Как найти общее число перестановок

Анализ данных  •  31 января  2023  •  5 мин чтения

Основы комбинаторики: перестановки, размещения, сочетания

Чтобы работать с теорией вероятностей и статистикой, нужно знать принципы комбинаторики — науки о подсчёте количества всевозможных комбинаций элементов.

  • Факториал, правила суммы и произведения
  • Перестановка
  • Размещение
  • Сочетание
  • Как использовать перестановки, размещения и сочетания в анализе данных
  • Совет эксперта

Факториал, правила суммы и произведения

Для таких расчётов понадобятся несколько понятий и правил.

Факториал натурального числа n — это произведение всех натуральных чисел от до n. Порядок множителей значения не имеет. Такое произведение обозначается через n!.

Самые популярные факториалы

Рекуррентная формула факториала

В этой формуле для получения следующего элемента необходимо знать предыдущий.

Правило суммы — если объект A можно выбрать способами, а объект B можно выбрать способами, то объект «A или B» можно выбрать n + m способами.

Правило произведения — если объект A можно выбрать n способами и после каждого такого выбора объект B можно выбрать m способами, то для пары «A и B» есть n ∙ m вариантов выбора.

Когда важно одно или другое — варианты выбора складываются, когда одно и другое — умножаются. Оба правила позволяют найти, сколько есть вариантов на выбор или, например, сколько есть способов различного расположения предметов.

Получить больше практики по расчёту количества комбинаций можно в модуле «Комбинаторика» тренажёра «Основы математики для цифровых профессий».

Повторите математику, чтобы решать рабочие задачи

Вспомните проценты, алгебру и другие темы посложнее в бесплатном тренажёре «Основы математики для цифровых профессий».

Перестановка

Перестановка n объектов/элементов — это способ их последовательного расположения с учётом порядка. Например, abc, bca и cab — это разные перестановки трёх букв.

Перестановку n объектов ещё называют перестановкой длины n. Количество всех таких перестановок обозначается как Pₙ.

Пример. На странице интернет-магазина одежды размещены три футболки. Если поменять их расположение на странице, получится новая перестановка. Сколькими способами можно расположить футболки на странице?

Решение. Три футболки можно расположить на странице способами: P₃ = 3! = 1 ∙ 2 ∙ 3.

Пример. Чтобы выполнить ежедневный квест, игроку нужно принести магу корзину с четырьмя кристаллами разного цвета. Первой необходимо найти корзину, а кристаллы можно сложить в неё в произвольном порядке. Как найти число способов выполнить задание?

Решение. Для выполнения квеста нужно 5 предметов. Корзину всегда находят первой, поэтому её позиция зафиксирована. Порядок сбора 4 оставшихся предметов равен числу перестановок 4 элементов. Всего есть 4! = 24 способа выполнить задание.

Размещение

Когда порядок расстановки важен, говорят о размещении.

Размещение из n по k — это упорядоченный набор из k различных элементов, взятых из некоторого множества с мощностью n, где k ≤ n. То есть некая перестановка k выбранных элементов из n.

Количество размещений из n по k обозначают и вычисляют так:

В отличие от перестановки, у размещения два параметра: из скольких элементов выбирают (n) и сколько именно выбирают (k).

Порядок выбора элементов важен, когда:

● Выбирают несколько элементов для разных целей, разных дней, разных ролей.
● В задачах на расположение, когда элементы различимы. Например, когда надо выбрать несколько человек из группы и разместить их на креслах в кинотеатре. Люди разные, поэтому имеет значение, кто где сядет.

Пример. Недалеко от пользователя есть 9 ресторанов. Из них надо выбрать 4, которые будут отображаться на главном экране. Сколько есть способов выбрать рестораны?

Решение. Порядок выбора важен, поэтому выбрать четыре ресторана поможет правило произведения: существует 9 ∙ 8 ∙ 7 ∙ 6 = 3024 способа. Это как раз и есть количество размещений из 9 по 4.

Пример. Сколькими способами можно заполнить спортивный пьедестал из трёх мест, если есть 10 претендентов?

Решение. Выбрать упорядоченную тройку можно 10 ∙ 9 ∙ 8 = 720 способами. По формуле для количества размещений это считается так:

Сочетание

Когда порядок выбора или расположения не важен, говорят о сочетании.

Сочетание из n по k — это неупорядоченный набор из k различных элементов, взятых из некоторого множества с мощностью n, где k ≤ n. То есть набор, для которого порядок выбора не имеет значения.

Количество сочетаний из n по k обозначают и вычисляют так:

Несколько частных значений для количества сочетаний:

Порядок выбора или расстановки не важен, когда:

● Выбирают несколько элементов одновременно. В учебниках по математике самый частый пример — мешок с шариками, откуда вытаскивают несколько шариков разом.
● Выбирают пару (тройку, группу) для взаимного или равноправного процесса. Например, двух человек для партии в шахматы, две команды для игры в хоккей, три бренда одежды для коллаборации, две точки для соединения отрезком, пять человек для хора.

Пример. Из 9 актёров выбирают четырёх для массовки. Порядок выбранных людей не важен. Сколько есть способов выбрать актёров?

Решение. Чтобы получить количество вариантов выбора 4 из 9 без учёта порядка, нужно

Это количество сочетаний из 9 по 4: сначала нашли количество способов выбрать 4 из 9, потом «склеили» все варианты с одним набором актёров, но разным порядком.

Пример. В сувенирном магазине продаются 6 видов кружек. Сколько есть способов выбрать 4 разные?

Решение. Общее количество перестановок для 6 элементов нужно разделить на (6 – 4)! и ещё на 4!, так как не нужно учитывать ни перестановки «невыбираемых» кружек, ни порядок среди выбираемых.

Поэтому для выбора 4 кружек из 6 есть

А если надо выбрать только 2 разные кружки?

Ответ получился такой же, потому что множители в знаменателе просто поменялись местами.

У этого есть и логическое обоснование: например, выбрать 4 кружки из 6 (и купить их) — это то же самое, что выбрать 2 кружки из 6 (и не купить их).

Аналогично получится, что

В общем виде это свойство выглядит так:

Его называют свойством симметрии для количества сочетаний.

Как использовать перестановки, размещения и сочетания в анализе данных

Зная число комбинаций, можно вычислить вероятность, а она открывает доступ к методам математической статистики: анализу данных и прогнозированию.

Комбинаторика вместе с другими дисциплинами из дискретной математики используется для построения алгоритмов. Например, алгоритмов поиска оптимального маршрута или оптимизации цепей поставок.

