор .

Решение:
для того, чтобы построить отрезок ,
отобразим точку  в
точку ,
точку  в
точку  с
помощью параллельного переноса. Тогда соединив точки ,
 мы
получим отрезок .

Задача:
начертить треугольник  и
вектор .
Построить треугольник ,
который получится из треугольникa
параллельным
переносом на вектор .

Решение:
отобразим с помощью параллельного переноса точки ,
,
 в
точки ,
,.
Соединив полученные точки, мы получим искомый треугольник .

Задача:
начертить пятиугольник  и
вектор .
Построить пятиугольник ,
который получится из пятиугольника параллельным
переносом на вектор .

Решение:
решать эту задачу будем аналогично тому, как мы решали предыдущую задачу.
Отобразим каждую вершину пятиугольника с помощью параллельного переноса на
вектор .
Соединим получившиеся точки и получим искомый пятиугольник .

Итоги:

Сегодня на уроке мы вспомнили, что мы понимали под
параллельным переносом в планиметрии. Ввели понятие параллельного переноса в пространстве.
Сформулировали основные свойства параллельного переноса, движения пространства.

Образ точки на векторе

Пусть — вектор пространства. Рассмотрим отображение пространства на себя, при котором образом любой точки M пространства является такая точка M ′ , что вектор ′ равен вектору : ′ = (рис. 23).

Можно доказать, что точка M имеет при данном отображении единственный образ — точку М ′ , а для точки М ′ существует единственный прообраз — точка М .

Таким образом, получаем биективное отображение пространства на себя, т. е. преобразование пространства, которое называют параллельным переносом на вектор .

Определение. Параллельным переносом на вектор называется такое преобразование пространства, при котором любая точка М отображается на такую точку M ′ , что выполняется векторное равенство: ′ = .

Иногда параллельный перенос называют коротко переносом. При этом вектор называют вектором переноса. Если при переносе на вектор точка М отображается на точку M ′ , то пишут: М ′ = ( М ) или ( M ) = M ′ .

Из определения следует, что параллельный перенос задаётся либо вектором, либо парой соответствующих точек ( М, М ′ ) .

Если при переносе на вектор точка М отображается на точку M ′ , то ′ = (рис. 24). Тогда = – . Значит, точка М ′ отображается на точку M переносом на вектор – , т. е. преобразование, обратное переносу на вектор , есть перенос на вектор – .

Перенос на нулевой вектор является тождественным преобразованием: ( М ) = М для любой точки М пространства.

5.2. Параллельный перенос в координатах

Пусть в прямоугольной системе координат Охyz задан вектор ( a ; b ; с ) . Найдём зависимость между координатами точки М ( x ; y ; z ) и её образа M ′ ( х ′ ; y ′ ; z ′ ) при переносе на вектор .

Так как M ′ = ( М ) , то ′ = (рис. 25). Вектор ′ имеет координаты: ′ ( x ′ – x ; y ′ – y ; z ′ – z ). Тогда векторное равенство ′ = равносильно системе трёх равенств x ′ – х = a, y ′ – у = b, z ′ – z = с, откуда

(1)

Соотношения (1) называются формулами параллельного переноса пространства на вектор ( a ; b ; c ) .

Докажем, что параллельный перенос пространства есть движение . Пусть: A ( x 1 ; y 1 ; z 1 ) и C ( x 2 ; y 2 ; z 2 ) — данные точки; A ′ ( ; ; ), C ′ ( ; ; ) — их образы при переносе на вектор ( a ; b ; с ). На основании (1) имеем

= x 1 + a, = y 1 + b, = z 1 + c,
= x 2 + a, = y 2 + b, = z 2 + c . (2)

Расстояние между точками А и C равно

.

Найдём расстояние между точками А ′ и C ′ .

Учитывая (2), получаем

| A ′ C ′ | = =
= = | AC| .

Таким образом, при параллельном переносе расстояние между точками сохраняется. Значит, параллельный перенос есть движение.

5.3. Свойства параллельного переноса

Можно доказать, что параллельный перенос отображает :

— прямую на параллельную ей прямую либо на себя;

— луч на сонаправленный с ним луч;

— вектор на равный ему вектор (на себя);

— плоскость на параллельную ей плоскость либо на себя.

