Как найти общее количество вероятностей

❓ Что такое теория вероятностей?

Теория вероятностей использует случайные величины и распределения вероятностей для математической оценки неопределенных ситуаций. Понятие вероятности используется для присвоения числового описания вероятности наступления события. Вероятность можно определить как число благоприятных исходов, деленное на общее число возможных исходов события.

Определение теории вероятностей

Теория вероятностей – это область математики и статистики, которая занимается определением вероятностей, связанных со случайными событиями. Существует два основных подхода к изучению теории вероятностей: теоретический и экспериментальный. Теоретическая вероятность определяется на основе логических рассуждений без проведения экспериментов. В отличие от нее, экспериментальная вероятность определяется на основе исторических данных путем проведения повторных экспериментов.

Пример теории вероятностей

Предположим, нам необходимо определить вероятность выпадения числа 4 при бросании игральной кости. Число благоприятных исходов равно 1. Возможные исходы игральной кости – {1, 2, 3, 4, 5, 6}. Из этого следует, что всего существует 6 исходов. Таким образом, вероятность выпадения 4 при бросании игральной кости, используя теорию вероятности, можно вычислить как 1 / 6 ≈ 0,167.

🎲 Основы теории вероятностей

Мы можем понять эту область математики с помощью нескольких основных терминов, напрямую связанных с теорией вероятностей.

Случайный эксперимент

Случайный эксперимент в теории вероятностей – это испытание, которое повторяется несколько раз для получения четко определенного набора возможных результатов. Подбрасывание монеты является примером случайного эксперимента.

Пространство выборки

Пространство выборки можно определить как множество всех возможных исходов, полученных в результате проведения случайного эксперимента. Например, пространство выборки при подбрасывании симметричной монеты (fair coin), стороны которой – это орел и решка.

Событие

Теория вероятностей определяет событие как набор исходов эксперимента, который образует подмножество пространства выборки.

Примеры событий:

  1. Независимые – те, на которые не влияют другие события, являются независимыми.
  2. Зависимые – те, на которые влияют другие события.
  3. Взаимоисключающие – события, которые не могут произойти в одно и то же время.
  4. Равновероятные – два или более события, которые имеют одинаковые шансы произойти.
  5. Исчерпывающие – это события, которые равны выборочному пространству эксперимента.

Случайная величина

В теории вероятностей случайную переменную можно определить как величину, которая принимает значение при всех возможных исходах эксперимента.

Существует два типа случайных величин:

  1. Дискретная случайная величина – принимает точные значения, такие как 0, 1, 2…. Описывается кумулятивной функцией распределения и функцией массы вероятности.
  2. Непрерывная случайная величина – переменная, которая может принимать бесконечное число значений. Для определения характеристик этой переменной используются кумулятивная функция распределения и функция плотности вероятности.

Вероятность

Вероятность мы можем определить как численную вероятность наступления события. Вероятность того, что событие произойдет, всегда лежит между 0 и 1. Это связано с тем, что число желаемых исходов никогда не может превысить общее число исходов события. Теоретическая вероятность и эмпирическая вероятность используются в теории вероятностей для измерения шанса наступления события.

Формула вероятности P(A): количество благоприятных исходов для A делимое на общее количество возможных исходов.

Формула вероятности P(A): количество благоприятных исходов для A делимое на общее количество возможных исходов.

Условная вероятность

Ситуация, когда необходимо определить вероятность наступления события, притом что другое событие уже произошло.

Обозначается как P(A | B).

Если хочешь подтянуть свои знания по математике, загляни на наш курс «Математика для Data Science», на котором ты:

  • Усвоишь специальную терминологию и сможешь читать статьи по Data Science без постоянных обращений к поисковику.
  • Подготовишься к успешной сдачи вступительных экзаменов в Школу анализа данных Яндекс.
  • Овладеешь математическим аппаратом, который необходим, чтобы стать специалистом в Data Science.

Ожидание

Ожидание случайной величины X можно определить как среднее значение результатов эксперимента, проводимого многократно. Ожидание обозначается как E[X]. Также известно как среднее значение случайной величины.