Комбинаторику применяют для оценки времени работы алгоритмов и для их ускорения. Это помогает делать эффективнее работу поисковых систем, голосовых помощников, навигаторов и других сервисов.

Совет эксперта

Диана Миронидис
Выбирать приходится каждый день: сколько блюд получится сделать из продуктов в холодильнике, сколькими способами можно добраться до работы — ответы на все эти вопросы даёт комбинаторика. Это отличный фундамент для изучения анализа данных и тех областей математики, которые связаны с теорией вероятностей и статистикой. Например, чтобы работать с биномиальным распределением, нужно знать, что такое биномиальные коэффициенты и как их находить. А это как раз комбинаторные задачи.

Автор и методист курсов по математике

Совместные и несовместные события в анализе данных

Как пересечение и объединение множеств используются в анализе данных

Формула числа перестановок

Лучшее спасибо — порекомендовать эту страницу

Определение факториала и числа перестановок

Пусть имеется $n$ различных объектов.
Будем переставлять их всеми возможными способами (число и состав объектов остается неизменными, меняется только их порядок). Получившиеся комбинации называются перестановками, а их число равно

$$P_n=n!=1cdot 2cdot 3 cdot … cdot (n-1) cdot n$$

Символ $n!$ называется факториалом и обозначает произведение всех целых чисел от $1$ до $n$. По определению, считают, что $0!=1, 1!=1$. Факториал растет невероятно быстро (недаром он обозначается восклицательным знаком!), например,
$$10!=3628800,$$ а $$50!=30414093201713378043612608166064768844377641568960512000000000000.$$ Как найти факториал? Умножать вручную, использовать функцию ФАКТР() в Excel или, если устанете умножать самостоятельно, используйте калькулятор ниже.

число перестановок из 3 элементов

Пример всех перестановок из $n=3$ объектов (различных фигур) — на картинке справа. Согласно формуле ниже, их должно быть ровно $P_3=3!=1cdot 2cdot 3 =6$, так и получается (вам не напоминает картинка табло игральных автоматов?:)).

Общая формула, которая позволяет найти число перестановок из $n$ элементов, имеет вид (она же — формула для факториала числа $n$):

$$P_n=n!=1cdot 2cdot 3 cdot … cdot (n-1) cdot n.$$

Чтобы вычислить число перестановок $P_n$ онлайн, используйте калькулятор ниже.

Видеоролик о перестановках и Excel

Не все понятно? Посмотрите наш видеообзор для формулы перестановок: как использовать Excel для нахождения факториала и числа перестановок, как решать типовые задачи и использовать онлайн-калькулятор.

Расчетный файл из видео можно бесплатно скачать

Смотрите также: Факториал в Excel

Полезные ссылки

  • Как решать задачи по комбинаторике?
  • Основные формулы комбинаторики
  • Примеры решений
  • Заказать контрольную

Полезная страница? Сохрани или расскажи друзьям

Поиск решенных задач

Решебник по комбинаторике и теории вероятностей:

План урока:

Комбинаторика и ее основные принципы

Перестановки

Перестановки с повторениями

Размещения

Сочетания

Комбинаторика и ее основные принципы

Очень часто приходится решать задачи, в которых надо посчитать количество возможных вариантов для той или иной ситуации. Например, сколько позиций может возникнуть на шахматной доске после первого хода обоих игроков? Сколько разных паролей длиною в десять символов можно записать, если ни один символ не использовать дважды? Сколько разнообразных комбинаций чисел может выпасть при игре в лотерею «6 из 49»? На все эти вопросы помогает ответить специальный раздел математики, называемый комбинаторикой. Почти всегда комбинаторную задачу можно сформулировать так, чтобы ее вопрос начинался словами «сколькими способами…».

1jghj

Очевидно, что если в конечном множестве содержится n элементов, то есть ровно n способов выбрать один из них.

Пример. В классе 15 человек. Сколькими способами учитель может назначить одного из них ответственным за чистоту доски?

Ответ. Таких способов ровно 15.

В комбинаторике существует два основных правила. Первое из них называется правилом сложения.

2

Несмотря на формулировку, по сути это очень простое правило.

Пример. В магазине продается 14 телевизоров Panasonic и 17 телевизоров Sony. Петя хочет купить один телевизор. Сколько у него вариантов покупки?

Решение. По правилу сложения Петя может выбрать один из 14 + 17 = 31 телевизоров.

Ответ: 31 телевизор.

Особое значение имеет второе правило, которое называют правилом умножения.

3

Проиллюстрируем это правило.

Пример. В секции бадминтона 15 мальчиков и 20 девочек. Тренер должен отправить на соревнования смешанную пару. Сколько вариантов действий у него?

Решение. Тренер может составить 15•20= 300 разнополых пар из своих воспитанников.

Ответ: 300

Пример. Пете нужно купить технику для компьютера. В магазине продается 20 различных клавиатур, 25 моделей геймпадов и 30 компьютерных мышей. Купить надо по одному экземпляру каждого из этих устройств. Сколько вариантов покупки есть у него?

Решение. Сначала подсчитаем число возможных пар «клавиатура-геймпад». Их количество равно 20•25 = 500. Теперь составим «тройку» из одной из 500 пар и одной из 30 мышей. Число троек равно 500•30 = 15000.

Ответ: 15000

Правила сложения и умножения можно комбинировать.

Пример. Сколько слов не более чем из трех букв можно составить, используя алфавит, содержащий ровно 30 букв?

Решение. Очевидно, что слов из одной буквы можно составить ровно 30. Количество двухбуквенных слов равно количеству пар, которые можно составить из этих букв, то есть 30•30 = 900. Трехбуквенных слов можно составить 30•30•30 = 27000. Всего же слов длиною не более 3 букв будет

30 + 900 + 27000 = 27930

Ответ: 27930

Далее мы изучим основные понятия комбинаторики – перестановки, размещения, сочетания.

Перестановки

Рассмотрим простейшую комбинаторную задачу. На полке расставляют по порядку книги. Их ставят вертикально друг за другом. Сколькими способами можно расставить на полке 2 книги? Очевидно, что двумя:

4gfdg

Либо синяя книжка будет первой слева, либо она будет находиться в конце полки, третьего варианта здесь нет. Здесь условно считается, что варианты, когда между книгами есть зазоры, идентичны вариантам без зазоров:

5hgfh

То есть нас интересует исключительно порядок, в котором стоят книги. Каждый из найденных вариантов называется перестановкой книг. Перестановкой называют любое конечное множество, для элементов которого указан порядок элементов.В комбинаторике перестановки являются одними из основных объектов изучения.

