Как найти обрыв в пусковой обмотке

Содержание

  • 1 Как проверить однофазный двигатель? Начнем с обмоток
    • 1.1 Зачем в однофазном двигателе две обмотки
    • 1.2 Учимся определять пусковые и рабочие обмотки в однофазных асинхронных двигателях
      • 1.2.1 Осмотрите изделие
      • 1.2.2 Сечение
      • 1.2.3 Завершающий этап
  • 2 Прозваниваем однофазный двигатель с помощью мультиметра
    • 2.1 Подготовительный этап проверки
    • 2.2 Непосредственная проверка двигателя мультиметром
  • 3 Проверяем однофазный коллекторный электропривод
    • 3.1 Частые неисправности
    • 3.2 Редкие неисправности
  • 4 Проверка конденсатора с использованием мультиметра
  • 5 Поломки, которые можно определить с помощью мультиметра
    • 5.1 Оборвалась обмотка
    • 5.2 Проверка на наличие короткого замыкания
    • 5.3 Проверка на наличие межвиткового замыкания
  • 6 Проверка борно
  • 7 Подведем итог

Прозвонка электродвигателя достаточно простой процесс, однако, требует знания некоторых тонкостей и внимательности от проверяющего. Какие знания понадобятся при подготовке к прозвону? Что представляет собой проверка привода с помощью мультиметра? Разберемся ниже.

Устройство однофазного двигателя

Как проверить однофазный двигатель? Начнем с обмоток

Несмотря на свое название, однофазные двигатели имеют в своей конструкции три катушки, и это минимум. Две из них расположены в статоре, из подключают параллельно. При этом непосредственно работает только одна, вторую называют пусковой. Клеммы рабочей и пусковой обмоток выводятся на корпус агрегата, с их помощью и происходит включение привода в сеть. К сети подключаются две из них, все оставшиеся выполняют коммутационные функции. Обмотку ротора делают короткозамкнутого типа.

Чтобы была возможность менять мощность прибора, катушку обмотки могут сделать из двух частей. Включаться они будут последовательно.

Определить вид обмотки (рабочая и пусковая) можно визуально, обратив внимание на сечение провода, измерив сопротивление с помощью тестера. О методах определения типа обмотки, чем они отличаются и зачем нужны в однофазном двигателе поговорим подробнее.

Схема обмоток в однофазном электродвигателе

Зачем в однофазном двигателе две обмотки

Все обсуждаемые сегодня электромоторы обладают небольшой мощностью. Магнитопровод однофазной машины содержит обмотку из двух фаз, это и есть основная (рабочая) и пусковая. Последняя не принимает участия в непосредственной работе двигателя.

Такая пара обмоток нужна, чтобы заставить ротор однофазного двигателя вращаться. Наиболее популярные из таких приводов делятся на два подтипа: электродвигатели с пусковой обмоткой и те, которые содержат в конструкции рабочий конденсатор. 

В первом случае, так сказать, не рабочая обмотка будет включаться через конденсатор во время запуска мотора, а когда агрегат придет в нормальную работу (скорость вращения станет постоянной), она сама по себе выключиться. Привод же продолжит свою работу при одной рабочей обмотке. Информация о конденсаторе, как правило, указана на специальной табличке на корпусе электродвигателя. Его характеристики непосредственно зависят от конструкции.

Однофазные асинхронные двигатели, содержащие рабочий конденсатор, всегда работают с включенной вспомогательной обмоткой. Она включена через этот самый конденсатор. Емкость такого конденсатора также зависит от его конструктивных особенностей.

Другими словами, двигатель с пусковой обмоткой характерен ее выключением после запуска. А вот при конденсаторной вспомогательной обмотке – ее постоянной работой, т.к. включение происходит через постоянно работающий (даже во время работы привода) конденсатор.

Чтобы правильно проверить работоспособность двигателя с одной фазой, знания об устройства его обмоток критически важны. Отличия между ними можно найти в сечениях проводов, количестве витков, величине сопротивления каждой из них (их можно измерить разными типами тестеров или с помощью омметра).

Учимся определять пусковые и рабочие обмотки в однофазных асинхронных двигателях

Конечно, наличие маркировки на обмотке решает эту проблему. Но зачастую в случае ремонта или замены обмоток, она не сохраняется. Как же тогда определить, что за обмотка перед вами? Вот и обсудим теоретическую и практическую стороны определения пусковой и рабочей обмоток.

Осмотрите изделие

Для наглядности возьмем двигатель, который был установлен в стиральной машине времен СССР. Сама же машинка уже давно на металлоломе.

После визуального осмотра таблички-шильдика на двигателе, как и в этом случае, вы можете не обнаружить, все же возраст мотора говорит сам за себя. В таком случае всю информацию можно найти в интернете. Оказалось, что двигатель содержит в конструкции пусковую обмотку и релейный пуск.

Из двигателя виднеются четыре провода: два красноватых, два голубоватых. Эти провода еще называются выводами обмоток.

Из-за отсутствия какой-либо маркировки, сходу определить какая обмотка пусковая, а какая рабочая невозможно. В такой ситуации нужно обратить внимание на сечение проводников.

Сечение

Посмотрите на провода, которые выходят из электромотора, а точнее на их толщину. Одна из пар будет тоньше. Это пусковая обмотка. Следовательно, пара потолще – рабочая.

Может статься, что сечения на обоих проводах одинаковые, как и в нашей ситуации. Так зрительно определить, где какая обмотка также невозможно.

Но если разница в толщине проводов заметна, не доверяйтесь лишь диаметру. Чтобы определить обмотки наверняка, измеряйте их сопротивление.

На этом этапе переходим к измерению сопротивления обмоток однофазного двигателя переменного тока.

Завершающий этап

Измерение сопротивления

Для измерения сопротивления обмоток однофазного двигателя вам понадобится мультиметр, на котором нужно выбрать прозвонку (или режим измерения Ом).

Провода, выглядывающие из электродвигателя (любая пара) соединяем с любыми выводами мультиметра, измеряем значение.

Если видите на экране цифру один, повторите измерение с любым другим концом.

Запишите сопротивление, которое показала первая выбранная пара (в данном случае вышло 16,5 Ом). После этого щупы измерительного прибора нужно прицепить к двум оставшимся выводам (вторая пара проводов) и произвести замер.

Полученные данные тоже нужно записать, а затем сравнить с первым замером.

Сопротивление исправной рабочей обмотки всегда будет иметь значение меньше, чем у пусковой. Вторая пара проводов, согласно мультиметру, показала сопротивление 34,5 Ом. Таким образом, можно смело утверждать, что первая пара проводов говорит о принадлежности к рабочей обмотке, а вторая, соответственно, к пусковой.

Обозначьте обе обмотки, что в будущем не пришлось проделывать все это заново. Удобно для этого использовать небольшую трубочку из винила.

Маркировать концы проводов (выводы) можно по современным стандартам вот так:

  • знаками U1-U2 помечают рабочую обмотку;
  • знаками B1-B2 помечают пусковую обмотку.

Такие обозначения ставятся в тех случаях, когда из двигателя видно четыре вывода, в данной ситуации. Однако, на вашем пути может встретиться двигатель, который имеет лишь три вывода. Что делать?

Итак, замеры каждого из трех выводов будут выглядеть примерно вот так: 10 Ом, 25 Ом и 15 Ом. Завершив эти измерения нужно сразу приступать к другим. Важно найти вывод, который с двумя другими выводами будет показывать 10 и 15 Ом. Поздравляем! Вы наши сетевой провод. Вывод, показывающий сопротивление 10 Ом тоже сетевой, а тот, что показывал 15 Ом – пусковой. Он соединяется со вторым сетевым через конденсатор. Кстати, чтобы изменить направление вращения в таком двигателе, придется добираться до самой схемы обмотки.

Иногда измерения могут быть величиной 10 Ом, 10 Ом и 20 Ом. Это норма, такие обмотки тоже существуют, их также ставили на различные бытовые приборы. Особенность такого двигателя заключается в том, что какая именно обмотка будет пусковой, а какая рабочей совершенно не имеет значения. Они одинаковы. Просто одну из них (ту, что будет пусковой) нужно подключить через конденсатор.

Вот мы и разобрались в простых методах распознавания пусковых и рабочих обмотках. Теперь вы сможете отличить составляющие двигателя даже в том случае, когда отсутствует шильдик и любая маркировка выводов. Предлагаем немного подытожить всю информацию:

  1. В случае, когда двигатель имеет четыре вывода, нужно лишь найти концы обмоток, в которых легко разобрать после замера. Провод, где значение сопротивления меньше – обмотка рабочая, больше – пусковая. Подключить все выводы очень просто: напряжение 220 В подают на те провода, которые потолще. А один из кончиков проводов пусковой на один из рабочей. При этом на какой именно кончик вывода рабочей обмотки совершенно не важно, ведь направление вращения от этого никак не зависит (так же как и, скажем, от того, какой стороной вы вставите вилку в розетку). Вращение меняется лишь от того, какой конец пусковой обмотки вы подключили. 
  2. При наличии лишь трех проводов в качестве вывода обмоток, сетевым будет тот, что показывает меньшее сопротивление, а также тот, что при соединении с другими двумя покажет сопротивление 10 Ом и 15 Ом (если измерения сопротивления каждого из них дало 10 Ом, 25 Ом и 15 Ом). Тот что показал 15 Ом на мультиметре – вывод пусковой обмотки.
  3. Если вы встретили трехпроводный вывод, и сопротивление каждого из проводов (как пример) 10 Ом, 10 Ом и 20 Ом, обе обмотки могут быть и рабочей и пусковой.

Прозваниваем однофазный двигатель с помощью мультиметра

Чтобы выявить поломки электропривода в бытовых условиях достаточно использовать мультиметр. Во-первых, не у всех есть дорогое профессиональное оборудование (это скорее исключение), во вторых для определения большинства неисправностей этого прибора хватает, что называется, с головой. Тут вам не понадобится никакой специалист. 

Самая основная неисправность в однофазных двигателях – прекращение вращения. Причина такой поломки определяется достаточно просто. Мультиметр переключают в режим вольтметра и проверяют подачу напряжения, которое питает двигатель. Если с напряжением все в порядке, то неисправность заключается в самом двигателе, его электрической части. Это, конечно, говорит о необходимости проверки состояния подключения и прозвона обмоток. Для этого, зачастую, также используют мультиметр. 

Но как правильно подготовится к прозвону двигателя?

Подготовительный этап проверки

Замкните щупы мультиметра

Перед проведением диагностики нужно выполнить следующие действия:

  1. Отключить машину от питания. Если сопротивление обмотки измеряется с включенной в электросеть цепью, агрегат сломается.
  2. Замкните щупы мультиметра, выставите нулевые значения. Это называется калибровкой аппарата. 
  3. Внимательно проведите осмотр двигателя. Его могло затопить, некоторые детали могут отломаться, возможно, слышен запах горелого. В таком случае прозванивать агрегат бессмысленно, ведь поломка очевидна.