Докажем, например, что параллельный перенос отображает плоскость на параллельную ей плоскость или на себя.

Действительно, параллельный перенос — движение, поэтому он отображает плоскость α на некоторую плоскость α′ . Докажем, что α′ || α или α′ совпадает с α .

На плоскости α выберем две пересекающиеся прямые a и b ; a ∩ b = O.

Пусть ( a ) = a ′ , ( b ) = b ′ (рис. 26). Тогда a || a ′ , b || b ′ .

Так как любое преобразование отображает пересечение фигур на пересечение их образов и прямые a и b пересекаются в точке O, то пересекаются и прямые a ′ и b ′ в такой точке O ′ , что O ′ = ( О ). Тогда либо плоскости α и α′ совпадают, либо по признаку параллельности плоскостей эти плоскости параллельны, что и требовалось доказать. ▼

Рассмотрим вопрос о неподвижных точках, неподвижных прямых и неподвижных плоскостях при параллельном переносе.

Неподвижных точек параллельный перенос на ненулевой вектор не имеет.

Неподвижной прямой при параллельном переносе на ненулевой вектор является любая прямая, параллельная вектору ; на каждой из этих прямых индуцируется параллельный перенос на вектор .

Неподвижной плоскостью при параллельном переносе на ненулевой вектор является любая плоскость, параллельная вектору ; на каждой из этих плоскостей индуцируется параллельный перенос на вектор .

Параллельный перенос, отображая любой вектор на себя, не меняет ориентацию пространства, следовательно, является движением первого рода.

Рассмотрим композицию двух переносов, заданных векторами и . Её обычно обозначают не , а + .

Пусть М — любая точка пространства. Перенос на вектор точку М отображает на такую точку М ′ , что ′ = (рис. 27). Последующий перенос на вектор точку М ′ отображает на такую точку M ″ , что ″ = . По правилу сложения векторов имеем ″ = ′ + ″ = + . Это означает, что ( + )( M ) = M ″ , т. e. перенoc на вектор ( + ) точку М отображает на точку М ″ .

Таким образом, композиция переносов на векторы и есть перенос на вектор + .

Так как + = + , то композиция переносов обладает свойством коммутативности: ( + )( M ) = ( + )( М ).

5 .4. Скользящая симметрия

Среди преобразований пространства важное место занимает «скользящая симметрия», представляющая собой композицию симметрии S α относительно плоскости α и параллельного переноса на вектор , который параллелен этой плоскости (рис. 28).

Отметим ряд характерных свойств скользящей симметрии:

— скользящая симметрия является движением (как композиция двух движений);

— скользящая симметрия не имеет неподвижных точек;

— любая прямая плоскости α , параллельная вектору переноса, является неподвижной прямой скользящей симметрии; на каждой из них индуцируется параллельный перенос;

— неподвижной плоскостью скользящей симметрии является не только плоскость симметрии α (на ней индуцируется параллельный перенос на вектор ) , а также любая плоскость, перпендикулярная плоскости α и параллельная вектору переноса (на каждой из таких плоскостей индуцируется скользящая симметрия, осью которой является прямая пересечения этой плоскости с плоскостью α , а вектором переноса — вектор );

— скользящая симметрия меняет ориентацию тетраэдра (значит, и ориентацию пространства), т. е. является движением второго рода;

— преобразованием, обратным скользящей симметрии, заданной плоскостью α и вектором , является скользящая симметрия, заданная той же плоскостью α и вектором – .

Попробуйте доказать самостоятельно, что композиция двух центральных симметрий есть параллельный перенос, причём Z B ∘ Z A = 2 . Наоборот, любой параллельный перенос может быть разложен (неоднозначно) в композицию двух центральных симметрий.

Параллельный перенос

Параллельный перенос — это преобразование плоскости, при котором точки смещаются в одном и том же направлении на одно и то же расстояние.

Строгое определение параллельного переноса даётся либо через декартовы координаты, либо через вектор.

1) Введём на плоскости декартовы координаты x, y.