Дисперсия

Дисперсия – это мера, которая показывает, как распределение случайной величины изменяется относительно среднего значения. Дисперсия определяется как среднее квадратичное отклонение от среднего значения случайной величины. Обозначается как Var[X].

Функция распределения теории вероятностей

Распределение вероятностей или кумулятивная функция распределения – это функция, которая моделирует все возможные значения эксперимента, используя случайную переменную. Распределение Бернулли и биномиальное распределение – это примеры дискретных распределений вероятностей. Например, нормальное распределение представляет собой пример непрерывного распределения.

Массовая функция вероятности

Массовая функция вероятности определяется как вероятность того, что дискретная случайная величина будет в точности равна определенному значению.

Функция плотности вероятности

Функция плотности вероятности – это вероятность того, что непрерывная случайная величина принимает множество возможных значений.

Формулы теории вероятностей

В теории вероятностей существует множество формул, которые помогают рассчитать различные вероятности, связанные с событиями.

Наиболее важные формулы:

  1. Теоретическая вероятность: Число благоприятных исходов / Число возможных исходов.
  2. Эмпирическая вероятность: Число случаев, когда событие происходит / Общее число испытаний.
  3. Правило сложения: P(A ∪ B) = P(A) + P(B) – P(A∩B), где A и B – события.
  4. Правило комплементарности: P(A’) = 1 – P(A). P(A’) означает вероятность того, что событие не произойдет.
  5. Независимые события: P(A∩B) = P(A) ⋅ P(B).
  6. Условная вероятность: P(A | B) = P(A∩B) / P(B).
  7. Теорема Байеса: P(A | B) = P(B | A) ⋅ P(A) / P(B).
  8. Массовая функция вероятности: f(x) = P(X = x).
  9. Функция плотности вероятности: p(x) = p(x) = dF(x) / dx, где F(x) – кумулятивная функция распределения.
  10. Ожидание непрерывной случайной величины: ∫xf(x)dx, где f(x) является МФВ (Массовой функцией вероятности).
  11. Ожидание дискретной случайной величины: ∑xp(x), где p(x) – это ФПВ (Функцией плотности вероятности).
  12. Дисперсия: Var(X) = E[X2] – (E[X])2.

Применение теории вероятностей

Теория вероятностей используется во многих областях и помогает оценить риски, которые связаны с теми или иными решениями. Некоторые из направлений, где применяют теорию вероятностей:

  • В финансовой отрасли теория вероятностей используется для создания математических моделей фондового рынка с целью прогнозирования будущих тенденций. Это помогает инвесторам вкладывать средства в наименее рискованные активы, которые дают наилучший доход.
  • В потребительской индустрии теория вероятностей используется для снижения вероятности неудачи при разработке продукта.
  • Казино использует теорию вероятностей для разработки азартных игр с максимизацией своей прибыли.

🏋️ Практические задания

🎲 Орел или решка? Основы теории вероятностей простыми словами

Задача 1: При бросании двух игральных костей, какова вероятность того, что выпадет комбинация, сумма которой будет равна 8?

При бросании двух игральных костей существует 36 возможных исходов. Для получения суммы, равной 8, существует 5 благоприятных исходов: [(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)]. Используя формулы теории вероятностей: Вероятность = Число благоприятных исходов / общее число возможных исходов = 5 / 36. Ответ: Вероятность получения суммы 8 при бросании двух игральных костей равна 5 / 36.

Задача 2: Какова вероятность вытащить карту королеву из колоды?

Колода карт имеет 4 масти. Каждая масть состоит из 13 карт. Таким образом, общее число возможных исходов = (4) * (13) = 52. Может быть, 4 королевы, по одной из каждой масти. Следовательно, количество благоприятных исходов = 4. Карточная вероятность = 4 / 52 = 1 / 13. Ответ: Вероятность получить королеву из колоды карт равна 1 / 13

Задача 3: Из 10 человек 3 купили карандаши, 5 купили тетради, а 2 купили и карандаши, и тетради. Если покупатель купил тетрадь, какова вероятность того, что он также купил карандаш?