Асинхронные, однофазные и трехфазные, коллекторные – прозвон всех двигателей происходит одинаково. Методика не отличается в зависимости от разницы конструкций агрегатов, так как все различия столь основательны. Тем не менее в диагностике присутствуют некоторые детали, игнорировать которые нельзя.

Непосредственная проверка двигателя мультиметром

Наиболее распространенные поломки делятся на две основные группы:

  • присутствует контакт там, где он не должен быть;
  • отсутствует контакт там, где он должен быть.

Рассмотрим, как прозвонить однофазный электромотор переменного тока с помощью мультиметра. Он имеет две катушки, одна из которых рабочая, а вторая вспомогательная. На уровень работоспособности двигателя огромное влияние имеют уровень надежности контактов, качество изоляции и правильность намотки.

  1. Первое, что нужно сделать: проверить наличие замыкания на корпус. Тут нужно помнить о том, что все значения на мультиметре будут приблизительные. Чтобы получить точные данные, понадобится более дорогостоящие и точные устройства измерения.
  2. Значение измерений на приборе устанавливаются на максимальные.
  3. Щупы соединяют между собой. Так можно убедиться в том, что сам мультиметр исправен и правильно настроен.
  4. Затем один щуп соединяют с корпусом привода. При наличии контакта можно подсоединять и второй щуп. Отслеживайте показания.
  5. Если ничего не сбоит, коснитесь щупом вывода фаз.
  6. При качественной изоляции прибор будет показывать высокое значение сопротивления. Оно может быть в пределах даже нескольких тысяч мегаом.

Помните, что измеряя сопротивление изоляции мультиметром вы всегда будете получать высокие показания (выше допустимых норм). Это связано с тем, что электродвижущая сила прибора составляет максимум 9 В, а двигатель, как мы знаем выполняет работу с напряжением 220 В или даже 380 В. Закон Ома говорит, что величина сопротивления зависит от величины напряжения, поэтому нужно всегда делать скидку на разницу. 

Обязательной является и проверка целостности обмоток. Нужно прозвонить все концы, которые входят в клеммную коробку агрегата. Если есть обрыв, то проверку лучше остановить, ведь логики в дальнейшей диагностике нет. Сначала нужно поработать над решением этой проблемы.

Зная правила и порядок прозвона однофазного двигателя с помощью мультиметра, вы можете легко экономить на диагностике и ремонте, когда в двигателе действительно присутствуют лишь мелкие поломки. Но если вы понимаете, что все не так просто или просто не понимаете, что не так с вашим электродвигателем, лучше отнести его к профессионалу, который проведет более детальную проверку дорогостоящими и чувствительными приборами.

Проверяем однофазный коллекторный электропривод

Чтобы определить и устранить неисправность в коллекторном двигателе, его, скорее всего, придется разобрать. 

Частые неисправности

Перед разборкой обязательно посмотрите на искрение, которое обычно происходит в контактно-щеточном механизме. В случае, когда вы заметили повышенный уровень искрения, стоит проверить контакт щеток или наличие межвиткового замыкания в самом коллекторе.

Как правило, основные причины, по которым ломаются коллекторные двигатели – это сильно изношенные щетки или почерневший коллектор. Старые щетки обычно меняют на новые. Они должны быть одинаковыми по размеру и форме. Лучше всего ставить оригинальные детали (от того же производителя, что и двигатель). Менять их достаточно просто: снимается (сдвигается) фиксатор или откручивается болт. Некоторые модели двигателей могут требовать смены не только щеток, но и щеткодержателей. Не забудьте о подключении медного поводка к контакту. 

В случае, если щетки в норме, проверьте пружины, которые их прижимают, растянув их.

При потемнении контактной части коллектора, почистите ее, используя мелкую наждачную бумагу. Ее еще называют нулевкой.

Временами на месте, где происходит контакт щеток и коллектора, образуется некая канавка. Ее нужно проточить, используя станок.

Однофазный коллекторный двигатель

Еще одной распространенной поломкой коллекторного однофазного двигателя можно назвать износ подшипников. Если корпус сильно вибрирует во время работы и подшипники бьются, они точно подлежат замене. Если запустить ситуацию, упомянутые детали будут касаться ротора и статора, что может быть чревато их неизбежной заменой. Это уже сложнее и дороже.

Редкие неисправности

Намного реже в коллекторных двигателях случаются обрывы и выгорания обмоток и мест подключения. Также редко можно встретить оплавления, замыкания ламеля пылью графита.

Чтобы избежать таких поломок, во время внешнего осмотра нужно всегда обращать внимание на:

  • цельность обмоток;
  • наличие почернения на обмотках;
  • прочность контакта ламелей коллектора с выводами проводов. Если есть необходимость, то их нужно перепаять;
  • количество графитовой пыли между ламелями коллектора. Обязательно удалите пыль, если нужно;
  • присутствие горелого запаха (это может быть изоляция).

При визуальном осмотре вы обнаружили, что обмотка статора/ротора повреждена? Сдайте ее на перемотку или просто замените новой.

К сожалению, повреждение обмотки не всегда можно увидеть невооруженным глазом, поэтому если очевидных поломок нет, прозвоните их с помощью мультиметра.

Проверка конденсатора с использованием мультиметра

Проверка конденсатора мультиметром

Конечно, наиболее надежный способ проверить неисправный однофазный двигатель с конденсатором – использовать омметр для измерения величины сопротивления. Прибор точно покажет сопротивление конденсатора, а по этому уже можно делать выводы о том, насколько целостным является диэлектрик, от чего напрямую зависит исправность электронного устройства.

В бытовых условиях, когда точных значений от вас никто не требует, а вам нужно лишь узнать причину поломки, достаточно будет и мультиметра. 

Алгоритм проверки следующий:

  • мультиметр переключается в режим измерения Ом;
  • затем нужно выставить верхнее значение сопротивления – бесконечность;
  • произвести измерение сопротивления конденсатора на выводах. 

Если сопротивление будет низким (а это любое значение, помимо бесконечности), то устройство, которое проходит тест, сломано. Тут либо пробит диэлектрик, либо вытек электролит.

Стрелка циферблата на тестере показывает небольшое отклонение, а затем возвращается на исходную позицию? Конденсатор исправен и потихоньку набирает емкость.

Стрелка прибора, которая отклонилась, а затем зафиксировалась на одном из значений также свидетельствует о поломке электронного устройства.

Поломки, которые можно определить с помощью мультиметра

Как мы уже выяснили, мультиметр – незаменимый прибор для быстрой и многопрофильной проверки двигателей на исправность. Он найдется у всех профильных мастеров и во многих домашних мастерских. С его помощью можно выявить основные виды поломок электроприборов, и двигатели не исключение.

Наиболее частыми поломками в электродвигателях и других машинах такого типа являются следующими:

  • оборвавшаяся обмотка на роторе или статоре;
  • наличие короткого замыкания;
  • наличие межвиткового замыкания.

Каждая проблема из списка выше заслуживает более близкого ее рассмотрения.

Оборвалась обмотка

В обрыве обмотки нет ничего удивительного, это самая распространенная неисправность в работе электроприводов. Произойти поломка может и в статоре, и в якоре.

Если в обмотке оборвалась одна фаза, то в этом месте тока не будет, а вот во второй фазе показатель тока будет завышен. Измерить это можно с помощью того же мультиметра в режиме амперметра.

В целом, эта поломка равнозначна потере фазы. Например, если обрыв внезапно произошел в то время, когда привод был в работе, двигатель начинает резко терять мощность и перегреваться. Если защита на агрегате работает правильно, то он отключится. Для решения проблемы, в основном, требуется перемотка.

В ситуации, когда обрыв произошел в роторе, частота колебания тока будет равна частоте колебания и скольжения напряжения. Из внешних признаков: сильное гудение и вибрирование, снижение оборотов привода.

Все это лишь причины поломок, но вот обнаружить их можно только если прозвонить каждую обмотку электромотора, измерив их сопротивление.

Пусковую и рабочую обмотку прозванивают в тех однофазных двигателях, которые работают при переменном напряжении величиной 220 В. Пусковая обмотка должна выдавать сопротивление, большее, чем у рабочей на 150%. 

Для быстрой проверки работоспособности электродвигателя, на мультиметре также можно использовать функцию, которая называется «Прозвонка». Если цепь исправна, вы будете слышать характерный звук прибора, а в некоторых моделях присутствует и световой индикатор. Но если в цепи есть обрыв, звука вы не услышите.

Проверка на наличие короткого замыкания

Одна из привычных всем поломок в электрических двигателях – короткое замыкание на корпус. Чтобы найти поломку такого рода с мультиметром, проделайте следующее:

  • установите измерение сопротивления прибором на максимальное;
  • проверьте исправность самого мультиметра, соединив его щупы между собой;
  • один из щупов подсоедините к корпусу двигателя;
  • оставшийся по очереди присоединяйте к каждой из фаз.

Если двигатель, который вы проверяли, исправен, то сопротивление будет показывать сотни и даже тысячи мегаом. 

Сделать исследование на предмет короткого замыкания в режиме «Прозвонка» еще легче. Нужно проделать те же действия, и если услышите звук (как при прозвонке обмотки), это будет свидетельствовать о наличии нарушений в целости изоляции обмотки, а также наличии короткого замыкания на корпус. 

Надо отметить, что поломка такого типа не просто носит негативное влияние на сам двигатель, но опасна для жизни людей, работающих с машиной (если нет нужных средств защиты).

Проверка на наличие межвиткового замыкания

Проверка обмоток статора на межвитковое замыкание

Последний вид поломки (из самых популярных) – это наличие межвиткового замыкания. 

Межвитковое замыкание – короткое замыкание, происходящее на одной катушке электродвигателя, между ее витками. Внешне такая неполадка проявляется в сильном гудении и заметном снижении мощности.

Обнаружение такой поломки проводится с помощью нескольких способов. Основные из них – токовые клещи и наш любимы мультиметр. 

Во время диагностики измеряется значение тока во всех фазах (обмотка статора) по отдельности. Если одна из них покажет завышенный результат, значит, там есть межвитковое замыкание.

Проверка борно

Если вы все прозвонили согласно инструкции выше, но не избавились от подозрений в неисправности, вскройте борно электродвигателя. Это второе название клеммной коробки. Часто и густо бывает, что крепеж в коробке недостаточно крепко затянут. Провода там тоже могут отгореть. В случае использования гаек для соединения, проверьте протяжку верхней (она прикручивает проводник) гайки и осмотрите ту гайку, что служит для удержания вывода обмоток, которые уходят в двигатель.

