Как найти образующую конуса решение задач

8. Геометрия в пространстве (стереометрия)


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Задачи по теме «Конус»

(blacktriangleright) Точка (P) – вершина конуса.

(blacktriangleright) Отрезок, соединяющий вершину конуса с границей основания, называется образующей (все образующие равны между собой).

(blacktriangleright) Отрезок, соединяющий вершину конуса с центром основания-круга, является высотой конуса.

(blacktriangleright) Площадь боковой поверхности конуса ({large{S_{text{бок.пов.}}=pi rl}}), где (r) – радиус основания, (l) – образующая.

(blacktriangleright) Площадь полной поверхности конуса – эта сумма площади боковой поверхности и площади основания. [{large{S_{text{полн.пов.}}=pi rl+pi r^2=pi r(r+l)}}]

(blacktriangleright) Объем конуса ({large{V=dfrac{1}{3}S_{text{осн.}}cdot h=dfrac{1}{3}pi
r^2h}})
, где (h) – высота конуса.

Заметим, что конус имеет некоторое сходство с пирамидой, только в основании пирамиды лежит многоугольник (граница которого – ломаная), а в основании конуса – круг (граница которого – гладкая).
Поэтому можно сказать, что поверхность пирамиды “ребристая” , а конуса – “гладкая”.


Задание
1

#1886

Уровень задания: Равен ЕГЭ

Площадь боковой поверхности конуса равна (48pi), а площадь основания равна (36pi). Найдите длину образующей конуса.

Если радиус окружности, лежащей в основании конуса обозначить за (r), а длину образующей за (l), то площадь основания и площадь боковой поверхности конуса выразятся по формулам: (S_{text{осн.}} =
pi r^2)
, (S_{text{бок.пов.}} = pi r l). Из первой формулы следует: (pi r^2 = 36pi) (Rightarrow) (r^2 = 36) (Rightarrow) (r
= 6)
(Rightarrow) (6pi l = 48pi) (Rightarrow) (6l = 48) (Rightarrow) (l = 8) .

Ответ: 8


Задание
2

#1887

Уровень задания: Равен ЕГЭ

Площадь боковой поверхности конуса равна (48pi), а площадь боковой поверхности усеченного конуса с такими же основанием и углом наклона образующей к плоскости основания равна (36pi). Найдите высоту усеченного конуса, если высота исходного конуса равна (10).

Площадь боковой поверхности меньшего конуса, который дополняет усеченный конус до полного, равна разности их площадей поверхностей: (S_{text{мал}} = 48pi — 36pi = 12pi). Отношение площадей боковых поверхностей большого и малого конусов равно квадрату коэффициента подобия между ними: [frac{S_{text{бол}}}{S_{text{мал}}} = k^2 =
frac{48pi}{12pi} = 4Rightarrow k = 2]

Тогда высоты конусов относятся друг к другу: (dfrac{h_{text{бол}}}{h_{text{мал}}} = dfrac{10}{h_{text{мал}}}
= k = 2)
. Тогда

[h_{text{мал}} = 5Rightarrow h_{text{усеч}} = h_{text{бол}}
— h_{text{мал}} = 10 — 5 = 5]

Ответ: 5


Задание
3

#962

Уровень задания: Сложнее ЕГЭ

На высоте конуса с вершиной (A), центром основания (C) и радиусом основания (R = 4) отметили точку (E) такую, что расстояние от неё до основания равно (sqrt{3}(4-pi^{-0,5})). Известно, что угол между образующей конуса и плоскостью основания равен (60^circ). Найдите площадь сечения (T) конуса, проходящего через точку (E) и параллельного основанию конуса.

Рассмотрим треугольник (ABC), где (B) – некоторая точка на окружности основания. Так как (AC) – высота конуса, то (ACperp CB), тогда (angle CAB = 90^circ — angle ABC = 30^circ), следовательно, (AB = 2CB = 8) . По теореме Пифагора [AC = sqrt{AB^2 — CB^2} = 4sqrt{3}.]

Обозначим через (D) точку пересечения плоскости сечения (T) и (AB). Рассмотрим треугольник (AED): [AE = AC — CE = 4sqrt{3} — sqrt{3}(4 — pi^{-0,5}) = sqrt{dfrac{3}{pi}}.]