6hfgh

Например, если в забеге на 100 метров стартует 8 спортсменов, то они образуют множество участников забега. После финиша становится известно, кто занял 1-ое место, кто оказался вторым или третьим, а кто стал последним. Результат забега будет перестановкой, ведь он представляет собой список спортсменов с указанием их мест, то есть он определяет порядок между ними.

Вернемся к примеру с книгами. Обозначим количество возможных перестановок n элементов как Рn. Две книжки можно расставить двумя разными способами, поэтому Р2 = 2. Обозначим эти перестановки как АБ и БА. Сколько способов расстановки есть в случае трех книжек? Их все можно получить из вариантов с 2 книжками, добавляя между ними книгами ещё один том:

7gdfg

Видно, что между 2 книгами есть три позиции, на которые можно поставить 3-ий том. Общее количество вариантов равно произведению числа этих позиций и количества вариантов для 2 книг, то есть Р3 = 3•Р2 = 3•2 = 6:

8hfgh

Итак, мы имеем 6 перестановок для 3 книг:

ВАБ

АВБ

АБВ

ВБА

ВБА

БАВ

А сколько перестановок существует для 4 книг? Снова-таки, между тремя книгами 4-ый том можно поставить четырьмя способами:

9hfghfh

То есть из перестановки трех книг АБВ можно получить 4 перестановки:

ГАБВ

АГБВ

АБГВ

АБВГ

10fghfh

Всего существует 6 перестановок для 3 книг (Р3 = 6), и для каждой из них можно построить 4 перестановки из 4 книг. Получается, что общее количество перестановок 4 книг равно

Р4 = 4Р3 = 4•6 = 24.

Продолжая подобные рассуждения, можно убедиться, что количество перестановок 5 предметов в 5 раз больше, чем перестановок для 4 объектов:

Р5 = 5Р4

И вообще, если число перестановок n объектов равно Рn, то количество перестановок (n + 1)объекта равно в (n + 1)раз больше:

Рn+1 = (n + 1)Рn

При этом отметим, что 1 книгу можно расставить на полке только одним способом:

11gdfg

То есть Р1 = 1. Теперь выпишем значения чисел Р при разном количестве переставляемых предметов, используя формулуРn+1 = (n + 1)Рn

Р1 = 1

Р2 = 2•Р1= 2•1 = 2

Р3 = 3Р2 = 3•2•1 = 6

Р4 = 4Р3 = 4•3•2•1 = 24

Р5 = 5Р4 = 5•4•3•2•1 = 120

Видно, что количество перестановок n объектов равно произведению всех натуральных чисел от 1 до n. В математике есть специальная функция для вычисления значения этого произведения. Она называется факториалом и обозначается восклицательным знаком.

12fgdfg

Например, факториал 6 вычисляется так:

6! = 1•2•3•4•5•6 = 720

Мы убедились на примере с книгами, что количество перестановок из n различных объектов, которое обозначается как Рn, равно n!.

6

Относительно факториала надо заметить несколько важных моментов. Во-первых, очевидно, что факториал единицы равен 1:

1! = 1

Во-вторых, иногда в комбинаторных задачах приходится вычислять факториал нуля. По ряду соображений эта величина также принимается равной единице

0! = 1

14gfghf

Объяснить это можно так. Факториал числа можно представить как произведение этого числа и факториала предыдущего числа, например:

5! = 1•2•3•4•5 = (1•2•3•4)•5 = 4!•5

7! = 1•2•3•4•5•6•7 = (1•2•3•4•5•6)•7 = 6!•7

В общем случае формула выглядит так:

n! = (n– 1)!•n

Из неё несложно получить, что

(n– 1)! = n!/n

Например: 5! = 4!•5

15fgh

Подставив в эту формулу единицу, получим

(1 – 1)! = 1!/1

0! = 1/1

0! = 1

Пример. Сколькими способами тренер может расставить 4 участников эстафеты 4х400 м по этапам эстафеты?

Решение. Количество таких способов равно числу перестановок 4 различных объектов Р4:

Р4 = 4! = 1•2•3•4 = 24

Ответ: 24

Пример. Вася решил изучать сразу 7 иностранных языков, причем на занятия по каждому из них он собирается выделить ровно один день в неделе. Сколько вариантов расписаний занятий может составить себе Вася?

Решение. В данном случае расписание занятий – это порядок, в котором Вася в течение недели будет изучать иностранные языки, например:

16jghj

Такое расписание можно описать последовательностью символов:

Ф, Ан, И, К, Я, Ар, П

Создавая расписание, Вася переставляет 7 языков, поэтому общее количество расписаний равно 7!:

Р7 = 1•2•3•4•5•6•7 = 5040

Ответ: 5040

Пример. Сколько пятизначных цифр можно записать, используя цифры 0, 1, 2, 3, 4, причем каждую не более одного раза?

Решение. Общее количество перестановок 5 цифр составляет Р5. Однако нельзя начинать запись числа с нуля. Так как, перестановка 12340 – это пятизначное число (двенадцать тысяч триста сорок), а перестановка 03241 – не является пятизначным числом.

Расстановок, начинающихся с нуля, ровно Р4, поэтому общее количество допустимых цифр равно Р5 – Р4:

Р5 – Р4 = 5! – 4! = 120 – 24 = 96

Ответ: 96

Пример. На полке расставляют 7 книг, однако 3 из них образуют трехтомник. Тома трехтомника должны стоять друг за другом и в определенном порядке. Сколько существует способов расстановки книг?

Решение. Будем считать трехтомник одной книгой. Тогда нам надо расставить 5 книг

Р5 = 5! = 120

Ответ: 120

Пример. Необходимо расставить 7 книг на полке, но три из них принадлежат одному автору. Их надо поставить друг с другом, но они могут стоять в любом порядке. Сколько возможно перестановок книг.

Решение. Снова будем считать три книги как один трехтомник. Получается, что существует 5! = 120 вариантов. Однако каждому из них соответствует 3! = 6 расстановок книг внутри трехтомника, например:

17hfgh

В итоге на каждую из 120 расстановок приходится 6 вариантов расстановки трехтомника, а общее число расстановок равно, согласно правилу умножения, произведению этих чисел:

120•6 = 720

Ответ: 720

Перестановки с повторениями

До этого мы рассматривали случаи, когда все переставляемые объекты были различными. Однако порою некоторые из них не отличаются друг от друга. Пусть на полке надо расставить 3 книги, но две из них одинаковые. Сколько тогда существует перестановок? Общее число перестановок 3 книг составляет 3! = 6:

18hfgh

Здесь одинаковые книги отмечены как А и А1. Очевидно, что 1-ый и 2-ой варианты (А1АБ) и (АА1Б) на самом деле не отличаются друг от друга. В них отличается лишь порядок одинаковых книг А и А1. В первом случае за А1 следует А, а во втором, наоборот, за А следует А1. Тоже самое можно сказать про варианты 3 и 4, 5 и 6. Получается, что все возможные перестановки можно разбить на группы, в которых находятся «перестановки-дубликаты»:

А1АБ и АА1Б

А1БА и АБА1

БА1А и БАА1

В каждой группе находится ровно по два «дубликата». Почему именно по два? Это число равно количеству перестановок одинаковых книг. Так как одинаковых томов 2, а Р2 = 2, то в каждой группе по 2 «дубликата». Действительно, если бы мы «убрали» с полки все книги, кроме повторяющихся, то там осталось бы только 2 одинаковых тома, которые можно переставить двумя способами.