Подведем итог

Если следовать всем инструкциям и указаниям в статье, то мультиметром можно обнаружить большинство наиболее распространенных поломок в однофазном электродвигателе, в том числе наличие межвиткового замыкания, короткого замыкания на корпус и обрыва обмоток.

Содержание

  1. Обрыв обмотки электродвигателя
  2. Ремонт электродвигателя. Обрыв обмотки, межвитковое замыкание, снижение сопротивления.
  3. Устранение электрических неисправностей электродвигателя
  4. Как проверить обрыв в обмотках
  5. Как найти межвитковое замыкание
  6. Видео по поиску неисправностей электродвигателя
  7. Неисправности обмоток и их устранение
  8. Замыкание обмотки якоря на корпус
  9. Межвитковые замыкания
  10. Способ определения повреждений по падению напряжения
  11. Обрывы в обмотке якоря
  12. Неисправности в обмотках полюсов и устранение их
  13. Межвитковое замыкание в катушках полюсов
  14. Обрывы в обмотках полюсов
  15. Замыкание обмотки полюсов на корпус

Обрыв обмотки электродвигателя

При эксплуатации электродвигателей время от времени могут возникать неисправности, которые приводят к перерывам в работе станков и других производственных механизмов.

Внутренние неисправности асинхронного двигателя могут быть механическими и электрическими.

К электрическим неполадкам относятся: внутренние обрывы в обмотке статора или ротора,обрыв в питающей сети, нарушения нормальных соединений в пусковой аппаратуре.

При обрыве обмотки статора в нем не будет создаваться вращающееся магнитное поле, а при обрыве в двух фазах ротора в обмотке последнего не будет тока, взаимодействующего с вращающимся полем статора, и двигатель не сможет работать. Если обрыв обмотки произошел во время работы двигателя, он может продолжать работать с номинальным вращающим моментом, но скорость вращения сильно понизится, а сила тока настолько увеличится, что при отсутствии максимальной защиты может перегореть обмотка статора или ротора.

В случае соединения обмоток двигателя в треугольник и обрыва одной из его фаз двигатель начнет вращаться, так как его обмотки окажутся соединенными в открытый треугольник, при котором образуется вращающееся магнитное поле, сила тока в фазах будет неравномерной, а скорость вращения — ниже номинальной. При этой неисправности ток в одной из фаз в случае номинальной нагрузки двигателя будет в 1,73 раза больше, чем в двух других. Когда у двигателя выведены все шесть концов его обмоток, обрыв в фазах определяют мегаомметром. Обмотку разъединяют и измеряют сопротивление каждой фазы.

Если у Вас есть вопросы по поводу ремонта электродвигателей, Вы хотите получить консультацию, рассчитать стоимость или записаться на ремонт — обращайтесь к специалистам «Элпромтехцентр» в отдел по ремонту электрооборудования.

Источник

Ремонт электродвигателя. Обрыв обмотки, межвитковое замыкание, снижение сопротивления.

Поломки электрических машин подразделяется на 2 вида: механические и электрические. В этой статье описаны основные неисправности и способы их устранения в электрической части. А ниже небольшое видео с примером. Основные проблемы:

  • Межвитковые замыкания в обмотках статора, ротора, основных полюсов или якоря;
  • Обрыв обмотки;
  • Пробой изоляции на корпус;
  • Нарушение контактных соединений и разрушение соединений выполненных пайкой или сваркой;
  • Недопустимое снижение сопротивления изоляции между обмотками, между обмотками и корпусом;
  • Увлажнение изоляции.

Электрические повреждения частично могут определяться при внешнем осмотре, а для точной диагностики производят проверку измерительными приборами : мегометром, мультиметром.

Устранение электрических неисправностей электродвигателя

Открыв коробку двигателя вы увидите начала и концы обмоток. Европейское обозначение обмоток V, U, W, единицы — начала, двойками концы. Советское и русское: С1-С4 первая обмотка, С2-С5 вторая, а С3-С6 третья. Некоторые обозначают буквами A, B, C, но это уже отклонение от стандарта.

Если же вы открыли коробку и увидели там провода без ярлыков, маркерных надписей, то вам придется самим выяснить это. Возможно наша статья вам поможет — Как найти начало и конец обмотки электродвигателя.

Перед тестами откручиваем перемычки! На фото выше подключено звездой. Если у вас будет подключено схемой треугольник, то будет 3 параллельных перемычки.

Итак. Берем мультиметр и ставим в режим прозвонки. Для начала поставим один щуп на болт заземления, а вторым проверим каждую обмотку на замыкание на корпус.

Если есть сомнения, то ставим максимальное значение на мультиметре для сопротивления (2000к) и проверяем. Если все исправно, то на приборе должна отображаться единица, означающая бесконечность и невозможность выдать точное значение.

Как проверить обрыв в обмотках

Чтобы быстро определить есть ли обрыв внутри обмоток, нужно поставить щупы мультиметра на начало и конец каждой из обмоток в режиме прозвонки диодов. Если звука нет — обрыв.

Для определения замыкания между обмотками нужно постав щупы на начала обмоток (V1-U1, V1-W1, U1-W1). И аналогично проверить между концами. Если нет проблем, то прозваниваться не должно.

Ещё следует измерить между концом первой обмотки и началом второй (V2-U1), и аналогично с концом второй и началом третей (U2-W1), концом третей и началом первой (W2-V1). Объясню для чего. Если в какой-то обмотке есть обрыв, то эту неисправность не увидите, просто проверив между началами обмоток.

Если у вас в коробке всего 3 вывода, то между ними должно прозваниваться, так как там подключенную схему звезда/треугольник нельзя менять перемычками в коробке и уже все подключено внутри. Только остается ещё проверка на корпус и разбор для визуальной оценки.

Также стоит проверить сопротивление в каждой обмотке, поставив переключатель мультиметра на минимальное значение (200 Ом). Оно должно быть на всех примерно равным. Так проверяем сопротивление уже между витками. О нём ниже.

Как найти межвитковое замыкание

Если вы заметили, что работающий двигатель нагревается неравномерно, то есть одна часть корпуса нагрета сильнее, то это может также свидетельствовать о межвитковом замыкании. Но это не стопроцентный способ.

Для поиска межвиткового замыкания воспользуемся мегаомметром или мультиметром, переводим переключатель на 200 Ом. Ставим поочередно на каждую из обмоток и проверяем сопротивление. Если различие свыше 10-15% лучше отдать на перемотку.

Ток идет по пути наименьшего сопротивления. Когда часть витков исключается из работы, то на той катушке/обмотке сопротивление будет ниже.

Далее можно разобрать и оценить визуально катушки. Возможно даже так определить подгоревшие, оплавленные провода. Придется перематывать двигатель всыпных катушек.

Также можно провести замер тока на работающем электродвигателе. Для начала проверить напряжение, а затем замерить ток. При равном напряжении значение силы тока не должно различаться более чем на 15%.

Видео по поиску неисправностей электродвигателя

Надеюсь данная статья ответила на ваши вопросы. У нас есть статья — Механические неисправности электродвигателя. Если вас интересует как разобрать электродвигатель и устранить механические неисправности.

Источник

Неисправности обмоток и их устранение

Автор: Евгений Живоглядов.
Дата публикации: 28 апреля 2015 .
Категория: Статьи.

Замыкание обмотки якоря на корпус

Такого рода замыкание происходит из-за механических повреждений изоляции. Причинами механических повреждений являются: наличие в пазах выступающих листов активной стали и заусенцев, тугое заполнение паза, неплотная укладка обмотки в пазы, отчего провода под действием центробежных сил при вращении перемещаются в пазу, ослабление бандажей и другое.

Кроме механических повреждений изоляции, причинами замыкания на корпус могут явиться увлажнение изоляции, попадание в пазы и лобовые части припоя, сильный и длительный перегрев машины, распайка соединений и другое.

Замыкание обмотки якоря на корпус можно обнаружить контрольной лампой (рисунок 1, а). При проверке лампу присоединяют одним концом к сети, а другим к коллектору. Второй (свободный) конец сети присоединяют к валу якоря. Загорание лампочки свидетельствует о замыкании обмотки на корпус. Для такой проверки можно пользоваться также мегомметром.

Рисунок 1. Проверка замыкания обмоток на корпус.
а – контрольной лампой; б – мегомметром: 1 – мегомметр; 2 – коллектор; 3 – вал; 4 – подставка

Место замыкания обмотки на корпус можно определить по схеме, приведенной на рисунке 2.

В схеме, приведенной на рисунке 2, а, питание от источника постоянного тока подключают к щеткам через предохранитель П. Ток регулируют реостатом R. Щуп одного из проводов от милливольтметра mV присоединяют к сердечнику или валу якоря, а другим касаются любой пластины коллектора. Источником тока может служить аккумуляторная батарея или сеть постоянного тока напряжением 220 или 110 В. При отыскании повреждения достаточен ток 6 – 8 А. Милливольтметр берут со шкалой до 50 мВ.

При петлевой обмотке присоединение к коллектору производят в двух диаметрально противоположных точках. При волновой обмотке соединение к пластинам производят на расстоянии половины шага по коллектору.

При замыкании на корпус в петлевой обмотке стрелка прибора покажет отклонение, равное сумме падений напряжений в секциях, оказавшихся между секцией, замкнутой на корпус, и той, к которой присоединен щуп (рисунок 2, б, положение I – сплошная стрелка). Щуп, присоединенный к коллектору, передвигают в одну и другую стороны. При его приближении к замкнутой на корпус секции показания прибора будут уменьшаться (положение II – пунктирная стрелка), так как будет уменьшаться число секций, на которых измеряется падение напряжения. Когда щуп будет соединен с секцией, которая замкнута на корпус, стрелка милливольтметра станет на нуль (положение III). Если двигать щуп дальше, то стрелка прибора отклонится в обратную сторону (положение IV).

При проверке волновой обмотки наименьшие показания будут давать пластины коллектора, либо непосредственно замкнутые на корпус, либо замкнутые на корпус через секции обмотки.

Место замыкания определяют также «прослушиванием» обмотки (рисунок 2, в). Для этого аккумуляторную батарею и зуммер 3 присоединяют к валу якоря и любой коллекторной пластине. К валу присоединяют также один вывод телефона 1; другой вывод его перемещают по коллектору 2. Чем ближе перемещаемый проводник к замкнутой пластине или секции, тем слабее шум в телефоне. При касании проводником замкнутой на корпус секции шум исчезает.

Если указанные выше способы не дают положительных результатов, то приходится путем распайки делить обмотку на части и проверять мегомметром каждую часть в отдельности. При обнаружении замыкания в одной из частей обмотки ее продолжают делить на части до тех пор, пока не будет обнаружена секция, замкнутая на корпус.