Параллельный перенос — это такое преобразование фигуры F, при котором её произвольная точка (x;y) переходит в точку (x+a; y+b), где a и b — некоторые числа, одинаковые для всех точек (x;y) фигуры F.

Формулы параллельного переноса

Если при параллельном переносе точка A(x;y) переходит в точку A1(x1;y1)

то параллельный перенос задаётся формулами:

Говорят также, что A1 является образом точки A при параллельном переносе на вектор (a; b). Точка A называется прообразом.

2) Параллельный перенос на данный вектор ā называется отображение плоскости на себя, при котором каждая точка A отображается в такую точку A1, то вектор AA1 равен вектору ā:

Свойства параллельного переноса

1) Параллельный перенос есть движение (то есть параллельный перенос сохраняет расстояние).

2) При параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние.

3) При параллельном переносе каждая прямая переходит в параллельную ей прямую (или в себя).

4) Каковы бы ни были точки A и A1, существует единственный параллельный перенос, при котором точка A переходит в точку A1.

В алгебре параллельный перенос широко используется для построения графиков функций.

Геометрия для новичков. Часть 1: координаты и векторы — теория

Внимание! Этот документ ещё не опубликован.

О чем данная статья

В данной статье дается теоретическое описание векторов, координат векторов и операций над ними.

На кого рассчитана статья

Прежде чем читать эту статью, нужно знать:

  • что такое прямоугольная система координат и координаты точки на плоскости
  • что такое теорема Пифагора

Введение

Зачем нужны координаты точек в играх

В любой игре положение игрового объекта задается координатами какой-либо точки, привязанной к этому объекту, т.е. эта точка перемещается вместе с объектом. Например, мы можем задать координаты объектов в «Супер Марио» следующим образом:

На этом рисунке крупные черные точки — это точки, привязанные к игровым объектам. Координаты этих точек мы и будем считать координатами игровых объектов.
Итак, на этом рисунке:

  • координаты Марио равны (-0.5, -2)
  • координаты улитки равны (3, -2)
  • координаты кубика равны (4, 1)

Пример координат вектора

Я намеренно не написал конкретные значения для координат точек – пусть они будут произвольными.

Зададим себе вопрос «Как нужно изменить начальные координаты Марио, что получить конечные?» Чтобы ответить на этот вопрос, нам нужно найти пару чисел (x, y), таких, чтобы:

Ax + x = Bx
Ay + y = By

Решая эти 2 уравнения, получаем:

x = Bx — Ax
y = By — Ay

Пара (x, y) в нашей задаче является координатами вектора перемещения Марио. Но это — лишь конкретный пример координат вектора. Что такое вектор и что такое его координаты в общем случае? Сейчас узнаем.

Векторы

Что такое направленный отрезок

Стрелка показывает, что А – начало отрезка, а B – конец.

Что такое вектор

Что у этих отрезков общего? Хм, пожалуй 2 вещи:

  • Направление
  • Длина

Так вот, вектор – это как раз и есть совокупность направления и длины.
Направленный отрезок – не вектор, который мы изучаем в геометрии. Направленный отрезок задает, или как еще говорят, представляет вектор. Но это — не вектор.
В нашем примере направленный отрезок представляет вектор . Разницу в черточках наверху заметили? Еще часто вектор обозначают 1 буквой, например:

Примечание: о тонкостях приведенного мной определения — в конце статьи.

Равенство векторов

Если задуматься, все направленные отрезки одинаковой длины, которые лежат на параллельных прямых и указывают в одну сторону, имеют одинаковое направление и длину. Следовательно, все эти направленные отрезки представляют один и тот же вектор. Из этого следует определение равенства 2 векторов:

Два вектора и , представленные направленными отрезками и называются равными, если:

Из данного определения следует, что при параллельном переносе произвольный направленный отрезок продолжает представлять тот же вектор, что он представлял до переноса. Это свойство активно используется для операций над векторами.