Для того чтобы найти количество «оригинальных» перестановок, надо их общее количество поделить на число дубликатов в каждой группе.

6:2 = 3

Пусть теперь надо расставить 4 книги, из которых 3 одинаковы. Обозначим тома как А, А1, А2 и Б. Всего можно записать 4! = 24 перестановки. Однако каждые 6 из них будут дублировать друг друга. То есть их можно разбить на группы, в каждой из которых будет 6 идентичных «дубликатов»:

1-ая группа: БАА1А2, БАА2А1, БА1АА2, БА1А2А, БА2АА1, БА2А1А

2-ая группа: АБА1А2, АБА2А1, А1БАА2, А1БА2А, А2БАА1, А2БА1А

3-ая группа: АА1БА2, АА2БА1, А1АБА2, А1А2БА, А2АБА1, А2А1БА

4-ая группа: АА1А2Б, АА2А1Б, А1АА2Б, А1А2АБ, А2АА1Б, А2А1АБ

И снова для подсчета числа оригинальных перестановок надо из общее число расстановок поделить на количество дубликатов в каждой группе:

Р43 = 4!/3! = 24/6 = 4

Для обозначения перестановок с повторениями используется запись

Рn(n1, n2, n3,… nk)

где – общее количество объектов, а n1, n2, n3,… nk – количество одинаковых элементов. Например, в задаче с 4 книгами мы искали величину Р4(3, 1), потому что всего книг было 4, но они были разбиты на две группы, в одной из которых находилось 3 одинаковых тома (буквы А, А1, А2), а ещё одна книга (Б) составляла вторую группу. Мы заметили, что для вычисления числа перестановок с повторениями надо общее число перестановок делить на количество дублирующих перестановок. Формула в общем случае выглядит так:

19hjfghj

Пример. Вася решил, что ему стоит изучать только два иностранных языка. Он решил 4 дня в неделю тратить на английский, а оставшиеся три дня – на испанский. Сколько расписаний занятий он может себе составить.

Решение. Вася должен расставить 3 урока испанского и 4 урока английского, тогда n1 = 3, а n2 = 4. Общее количество уроков равно 3 + 4 = 7. Тогда

20hfgh

Ответ: 35

Обратите внимание, что для удобства при делении факториалов мы не вычисляли их сразу, а пытались сократить множители. Так как в ответе любой комбинаторной задачи получается целое число, то весь знаменатель дроби обязательно сократится с какими-нибудь множителями в числителе.

Пример. У мамы есть 3 яблока, 2 банана и 1 апельсин. Эти фрукты она распределяет между 6 детьми. Сколькими способами она может это сделать, если каждый должен получить по фрукту?

Решение. Всего есть три группы фруктов. В первой находится 3 яблока, поэтому n1 = 3. Во второй группе 2 банана, поэтому n2 = 2. В третьей группе только 1 апельсин, поэтому nk = 1. Общее число фруктов равно 6. Используем формулу:

21gfdg

Ответ: 60

В знаменателе формулы для перестановок с повторениями мы записываем число объектов в каждой группе одинаковых предметов. Так, если переставляются 3 яблока, 2 банана и 1 апельсин, то в знаменателе мы пишем 3!•2!•1!. Но что будет, если в каждой группе будет находиться ровно один уникальный объект? Тогда мы запишем в знаменателе произведение единиц:

22hfgh

В итоге мы получили ту же формулу, что и для перестановок без повторов. Другими словами, перестановки без повтора могут рассматриваться просто как частный случай перестановок с повторами.

Размещения

Пусть в футбольном турнире участвуют 6 команд. Нам предлагают угадать те команды, которые займут призовые места (то есть первые три места). Сколько вариантов таких троек существует?

Сначала запишем ту команду, которая выиграет турнир. Здесь есть шесть вариантов, по количеству участвующих команд. Запишем эти варианты:

23gfdh

Далее выберем один из вариантов и для него укажем серебряного призера соревнований. Здесь есть только 5 вариантов, ведь 1 из 6 команд уже записана на 1-ом месте:

24ghfgh

Такую пятерку можно записать для каждого из шести вариантов того, кто станет чемпионом. Получается, что всего есть 6•5 = 30 пар «чемпион – серебряный призер». Наконец, для одной такой пары можно записать 4 варианта того, кто окажется третьим (две команды писать нельзя, так как они уже записаны на первых двух строчках):

25hjhgj

Для каждой пары можно записать 4 тройки призеров. Так как число пар «чемпион – вице-чемпион» равно 6•5 = 30, то число троек составит 6•5•4 = 120.

В данном случае из некоторого множества команд мы выбрали несколько и расположили их в каком-то порядке. То есть мы выбрали упорядоченное множество. В комбинаторике оно называется размещением.

8

Если общее число команд обозначить как n (в этом примере n = 6), а количество упорядочиваемых команд равно k, то количество таких размещений в комбинаторике обозначается как

27hjk

В примере с командами количество размещений равнялось 120:

28jghhj

Читается эта запись как «число размещений из 6 по 3 равно 120».

Для нахождения этого числа мы перемножили k (3)множителей. Первый из них был равен n(6), так как каждая из n команд могла занять первая место. Второй множитель был равен (n– 1), так как после определения чемпиона мы могли поставить на вторую позицию одну из (n– 1) команд. Третий множитель был равен (n– 2). По этой логике каждый следующий множитель будет меньше предыдущего на единицу. Например, чтобы вычислить число размещений из 7 по 4, надо перемножить 4 множителя, первый из которых равен 7, а каждый следующий меньше на 1:

29jghj

Однако математически удобнее представлять это произведение как отношение двух факториалов. Для этого умножим количество размещений на дробь 3!/3!, равную единице. Естественно, число размещений из-за умножения на единицу не меняется:

30hgfgh

Число 3 в данном случае можно получить, если из 7 вычесть 4. В общем случае из числа надо вычесть число k. Тогда формула для вычисления количества размещений примет вид:

31ghfgh

9

Пример. В программе 8 «А» класса 12 различных предметов. В понедельник проводится 5 занятий подряд. Сколько существует вариантов расписаний для класса, если в течение понедельника нельзя проводить два одинаковых урока?