Замыкания на корпус устраняют следующим образом:

  1. если замыкание произошло в местах выхода секций из пазов, то вгоняют под секцию небольшие клинья из фибры, бука или другого изоляционного материала;
  2. если замыкание произошло в пазовой части секции, то секцию переизолируют или заменяют новой;
  3. при отсыревании обмотки ее прослушивают;
  4. если обнаружено замыкание пластин на корпус, то следует произвести ремонт коллектора с разборкой.

Межвитковые замыкания

Такой вид замыканий представляет собой соединение витков внутри обмотки вследствие повреждения изоляции обмоточных проводов. Чаще всего межвитковые замыкания происходят при повреждении изоляции проводников во время рихтовки и осадки катушек, при укладке обмотки, из-за попадания припоя или стружки между витками, при пробое обмотки на корпус, вследствие перекрещивания проводов в пазовой части при всыпной обмотке и тому подобное.

Межвитковые замыкания могут быть в одной или нескольких секциях якоря или между секциями вследствие замыкания смежных пластин коллектора. При замыкании между концами секции или между пластинами коллектора, а также при соединении между собой отдельных витков секции в обмотке якоря образуются замкнутые контуры.

В петлевой обмотке замыкание между двумя смежными пластинами вызывает замыкание только секции, которая присоединена к этим пластинам, и число действующих в обмотке витков уменьшается на число витков, заключающихся в одной секции.

В волновой обмотке замыкание между двумя смежными пластинами вызывает замыкание ряда секций, которые заключены в одном полном обходе вокруг якоря. Число их равно числу пар полюсов машины.

В короткозамкнутых контурах при вращении их в магнитном поле индуктируется электродвижущая сила (ЭДС), которая вызывает большие токи короткого замыкания вследствие малого сопротивления этих контуров. Короткозамкнутые витки, появившиеся во время работы машины, сильно разогреваются проходящим через обмотку током и обычно сгорают.

Как определить межвитковое замыкание электродвигателя? У якорей с волновой обмоткой, а также в обмотках, имеющих уравнительные соединения при значительном числе замкнутых секций, невозможно по нагреву определить короткозамкнутую ветвь, так как нагревается весь якорь. Иногда место витковых замыканий может быть обнаружено при внешнем осмотре по обуглившейся и сгоревшей изоляции секции.

Наиболее простые и часто встречающиеся случаи (например, замыкания витков одной секции, между соседними коллекторными пластинами или же между соседними секциями, находящимися в одном слое обмотки) обнаруживаются по падению напряжения, прослушиванием и другими способами.

Способ определения повреждений по падению напряжения

Рисунок 3. Проверка отсутствия замыкания между витками якоря по падению напряжения

Такой способ (рисунок 3) заключается в следующем. К паре коллекторных пластин 1 подводится постоянный ток с помощью щупов 3. Щупами 2 измеряют падение напряжения на этой же паре пластин. При замыкании в секции, которая присоединена к проверяемой паре пластин, получается меньшее падение напряжения при одном и том же токе, чем на другой паре пластин, между которыми нет замыкания. Чем больше короткозамкнутых витков, тем меньше падение напряжения. Наименьшее падение напряжения (или равное нулю) будет при замыкании между самими коллекторными пластинами.

Таким образом проверяется весь якорь и производится сравнение результатов измерений. Проверку якоря следует производить при поднятых щетках. Параметры схемы такие же, как и на рисунке 2, а.

Чтобы предупредить повреждение милливольтметра (рисунок 3), необходимо сначала прикладывать к коллектору щупы 3, а затем щупы 2; отнимать щупы нужно в обратном порядке.

Хорошие результаты этот способ дает при определении замыканий между витками в секции с небольшим количеством витков (стержневые обмотки). В многовитковых секциях при замыкании одного-двух витков разница в показаниях милливольтметра на коллекторных пластинах исправной секции и поврежденной может оказаться незначительной.

На рисунке 4 показаны схемы для определения межвитковых замыканий с помощью телефона и стальной пластины. Испытательная установка состоит из электромагнита 1, питаемого переменным током повышенной частоты. Якорь 3 устанавливают над электромагнитом. При межвитковом замыкании в какой-либо секции в ней будет проходить большой ток, что обнаружится по нагреву. С помощью телефона 2 и электромагнита 4 можно быстро определить паз с поврежденной секцией. При исправных секциях обмотки в телефоне 2 слышен слабый, одинаковой силы звук. Если же одна из секций имеет межвитковое замыкание, то звук в телефоне заметно усиливается.

Рисунок 4. Проверка якоря на межвитковое замыкание.
а – с помощью телефона; б – с помощью стальной пластины

Для полной проверки обмотки нужно переставлять электромагнит 4 по зубцам якоря, пока последний не будет обойден кругом. Если к зубцам сердечника, охватывающим неисправную секцию, поднести тонкую стальную пластину 5 (рисунок 4, б), то она начнет дребезжать. Этим способом обнаруживается замыкание смежных пластин коллектора, которое вызывает те же явления, что и межвитковое замыкание.

Для определения межвитковых замыканий может быть использована схема, показанная на рисунке 2, в. Для этого второй проводник присоединяют не к валу, как показано на рисунке, а к коллекторной пластине. Провода от телефона 1 присоединяют к двум смежным пластинам.

Секцию, имеющую витковое замыкание, обычно заменяют новой. Переизолировкой одного лишь места замыкания можно ограничится только в случае неполного контакта в месте замыкания, да и то при отсутствии иных повреждений изоляции.

В случае необходимости (в качестве временной меры) при небольшом числе коллекторных пластин производят выключение из работы поврежденных секций. Выключение одной секции не отражается заметным образом на коммутации машины.

Обрывы в обмотке якоря

Обрывы в обмотке возникают вследствие выплавления припоя из-за перегрева обмоток при перегрузках, короткого замыкания, надлома от частых изгибаний лобовых частей обмотки и тому подобного. Обрывы чаще всего происходят в обмотках из тонкого провода из-за его малой механической прочности. Обрыв обмотки или плохой контакт сильно ухудшает коммутацию машины и может вызвать значительное искрение на коллекторе и его подгорание. Если якорь работает длительное время с обрывом, то образующаяся в месте обрыва дуга может постепенно прожечь изоляцию и привести к замыканию обмотки на корпус.

В петлевой обмотке обрыв сопровождается искрением на коллекторе и подгоранием двух смежных пластин, к которым присоединена поврежденная секция. При волновой обмотке подгорает несколько пар соседних пластин (по числу полюсов), к которым присоединены секции одной последовательной цепи этой обмотки. При этом подгорают обращенные друг к другу края соседних пластин.

Как при плохом контакте, так и при обрыве при наличии уравнительных соединений могут подгореть, кроме пластин, относящиеся к неисправным секциям, и коллекторные пластины, отстоящие от них на двойное полюсное деление и связанные с ними уравнительными соединениями. Место обрыва можно определить по падению напряжения.

При обрыве какой-либо секции (рисунок 5, а) не будет тока во всей половине обмотки, в которой находится неисправная секция, поэтому прибор везде покажет нуль (положения II и III), кроме случая, когда провода прибора будут присоединены к концам оборванной секции. При этом цепь будет замкнута через прибор и стрелка его отклонится так же, как если бы провода прибора были присоединены непосредственно к источнику тока (положение I).

Рисунок 5. Отыскание одного (а) и двух (б) обрывов в петлевой обмотке

При двух обрывах (рисунок 5, б), если замыкать попарно пластины коллектора, прибор ничего не покажет на всем участке между пластинами, к которым подведено напряжение. Для нахождения мест обрывов поступают следующим образом: один из щупов от проводов, соединенных с прибором, устанавливают на коллекторную пластину, к которой подводится питание, а другой перемещают по коллектору, начиная от другого подводящего питание щупа. При этом показания прибора будут максимальными (положение IV). Когда передвигаемый по коллектору щуп «пройдет» место обрыва, прибор покажет нуль (положение V). Найдя один обрыв, таким же образом отыскивают и другой.

При обрывах в волновой обмотке наибольшее отклонение будет иметь место на нескольких парах пластин, находящихся попарно на расстоянии шага по коллектору друг от друга. Обрывы в якоре, имеющем параллельные ветви, могут быть также определены измерением их сопротивления. При обрыве одной из секций сопротивление обмотки резко возрастает.

Рисунок 6. Установка для проверки правильности соединения обмотки якоря с пластинами коллектора

После укладки обмотки якоря в пазы сердечника она должна быть проверена на правильность соединения с пластинами коллектора. Эту проверку производят после того, как концы секций обмотки зачищены до металлического блеска и заложены в прорези коллекторных пластин. На рисунке 6 показана схема установки, необходимой для этой цели. На деревянных стойках, привернутых к деревянному основанию 3, устанавливается якорь 2. Под якорем помещен электромагнит 5, сердечник которого изготовлен из П-образных листов электротехнической стали. Обмотка электромагнита 8 состоит из двух катушек, которые соединены так, что при прохождении по ним тока возникают два разноименных магнитных полюса С и Ю. Катушки получают питание от выпрямителя 4 через реостат 7. Выключателем служит ножная педаль 1. Вилкой 9 милливольтметр 6 соединяется с двумя смежными пластинами. В момент размыкания контактов педалью 1 в обмотке якоря индуктируются импульсы. При правильном соединении обмотки и положении вилки 9 на любых смежных пластинах коллектора стрелка милливольтметра 6 должна отклоняться в одну и ту же сторону и приблизительно до одного и того же деления шкалы.

Неисправности в обмотках полюсов и устранение их

Катушки полюсов меньше подвергаются повреждениям, так как они неподвижно закреплены на полюсах. Чаще всего катушки повреждаются на углах внутри катушки, у места выхода внутреннего выводного конца вследствие неправильной установки его вначале намотки и тому подобное. К причинам повреждения можно отнести нарушение изоляции из-за того, что она плохо натянута, неравномерную укладку изоляции, выступы и заусенцы металлического каркаса и другое. Наиболее часто встречаются следующие неисправности обмоток полюсов: обрыв или плохой контакт, межвитковые замыкания и замыкание обмоток на корпус.

Межвитковое замыкание в катушках полюсов

Поврежденная катушка со значительным числом замкнутых витков имеет уменьшенное сопротивление. Ее можно легко обнаружить, если измерить сопротивления всех катушек измерительным мостом, тестером, методом амперметра и вольтметра (постоянным током) и другими. При измерении сопротивления методом амперметра и вольтметра испытуемая катушка включается в сеть через сопротивление, которым может регулироваться ток в катушке. По показаниям амперметра и вольтметра находят по закону Ома сопротивление катушки. Сопротивление всех катушек, не имеющих витковых замыканий, одинаково. В катушках с замкнутыми витками будет меньше сопротивление, чем в катушках, не имеющих замкнутых витков.

Замыкания в обмотках полюсов, если они находятся не на выводных концах, устраняют частичной или полной перемоткой. С катушки отматывают витки и одновременно производят осмотр. Если витковые замыкания вызваны увлажнением изоляции, то катушку следует просушить.