Так как сечение (T) параллельно плоскости основания, а (AC) – высота конуса, то (ACperp ED), тогда (triangle AED) – прямоугольный и (angle EAD = 30^circ), откуда [ED = AEcdot mathrm{tg}, angle EAD = sqrt{dfrac{3}{pi}}cdot dfrac{1}{sqrt{3}} = dfrac{1}{sqrt{pi}} = r] – радиус сечения (T).

Таким образом, площадь сечения (T) равна (pi r^2 = picdotdfrac{1}{pi} = 1).

Ответ: 1


Задание
4

#963

Уровень задания: Сложнее ЕГЭ

Радиусы оснований усечённого конуса равны [r = dfrac{2}{sqrt[4]{2}sqrt{pi}}qquad text{и}qquad R = dfrac{10}{sqrt[4]{2}sqrt{pi}},] а угол между его образующей и основанием равен (45^circ). Найдите площадь боковой поверхности этого усечённого конуса.

Обозначим центры оснований усечённого конуса через (A) и (E), так что (A) – центр большего основания. Отметим на большем основании точку (C), а точку меньшего основания, через которую проходит образующая, выходящая из (C), обозначим через (D).

Высота (AE) и образующая (CD) лежат в одной плоскости. Обозначим точку их пересечения через (B).

Так как (AE) – высота, то (AEperp CD) и (AEperp AC).

Рассмотрим прямоугольный треугольник (BAC):
в нём (angle BCA = 45^circ), тогда [AB = R = dfrac{10}{sqrt[4]{2}sqrt{pi}},qquadqquad BC = Rsqrt{2} = dfrac{10sqrt{2}}{sqrt[4]{2}sqrt{pi}}.]

Рассмотрим прямоугольный треугольник (BED):
так как (angle EBD = 45^circ), то [BE = r = dfrac{2}{sqrt[4]{2}sqrt{pi}},qquadqquad BD = rsqrt{2} = dfrac{2sqrt{2}}{sqrt[4]{2}sqrt{pi}},] тогда (EA = AB — BE = R — r), (DC = BC — BD = Rsqrt{2} — rsqrt{2} = sqrt{2}(R — r)). [S_{text{бок}} = pi(R + r)cdot I,] где (I) – образующая, тогда [S_{text{бок}} = pi(R + r)cdotsqrt{2}(R — r) = sqrt{2}pi(R^2 — r^2) = sqrt{2}pileft(dfrac{100}{sqrt{2}pi} — dfrac{4}{sqrt{2}pi}right) = 96.]

Ответ: 96

Старшеклассникам, которые готовятся к сдаче ЕГЭ по математике, непременно стоит научиться вычислять площадь и другие неизвестные параметры конуса. Как показывает практика предыдущих лет, подобные задания из раздела «Геометрия в пространстве» вызывают у выпускников определенные сложности.

При этом понимать, как найти площадь боковой поверхности или, к примеру, сечения конуса, параллельного основанию, должны все учащиеся, независимо от уровня их подготовки. Это позволит им успешно пройти аттестационное испытание по математике.

Базовая информация, которую стоит запомнить

  • Конус представляет собой геометрическое тело, которое образовано совокупностью круга, точки, находящейся вне его плоскости, и лучей, соединяющих заданную точку с точками круга. Его высотой называется перпендикуляр, который опущен из вершины на плоскость основания.
  • Все образующие конуса равны между собой.
  • Осевое сечение конуса представляет собой равнобедренный треугольник. Основание этой фигуры равняется двум радиусам. Боковые стороны треугольника равны образующим конуса.

Занимайтесь вместе с сайтом «Школково»!

Чтобы не допускать распространенных ошибок при решении задач по теме «Конус», выбирайте наш математический портал. Здесь есть весь необходимый материал для изучения разделов, требующих повторения.

Специалисты образовательного проекта «Школково» предлагают новый подход к подготовке к экзамену, предполагающий переход от простого к сложному. Вначале мы даем полную теорию, основные формулы и элементарные практические задачи с решением, в том числе и по теме «Конус», а затем постепенно переходим к заданиям экспертного уровня, которые также встречаются в ЕГЭ. Вся необходимая информация представлена в разделе «Теоретическая справка».

Вы также можете сразу приступить к решению онлайн-задач на вычисление высоты усеченного конуса, площади его боковой поверхности, объема, а также похожих задач на вычисление, например, нахождению объема или площади сечения куба. Большая база упражнений представлена в разделе «Каталог». Перечень заданий систематически обновляется.