Используя понятие условной вероятности, P(A | B) = P(A∩B) / P(B). Пусть A – событие, когда люди покупают карандаши, а B – событие, когда люди покупают тетради. P(A) = 3 / 10 = 0,3P(B) = 5 / 10 = 0,5P(A∩B) = 2 / 10 = 0,2. Подставим полученные значения в приведенную формулу, P(A | B) = 0,2 / 0,5 = 0,4. Ответ: Вероятность того, что покупатель купил карандаш, при условии, что он купил блокнот, равна 0,4.

В заключение

Подведем итоги:

  • Теория вероятностей – это раздел математики, в котором рассматриваются вероятности случайных событий.
  • Понятие вероятности объясняет возможность наступления того или иного события.
  • Значение вероятности всегда лежит между 0 и 1.
  • В теории вероятностей все возможные исходы случайного эксперимента составляют пространство выборки.
  • Теория вероятностей использует такие важные понятия, как случайные величины и кумулятивные функции распределения для моделирования случайного события. Сюда же относится определение различных вероятностей, связанных с этим.

Если хочешь подтянуть свои знания по математике, загляни на наш курс «Математика для Data Science», который включает в себя:

  • 47 видеолекций и 150 практических заданий.
  • Консультации с преподавателями курса.


Загрузить PDF


Загрузить PDF

Вероятность показывает возможность того или иного события при определенном количестве повторений.[1]
Это число возможных результатов с одним или несколькими исходами, поделенное на общее количество возможных событий. Вероятность нескольких событий вычисляется путем разделения задачи на отдельные вероятности с последующим перемножением этих вероятностей.

  1. Изображение с названием Calculate Probability Step 1

    1

    Выберите событие со взаимоисключающими результатами. Вероятность можно рассчитать лишь в том случае, если рассматриваемое событие либо происходит, либо не происходит. Нельзя одновременно получить какое-либо событие и противоположный ему результат. Примером таких событий служат выпадение 5 на игровом кубике или победа определенной лошади на скачках. Пять либо выпадет, либо нет; определенная лошадь либо придет первой, либо нет.[2]

    Например:» невозможно вычислить вероятность такого события: при одном броске кубика выпадут 5 и 6 одновременно.

  2. Изображение с названием Calculate Probability Step 2

    2

    Определите все возможные события и результаты, которые могут произойти. Предположим, необходимо определить вероятность того, что при броске игрового кубика с 6 цифрами выпадет тройка. «Выпадение тройки» является событием, и поскольку мы знаем, что может выпасть любая из 6 цифр, число возможных исходов равно шести. Таким образом, мы знаем, что в данном случае есть 6 возможных результатов и одно событие, вероятность которого мы хотим определить. Ниже приведено еще два примера.[3]

    • Пример 1. Какова вероятность того, что вы случайно выберете день, который выпадает на выходные? В данном случае событием является «выбор дня, который приходится на выходные», а число возможных исходов равно количеству дней недели, то есть семи.
    • Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если достать из коробки случайный шар, какова вероятность того, что он окажется красным? Событием является «вынуть красный шар», а число возможных исходов равно общему количеству шаров, то есть двадцати.
  3. Изображение с названием Calculate Probability Step 3

    3

    Поделите число событий на количество возможных исходов. Таким образом вы определите вероятность одиночного события. Если мы рассматриваем случай выпадения 3 при бросании кубика, число событий равно 1 (тройка находится лишь на одной грани кубика), а общее количество исходов равно 6. В результате получаем соотношение 1/6, 0,166, или 16,6 %. Вероятность события для двух приведенных выше примеров находится следующим образом:[4]