Обрывы в обмотках полюсов

Обрывы в обмотках полюсов бывают только в катушках, которые изготовлены из проволоки небольшого сечения. Место обрыва можно определить вольтметром, которым измеряют напряжение на всех катушках (рисунок 7, а). При обрыве в катушке вольтметр, подключенный к зажимам поврежденной катушки, покажет полное напряжение сети. На исправных катушках вольтметр не даст отклонений. Обрыв можно также обнаружить контрольной лампой или мегомметром. Обрыв, а также плохой контакт в доступных местах устраняют пайкой.

Рисунок 7. Определение места обрыва (а) и замыкания на корпус (б) в обмотках полюсов

Замыкание обмотки полюсов на корпус

Замыкание обмотки полюсов на корпус можно определить, если через всю обмотку пропустить постоянный ток. Один конец вольтметра (рисунок 7, б) присоединяют к корпусу машины, а другой (свободный) – к выводу катушки. Вольтметр покажет наименьшее напряжение на выводах катушки, замкнутой на корпус.

Проверка последовательной обмотки или обмотки добавочных полюсов производится при пониженном напряжении, величина которого регулируется включенным последовательно реостатом. Вместо вольтметра для измерения напряжения применяют милливольтметр.

Рисунок 8. Проверка полярности полюсов

Замкнутую на корпус катушку можно обнаружить контрольной лампой или мегомметром. Для этого катушки разъединяют и проверяют отдельно. Для устранения замыкания на корпус снимают катушку с сердечника полюса и осматривают места соприкосновения ее как с корпусом, так и со станиной. Замыкания на корпус устраняют переизолировкой катушек, установкой изоляционных прокладок, сушкой при увлажнении и другими способами.

Правильность соединения катушек полюсов проверяется компасом или намагниченной стрелкой (рисунок 8). Для этого по обмоткам полюсов пропускают постоянный ток и к каждой катушке подносят компас или стрелку. Если чередование полярности полюсов правильное, то при перемещении, например, компаса внутри машины (при вынутом якоре) от полюса к полюсу стрелка компаса будет поочередно притягиваться к полюсам то одним, то другим концом.

Источник: Логачев И. С., Родин Г. Г., «Ремонт обмоток машин постоянного тока» — Москва: Энергия, 1968 — 128 с.

Источник

В этом обзоре мы разглядим обычные неисправности трехфазных асинхронных электродвигателей и методы их предупреждения и устранения.

Электрические неисправности электродвигателя

Электрические неисправности мотора всегда связаны с обмоткой.

  1. Межвитковое замыкание может появиться при ухудшении изоляции в границах одной обмотки. Вероятные предпосылки: перегрев обмотки, плохая изоляция, износ изоляции вследствие вибрации. Найти межвитковое замыкание бывает трудно. Основной способ диагностики – сопоставление сопротивления и рабочего тока всех 3-х обмоток. 1-ые симптомы межвиткового замыкания – завышенный нагрев мотора и падение момента на валу. При всем этом по одной из фаз ток больше, чем по двум другим.
  2. Замыкание между обмотками происходит из-за смещения обмоток, механической вибрации и ударов. При отсутствии подабающей электрической защиты может появиться куцее замыкание и пожар.
  3. Замыкание обмотки на корпус. При данной неисправности электродвигатель может продолжать работать, если некорректно выполнены заземление и защита от недлинного замыкания. Но в работе он будет смертельно небезопасен, так как его потенциал будет находиться под фазным напряжением.
  4. Обрыв обмотки. Эта неисправность равносильна пропаданию фазы. Если обрыв происходит в работе, то мотор резко теряет мощность и начинает перенагреваться. При верно выполненной защите мотор отключится, так как ток по другим фазам будет повышен.

Для устранения большинства из этих поломок нужна перемотка мотора.

Механические неисправности электродвигателя

Механические неисправности электродвигателя связаны с его устройством.

  1. Износ и трение в подшипниках. Проявляется в повышении механической вибрации и шума при работе. В данном случае нужна замена подшипников, по другому неисправность приведет к перегреву и падению производительности мотора.
  2. Проворачивание ротора на валу. Ротор может крутиться в магнитном поле статора, а вал будет неподвижен. Нужна механическая фиксация ротора на валу.
  3. Зацепление ротора за статор. Эта неувязка связана с механической поломкой подшипников, их посадочных мест либо корпуса мотора. Не считая того, схожая неисправность приводит к повреждению обмотки статора. Фактически не подлежит ремонту.
  4. Повреждение корпуса мотора. Может происходить из-за ударов, завышенных нагрузок, неверного крепления либо низкого свойства мотора. Ремонт является трудозатратным из-за проблем соосной установки фронтального и заднего подшипников.
  5. Проворачивание либо повреждение крыльчатки обдува. Невзирая на то, что мотор продолжит работать, он будет перенагреваться, что значительно уменьшит срок его службы. Крыльчатку нужно закрепить (для этого применяется шпонка либо стопорное кольцо) либо поменять.

Аварийные ситуации при работе электродвигателя

Есть неисправности, не связанные конкретно с движком, но действующие на его работу, свойства и срок службы. Большая часть этих дефектов вызваны механической перегрузкой, повышением тока, и, как следствие, перегревом обмоток и корпуса.

  1. Повышение нагрузки на валу вследствие заклинивания привода или приводимых устройств.
  2. Перекос напряжения питания, который может быть вызван неуввязками питающей сети или внутренними неуввязками привода.
  3. Пропадание фазы, которое может произойти на любом участке питания мотора – от питающей трансформаторной подстанции до обмотки мотора.
  4. Неувязка с обдувом (остыванием). Может появиться из-за повреждения крыльчатки мотора при своем охлаждении, из-за останова вентилятора наружного принудительного остывания либо вследствие значимого увеличения температуры окружающей среды.

Методы защиты электродвигателя

Для защиты электродвигателя от внутренних и наружных дефектов, также для минимизации последующих трудозатрат по его ремонту используют разные устройства.

1. Мотор-автоматы и термические реле

Мотор-автоматы (автоматы защиты мотора) и термические реле применяют для обнаружения превышения тока по одной либо всем фазам мотора. В случае превышения через некоторое время происходит отключение привода.

В отличие от мотор-автомата, у термического реле нет силовой коммутации. Оно имеет только управляющий контакт, который размыкает питание силовой цепи. Мотор-автомат является самостоятельным коммутационным устройством, способным выключать мотор.

Минус термического реле заключается в отсутствии защиты от недлинного замыкания. Мотор-автомат имеет защиту от перегрузки и электромагнитную защиту от недлинного замыкания, которая одномоментно срабатывает и выключает мотор при превышении тока уставки в 10-20 раз.

Данные устройства применяются более обширно и при правильной установке и настройке в состоянии с большой толикой вероятности защитить электродвигатель и оборудование от поломки и других негативных последствий.

2. Электронные реле защиты движков

Данный вид защиты обеспечивает большой выбор разных защит. Главным элементом таких реле является процессор, который анализирует секундные значения напряжения и тока и воспринимает решения на базе данных опций. Это может быть выдача сигнала на индикацию или на отключение мотора.

3. Термисторы и термореле

Когда по некий причине не сработала термическая защита по перегрузке, последний предел обороны — термозащита. Вовнутрь обмотки устанавливается термочувствительный элемент (обычно, термистор либо позистор), который меняет свое сопротивление зависимо от температуры. При скрещении порога срабатывает соответственная защита, и мотор отключается.

Может быть использование более обычных дискретных термореле (термоконтактов), которые размыкают контрольную либо термическую цепь, что приводит к аварийной остановке электродвигателя.

4. Преобразователи частоты

Обычно преобразователи частоты располагают несколькими видами защиты – по превышению момента и тока, по превышению напряжения, обрыву фазы и проч. Не считая того, может быть ограничение момента и тока. В данном случае на мотор будет подаваться напряжение с наименьшим уровнем и частотой, если будет найдена перегрузка. При всем этом будет выдано соответственное сообщение оператору, а мотор может продолжать работать.

Также производители частотных преобразователей советуют устанавливать защитный автомат на входе ПЧ, термическое реле на выходе и термисторную защиту.

Базисные характеристики сопротивления обмоток компрессора холодильника

Компрессор можно именовать основной частью холодильника, его исправность гарантирует поддержание данной температуры в холодильной камере и в морозильнике. Если холодильник не стал замораживать, то прежде всего инспектируют исправность компрессора. Этом можно выполнить без помощи других в домашних критериях полагаясь на данные, приведенные в таблице сопротивления обмоток.

Проверка компрессора

Где находятся обмотки компрессора?

С оборотной стороны холодильника находится компрессор. Он расположен в защитном кожухе, обычно темного цвета. Компрессор представляет собой электродвигатель, в каком есть обмотка. У большинства марок холодильников компрессорные агрегаты особо не отличаются друг от друга, к примеру, Атлант, Индезит, Бирюса, Саратов.

Компрессор

Дабы найти рабочее состояние агрегата нет необходимости снимать защитный кожух. Для измерения сопротивления пригодятся выводы из компрессора. Выводов всего три, каждый отходит от определенной обмотки: общей, рабочей и пусковой.

Электрооборудование мотор-компрессор

Реле, которое участвует в запуске мотора, конкретно соединено с этими контактами. В последних разработках в качестве регулятора скорости включения применяются электросхемы.

Как проверить сопротивление обмоток?

Дабы проверить на исправность компрессор, нужно выяснить какое сопротивление обмоток, выполнить это можно с помощью специального устройства — мультиметра (тестера).

Мультиметр

Проверка компрессора мультиметром:

  1. Извлечь пусковое реле: снять крышку и отсоединить реле от контактов.
  2. При помощи тестера замерить сопротивление. При исправном компрессоре сопротивление между верхним и левым контактами тестера составляет 20 Ом (пусковая обмотка), а между верхним и правым (сопротивление рабочей обмотки компрессора холодильника) — порядка 15 Ом. При всем этом между левым и правым самое большее значение — 30 Ом.
  3. На усредненные характеристики, приведенные выше оказывает влияние марка холодильника. Так, сопротивление обмоток компрессора холодильника Бирюса, будет отличаться от данных холодильника Атлант, Индезит, Саратов. Но характеристики не должны превосходить разность в 5 Ом. В неприятном случае данные мультиметра будут указывать на неисправность компрессора.
  4. Не считая того, проверяется сопротивление меж проходными проводами и кожухом агрегата. Для этого щуп мультиметра присоединяется к медной части штуцера (любого), другой щуп крепится к проходным контактам. На исправность компрессора укажет значок обрыва, а на суровую поломку укажет какое-либо значение сопротивления.

тестер

Выяснить четкие данные можно из особых таблиц, где обозначено, какое сопротивление пусковой и рабочей обмоток компрессора холодильника типично для определенной марки. Так, в отдельной таблице можно отыскать характеристики для всех марок, к примеру, холодильника Бирюса либо Саратов, Атлант, Индезит.