Проверьте, насколько легко вы сможете определить площадь конуса в режиме онлайн. Если упражнение потребовало от вас минимальных усилий, рекомендуем вам не тратить время на простые задачи и переходить к более сложным. А если затруднения все же возникли, тогда вам непременно стоит находить время в своем ежедневном расписании на дистанционные занятия вместе со «Школково». С нами вы сможете быстро усвоить алгоритм решения задач на расчет объема конуса и других неизвестных параметров.

Как готовиться к сочинению за 2 дня до ЕГЭ? Четко и без воды

Как готовиться к сочинению за 2 дня до ЕГЭ? Четко и без воды

Конус является объемной фигурой вращения, которая часто появляется в геометрических задачах. Как и всякая фигура, он обладает рядом линейных характеристик, площадью поверхности и объемом. В данной статье рассмотрим, что представляет собой конус, а также приведем формулу образующей конуса.

Конус в геометрии

Вафельный конический стаканчик

Многие ели в жаркий летний день мороженое-рожок. Вафельный стаканчик этого мороженого имеет форму конуса. В геометрии более строгое определение этой фигуры следующее: конус представляет собой поверхность, которая получается в результате соединения с помощью прямых отрезков всех точек некоторой плоской кривой с фиксированной точкой пространства, не лежащей в плоскости упомянутой кривой. Если кривая является эллипсом, то конус будет эллиптическим, если окружностью — то круглым и так далее.

Данное выше геометрическое определение соответствует фигуре на рисунке ниже.

Коническая поверхность

Здесь кривой, на которую опирается коническая поверхность, является окружность, центр которой лежит на вертикальной оси. Как видно из рисунка, хотя фигура является пространственной, но ее объем равен нулю. Если вместо окружности взять круг, тогда ограниченный этим кругом и конической поверхностью объем пространства будет объемом конуса.

Элементы фигуры

Перед тем как привести формулу образующей конуса, следует пояснить, из каких элементов состоит рассматриваемая пространственная фигура, и какие геометрические понятия используются для ее описания.

Ориентируясь на предыдущий рисунок, можно сказать, что конус образован двумя поверхностями:

  • конической, которая называется также боковой;
  • плоской фигурой (круг на рисунке), которая называется основанием конуса.

В отличие от полиэдров, конус не имеет граней и ребер, однако у него имеется одна единственная вершина, которая сверху ограничивает коническую поверхность. На предыдущем рисунке вершина находится в начале координат.

Для рассматриваемой фигуры также используют понятия образующей и направляющей. Что такое образующая конуса, и что такое его направляющая. Начнем с определения последней. Направляющей является кривая, ограничивающая основание фигуры. Названа она так, поскольку вдоль нее движется образующая, описывая коническую поверхность. Направляющая часто называется директрисой.

Образующая — это прямой отрезок, который соединяет вершину фигуры и любую точку направляющей. Образующих у конуса бесконечное множество. Их совокупность определяет коническую поверхность. Образующую также называют генератрисой.

Круглый прямой конус

Как отмечалось выше, основание конуса может быть ограничено любой плоской кривой. Тем не менее на практике и в геометрических задачах часто встречается круглый конус. Его и будем рассматривать далее в статье.

Круглый конус может быть прямым или наклонным. В первом случае перпендикуляр, проведенный из его вершины к основанию, пересекает последнее в центре круга. Прямой круглый конус является симметричной фигурой вращения, которую можно получить с помощью прямоугольного треугольника. Рисунок ниже показывает, как это делается.

Конус - фигура вращения

На рисунке показан прямоугольный треугольник, который стоит на одном из своих катетов. Вокруг другого катета, являющегося осью, происходит вращение плоской фигуры. Во время вращения гипотенуза треугольника описывает коническую поверхность.

Линейные характеристики круглого прямого конуса

Ниже показан чертеж круглого конуса, на котором введены обозначения. Величина h — это высота фигуры, r — круглого основания радиус, который называется радиусом конуса, s — длина образующей.

Круглый прямой конус

Очевидно, что все образующие s рассматриваемой фигуры имеют одинаковую длину. Это важное свойство присуще только прямому круглому конусу. Угол между любой образующей и осью вращения конуса является постоянной величиной при известных значениях r и h.