Решение. Для составления расписания нужно выбрать 5 предметов и расставить их по порядку. Поэтому нам необходимо найти размещение из 12 по 5:

33hfgh

Ответ: 95040

Пример. В вагоне 10 свободных мест. В него зашло 6 пассажиров. Сколькими способами они могут расположиться в вагоне?

Решение. Из десяти мест надо выбрать шесть и указать для каждого, какому пассажиру оно соответствует. То есть каждый вариант рассадки пассажиров – это размещение из 10 по 6. Найдем их количество:

34gdfg

Ответ: 151200

Заметим, что перестановка – это частный случай размещения, когда k = n. Действительно, если нам надо указать тройку призеров турнира, в котором участвуют 6 команд, то мы указываем размещение из 6 по 3. Но если мы указываем для каждой из 6 команд, какое место она займет в чемпионате, то это размещение из 6 по 6. С другой стороны, это расстановка одновременно является и перестановкой 6 команд. Убедимся, что в этом частном случае формула для подсчета количества размещений покажет тот же результат, что и формула для перестановок

35gdfg

Для примера с 6 командами это будет выглядеть так:

36hgfgh

Здесь мы использовали тот факт, что факториал нуля принимается равным единице. Данное рассуждение можно, наоборот, использовать для того, чтобы доказать, что факториал нуля – это единица.

Сочетания

Выбирая размещение, мы должны были выбрать из множества несколько объектов и упорядочить их. В частности, мы выбирали три команды из шести и указывали, какая из них будет первой, какая второй, а какая третьей. Поэтому размещения «Локомотив, Зенит, Краснодар» и «Локомотив, Краснодар, Зенит» отличались друг от друга.

Однако порою этот порядок не имеет значения. Так, существует известная лотерея, где предлагается угадать 7 чисел из 49, которые выпадут во время розыгрыша из барабана. При этом порядок их выпадения не играет никакой роли. Игрок, выбирая эти 7 чисел, с точки зрения математики формирует сочетание из 49 по 7.

10

Количество возможных сочетаний из n по k обозначается буквой С:

38hgfgh

Для вычисления количеств сочетаний из n по k сначала найдем количество аналогичных размещений. Оно вычисляется по формуле:

39hfgh

Однако ясно, что, как и в случае с перестановками с повторениями, некоторые сочетания мы посчитали несколько раз. Вернемся к примеру с командами. Если мы выбрали команды Л (Локомотив) , З (Зенит) и К (Краснодар), то мы можем составить ровно 3! = 6 размещений из них:

ЛЗК

ЛКЗ

ЗЛК

ЗКЛ

КЛЗ

КЗЛ

Однако все они соответствуют только одному сочетании – ЛКЗ. Таким образом, считая количество размещений, мы посчитали каждое сочетание не один, а 3! раз. Поэтому для нахождения количества сочетаний в комбинаторике надо поделить число размещений на число перестановок k элементов:

40gdfh

Эта формула связывает важнейшие понятия комбинаторики – перестановки, сочетания и размещения. Подставим в неё формулы для размещений и перестановок и получим:

41gfdg

11

Пример. Сколько троек призеров турнира можно составить, выбирая три футбольные команды из шести?

Решение. Посчитаем число сочетаний из 6 по 3:

43gfdg

Ответ: 20

Пример. Сколько комбинаций чисел может составить игрок, играющий в лотереи «5 из 36», «6 из 45», «7 из 49»?

Решение. В каждом из этих случаев игрок выбирает сочетание нескольких чисел. Посчитаем их число:

44hfghf

Ответ: 376992; 8145060; 85900584

Пример. На плоскости отмечены 8 точек, причем никакие три из них не лежат на одной прямой. Сколько различных прямых можно провести через них? Сколько треугольников и четырехугольников можно построить с вершинами в этих точках?

Решение. Для того чтобы провести прямую, достаточно выбрать любые 2 точки из 8. Общее количество прямых будет равно числу сочетаний из 8 по 2:

45gfdg

Заметим принципиальную важность того условия, что никакие три точки не лежат на одной прямой. Оно гарантирует, что при выборе двух различных точек мы будем получать различные прямые. Если бы, например, точки АВС лежали бы на одной прямой, то при выборе сочетаний АВ, ВС и АС мы получали бы одну и ту же прямую:

46hbfgh

Это же условие гарантирует, что, выбрав любые 3 и 8 точек, мы сможем построить треугольник с вершинами в этих точках, а выбрав 4 точки, получим четырехугольник. Поэтому для подсчета количества треугольников и четырехугольников следует искать число сочетаний по 3 и 4:

47hfgh

Ответ: 28 прямых, 56 треугольников и 70 четырехугольников.

Пример. В одной урне находится 10 различных шаров с номерами от 0 до 9, а в другой – 8 различных шаров с первыми восемью буквами алфавита. По условиям лотереи ведущий вытаскивает из первой урны два шара с числами, а из второй – три шара с буквами. Для победы в лотерее надо угадать выпавшие шары. Сколько комбинаций шаров может выпасть в игре?

Решение. Посчитаем отдельно, сколькими способами можно выбрать 2 шара с цифрами из 10 и 3 шара с буквами из 8:

48hjfghj

По правилу умножения мы должны перемножить эти числа, чтобы найти общее количество возможных вариантов:

56•45 = 2520

Ответ: 2520

Заметим, что выбирая, например, сочетание из 49 по 7, мы одновременно выбираем и сочетание из 49 по 49 – 7 = 42. Действительно, игрок, обводящий в кружок в лотерейном билете свои 7 счастливых чисел, одновременно и определяет остальные 42 числа, какие числа он НЕ считает счастливыми. Для наглядности запишем число сочетаний в обоих случаях:

49hfgh

Получили одну и ту же дробь, в которой отличается лишь последовательность множителей в знаменателе. Можно показать, что и в общем случае число сочетаний из n по k совпадает с количеством сочетаний из n по (n– k):

50hfgh

Перестановки, размещения и сочетания. Формулы.

Чтобы в материале было легче ориентироваться, добавлю содержание данной темы:

  1. Введение. Множества и выборки.
  2. Размещения без повторений из $n$ элементов по $k$.
  3. Размещения с повторениями из $n$ элементов по $k$.
  4. Перестановки без повторений из $n$ элементов
  5. Перестановки с повторениями.
  6. Сочетания без повторений из $n$ элементов по $k$.
  7. Сочетания с повторениями из $n$ элементов по $k$.