Страница 2 из 2

Б. ПОВРЕЖДЕНИЯ В ОБМОТКАХ МАШИН ПЕРЕМЕННОГО ТОКА
I. Короткие замыкания в обмотках переменного тока (в статорных обмотках и роторных обмотках асинхронных двигателей). Возможны следующие замыкания: между витками одной катушки, между катушками или катушечными группами одной фазы, между катушками разных фаз.
Основным признаком, по которому можно найти замыкание в обмотках переменного тока, является нагрев короткозамкнутого контура. Для этого необходимо ощупать обмотку после ее отключения. Ощупывание обмотки следует производить только при выключенной обмотке. Чтобы найти дефект в фазном роторе асинхронного двигателя, ротор затормаживают и включают статор в сеть. В случае замыкания значительной части обмотки ротора или если двигатель имеет большую мощность, затормаживание при номинальном напряжении становится невозможным, так как вызывает большую силу тока в статоре и срабатывание защиты двигателя. В таких случаях испытание рекомендуется производить при пониженном напряжении.

признаки замыкания в обмотках
Рис. 15. Пояснение признаков замыкания в обмотках при соединении звездой (а) и треугольником (б)

В некоторых случаях короткозамкнутую часть обмотки можно сразу определить по внешнему виду — по обуглившейся изоляции.
Следует иметь в виду, что при наличии параллельных ветвей в обмотке короткое замыкание в одной из ветвей фазы (при значительном числе замкнувшихся витков) может вызвать нагрев и другой ветви, не имеющей короткого замыкания, так как последняя оказывается замкнутой витками дефектной ветви обмотки (нахождение повреждения в подобных случаях см. ниже). Фазу, имеющую замыкание, можно найти по несимметрии потребляемого тока из сети. При соединении обмотки звездой (рис. 15, а) в фазе, имеющей замыкание, ток (A3) будет больше, чем в двух других фазах. При соединении обмотки треугольником (рис. 15, б) в двух фазах сети, к которым присоединена дефектная фаза, токи (А1 и A3) будут больше, чем в третьей фазе (А2), Опыт определения дефектной фазы рекомендуется производить при пониженном напряжении (1/3— 1/4 номинального); в случае асинхронного двигателя с фазным ротором обмотка последнего может быть разомкнута, а в случае асинхронного двигателя с короткозамкнутым ротором или же в случае синхронного двигателя ротор может вращаться или быть заторможенным. При проведении опыта с синхронным двигателем в неподвижном состоянии его обмотка возбуждения должна быть замкнута накоротко или же на разрядное сопротивление.
В опыте с неподвижной синхронной машиной токи в ее фазах будут различаться даже в том случае, если машина исправна, что объясняется магнитной асимметрией ее ротора. При поворачивании ротора эти токи будут изменяться, однако при исправной обмотке пределы их изменений будут одинаковы.
Фаза, имеющая замыкание, может быть определена и по значению ее сопротивления постоянному току, измеренного мостом либо по методу амперметра — вольтметра; меньшее сопротивление будет иметь фаза с замыканием. Если же нет возможности разъединить фазы, то производят измерения трех междуфазных сопротивлений. В случае соединения фаз звездой (рис. 15, а) наибольшим будет междуфазное сопротивление, измеренное на концах фаз, не имеющих замыканий; два других сопротивления будут равны между собой и будут меньше первого. В случае соединения фаз треугольником (рис. 15, б) наименьшее сопротивление будет на концах фазы, имеющей замыкание; два других измерения дадут большие значения сопротивления, причем оба они будут одинаковы.
Катушечные группы или катушки, имеющие замыкания, могут быть найдены при питании переменным током всей обмотки или только дефектной фазы по нагреву или по значению падения напряжения на их концах. Катушечные группы или катушки, имеющие замыкание, будут сильно нагреты и иметь меньшее падение напряжения (при измерении напряжения удобно пользоваться острыми щупами, которыми прокалывают изоляцию соединительных проводов). В этом случае, так же как и выше, дефектные катушки можно найти по значению сопротивления постоянному току.
Замыкания в обмотке генератора могут быть найдены по значению индуктированной ЭДС в фазах обмотки, в ее катушечных группах или в катушках. Для этого генератор пускают в ход, дают ему небольшое возбуждение и производят измерения фазных напряжений; если обмотки соединены треугольником, то фазы следует разъединить. Фаза, имеющая замыкание, будет иметь меньшее напряжение. Для нахождения катушечной группы или катушки, имеющей замыкание, измеряют напряжение на их концах.- Для высоковольтной машины опыт можно произвести при остаточном напряжении.
В тех случаях, когда необходимо выяснить, имеется ли дефект в статорной или роторной обмотке, поступают следующим образом.
Статорную обмотку включают на пониженное напряжение (7з—1Д номинального) при разомкнутом роторе и измеряют напряжение на кольцах ротора, медленно проворачивая ротор. Если напряжения на кольцах ротора (попарно) не равны между собой и меняются в зависимости от положения ротора по отношению к статору, то это указывает на замыкание в статорной обмотке. При замыкании в роторной обмотке (при исправной статорной) напряжение между кольцами ротора будет неодинаковым и не будет меняться в зависимости от положения ротора. Опыт может быть произведен при питании ротора и измерении напряжения на зажимах статора, при этом получится обратная картина. Подводимое к ротору напряжение должно составлять 1/3—номинального напряжения на кольцах ротора, т. е. напряжения на кольцах при неподвижном роторе и статоре, включенном на номинальное напряжение.
После того как установлено, какая из обмоток (роторная или статорная) имеет соединение между витками, определяют дефектную фазу, катушечную группу или катушку рассмотренными выше способами.
В сложных случаях (при замыкании большого числа катушек) или когда короткозамкнутую ветвь по каким-либо причинам не удается выявить, прибегают к методу деления обмотки на части. Для этого обмотку делят сначала пополам и проверяют мегомметром соединение между собой этих частей. Затем одну из этих частей делят снова на две части и каждую из них проверяют на соединение с первой половиной и так далее до тех пор, пока не будут найдены катушки, имеющие соединение.
Для наглядности на рис. 16 схематически представлен этот способ нахождения дефекта в фазе, имеющей восемь катушечных групп, при наличии соединения между катушками 2 и 6 катушечных групп. Деление обмотки на части показано в последовательном порядке.
Способ последовательного деления на равные части позволяет обойтись меньшим числом распаек, чем при делении всей обмотки на катушечные группы.
Если замыкание произошло между двумя фазами, то место соединения находят аналогично предыдущему, разъединяя обмотки пофазно. Катушки одной из фаз, имеющей соединение, разделяют на две части и мегомметром проверяют наличие соединений каждой такой половины со второй фазой. Затем ту часть, которая соединена с другой фазой, снова разделяют на две части и каждую из них снова проверяют и т. д.
Метод последовательного деления на части применяют при нахождении замыкания в обмотках, имеющих параллельные ветви. В этом случае необходимо дефектные фазы разделить на параллельные ветви и определить сначала, между какими ветвями имеется соединение, а уж затем применить к ним этот метод.
Так как замыкания между фазами или катушечными группами чаще бывают в лобовых частях обмотки или соединительных проводниках, то иногда удается сразу же найти место соединения путем приподымания и шевеления лобовых частей с одновременной проверкой мегомметром.

Нахождение короткого замыкания между катушками одной фазы
Рис. 16. Нахождение короткого замыкания между катушками одной фазы

2. Обрывы и плохой контакт в обмотках переменного тока.
Прежде чем приступить к отысканию обрывов или плохого контакта в обмотке, необходимо убедиться в отсутствии этих дефектов вне обмотки. Так, признаки обрыва или плохого контакта в статорных обмотках могут быть следствием перегорания предохранителя, недостаточного прилегания контактов пусковой аппаратуры, неплотности контактов выводных концов и т. д. Эти дефекты могут оказаться и в контактном кольце асинхронного двигателя вследствие недостаточного контакта одной из щеток и т. д. После того как установлено, что дефект находится в самой обмотке, необходимо приступить к тщательному осмотру всех паек, особенно в хомутиках роторов.
Фаза, имеющая обрыв, может быть найдена мегомметром. Для этого в случае соединения обмотки звездой один проводник от мегомметра присоединяют к нейтрали, а вторым поочередно касаются концов всех фаз. В случае соединения треугольником необходимо разъединить обмотку в одной точке и испытать каждую фазу в отдельности.
При недоступной нейтрали обмотки, соединенной звездой, фазу, имеющую обрыв, можно найти по показаниям амперметров или при помощи мегомметра. Для этого касаются двумя проводниками от мегомметра попарно всех выводов обмотки. В случае соединения фаз треугольником найти фазу, имеющую обрыв, при помощи мегомметра без разъединения обмотки не представляется возможным. В этом случае фазу, имеющую обрыв, можно найти, измеряя омическое сопротивление обмотки между выводами. При измерениях между точками А и В (рис. 17), а также между точками А и С получим одинаковые значения сопротивлений, в то время как между точками В и С (концами фазы, имеющей обрыв) сопротивление будет равно сумме сопротивлений двух других фаз.
Для генератора с обмотками, соединенными звездой, обрыв в какой-либо фазе можно определить по отсутствию в ней напряжения. Если обмотки соединены треугольником, то в случае обрыва в одной фазе междуфазные напряжения при холостом ходе остаются одинаковыми, и поэтому для нахождения поврежденной фазы необходимо либо разъединить обмотки и измерить напряжение на зажимах каждой фазы, либо определить дефектную фазу, измеряя сопротивления (рис. 17).

нахождение обрыва в обмотке, соединенной треугольником
Рис. 17. Пояснение к нахождению обрыва в обмотке, соединенной треугольником

Чтобы найти катушечную группу или катушку, имеющую обрыв, одним проводником мегомметра касаются одного конца фазы, а другим — поочередно всех соединительных проводов между катушечными группами и катушками; при миновании частей обмоток с обрывом мегомметр дает большие показания (соответственно сопротивлению изоляции испытуемой обмотки). При этом испытании удобно пользоваться острыми щупами во избежание зачистки соединительных проводов. Количество зачисток или проколов изоляции можно уменьшить. Для этого надо одним проводником от мегомметра коснуться сначала середины обмотки фазы, а вторым — поочередно концов фазы и этим определить половину, имеющую обрыв, а затем коснуться средней точки дефектной половины и так далее, пока не будет найдена катушка с обрывом.
Наиболее вероятные места обрывов в проволочных обмотках находятся в междукатушечных соединениях, а в стержневых обмотках — в пайках (хомутиках). В короткозамкнутых обмотках роторов асинхронных двигателей и пусковых обмотках синхронных двигателей обрывы или плохой контакт часто бывают из-за плохой приварки или пайки в местах соединения стержней с замыкающими кольцами. Обрывы или плохой контакт в пусковых обмотках часто являются следствием окисления контактных поверхностей замыкающих колец, части которых соединены между собой болтами.
Обрывы в короткозамкнутых обмотках могут иметь место в пазовых частях в результате механических повреждений. В роторах асинхронных двигателей с алюминиевой литой обмоткой обрывы в пазовой части могут быть из-за дефектов при литье. Для того чтобы убедиться в наличии обрыва или плохого контакта в короткозамкнутых обмотках, производят следующий опыт. Ротор затормаживают и в статор подают напряжение, равное  1/4—1/5 номинального. Затем ротор медленно проворачивают и измеряют силу тока в статоре (в одной или трех фазах). При исправном роторе сила тока в статоре во всех положениях ротора будет одинаковой, а при обрыве или плохом контакте будет изменяться в зависимости от положения ротора.