Как видим из рисунка, стороны r, h и s ограничивают прямоугольный треугольник. Этот факт позволяет применить теорему Пифагора для записи математического равенства, связывающего названные линейные характеристики конуса. Равенство имеет форму:

s2 = r2 + h2

Это равенство содержит ответ на вопрос о том, как найти длину образующей конуса. Если известны радиус фигуры и ее высота, тогда:

s = √(r2 + h2)

Далее, на примерах решения задач покажем, как пользоваться формулой образующей конуса.

Задача с площадью конической поверхности и длиной окружности основания

Развертка конуса

Дан прямой конус с круглым основанием. Известно, что площадь его боковой поверхности равна 120 см2, а длина окружности основания составляет 30 см. Чему равна образующая конуса?

Решение этой задачи предполагает использование двух дополнительных формул, которые не были рассмотрены в статье. Приведем их ниже:

Sb = pi × r × s;

L = 2 × pi × r

Первое выражение — это формула для вычисления площади конической поверхности Sb. Второе выражение знакомо каждому школьнику, это формула для определения длины окружности L.

Выражаем радиус r из второго выражения, подставляем его в первое:

r = L / (2 × pi);

Sb = pi × L / (2 × pi) × s

Тогда искомая формула длины образующей конуса примет вид:

s = 2 × Sb / L

Подставляем данные площади Sb и длины L в эту формулу, получаем ответ: s = 8 см.

Задача с площадью основания и высотой

Известно, что круглое основание конуса имеет площадь 40 см2. Высота фигуры в 2 раза больше диаметра этого основания. Необходимо найти длину генератрисы конуса.

Как и в предыдущем случае, запишем два уравнения, опираясь на условие задачи:

So = pi × r2;

h = 4 × r

Первая формула — это известное выражение для площади круга. Второе равенство следует из того факта, что высота больше в 2 раза диаметра, а значит, в 4 раза радиуса r.

Оба выражения позволяют через So выразить r и h:

r = √(So / pi);

h = 4 × √(So / pi)

Теперь воспользуемся формулой образующей конуса через h и r. Получаем:

s = √(So / pi + 16 × So / pi) = √(17 × So / pi)

Подставляем величину So в равенство и записываем ответ: s ≈ 14,72 см.

Просмотры: 19

Конус является объемной фигурой вращения, которая часто появляется в геометрических задачах. Как и всякая фигура, он обладает рядом линейных характеристик, площадью поверхности и объемом. В данной статье рассмотрим, что представляет собой конус, а также приведем формулу образующей конуса.

Конус в геометрии

Вафельный конический стаканчик

Многие ели в жаркий летний день мороженое-рожок. Вафельный стаканчик этого мороженого имеет форму конуса. В геометрии более строгое определение этой фигуры следующее: конус представляет собой поверхность, которая получается в результате соединения с помощью прямых отрезков всех точек некоторой плоской кривой с фиксированной точкой пространства, не лежащей в плоскости упомянутой кривой. Если кривая является эллипсом, то конус будет эллиптическим, если окружностью — то круглым и так далее.

Данное выше геометрическое определение соответствует фигуре на рисунке ниже.

Коническая поверхность

Здесь кривой, на которую опирается коническая поверхность, является окружность, центр которой лежит на вертикальной оси. Как видно из рисунка, хотя фигура является пространственной, но ее объем равен нулю. Если вместо окружности взять круг, тогда ограниченный этим кругом и конической поверхностью объем пространства будет объемом конуса.

Элементы фигуры

Перед тем как привести формулу образующей конуса, следует пояснить, из каких элементов состоит рассматриваемая пространственная фигура, и какие геометрические понятия используются для ее описания.

Ориентируясь на предыдущий рисунок, можно сказать, что конус образован двумя поверхностями:

  • конической, которая называется также боковой;
  • плоской фигурой (круг на рисунке), которая называется основанием конуса.

В отличие от полиэдров, конус не имеет граней и ребер, однако у него имеется одна единственная вершина, которая сверху ограничивает коническую поверхность. На предыдущем рисунке вершина находится в начале координат.

Для рассматриваемой фигуры также используют понятия образующей и направляющей. Что такое образующая конуса, и что такое его направляющая. Начнем с определения последней. Направляющей является кривая, ограничивающая основание фигуры. Названа она так, поскольку вдоль нее движется образующая, описывая коническую поверхность. Направляющая часто называется директрисой.