    • Пример 1. Какова вероятность того, что вы случайно выберете день, который выпадает на выходные? Число событий равно 2, так как в одной неделе два выходных дня, а общее количество исходов составляет 7. Таким образом, вероятность равна 2/7. Полученный результат можно записать также как 0,285 или 28,5 %.
    • Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если достать из коробки случайный шар, какова вероятность того, что он окажется красным? Число событий равно 5, поскольку в коробке 5 красных шаров, а общее количество исходов составляет 20. Находим вероятность: 5/20 = 1/4. Полученный результат можно записать также как 0,25 или 25 %.
  4. Изображение с названием Calculate Probability Step 4

    4

    Сложите вероятности всех возможных событий и проверьте, получится ли в сумме 1. Суммарная вероятность всех возможных событий должна составлять 1, или 100 %. Если у вас не получится 100 %, скорее всего, вы допустили ошибку и пропустили одно или несколько возможных событий. Проверьте свои вычисления и убедитесь, что вы учли все возможные исходы.[5]

    • Например, вероятность выпадения 3 при бросании игрового кубика составляет 1/6. При этом вероятность выпадения любой другой цифры из пяти оставшихся также равна 1/6. В результате получаем 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 6/6, то есть 100 %.
    • Если вы, например, забудете о цифре 4 на кубике, сложение вероятностей даст вам лишь 5/6, или 83 %, что не равно единице и указывает на ошибку.
  5. Изображение с названием Calculate Probability Step 5

    5

    Представьте вероятность невозможного исхода в виде 0. Это означает, что данное событие не может произойти, и его вероятность равна 0. Таким образом вы сможете учесть невозможные события.[6]

    • Например, если бы вы вычисляли вероятность того, что в 2020 году Пасха придется на понедельник, то получили бы 0, поскольку Пасха всегда празднуется в воскресенье.

    Реклама

  1. Изображение с названием Calculate Probability Step 6

    1

    При рассмотрении независимых событий вычисляйте каждую вероятность отдельно. После того как вы определите, каковы вероятности событий, их можно будет рассчитать отдельно. Предположим, необходимо узнать вероятность того, что при бросании кубика два раза подряд выпадет 5. Мы знаем, что вероятность выпадения одной пятерки составляет 1/6, и вероятность выпадения второй пятерки также равна 1/6. Первый исход не связан со вторым.[7]

    • Несколько выпадений пятерок называются независимыми событиями, поскольку то, что выпадет первый раз, не влияет на второе событие.
  2. Изображение с названием Calculate Probability Step 7

    2

    Учитывайте влияние предыдущих исходов при расчете вероятности для зависимых событий. Если первое событие влияет на вероятность второго исхода, говорят о расчете вероятности зависимых событий. Например, если вы выбираете две карты из колоды, состоящей из 52 карт, после взятия первой карты состав колоды изменяется, что влияет на выбор второй карты. Чтобы рассчитать вероятность второго из двух зависимых событий, необходимо вычесть 1 из количества возможных результатов при расчете вероятности второго события.[8]

    • Пример 1. Рассмотрим следующее событие: Из колоды случайным образом одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность того, что первая карта будет иметь трефовую масть, составляет 13/52, или 1/4, поскольку всего в колоде 13 карт одной масти.

      • После этого вероятность того, что вторая карта окажется трефовой масти, составляет 12/51, поскольку одной трефовой карты уже нет. Это объясняется тем, что первое событие влияет на второе. Если вы вытянули тройку треф и не положили ее обратно, в колоде будет на одну карту меньше (51 вместо 52).
    • Пример 2. В коробке 4 синих, 5 красных и 11 белых шаров. Если наугад вынуть три шара, какова вероятность того, что первый окажется красным, второй синим, а третий белым?