Введение. Множества и выборки.

В этой теме рассмотрим основные понятия комбинаторики: перестановки, сочетания и размещения. Выясним их суть и формулы, по которым можно найти их количество.

Для работы нам понадобятся кое-какие вспомогательные сведения. Начнём с такого фундаментального математического понятия как множество. Подробно понятие множества было раскрыто в теме «Понятие множества. Способы задания множеств».

Очень краткий рассказ про множества: показатьскрыть

Рассмотрим некое непустое конечное множество $U$, мощность которого равна $n$, $|U|=n$ (т.е. в множестве $U$ имеется $n$ элементов). Введём такое понятие, как выборка (некоторые авторы именуют её кортежем). Под выборкой объема $k$ из $n$ элементов (сокращённо $(n,k)$-выборкой) будем понимать набор элементов $(a_1, a_2,ldots, a_k)$, где $a_iin U$. Выборка называется упорядоченной, если в ней задан порядок следования элементов. Две упорядоченные выборки, различающиеся лишь порядком элементов, являются различными. Если порядок следования элементов выборки не является существенным, то выборку именуют неупорядоченной.

Заметьте, что в определении выборки ничего не сказано про повторения элементов. В отличие от элементов множеств, элементы выборки могут повторяться.

Для примера рассмотрим множество $U={a,b,c,d,e}$. Множество $U$ содержит 5 элементов, т.е. $|U|=5$. Выборка без повторений может быть такой: $(a,b,c)$. Данная выборка содержит 3 элемента, т.е. объём этой выборки равен 3. Иными словами, это $(5,3)$-выборка.

Выборка с повторениями может быть такой: $(a,a,a,a,a,c,c,d)$. Она содержит 8 элементов, т.е. объём её равен 8. Иными словами, это $(5,8)$-выборка.

Рассмотрим ещё две $(5,3)$-выборки: $(a,b,b)$ и $(b,a,b)$. Если мы полагаем наши выборки неупорядоченными, то выборка $(a,b,b)$ равна выборке $(b,a,b)$, т.е. $(a,b,b)=(b,a,b)$. Если мы полагаем наши выборки упорядоченными, то $(a,b,b)neq(b,a,b)$.

Рассмотрим ещё один пример, немного менее абстрактный :) Предположим, в корзине лежат шесть конфет, причём все они различны. Если первой конфете поставить в соответствие цифру 1, второй конфете – цифру 2 и так далее, то с конфетами в корзине можно сопоставить такое множество: $U={1,2,3,4,5,6}$. Представьте, что мы наугад запускаем руку в корзинку с целью вытащить три конфеты. Вытащенные конфеты – это и есть выборка. Так как мы вытаскиваем 3 конфеты из 6, то получаем (6,3)-выборку. Порядок расположения конфет в ладони совершенно несущественен, поэтому эта выборка является неупорядоченной. Ну, и так как все конфеты различны, то выборка без повторений. Итак, в данной ситуации говорим о неупорядоченной (6,3)-выборке без повторений.

Теперь подойдём с иной стороны. Представим себе, что мы находимся на фабрике по производству конфет, и на этой фабрике производятся конфеты четырёх сортов. Множество $U$ в этой ситуации таково: $U={1,2,3,4 }$ (каждая цифра отвечает за свой сорт конфет). Теперь вообразим, что все конфеты ссыпаются в единый жёлоб, около которого мы и стоим. И, подставив ладони, из этого потока отбираем 20 конфет. Конфеты в горсти – это и есть выборка. Играет ли роль порядок расположения конфет в горсти? Естественно, нет, поэтому выборка неупорядоченная. Всего 4 сорта конфет, а мы отбираем двадцать штук из общего потока – повторения сортов неизбежны. При этом выборки могут быть самыми различными: у нас даже могут оказаться все конфеты одного сорта. Следовательно, в этой ситуации мы имеем дело с неупорядоченной (4,20)-выборкой с повторениями.

Рассмотрим ещё пару примеров. Пусть на кубиках написаны различные 7 букв: к, о, н, ф, е, т, а. Эти буквы образуют множество $U={к,о,н,ф,е,т,а}$. Допустим, из данных кубиков мы хотим составить «слова» из 5 букв. Буквы этих слов (к примеру, «конфе», «тенко» и так далее) образуют (7,5)-выборки: $(к,о,н,ф,е)$, $(т,е,н,к,о)$ и т.д. Очевидно, что порядок следования букв в такой выборке важен. Например, слова «нокфт» и «кфтон» различны (хотя состоят из одних и тех же букв), ибо в них не совпадает порядок букв. Повторений букв в таких «словах» нет, ибо в наличии только семь кубиков. Итак, набор букв каждого слова представляет собой упорядоченную (7,5)-выборку без повторений.

Еще один пример: мы составляем всевозможные восьмизначные числа из четырёх цифр 1, 5, 7, 8. Например, 11111111, 15518877, 88881111 и так далее. Множество $U$ таково: $U={1,5,7,8}$. Цифры каждого составленного числа образуют (4,8)-выборку. Порядок следования цифр в числе важен, т.е. выборка упорядоченная. Повторения допускаются, поэтому здесь мы имеем дело с упорядоченной (4,8)-выборкой с повторениями.

Размещения без повторений из $n$ элементов по $k$

Размещение без повторений из $n$ элементов по $k$ – упорядоченная $(n,k)$-выборка без повторений.

Так как элементы в рассматриваемой выборке повторяться не могут, то мы не можем отобрать в выборку больше элементов, чем есть в исходном множестве. Следовательно, для таких выборок верно неравенство: $n≥ k$. Количество размещений без повторений из $n$ элементов по $k$ определяется следующей формулой:

$$
begin{equation}
A_{n}^{k}=frac{n!}{(n-k)!}
end{equation}
$$

Что обозначает знак «!»? : показатьскрыть

Пример №1

Алфавит состоит из множества символов $E={+,*,0,1,f}$. Определим количество таких трёхсимвольных слов в этом алфавите, которые не содержат повторяющихся букв.