Образующая — это прямой отрезок, который соединяет вершину фигуры и любую точку направляющей. Образующих у конуса бесконечное множество. Их совокупность определяет коническую поверхность. Образующую также называют генератрисой.

Круглый прямой конус

Как отмечалось выше, основание конуса может быть ограничено любой плоской кривой. Тем не менее на практике и в геометрических задачах часто встречается круглый конус. Его и будем рассматривать далее в статье.

Круглый конус может быть прямым или наклонным. В первом случае перпендикуляр, проведенный из его вершины к основанию, пересекает последнее в центре круга. Прямой круглый конус является симметричной фигурой вращения, которую можно получить с помощью прямоугольного треугольника. Рисунок ниже показывает, как это делается.

Конус - фигура вращения

На рисунке показан прямоугольный треугольник, который стоит на одном из своих катетов. Вокруг другого катета, являющегося осью, происходит вращение плоской фигуры. Во время вращения гипотенуза треугольника описывает коническую поверхность.

Линейные характеристики круглого прямого конуса

Ниже показан чертеж круглого конуса, на котором введены обозначения. Величина h — это высота фигуры, r — круглого основания радиус, который называется радиусом конуса, s — длина образующей.

Круглый прямой конус

Очевидно, что все образующие s рассматриваемой фигуры имеют одинаковую длину. Это важное свойство присуще только прямому круглому конусу. Угол между любой образующей и осью вращения конуса является постоянной величиной при известных значениях r и h.

Как видим из рисунка, стороны r, h и s ограничивают прямоугольный треугольник. Этот факт позволяет применить теорему Пифагора для записи математического равенства, связывающего названные линейные характеристики конуса. Равенство имеет форму:

s2 = r2 + h2

Это равенство содержит ответ на вопрос о том, как найти длину образующей конуса. Если известны радиус фигуры и ее высота, тогда:

s = √(r2 + h2)

Далее, на примерах решения задач покажем, как пользоваться формулой образующей конуса.

Задача с площадью конической поверхности и длиной окружности основания

Развертка конуса

Дан прямой конус с круглым основанием. Известно, что площадь его боковой поверхности равна 120 см2, а длина окружности основания составляет 30 см. Чему равна образующая конуса?

Решение этой задачи предполагает использование двух дополнительных формул, которые не были рассмотрены в статье. Приведем их ниже:

Sb = pi × r × s;

L = 2 × pi × r

Первое выражение — это формула для вычисления площади конической поверхности Sb. Второе выражение знакомо каждому школьнику, это формула для определения длины окружности L.

Выражаем радиус r из второго выражения, подставляем его в первое:

r = L / (2 × pi);

Sb = pi × L / (2 × pi) × s

Тогда искомая формула длины образующей конуса примет вид:

s = 2 × Sb / L

Подставляем данные площади Sb и длины L в эту формулу, получаем ответ: s = 8 см.

Задача с площадью основания и высотой

Известно, что круглое основание конуса имеет площадь 40 см2. Высота фигуры в 2 раза больше диаметра этого основания. Необходимо найти длину генератрисы конуса.

Как и в предыдущем случае, запишем два уравнения, опираясь на условие задачи:

So = pi × r2;

h = 4 × r

Первая формула — это известное выражение для площади круга. Второе равенство следует из того факта, что высота больше в 2 раза диаметра, а значит, в 4 раза радиуса r.

Оба выражения позволяют через So выразить r и h:

r = √(So / pi);

h = 4 × √(So / pi)

Теперь воспользуемся формулой образующей конуса через h и r. Получаем:

s = √(So / pi + 16 × So / pi) = √(17 × So / pi)

Подставляем величину So в равенство и записываем ответ: s ≈ 14,72 см.

09
Сен 2013

Категория: 02 Стереометрия

02. Конус

2013-09-09
2022-09-11


Задача 1. Высота конуса равна 12, образующая равна 14. Найдите его объем, деленный на pi.

u

Решение: + показать


Задача 2. Конус получается при вращении равнобедренного прямоугольного треугольника ABC вокруг катета, равного 6. Найдите его объем, деленный на pi.

задача на конус 2

Решение:  + показать


Задача 3. Высота конуса равна 15, а диаметр основания – 16. Найдите образующую конуса.

uРешение:  + показать


Задача 4. Найдите объем V конуса, образующая которого равна 3 и наклонена к плоскости основания под углом 30°. В ответе укажите frac{V}{pi}.