      • Вероятность того, что первый шар окажется красным, составляет 5/20, или 1/4. Вероятность того, что второй шар будет синим, равна 4/19, поскольку в коробке осталось на один шар меньше, но по прежнему 4 синих шара. Наконец, вероятность того, что третий шар окажется белым, составляет 11/18, так как мы уже вынули два шара.
  3. Изображение с названием Calculate Probability Step 8

    3

    Перемножьте вероятности каждого отдельного события. Независимо от того, имеете ли вы дело с независимыми или зависимыми событиями, а также количества исходов (их может быть 2, 3 и даже 10), можно рассчитать общую вероятность, умножив вероятности всех рассматриваемых событий друг на друга. В результате вы получите вероятность нескольких событий, следующих одно за другим. Например, стоит задача Найти вероятность того, что при бросании кубика два раза подряд выпадет 5. Это два независимых события, вероятность каждого из которых равна 1/6. Таким образом, вероятность обоих событий составляет 1/6 x 1/6 = 1/36, то есть 0,027, или 2,7 %.[9]

    • Пример 1. Из колоды наугад одну за другой вытягивают две карты. Какова вероятность того, что обе карты будут иметь трефовую масть? Вероятность первого события составляет 13/52. Вероятность второго события равна 12/51. Находим общую вероятность: 13/52 x 12/51 = 12/204 = 1/17, то есть 0,058, или 5,8 %.
    • Пример 2. В коробке находятся 4 синих, 5 красных и 11 белых шаров. Если наугад вытянуть из коробки три шара один за другим, какова вероятность того, что первый окажется красным, второй синим, а третий белым? Вероятность первого события составляет 5/20. Вероятность второго события равна 4/19. Вероятность третьего события составляет 11/18. Таким образом, общая вероятность равна 5/20 x 4/19 x 11/18 = 44/1368 = 0,032, или 3,2 %.

    Реклама

  1. Изображение с названием Calculate Probability Step 9

    1

    Рассматривайте возможность как дробь с положительным результатом в числителе. Вернемся к нашему примеру с разноцветными шарами. Предположим, необходимо узнать вероятность того, что вы достанете белый шар (всего их 11) из всего набора шаров (20). Шанс того, что данное событие произойдет, равен отношению вероятности того, что оно случится, к вероятности того, что оно не произойдет. Поскольку в коробке имеется 11 белых шаров и 9 шаров другого цвета, возможность вытянуть белый шар равна отношению 11:9.[10]

    • Число 11 представляет вероятность достать белый шар, а число 9 — вероятность вытянуть шар другого цвета.
    • Таким образом, более вероятно, что вы достанете белый шар.
  2. Изображение с названием Calculate Probability Step 10

    2

    Сложите полученные величины, чтобы перевести возможность в вероятность. Преобразовать возможность довольно просто. Сначала ее следует разбить на два отдельных события: шанс вытянуть белый шар (11) и шанс вытянуть шар другого цвета (9). Сложите полученные числа, чтобы найти общее число возможных событий. Запишите все как вероятность с общим количеством возможных результатов в знаменателе.[11]

    • Вы можете вынуть белый шар 11 способами, а шар другого цвета — 9 способами. Таким образом, общее число событий составляет 11 + 9, то есть 20.
  3. Изображение с названием Calculate Probability Step 11

    3

    Найдите возможность так, как если бы вы рассчитывали вероятность одного события. Как мы уже определили, всего существует 20 возможностей, причем в 11 случаях можно достать белый шар. Таким образом, рассчитать вероятность вытянуть белый шар можно так же, как и вероятность любого другого одиночного события. Поделите 11 (количество положительных исходов) на 20 (число всех возможных событий), и вы определите вероятность.[12]

    • В нашем примере вероятность достать белый шар составляет 11/20. В результате получаем 11/20 = 0,55, или 55 %.

    Реклама

Советы

  • Для описания вероятности того, что то или иное событие произойдет, математики обычно используют термин «относительная вероятность». Определение «относительная» означает, что результат не гарантирован на 100 %. Например, если подбросить монету 100 раз, то, вероятно, не выпадет ровно 50 раз орел и 50 решка. Относительная вероятность учитывает это.[13]
  • Вероятность какого-либо события не может быть отрицательной величиной. Если у вас получилось отрицательное значение, проверьте свои вычисления.[14]
  • Чаще всего вероятности записывают в виде дробей, десятичных дробей, процентов или по шкале от 1 до 10.
  • Вам может пригодиться знание того, что в спортивных и букмекерских ставках шансы выражаются как «шансы против» — это означает, что возможность заявленного события оценивается первой, а шансы того события, которое не ожидается, стоят на втором месте. Хотя это и может сбить с толку, важно помнить об этом, если вы собираетесь делать ставки на какое-либо спортивное событие.