Длина вектора

Коллинеарные векторы

На рисунке любая пара из векторов , , является коллинеарными векторами

Если отрезки, представляющие коллинеарные векторы, имеют одинаковое направления, то векторы называют сонаправленными:

Пишут:
Если отрезки, представляющие коллинеарные векторы, имеют противоположное направления, то векторы, представленные данными отрезками, называют противоположно направленными:

Пишут:

Нулевой вектор

Единичные векторы

=1

Обратный вектор

Арифметические операции над векторами

  1. Вектор можно умножать на число. Вектор , умноженный на число, записывается как k*. Вектор будет сонаправлен (противоположно направлен) с вектором , если k — положительное (отрицательное) число. Вектор k* будет иметь длину |k|*||:

|k*| = |k|*||
k* , если k>0
k* , если k 0, такое, что:
|k * |=1

Т.е. в результате нормализации мы получаем единичный вектор, сонаправленный с исходным вектором
Важно: нулевой вектор НЕЛЬЗЯ нормализовать, так как для любого числа k:

|k*| = |k|*|| = k * 0 = 0

Итак, как же найти это число k?
Распишем |k * | по определению:

|k * | = |k| * || = k * || = 1

Здесь мы убрали с k знак модуля, так как по определению k > 0.
Итак:

k * || = 1

Из этого следует, что:

k = 1 / ||

Т.е. чтобы нормализовать произвольный ненулевой вектор, нам нужно разделить вектор на его длину.

Координаты вектора

Вроде бы из примера, приведенного в начале статьи, все понятно: координаты вектора — разность координат конца и начала направленного отрезка, представляющего вектор.

Но это не так. Действительно, значения координат вектора численно равны этой разности. Но определение координат вектора в корне отличается от определения координат точки.

Разложение вектора по 2 неколлинеарным векторам

В геометрии доказывается следующий факт.

Ecли мы возьмем 2 неколлинеарных вектора и ,
то для каждого вектора можно подобрать 2 числа k и s, для которых выполняется равенство:

= k* + s*

Теперь возьмем в качестве таких неколлинеарных векторов и следующие векторы:

Векторы и называют координатными векторами.

Определение координат вектора

= x* + y*

то пара чисел (x, y) будет называться координатами вектора .
Часто пишут:

= (x, y)

Эта запись означает, что вектор имеет координаты x и y.

Арифметические операции над координатами векторов

= (-ax, -ay)

Координаты вектора, умноженного на число, равны координатам исходного вектора, умноженными на это число:

k* = (k*ax, k*ay)

Пусть у нас есть 2 произвольных вектора =(ax, ay) и =(bx, by). Тогда:

  1. кoординаты суммы 2 векторов равны сумме x- и y-координат векторов:
    + = (ax + bx, ay + by)
  2. как следствие из предыдущих свойств, координаты разности 2 векторов равны разности координат этих векторов:
    = (ax — bx, ay — by)

Т.е. арифметика для координат векторов – такая же, как и для обычных чисел, только все считается покоординатно.

Радиус-вектор

Можно доказать, что численные значения координат точки совпадают со значения координат ее радиус-вектора. Здесь примем это как факт:
=(Ax, Ay)
где (Ax, Ay) — координаты точки A

Связь между координатами вектора и координатами концов отрезка

если – направленный отрезок, представляющий вектор , то значения координат вектора (x, y) вычисляются по формуле:

(x, y) = (Bx — Ax, By — Ay)

где (Ax, Ay), (Bx, By) — координаты точек А и B соответственно.

Докажем это.
Мы можем записать простое равенство для произвольного вектора :

=

Заметим, что и — радиус векторы.
Из равенства значений координат точки и радиус-вектора и предыдущей формулы следует, что:

(x, y) = (Bx — Ax, By — Ay)

Нахождение длины вектора по его координатам

Пусть у нас есть вектор , представленный отрезком . Координаты вектора равны (x, y).
Чтобы найти длину вектора через его координаты, воспользуемся теоремой Пифагора и равенством:

= +

По теореме Пифагора:

AC = || = |x|,
СB = || = |y|

то в итоге получаем равенство:

Заключение

Применению векторов в реальных задачах игровой разработки будет посвящена следующая моя статья. В ней практически не будет математики и будет много программирования.

Здесь же я описал то, что будет необходимо для понимания практических приемов использования векторов.
Если не иметь представления, как связаны координаты точек и координаты векторов, очень сложно понять, как работают алгоритмы определения расстояний от точки до геометрической фигуры, алгоритмы обнаружения столкновений и т.д.