Схема для обнаружения плохого контакта в хомутиках роторной обмотки асинхронного двигателя
Рис. 18. Схема для обнаружения плохого контакта в хомутиках роторной обмотки асинхронного двигателя

Места обрывов или плохого контакта в наружных частях короткозамкнутых обмоток асинхронных двигателей и демпферных (пусковых) обмоток синхронных машин могут быть найдены тщательным наружным осмотром.
В пазовой части стержня можно найти обрыв следующим способом.
Ротор несколько выдвигают из статора и надежно предохраняют от проворачивания: в обмотку статора подают пониженное напряжение (1/2—1/3 номинального). На каждый лаз выступающей части ротора поочередно накладывают тонкую стальную пластинку, перекрывающую два зубца ротора. При нахождении пластинки над пазами, в которых нет стержней с обрывом, она будет притягиваться и дребезжать; как только пластинка перекроет паз с поврежденным стержнем, притяжение и дребезжание станут значительно слабее или вовсе исчезнут.
Во избежание перегрева обмоток опыт следует производить достаточно быстро. Плохой контакт в обмотке можно обнаружить по методу падения напряжения при питании обмотки постоянным током. Схема для обнаружения плохого контакта в хомутиках ротора асинхронного двигателя показана на рис. 18; она аналогична приведенной выше (см. рис. 5). В поврежденном хомутике падение напряжения будет больше, чем в исправных хомутиках с хорошей пайкой.
3. Замыкание обмоток переменного тока на корпус. Фазу обмотки, замкнутую на корпус, можно определить мегомметром после разъединения (при наличии шести выводных концов у статорных обмоток) или распайки фаз.
Точное определение места замыкания облегчается «прожиганием». Применительно к машине низкого напряжения операция состоит в том, что один конец фазы присоединяют к полюсу сети,   а   второй — к   корпусу   через   предохранитель  30—40 А. Прохождение тока через место замыкания на корпус вызовет появление дыма. Напряжение надо постепенно повышать до полного пробоя. На машине высокого напряжения «прожигание» можно произвести либо приложением низкого напряжения, либо от специальной испытательной установки.

Схема для нахождения соединения обмотки переменного тока с корпусом
Рис. 19. Схема для нахождения соединения обмотки переменного тока с корпусом

Место замыкания обмотки на корпус можно найти также методом деления ее на части либо методом питания постоянным током.
Деление на части состоит в том, что мегомметром определяют фазу, имеющую замыкание на корпус, делят ее пополам распайкой междукатушечных соединений, а затем опять мегомметром определяют часть обмотки, имеющую соединение с корпусом. Подобное деление продолжают до тех пор, пока не будет найдена дефектная катушечная группа или катушка. Одновременно с проверкой мегомметром рекомендуется шевелить катушки. Изменение отклонении стрелки мегомметра укажет на наличие корпусного замыкания в перемещаемой части катушки.
Схема метода питания постоянным током (рис. 18-19) заключается в том, что оба конца фазы, имеющей замыкание на корпус, соединяют между собой и к ним присоединяют один из зажимов сети постоянного тока или батареи аккумуляторов. Другой зажим источника тока присоединяют к корпусу машины. Чтобы можно было ограничивать и регулировать силу тока, в цепь включают реостат. Источник постоянного тока не должен быть заземлен, а если один полюс его все же заземлен, то его следует присоединить к корпусу машины.
При замыкании обмотки на корпус направления токов в двух частях обмотки, разграниченных точкой замыкания, будут противоположны. Если поочередно касаться двумя проводами, присоединенными к милливольтметру, концов каждой катушечной группы, то стрелка прибора будет все время отклоняться в одном направлении до тех пор, пока концы от прибора не минуют концов катушечной группы, замкнутой на корпус. В последнем случае отклонение стрелки изменится на обратное. На концах дефектной катушечной группы направление отклонения стрелки прибора будет зависеть от того, к какому концу ближе находится место замыкания на корпус. Кроме того, значение падения напряжения на концах катушечной группы, замкнутой на корпус, будет меньше, чем у других катушек, если замыкание на корпус не находится вблизи концов этой катушечной группы. Для нахождения дефектной катушки поступают аналогично предыдущему.

Замыкание на корпус одной из катушек группы
Рис. 20. Замыкание на корпус одной из катушек группы при простой катушечной (а) и при двухслойной (б) обмотке

На рис. 20 показаны случаи замыкания на корпус одной из катушек группы. Оставив неизменной схему питания постоянным током, измеряют последовательно падения напряжения попарно между точками а—б, б—в, в—г, г—д и наблюдают за направлением отклонения стрелки прибора. Отклонение стрелки прибора в точках а—б будет противоположно отклонениям в точках в—г и г—д, в точках же б—в направление отклонения будет зависеть от места нахождения корпусного замыкания, а падение напряжения будет меньше, чем на зажимах других катушек. Чтобы измерить падение напряжения, можно либо зачистить соединительные проводники, либо воспользоваться острыми щупами, прокалывающими изоляцию.
Место замыкания на корпус можно определить и при помощи магнитной стрелки, если перемещать ее вдоль каждого паза; как только стрелка пройдет мимо места замыкания на корпус, она изменит направление отклонения на обратное. Это испытание требует разборки машины. Кроме того, чтобы получить хороший результат, необходим металлический контакт в месте замыкания на корпус. Этого достигают «прожиганием».
4. Способы устранения повреждений в обмотках переменного тока. При устранении повреждений в обмотках переменного тока руководствуются теми же соображениями, что и в случае устранения повреждений в якорях машин постоянного тока.
В экстренных случаях в качестве временной меры здесь также допускается выключение поврежденной катушки из схемы. Выключенную катушку необходимо надежно изолировать (а в случае замыкания между витками — разрезать) или совершенно удалить из пазов. Освободившиеся пазы следует заполнить деревянными клиньями. Число выключенных витков не должно превышать 10 % общего числа витков одной фазы. Такое выключение возможно только при последовательном соединении всех катушек одной фазы и соединении фаз звездой. При параллельном соединении катушек или соединении фаз треугольником выключение катушек одной фазы недопустимо, так как вследствие несимметричности параллельных ветвей или фаз в обмотке возникнут большие уравнительные токи. В этом случае нужно выключить соответствующее число катушек и в других фазах или параллельных группах. При этом желательно выключать катушки, сдвинутые относительно поврежденных на kZ/p пазов в других параллельных группах пазов в других фазах, где к — целые числа.
Для генератора выключение катушек в одной фазе возможно только тогда, когда генератор не работает параллельно с другими генераторами.
5. Повреждения в обмотках возбуждения. Для нахождения повреждений в обмотках возбуждения машин переменного тока применяются те же способы, что и для нахождения повреждений в обмотках полюсов машин постоянного тока.
Для нахождения междувитковых замыканий в обмотках роторов явнополюсных машин по методу питания переменным током (см. разд. А, п. 5) применяют напряжение 120— 500 В в зависимости от числа полюсов. При отсутствии надлежащего напряжения следует разделить катушки на группы.
При использовании этого метода для роторов турбогенераторов необходимо снять бандажи (каппы), приложить к обмотке ротора напряжение 110—120 В от источника переменного тока и при помощи заостренных стальных щупов (игл), которыми прокалывают изоляцию, измерить напряжение на отдельных катушках. Эти измерения необходимы и в тех случаях, когда некоторые дефектные места обнаружены осмотром, так как в обмотке могут быть и скрытые места повреждений.
Для определения соотношений между напряжениями на катушке с короткозамкнутыми витками и на исправных катушках был проведен соответствующий опыт.

Таблица 1

Общее подведенное напряжение, В

Сила тока, А

Номер катушки

Число закороченных витков в катушке № 6

1

2

3

4

5

6

Напряжение, В

726

22.35

123

121

124

120

122

122

0

722

23,65

123

127

130

127

122

99

I

725

24,9

125

132

134

133

125

60

3

725

25.9

127,9

141

140

140

128,5

51

7

725

26,5

130

141

140

140

128

47

10

На полюсной катушке шестиполюсного синхронного генератора были закорочены от одного до десяти витков при общем числе 118 витков на катушку и измерены напряжения на отдельных катушках (табл. 1).
Из этого опыта видно, что закорачивание только одного витка из 118 витков на катушке, т.е. менее 1 % общего числа всех витков, можно легко обнаружить при помощи переменного тока по резкой разнице напряжений на отдельных катушках. При испытании постоянным током междувитковое соединение, охватывающее такое незначительное число витков, обнаружить было бы невозможно. Из-за размагничивающего действия тока, индуктируемого в короткозамкнутых витках катушки № 6, напряжение на соседних катушках № 1 и 5 также понижается в сравнении с более отдаленными катушками № 2, 3 и 4.
При этом испытании ротор следует вывести из статора, так как в собранной машине в статоре могут индуктироваться опасные высокие напряжения.
Вместо того чтобы испытывать ротор, выведенный из статора, можно кратковременно подключить статор со вставленным ротором при разомкнутой цепи возбуждения к сети переменного тока пониженного напряжения, которое не должно превышать 15—20 % номинального. У многополюсных машин сила тока в статоре при этом обычно не превышает 25—50 % номинального тока.
Так как поле статора наводит ЭДС в обмотке ротора, то если в последней имеются короткозамкнутые витки, в них создается большой ток и дефектное место может быть обнаружено по сильному нагреванию. Можно также определить место междувиткового замыкания измерением напряжения на отдельных катушках: на дефектных катушках напряжение будет значительно меньше, чем на исправных. При таком испытании в роторе могут возникнуть высокие напряжения, поэтому прикосновение к обмотке или контактным кольцам ротора опасно для жизни.