Реклама

Об этой статье

Эту страницу просматривали 705 752 раза.

Была ли эта статья полезной?

События, которые происходят реально или в нашем воображении, можно разделить на 3 группы. Это достоверные события, которые обязательно произойдут, невозможные события и случайные события. Теория вероятностей изучает случайные события, т.е. события, которые могут произойти или не произойти. В данной статье будет представлена в кратком виде теория вероятности формулы и примеры решения задач по теории вероятности, которые будут в 4 задании ЕГЭ по математике (профильный уровень).

Зачем нужна теория вероятности

Исторически потребность исследования этих проблем возникла в XVII веке в связи с развитием и профессионализацией азартных игр и появлением казино. Это было реальное явление, которое требовало своего изучения и исследования.

Игра в карты, кости, рулетку создавала ситуации, когда могло произойти любое из конечного числа равновозможных событий. Возникла необходимость дать числовые оценки возможности наступления того или иного события.

В XX веке выяснилось, что эта, казалось бы, легкомысленная наука играет важную роль в познании фундаментальных процессов, протекающих в микромире. Была создана современная теория вероятностей.

Основные понятия теории вероятности

Объектом изучения теории вероятностей являются события и их вероятности. Если событие является сложным, то его можно разбить на простые составляющие, вероятности которых найти несложно.

теория вероятности возникла как помощь в игре в кости, в казино и т.п.

Суммой событий А и В называется событие С, заключающееся в том, что произошло либо событие А, либо событие В, либо события А и В одновременно.

Произведением событий А и В называется событие С, заключающееся в том, что произошло и событие А и событие В.

События А и В называется несовместными, если они не могут произойти одновременно.

Событие А называется невозможным, если оно не может произойти. Такое событие обозначается символом oslash.

Событие А называется достоверным, если оно обязательно произойдет. Такое событие обозначается символом Omega.

Пусть каждому событию А поставлено в соответствие число P{А). Это число P(А) называется вероятностью события А, если при таком соответствии выполнены следующие условия.

  1. Вероятность принимает значения на отрезке от 0 до 1, т.е. 0<P(A)<1.
  2. Вероятность невозможного события равна 0, т.е. P(oslash) = 0 .
  3. Вероятность достоверного события равна 1, т.e. P(Omega) = 1.
  4. Если события A и В несовместные, то вероятность их суммы равна сумме их вероятностей, т.е. P(A+B) =P(A)+P(B).

Важным частным случаем является ситуация, когда имеется n равновероятных элементарных исходов, и произвольные k из этих исходов образуют события А. В этом случае вероятность можно ввести по формуле P(A) = frac{k}{n}. Вероятность, введенная таким образом, называется классической вероятностью. Можно доказать, что в этом случае свойства 1-4 выполнены.

Задачи по теории вероятностей, которые встречаются на ЕГЭ по математике, в основном связаны с классической вероятностью. Такие задачи могут быть очень простыми. Особенно простыми являются задачи по теории вероятностей в демонстрационных вариантах. Легко вычислить число благоприятных исходов k, прямо в условии написано число всех исходов n.

Самый простой способ определения вероятности

Ответ получаем по формуле P(A) = frac{k}{n}.

Пример задачи из ЕГЭ по математике по определению вероятности

На столе лежат 20 пирожков – 5 с капустой, 7 с яблоками и 8 с рисом. Марина хочет взять пирожок. Какова вероятность, что она возьмет пирожок с рисом?

Решение.

Всего равновероятных элементарных исходов 20, то есть Марина может взять любой из 20 пирожков. Но нам нужно оценить вероятность того, что Марина возьмет пирожок с рисом, то есть P(A), где А – это выбор пирожка с рисом. Значит у нас количество благоприятных исходов (выборов пирожков с рисом) всего 8. Тогда вероятность будет определяться по формуле:

    [ P(A)=frac{k}{n}=frac{8}{20}=0,4 ]

Ответ: 0,4

Независимые, противоположные и произвольные события

Однако в открытом банке заданий стали встречаться и более сложные задания. Поэтому обратим внимание читателя и на другие вопросы, изучаемые в теории вероятностей.