3

Решение:  + показать


Задача 5. Длина окружности основания конуса равна 5, образующая равна 8. Найдите площадь боковой поверхности конуса.

3

Решение:  + показать


Задача 6. Во сколько раз увеличится площадь боковой поверхности конуса, если его образующую увеличить в 9 раз?

4

Решение:  + показать


Задача 7. Во сколько раз уменьшится объем конуса, если его высоту уменьшить в 6 раз?

8

Решение:  + показать


Задача 8. Во сколько раз увеличится объем конуса, если радиус его основания увеличится в 17 раз, а высота останется прежней?

8

Решение:  + показать


Задача 9. Площадь боковой поверхности конуса в два раза больше площади основания. Найдите угол между образующей конуса и плоскостью основания. Ответ дайте в градусах.

5

Решение:  + показать


 Задача 10. Объем конуса равен 10. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.

6

Решение:  + показать


 Задача 11. Площадь полной поверхности конуса равна 148. Параллельно основанию конуса проведено сечение, делящее высоту пополам. Найдите площадь полной поверхности отсеченного конуса.

6

Решение:  + показать


 Задача 12. Найдите объем V конуса, образующая которого равна 11 и наклонена к плоскости основания под углом 30^{circ}. В ответе укажите frac{V}{pi}.

7

Решение:  + показать


Задача 13. Диаметр основания конуса равен 66, а угол при вершине осевого сечения равен 90°. Вычислите объем конуса, деленный на pi.

11

Решение:  + показать


Задача 14. Площадь основания конуса равна 36pi, высота — 3. Найдите площадь осевого сечения конуса.

Решение:  + показать


Задача 15. Площадь основания конуса равна 48. Плоскость, параллельная плоскости основания конуса, делит его высоту на отрезки длиной 15 и 45, считая от вершины. Найдите площадь сечения конуса этой плоскостью.

Решение:  + показать


Задача 16. Найдите объем V части конуса, изображенной на рисунке. В ответе укажите frac{V}{pi}.

Решение:  + показать


Задача 17. Найдите объем V части конуса, изображенной на рисунке. В ответе укажите frac{V}{pi}.

Решение:  + показать


Задача 18. В сосуде, имеющем форму конуса, уровень жидкости достигает frac{1}{2} высоты. Объём жидкости равен 54 мл. Сколько миллилитров жидкости нужно долить, чтобы полностью наполнить сосуд?

v

Решение:  + показать


тест

Вы можете пройти тест

Автор: egeMax |

комментариев 10

Печать страницы

Конус является объемной фигурой вращения, которая часто появляется в геометрических задачах. Как и всякая фигура, он обладает рядом линейных характеристик, площадью поверхности и объемом. В данной статье рассмотрим, что представляет собой конус, а также приведем формулу образующей конуса.

Конус в геометрии

Вафельный конический стаканчик

Многие ели в жаркий летний день мороженое-рожок. Вафельный стаканчик этого мороженого имеет форму конуса. В геометрии более строгое определение этой фигуры следующее: конус представляет собой поверхность, которая получается в результате соединения с помощью прямых отрезков всех точек некоторой плоской кривой с фиксированной точкой пространства, не лежащей в плоскости упомянутой кривой. Если кривая является эллипсом, то конус будет эллиптическим, если окружностью — то круглым и так далее.

Под сенью муз: художественная школа МурманскаВам будет интересно:Под сенью муз: художественная школа Мурманска

Данное выше геометрическое определение соответствует фигуре на рисунке ниже.

Коническая поверхность

Здесь кривой, на которую опирается коническая поверхность, является окружность, центр которой лежит на вертикальной оси. Как видно из рисунка, хотя фигура является пространственной, но ее объем равен нулю. Если вместо окружности взять круг, тогда ограниченный этим кругом и конической поверхностью объем пространства будет объемом конуса.

Элементы фигуры

Перед тем как привести формулу образующей конуса, следует пояснить, из каких элементов состоит рассматриваемая пространственная фигура, и какие геометрические понятия используются для ее описания.

Ориентируясь на предыдущий рисунок, можно сказать, что конус образован двумя поверхностями:

  • конической, которая называется также боковой;
  • плоской фигурой (круг на рисунке), которая называется основанием конуса.

В отличие от полиэдров, конус не имеет граней и ребер, однако у него имеется одна единственная вершина, которая сверху ограничивает коническую поверхность. На предыдущем рисунке вершина находится в начале координат.