Так что не жалейте, если вы (о ужас!) кое-что запомнили из «всей этой математики». Все это вам пригодится очень скоро, обещаю.

Литература

Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. «Геометрия», 7-9 классы»
Главы: «Векторы», «Метод координат».

PS: корректность определения вектора в статье

Вся хитрость в том, что существует несколько определений вектора даже в рамках геометрии.

Направленный отрезок – тоже вектор, так называемый фиксированный вектор. Но нужно учитывать один важный факт – 2 фиксированных вектора равны тогда и только тогда, когда их концы и начала совпадают. А это не то определение равенства 2 векторов, что дает учебник геометрии.

Определение вектора, данное в этой статье – определение так называемого свободного вектора.
Каждый свободный вектор – это множество фиксированных векторов, которые имеют равную длину и одинаковое направление.

Именно это определение учебник геометрии и пытается дать в неявном виде, когда вводит понятие равенства векторов. Но здесь возникает нестыковка – учебник объясняет, как работать со свободными векторами, изначально дав определение фиксированного вектора.

Надеюсь, вышесказанное объясняет, почему я привел в данной статье «свое» определение вектора.

источники:

Параллельный перенос

http://gamedev.ru/code/articles/geometry_for_beginners_1

  1. Главная
  2. Справочники
  3. Справочник по геометрии 7-9 класс
  4. Движения
  5. Параллельный перенос

Если нам дан вектор , то параллельным переносом на вектор называется отображение плоскости на себя, при котором произвольная точка Е отображается в такую точку Е1, что .

Доказательство:

Дано: точки Е и К отображаются в точки Е1 и К1 при параллельном переносе на .

Доказать: параллельный перенос — движение.

Доказательство:

1 случай

Точки Е и К не лежат на одной прямой параллельной вектору .

По условию точки Е и К отображаются в точки Е1 и К1 соответственно при параллельном переносе на вектор , тогда по определению параллельного переноса и , поэтому , следовательно, и , значит, ЕЕ1КК1 (т.к. точки Е и К не лежат на одной прямой параллельной вектору ) и ЕЕ1 = КК1. Следовательно, по признаку параллелограмма четырехугольник ЕЕ1К1К — параллелограмм, поэтому по свойству параллелограмма ЕК = Е1К1, т.е. расстояние между точками Е и К равно расстоянию между точками Е1 и К1. Получаем, что параллельный перенос сохраняет расстояния между точками, значит, является частным случаем движения.

2 случай

Точки Е и К лежат на одной прямой параллельной вектору .

По условию точки Е и К отображаются в точки Е1 и К1 соответственно при параллельном переносе на вектор , тогда по определению параллельного переноса и , поэтому , следовательно, , значит, ЕЕ1 = КК1(1)

ЕК = КК1 + ЕК1, Е1К1 = ЕЕ1 + ЕК1, тогда, учитывая (1), получим: ЕК = Е1К1, т.е. расстояние между точками Е и К равно расстоянию между точками Е1 и К1. Получаем, что параллельный перенос сохраняет расстояния между точками, значит, является частным случаем движения.

Пример

Построить А1В1С1, который получается из АВС параллельным переносом на вектор .

Дано: АВС, вектор .

Построить: А1В1С1 параллельным переносом на вектор .

Решение:

Построим точки А1, В1, С1, которые получаются из точек А, В, С соответственно, параллельным переносом на вектор  . Для этого от точек А, В и С отложим векторы, равные вектору . Соединяя попарно точки А1, В1, С1 отрезками, получим искомый А1В1С1.

Советуем посмотреть:

Отображение плоскости на себя

Понятие движения

Наложения и движения

Поворот

Движения


Правило встречается в следующих упражнениях:

7 класс

Задание 1162,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1163,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1164,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1165,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 14,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 15,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1178,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1179,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1182,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1301,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник


Понравилась статья? Поделить с друзьями:
  • Как можно найти фотки подруги
  • Как найти информацию в яндексе по фотографии
  • Как найти правильное место для вещей
  • Как найти подсос воздуха в тормозной системе
  • 0x800704b3 windows 10 сетевой путь как исправить