События А и В называется независимыми, если вероятность каждого из них не зависит от того, произошло ли другое событие.

Событие B состоит в том, что событие А не произошло, т.е. событие B является противоположным к событию А. Вероятность противоположного события равна единице минус вероятность прямого события,т.е. P(B)=1-P(A).

Теоремы сложения и умножения вероятностей, формулы

Для произвольных событий А и В вероятность суммы этих событий равна сумме их вероятностей без вероятности их совместного события, т.е. P(A+B) = P(A)+P(B)-P(AB).

Для независимых событий А и В вероятность произведения этих событий равна произведению их вероятностей, т.е. в этом случае P{AB)= P(A)cdot P(B).

Последние 2 утверждения называются теоремами сложения и умножения вероятностей.

Не всегда подсчет числа исходов является столь простым. В ряде случаев необходимо использовать формулы комбинаторики. При этом наиболее важным является подсчет числа событий, удовлетворяющих определенным условиям. Иногда такого рода подсчеты могут становиться самостоятельными заданиями.

Сколькими способами можно усадить 6 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Для третьего ученика остается 4 свободных места, для четвертого — 3, для пятого — 2, шестой займет единственное оставшееся место. Чтобы найти число всех вариантов, надо найти произведение 1cdot 2 cdot 3 cdot 4 cdot 5 cdot 6, которое обозначается символом 6! и читается “шесть факториал”.

В общем случае ответ на этот вопрос дает формула для числа перестановок из п элементов P_n=1 cdot 2 cdot 3 cdot 4 cdot 5 cdot 6 В нашем случае  n= 6.

Рассмотрим теперь другой случай с нашими учениками. Сколькими способами можно усадить 2 учеников на 6 свободных мест? Первый ученик займет любое из 6 мест. Каждому из этих вариантов соответствует 5 способов занять место второму ученику. Чтобы найти число всех вариантов, надо найти произведение 6 cdot 5.

В общем случае ответ на этот вопрос дает формула для числа размещений из n элементов по k элементам

    [ A^{k}_{n}=n cdot (n-1) cdot (n-2) dots cdot(n-k+1)= frac{n!}{(n-k)!} ]

В нашем случае n = 6, k = 2.

И последний случай из этой серии. Сколькими способами можно выбрать трех учеников из 6? Первого ученика можно выбрать 6 способами, второго — 5 способами, третьего — четырьмя. Но среди этих вариантов 6 раз встречается одна и та же тройка учеников. Чтобы найти число всех вариантов, надо вычислить величину: frac {6 cdot 5 cdot 4}{1cdot 2 cdot 3} = 20. В общем случае ответ на этот вопрос дает формула для числа сочетаний из n элементов по k элементам:

    [ C^{k}_{n}=frac{n cdot (n-1) cdot (n-2) dots (n-k+1)}{1cdot 2 cdot 3 dots cdot k}=frac{n!}{k! cdot (n-k)!}. ]

В нашем случае n=6, k=3.

Примеры решения задач из ЕГЭ по математике на определение вероятности

Задача 1. Из сборника под ред. Ященко.

На тарелке 30 пирожков: 3 с мясом, 18 с капустой и 9 с вишней. Саша наугад выбирает один пирожок. Найдите вероятность того, что он окажется с вишней.

Решение:

P=frac {9}{30}=0,3.

Ответ: 0,3.

Задача 2. Из сборника под ред. Ященко.

В каждой партии из 1000 лампочек в среднем 20 бракованных. Найдите вероятность того, что наугад взятая лампочка из партии будет исправной.

Решение: Количество исправных лампочек 1000-20=980. Тогда вероятность того, что взятая наугад лампочка из партии будет исправной:

P=frac{980}{1000}=0,98

Ответ: 0,98.

Задача 3.