Для рассматриваемой фигуры также используют понятия образующей и направляющей. Что такое образующая конуса, и что такое его направляющая. Начнем с определения последней. Направляющей является кривая, ограничивающая основание фигуры. Названа она так, поскольку вдоль нее движется образующая, описывая коническую поверхность. Направляющая часто называется директрисой.

Образующая — это прямой отрезок, который соединяет вершину фигуры и любую точку направляющей. Образующих у конуса бесконечное множество. Их совокупность определяет коническую поверхность. Образующую также называют генератрисой.

Круглый прямой конус

Как отмечалось выше, основание конуса может быть ограничено любой плоской кривой. Тем не менее на практике и в геометрических задачах часто встречается круглый конус. Его и будем рассматривать далее в статье.

Круглый конус может быть прямым или наклонным. В первом случае перпендикуляр, проведенный из его вершины к основанию, пересекает последнее в центре круга. Прямой круглый конус является симметричной фигурой вращения, которую можно получить с помощью прямоугольного треугольника. Рисунок ниже показывает, как это делается.

Конус - фигура вращения

На рисунке показан прямоугольный треугольник, который стоит на одном из своих катетов. Вокруг другого катета, являющегося осью, происходит вращение плоской фигуры. Во время вращения гипотенуза треугольника описывает коническую поверхность.

Линейные характеристики круглого прямого конуса

Ниже показан чертеж круглого конуса, на котором введены обозначения. Величина h — это высота фигуры, r — круглого основания радиус, который называется радиусом конуса, s — длина образующей.

Круглый прямой конус

Очевидно, что все образующие s рассматриваемой фигуры имеют одинаковую длину. Это важное свойство присуще только прямому круглому конусу. Угол между любой образующей и осью вращения конуса является постоянной величиной при известных значениях r и h.

Как видим из рисунка, стороны r, h и s ограничивают прямоугольный треугольник. Этот факт позволяет применить теорему Пифагора для записи математического равенства, связывающего названные линейные характеристики конуса. Равенство имеет форму:

s2 = r2 + h2

Это равенство содержит ответ на вопрос о том, как найти длину образующей конуса. Если известны радиус фигуры и ее высота, тогда:

s = √(r2 + h2)

Далее, на примерах решения задач покажем, как пользоваться формулой образующей конуса.

Задача с площадью конической поверхности и длиной окружности основания

Развертка конуса

Дан прямой конус с круглым основанием. Известно, что площадь его боковой поверхности равна 120 см2, а длина окружности основания составляет 30 см. Чему равна образующая конуса?

Решение этой задачи предполагает использование двух дополнительных формул, которые не были рассмотрены в статье. Приведем их ниже:

Sb = pi × r × s;

L = 2 × pi × r

Первое выражение — это формула для вычисления площади конической поверхности Sb. Второе выражение знакомо каждому школьнику, это формула для определения длины окружности L.

Выражаем радиус r из второго выражения, подставляем его в первое:

r = L / (2 × pi);

Sb = pi × L / (2 × pi) × s

Тогда искомая формула длины образующей конуса примет вид:

s = 2 × Sb / L

Подставляем данные площади Sb и длины L в эту формулу, получаем ответ: s = 8 см.

Задача с площадью основания и высотой

Известно, что круглое основание конуса имеет площадь 40 см2. Высота фигуры в 2 раза больше диаметра этого основания. Необходимо найти длину генератрисы конуса.

Как и в предыдущем случае, запишем два уравнения, опираясь на условие задачи:

So = pi × r2;

h = 4 × r

Первая формула — это известное выражение для площади круга. Второе равенство следует из того факта, что высота больше в 2 раза диаметра, а значит, в 4 раза радиуса r.

Оба выражения позволяют через So выразить r и h:

r = √(So / pi);

h = 4 × √(So / pi)

Теперь воспользуемся формулой образующей конуса через h и r. Получаем:

s = √(So / pi + 16 × So / pi) = √(17 × So / pi)

Подставляем величину So в равенство и записываем ответ: s ≈ 14,72 см.

Понравилась статья? Поделить с друзьями:
  • Как найти нейтроны йода
  • Как найти группу соединения
  • Как найти бригаду швей
  • Как найти начальную фазу силы тока
  • Как найти давление газа при увеличении объема