Решение

Под трёхсимвольными словами будем понимать выражения вида «+*0» или «0f1». В множестве $E$ пять элементов, поэтому буквы трехсимвольных слов образуют (5,3)-выборки. Первый вопрос: эти выборки упорядочены или нет? Слова, которые отличаются лишь порядком букв, полагаются различными, поэтому порядок элементов в выборке важен. Значит, выборка является упорядоченной. Второй вопрос: допускаются повторения или нет? Ответ на этот вопрос даёт условие: слова не должны содержать повторяющихся букв. Подводим итоги: буквы каждого слова, удовлетворяющего условию задачи, образуют упорядоченную (5,3)-выборку без повторений. Иными словами, буквы каждого слова образуют размещение без повторений из 5 элементов по 3. Вот примеры таких размещений:

$$
(+,*,f), ; (*,+,f), ; (1,+,0)
$$

Нас же интересует общее количество этих размещений. Согласно формуле (1) количество размещений без повторений из 5 элементов по 3 будет таким:

$$
A_{5}^{3}=frac{5!}{(5-3)!}=frac{5!}{2!}=60.
$$

Т.е. можно составить 60 трёхсимвольных слов, буквы которых не будут повторяться.

Ответ: 60.

Размещения с повторениями из $n$ элементов по $k$

Размещение с повторениями из $n$ элементов по $k$ – упорядоченная $(n,k)$-выборка с повторениями.

Количество размещений с повторениями из $n$ элементов по $k$ определяется следующей формулой:

$$
begin{equation}
bar{A}_{n}^{k}=n^k
end{equation}
$$

Пример №2

Сколько пятизначных чисел можно составить из множества цифр ${5,7,2}$?

Решение

Из данного набора цифр можно составить пятизначные числа 55555, 75222 и так далее. Цифры каждого такого числа образуют (3,5)-выборку: $(5,5,5,5,5)$, $(7,5,2,2,2)$. Зададимся вопросом: что это за выборки? Во-первых, цифры в числах могут повторяться, поэтому мы имеем дело с выборками с повторениями. Во-вторых, порядок расположения цифр в числе важен. Например, 27755 и 77255 – разные числа. Следовательно, мы имеем дело с упорядоченными (3,5)-выборками с повторениями. Общее количество таких выборок (т.е. общее количество искомых пятизначных чисел) найдём с помощью формулы (2):

$$
bar{A}_{3}^{5}=3^5=243.
$$

Следовательно, из заданных цифр можно составить 243 пятизначных числа.

Ответ: 243.

Перестановки без повторений из $n$ элементов

Перестановка без повторений из $n$ элементов – упорядоченная $(n,n)$-выборка без повторений.

По сути, перестановка без повторений есть частный случай размещения без повторений, когда объём выборки равен мощности исходного множества. Количество перестановок без повторений из $n$ элементов определяется следующей формулой:

$$
begin{equation}
P_{n}=n!
end{equation}
$$

Эту формулу, кстати, легко получить, если учесть, что $P_n=A_{n}^{n}$. Тогда получим:

$$
P_n=A_{n}^{n}=frac{n!}{(n-n)!}=frac{n!}{0!}=frac{n!}{1}=n!
$$

Пример №3

В морозилке лежат пять порций мороженого от различных фирм. Сколькими способами можно выбрать порядок их съедения?

Решение

Пусть первому мороженому соответствует цифра 1, второму – цифра 2 и так далее. Мы получим множество $U={1,2,3,4,5}$, которое будет представлять содержимое морозилки. Порядок съедения может быть таким: $(2,1,3,5,4)$ или таким: $(5,4,3,1,2)$. Каждый подобный набор есть (5,5)-выборка. Она будет упорядоченной и без повторений. Иными словами, каждая такая выборка есть перестановка из 5 элементов исходного множества. Согласно формуле (3) общее количество этих перестановок таково:

$$
P_5=5!=120.
$$

Следовательно, существует 120 порядков выбора очередности съедения.

Ответ: 120.

Перестановки с повторениями

Перестановка с повторениями – упорядоченная $(n,k)$-выборка с повторениями, в которой элемент $a_1$ повторяется $k_1$ раз, $a_2$ повторяется $k_2$ раза так далее, до последнего элемента $a_r$, который повторяется $k_r$ раз. При этом $k_1+k_2+ldots+k_r=k$.

Общее количество перестановок с повторениями определяется формулой:

$$
begin{equation}
P_{k}(k_1,k_2,ldots,k_r)=frac{k!}{k_1!cdot k_2!cdot ldots cdot k_r!}
end{equation}
$$

Пример №4

Слова составляются на основе алфавита $U={a,b,d}$. Сколько различных слов из семи символов может быть составлено, если в этих словах буква «a» должна повторяться 2 раза; буква «b» – 1 раз, а буква «d» – 4 раза?

Решение

Вот примеры искомых слов: «aabdddd», «daddabd» и так далее. Буквы каждого слова образуют (3,7)-выборку с повторениями: $(a,a,b,d,d,d,d)$, $(d,a,d,d,a,b,d)$ и т.д. Каждая такая выборка состоит из двух элементов «a», одного элемента «b» и четырёх элементов «d». Иными словами, $k_1=2$, $k_2=1$, $k_3=4$. Общее количество повторений всех символов, естественно, равно объёму выборки, т.е. $k=k_1+k_2+k_3=7$. Подставляя эти данные в формулу (4), будем иметь:

$$
P_7(2,1,4)=frac{7!}{2!cdot 1!cdot 4!}=105.
$$

Следовательно, общее количество искомых слов равно 105.

Ответ: 105.

Сочетания без повторений из $n$ элементов по $k$

Сочетание без повторений из $n$ элементов по $k$ – неупорядоченная $(n,k)$-выборка без повторений.

Общее количество сочетаний без повторений из $n$ элементов по $k$ определяется формулой:

$$
begin{equation}
C_{n}^{k}=frac{n!}{(n-k)!cdot k!}
end{equation}
$$

Пример №5

В корзине размещены карточки, на которых написаны целые числа от 1 до 10. Из корзины вынимают 4 карточки и суммируют числа, написанные на них. Сколько различных наборов карточек можно вытащить из корзины?

Решение

Итак, в данной задаче исходное множество таково: $U={1,2,3,4,5,6,7,8,9,10}$. Из этого множества мы выбираем четыре элемента (т.е., четыре карточки из корзины). Номера вытащенных элементов образуют (10,4)-выборку. Повторения в этой выборке не допускаются, так как номера всех карточек различны. Вопрос вот в чём: порядок выбора карточек играет роль или нет? Т.е., к примеру, равны ли выборки $(1,2,7,10)$ и $(10,2,1,7)$ или не равны? Тут нужно обратиться к условию задачи. Карточки вынимаются для того, чтобы потом найти сумму элементов. А это значит, что порядок карточек не важен, так как от перемены мест слагаемых сумма не изменится. Например, выборке $(1,2,7,10)$ и выборке $(10,2,1,7)$ будет соответствовать одно и то же число $1+2+7+10=10+2+1+7=20$. Вывод: из условия задачи следует, что мы имеем дело с неупорядоченными выборками. Т.е. нам нужно найти общее количество неупорядоченных (10,4)-выборок без повторений. Иными словами, нам нужно найти количество сочетаний из 10 элементов по 4. Используем для этого формулу (5):

$$
C_{10}^{4}=frac{10!}{(10-4)!cdot 4!}=frac{10!}{6!cdot 4!}=210.
$$

Следовательно, общее количество искомых наборов равно 210.