Схема для нахождения неустойчивого междувиткового замыкания в обмотке ротора синхронной машины
Рис. 21. Схема для нахождения неустойчивого междувиткового замыкания в обмотке ротора синхронной машины

Описанный способ определения места междувиткового соединения дает вполне надежные результаты при наличии устойчивого соединения в катушках (как во время вращения ротора, так и после его остановки). Значительно труднее определить место междувиткового соединения, если оно неустойчиво и появляется только при вращении ротора от действия центробежных сил. В таких случаях, если наружным осмотром не удается обнаружить «больное место», необходимо насадить на вал вспомогательное контактное кольцо и поставить вспомогательную щетку для снятия напряжения с отдельных катушек. Вместо вспомогательного кольца можно использовать также и вал. От всех междукатушечных соединений отводят контрольные провода, которые поочередно присоединяют к вспомогательному кольцу (или валу), причем первым присоединяют провод, идущий от середины обмотки возбуждения (рис. 21). Остальные контрольные провода изолируют и надежно укрепляют на валу, чтобы при вращении ротора они не могли оторваться. После этого в ротор через контактные кольца дают переменный ток от источника с напряжением 120—150 В (для генератора с явно выраженными полюсами) и при помощи двух вольтметров VI и V2 (рис. 21) измеряют напряжение между каждым контактным кольцом и валом (или вспомогательным кольцом). При отсутствии междувиткового соединения у неподвижного ротора оба напряжения должны быть равны. При разворачивании ротора в момент образования междувиткового соединения показания вольтметров становятся различными, причем напряжение на той половине обмотки, в которой находится поврежденная катушка, будет меньше напряжения на исправной половине обмотки.
Измерение можно производить также и одним вольтметром, измеряя поочередно напряжение между каждым из контактных колец и валом (или вспомогательным кольцом). В момент образования междувиткового соединения подается толчкообразное изменение показаний вольтметра, причем в исправной части
обмотки напряжение увеличивается, а в неисправной части уменьшается. Само собой разумеется, что для этих измерений нужно применять вольтметр с достаточной чувствительностью.
В дальнейшем, после определения части обмотки, в которой находится дефектная катушка, поочередно присоединяют к контактному кольцу (или валу) контрольные провода от других катушек и посредством измерения напряжения точно определяют дефектную катушку.
Для этого необходимо установить на кольцах вспомогательные медносетчатые щетки.
Использование токоведущих щеток для измерений напряжения может резко снизить их точность, так как контактное переходное напряжение между кольцом и щеткой нестабильно.
Применение вышеуказанного метода для нахождения неустойчивого междувиткового соединения в обмотках роторов турбогенераторов связано с весьма большими трудностями, в частности может потребоваться неоднократное снятие и надевание бандажей, что неприемлемо.
Замыкание обмотки ротора на корпус, если оно является устойчивым, определяется следующим образом.
В обмотку через контактные кольца подают постоянный ток через регулировочное сопротивление такой величины, чтобы сила тока не превышала номинальной, и измеряют напряжение между обоими контактными кольцами и валом. Пропорционально значению измеренных напряжений отсчитывают число катушек или витков и приблизительно определяют место замыкания на корпус.
Если место замыкания на корпус таким способом точно определить не удается, то при помощи заостренных стальных игл измеряют напряжение между сталью и отдельными витками (осторожно, чтобы при прокалывании не повредить изоляцию). Замыкание находится в том витке, напряжение которого по отношению к стали равно нулю.
Применение последнего способа к обмотке ротора турбогенератора требует снятия одного роторного бандажа.
Так как нахождение места замыкания на корпус в обмотке ротора турбогенератора является сложной операцией, то необходимо прежде всего, до начала ремонта, проверить, нет ли заземления в цепи возбуждения за пределами обмотки ротора.
На щите управления обычно имеется специальная схема для определения в процессе эксплуатации (см. приложение 10, рис. 2) сопротивления изоляции цепи возбуждения при помощи вольтметра.
Внимательно наблюдая при переключениях за величиной и полярностью показаний вольтметра этой схемы, можно при низком сопротивлении изоляции определить, не только на каком полюсе, но и в какой части цепи возбуждения находится заземление.

Схема для нахождения замыкания на корпус обмотки ротора турбогенератора
Рис. 22. Схема для нахождения замыкания на корпус обмотки ротора турбогенератора

Если близкое к нулю или U3 имеет знак, одинаковый с U, то соединение обмотки ротора с валом находится вблизи соответствующего кольца; если же такое показание противоположно знаку I/, то заземление в цепи возбуждения находится за пределами обмотки ротора. В этих случаях целесообразно вынуть все щетки из щеткодержателей и для окончательного заключения о местонахождении заземления при номинальной частоте вращения ротора измерить мегомметром сопротивление изоляции относительно земли сначала обмотки ротора, присоединяя один полюс мегомметра к контактному кольцу с помощью изолированной от траверсы медной щеточки, а затем остальной (неподвижной) части цепи возбуждения.
Результаты этих измерений укажут достоверно, на каком полюсе и в какой части цепи находится соединение с землей.
Если установлено, что заземление — в обмотке ротора, то для уточнения места замыкания рекомендуется следующий метод [19].
По валу ротора / (рис. 22) пропускают постоянный ток от низковольтного генератора 3. Ток должен быть порядка 1000 А. Ток, протекающий по валу, создает падение напряжения вдоль него, а обмотка ротора, соприкасающаяся с телом ротора (в точке а), будет иметь потенциал по всей своей длине, равный потенциалу точки замыкания. Поэтому, если один конец от милливольтметра 4 присоединить к одному из контактных колец 2, а другим концом от прибора, присоединенным к острию, касаться тела ротора, производя измерения по длине ротора» то можно найти точку, где показания прибора будут равны нулю. В сечении ротора, перпендикулярном его оси и проходящем через эту точку, и находится место замыкания на корпус. Таким образом, и этот метод не дает возможности точно установить место замыкания, для этого приходится прибегнуть к методу деления обмотки на части, вскрывая ряд пазов.

Если замыкание на корпус является неустойчивым, т. е. проявляется только при вращении ротора, то используют измеренные напряжения между валом и контактными кольцами при номинальной частоте вращения ротора, на основании которых определяют приблизительно место замыкания на корпус, после чего наружным осмотром находят место замыкания. В роторах турбогенераторов поврежденное место следует искать в верхней части обмотки под пазовыми клиньями или под роторными бандажами, так как при вращении под действием центробежных сил обмотка сильно прижимается к этим частям, вследствие чего может иметь место продавливание изоляции. Другим местом, где следует искать повреждение, является выход обмотки из пазов.
Иногда при неподвижном роторе сопротивление изоляции меньше, чем при вращении; в этом случае место повреждения следует искать на дне пазов и на опорных поверхностях в лобовых частях обмотки.
Для того чтобы установить, что замыкание обмотки на корпус связано с ее перемещением при вращении ротора, рекомендуется снять кривую изменения сопротивления изоляции обмотки в зависимости от частоты вращения.
Во многих случаях наиболее радикальным способом определения места замыкания на корпус является метод «прожигания». Для этой цели к одному контактному кольцу и валу через цепь, состоящую из сопротивления, ограничивающего значение тока, амперметра, предохранителя или максимального выключателя, подводят постоянный или переменный ток, например от осветительной сети. Если напряжение последней окажется недостаточным, то необходимо приложить более высокое напряжение (500 В и больше). На место замыкания в этом случае указывает появление искры или дыма.
Если, несмотря на отсутствие искры или дыма, амперметр показывает прохождение тока, то не следует пропускать ток слишком долго. Это предотвратит чрезмерное обугливание изоляции или выгорание меди в месте замыкания.
Ротор перед «прожиганием» необходимо тщательно прочистить и продуть сжатым воздухом во избежание воспламенения грязи, осевшей на обмотке и на стали.
Для роторов турбогенераторов метод «прожигания» током следует применять с большой осторожностью, чтобы не допустить оплавления электрической дугой роторного бандажа.

Ремонт электродвигателей в городах: Москва, Санкт-Петербург, Екатеринбург, Новосибирск, Самара, Челябинск, Пермь, Казань, Красноярск

Обрыв в обмотке статора

Обмотка соединена в звезду:
при обрыве одной фазы ток в ней отсутствует, а в двух других фазах при этом ток завышен, двигатель не запускается;
при обрыве в одной параллельной ветви фазы обмотки другие ветви этой фазы перегреются.
Если обрыв произойдет во время работы электродвигателя, он перегрузится, что будет сопровождаться усилением гудения.

Обмотка соединена в треугольник:
при обрыве одной фазы обмотки, которая находится между двумя проводниками, ток в этих проводниках при работе двигателя будет значительно меньше, чем в третьем проводнике;
при обрыве в одной параллельной ветви повысится ток в других ветвях, что приведет к перегреву этих ветвей значительно больше остальных. При этом пуск двигателя возможен, но его мощность значительно снизится.
Здесь также, как и при соединении обмотки в звезду, работа двигателя на двух фазах недопустима, так как это приведет к выходу его из строя. Следует помнить, что обмотка заторможенного двигателя на двух фазах перегревается со скоростью примерно 7 °С/с.

Обрыв в обмотке ротора (фазной или короткозамкнутой)

В питающей сети возникнут колебания тока с частотой, равной частоте скольжения и колебания напряжения;
обороты ротора снижаются, гудение в двигателе усиливается, может возникнуть вибрация, особенно под нагрузкой;
нескольких стержней пуск двигателя становится невозможным;
пуск электродвигателя затруднен из-за плохих контактов в фазной обмотке ротора или в короткозамыкающем кольце;
при соединении фазной обмотки ротора в звезду нагруженный двигатель снижает частоту вращения примерно в два раза. В таком режиме возможна устойчивая работа двигателя, однако при этом повышается температура обмоток и усиливается гудение.

Если двигатель разгрузить, его частота вращения не изменится, останется пониженной. При изменении сопротивления в цепи фазной обмотки ротора частота вращения не изменится.

Обрыв в фазной обмотке обнаруживают с помощью омметра или амперметра и вольтметра, которым измеряют падение напряжения в катушечных группах обмотки ротора, куда предварительно подают постоянный ток от аккумулятора.

Подробнее об основных причинах выхода из строя асинхронных двигателей читайте здесь.

Источник: Н.К. Мандыч. Ремонт электродвигателей

    Рекомендованные материалы:

  1. Перегрев обмотки статора асинхронного электродвигателя
  2. Перегрев обмотки ротора АД
  3. Искрение щеток машины постоянного тока
  4. Пониженный вращающий момент АД
  5. Причины возникновения повышенного уровня шума в двигателях
  6. Причины вибрации электродвигателя
  7. Неисправности подшипников электрических машин
  8. Подшипниковые токи и способы их устранения
  9. Работы по ТО и ремонту электрических машин

Понравилась статья? Поделить с друзьями:
  • Как составить исковое заявление в суд по выписке людей
  • Где могила няни пушкина как найти
  • Как правильно составить письмо напоминание
  • Как найти учителя вокала
  • Отказано в доступе в windows 10 как исправить ошибку отказано в доступе