Ответ: 210.

Сочетания с повторениями из $n$ элементов по $k$

Сочетание с повторениями из $n$ элементов по $k$ – неупорядоченная $(n,k)$-выборка с повторениями.

Общее количество сочетаний с повторениями из $n$ элементов по $k$ определяется формулой:

$$
begin{equation}
bar{C}_{n}^{k}=frac{(n+k-1)!}{(n-1)!cdot k!}
end{equation}
$$

Пример №6

Представьте себе, что мы находимся на конфетном заводе, – прямо возле конвейера, по которому движутся конфеты четырёх сортов. Мы запускаем руки в этот поток и вытаскиваем двадцать штук. Сколько всего различных «конфетных комбинаций» может оказаться в горсти?

Решение

Если принять, что первому сорту соответствует число 1, второму сорту – число 2 и так далее, то исходное множество в нашей задаче таково: $U={1,2,3,4}$. Из этого множества мы выбираем 20 элементов (т.е., те самые 20 конфет с конвейера). Пригоршня конфет образует (4,20)-выборку. Естественно, повторения сортов будут. Вопрос в том, играет роль порядок расположения элементов в выборке или нет? Из условия задачи следует, что порядок расположения элементов роли не играет. Нам нет разницы, будут ли в горсти располагаться сначала 15 леденцов, а потом 4 шоколадных конфеты, или сначала 4 шоколадных конфеты, а уж потом 15 леденцов. Итак, мы имеем дело с неупорядоченной (4,20) выборкой с повторениями. Чтобы найти общее количество этих выборок используем формулу (6):

$$
bar{C}_{4}^{20}=frac{(4+20-1)!}{(4-1)!cdot 20!}=frac{23!}{3!cdot 20!}=1771.
$$

Следовательно, общее количество искомых комбинаций равно 1771.

Ответ: 1771.

п-факториал
— произведение всех натуральных чисел
от 1 до п
включительно.


.

Пример 1.4. 1) ,

2)

.

Следует
отметить, что 0!
= 1.

1.4. Перестановки

Перестановки
комбинации из n
элементов, которые отличаются друг от
друга только порядком элементов. Общее
число перестановок из n
элементов обозначается

и равно:


.

Пример
1.5.
Из
букв A, B, C можно составить следующие
перестановки:

ABC,
ACB,

BAC, BCA,

CAB, CBA.

Всего
перестановок

Причем они отличаются друг от друга
только порядком расположения букв.

Пример
1.6.
Сколькими
способами можно расставить на книжной
полке собрание сочинений Диккенса,
включающее 30 томов?

Решение:

Каждый такой способ
— это перестановка из 30 элементов. Всего
таких перестановок будет

30!
= 265 252859 812191058636308 480 000000.

Число
перестановок с повторениями

можно найти применив формулу:

1.5. Размещения

Размещения
– комбинации из n
элементов по m
элементов, которые отличаются друг от
друга или самими элементами или их
порядком.

Размещения
обозначаются

,

где n
– числи всех имеющихся элементов,

m
– число элементов к каждой комбинации.

При этом полагают,
что

.
Число размещений можно вычислить по
формулам:


.

Пример 1.7.
Пусть имеются четыре буквы А, В, С, D.
Составив все комбинации только из двух
букв, получим: АВ, АС, АD,

ВА, ВС, ВD,

СА, СВ, СD,

DA,
DB,
DC.

Все полученные
комбинации отличаются или буквами, или
порядком (комбинации ВА и АВ считаются
различными). Кратко это можно записать
так:

Пример
1.8.
На книжную
полку влезает только 8 любых томов из
30-томного собрания Диккенса. Сколькими
способами можно заполнить этими томами
такую полку?

Решение:

Каждый
способ — это размещение из 30 элементов
по 8. Всего таких размещений будет

Число
размещений с повторениями

равно:


.

    1. Сочетания

Сочетания
все возможные комбинации из n
элементов по m
элементов, которые отличаются друг от
друга по крайней мере хотя бы одним
элементом.

Сочетания обозначаются

и находятся по формуле:


.

Пример 1.9.
Из четырех различных букв А, В, С, D
можно составить следующие комбинации,
отличающиеся друг от друга хотя бы одним
элементом: АВ, АС, АD,
ВС, ВD,
СD.

Значит число
сочетаний из четырех элементов по два
равно 6.

Это можно найти и
по вышеприведенной формуле:

Для сочетаний
справедливы равенства:


,


,


.

Число перестановок,
размещений и сочетаний связаны равенством:

Литература:

  1. Гмурман,
    В. Е. Теория вероятностей и математическая
    статистика: Учеб. пособие для вузов/В.
    Е. Гмурман. — 9-е изд., стер. — М.: Высш.
    шк., 2003. — с.22 – 23.

  2. Гусак
    А.А. Теория вероятностей: справ. Пособие
    к решению задач / А.А. Гусак, Е.А. Бричикова.
    – 6-е изд. – Минск: ТетраСистемс, 2007. –
    с.13 – 21.

Контрольные вопросы:

  1. В чем сущность
    комбинаторики?

  2. Сформулируйте
    правило сложения.

  3. Сформулируйте
    правило умножения.

  4. В чем отличие
    выбора элементов с возращениями и без
    возращений?

  5. Что
    называют перестановками?

  6. По
    какой формуле вычисляют число перестановок
    из п
    различных элементов?

  7. По
    какой формуле вычисляют число перестановок
    из п
    различных элементов с повторениями?

  8. Что называют
    размещениями?

  9. По
    какой формуле вычисляют число размещений
    из п
    различных элементов по m
    элементов?

  10. Что называют
    сочетаниями?

  11. По
    какой формуле вычисляют число сочетаний
    из элементов п
    различных элементов по m
    элементов?

  12. Каким равенством
    связаны числа перестановок, размещений
    и сочетаний?

  13. Чем
    отличаются сочетания от размещений?
    Что и во сколько раз больше?

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти любую песню по звуку
  • Рваная кутикула как исправить
  • Как найти суффикс в слове школьник
  • Как найти промокод для фонбет
  • Как найти смежные углы решение