Вероятность того, что на тестировании по математике учащийся У. верно решит больше 9 задач, равна 0,67. Вероятность того, что У. верно решит больше 8 задач, равна 0,73. Найдите вероятность того, что У. верно решит ровно 9 задач.

Решение:

Если мы вообразим числовую прямую и на ней отметим точки 8 и 9, то мы увидим, что условие “У. верно решит ровно 9 задач” входит в условие “У. верно решит больше 8 задач”, но не относится к условию “У. верно решит больше 9 задач”.

Однако, условие “У. верно решит больше 9 задач” содержится в условии “У. верно решит больше 8 задач”. Таким образом, если мы обозначим события: “У. верно решит ровно 9 задач” – через А, “У. верно решит больше 8 задач” – через B, “У. верно решит больше 9 задач” через С. То решение будет выглядеть следующим образом:

P(A)=P(B)-P(C)=0,73-0,67=0,06.

Ответ: 0,06.

Задача 4.

На экзамене по геометрии школьник отвечает на один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос по теме «Тригонометрия», равна 0,2. Вероятность того, что это вопрос по теме «Внешние углы», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

Решение.

Давайте подумаем какие у нас даны события. Нам даны два несовместных события. То есть либо вопрос будет относиться к теме “Тригонометрия”, либо к теме “Внешние углы”. По теореме вероятности вероятность несовместных событий равна сумме вероятностей каждого события, мы должны найти сумму вероятностей этих событий, то есть:

P(AB)=P(A)+ P(B)=0,2 +0,15 = 0,35

Ответ: 0,35.

Задача 5.

Помещение освещается фонарём с тремя лампами. Вероятность перегорания одной лампы в течение года равна 0,29. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит.

Решение:

Рассмотрим возможные события. У нас есть три лампочки, каждая из которых может перегореть или не перегореть независимо от любой другой лампочки. Это независимые события.

Тогда укажем варианты таких событий. Примем обозначения: bigcirc– лампочка горит, otimes – лампочка перегорела. И сразу рядом подсчитаем вероятность события. Например, вероятность события, в котором произошли три независимых события “лампочка перегорела”, “лампочка горит”, “лампочка горит”: P=0,29 cdot 0,71 cdot 0,71=0,146189, где вероятность события “лампочка горит” подсчитывается как вероятность события, противоположного событию “лампочка не горит”, а именно: P=1-0,29=0,71.

otimes otimes otimes P=0,29 cdot 0,29 cdot 0,29 = 0,024389

otimes bigcirc bigcirc P_1=0,29 cdot 0,71 cdot 0,71 = 0,146189

otimes otimes bigcirc  P_2=0,29 cdot 0,29 cdot 0,71 = 0,05971

bigcirc otimes bigcirc  P_3=0,71 cdot 0,29 cdot 0,71 = 0,05971

bigcirc otimes otimes  P_4=0,71 cdot 0,29 cdot 0,29 = 0,146189

bigcirc bigcirc otimes  P_5=0,71 cdot 0,71 cdot 0,29 = 0,05971

otimes bigcirc otimes  P_6=0,29 cdot 0,71 cdot 0,29 = 0,146189

bigcirc bigcirc bigcirc P_7=0,71 cdot 0,71 cdot 0,71=0,357911

Заметим, что благоприятных нам несовместных событий всего 7. Вероятность таких событий равна сумме вероятностей каждого из событий: P=P_1+P_2+P_3+P_4+P_5+P_6+P_7=0,146189 +0,05971+0,05971+0,146189+0,05971+0,146189+0,357911=0,975608.

Ответ: 0,975608.

Еще одну задачку вы можете посмотреть на рисунке:

решения задачи о монетах

Таким образом, мы с вами поняли, что такое теория вероятности формулы и примеры решения задач по которой вам могут встретиться в варианте ЕГЭ.


Download Article


Download Article

Chances are (pun intended) you’ve encountered probability by now, but what exactly is probability, and how do you calculate it? Probability is the likelihood of a specific event happening, like winning the lottery or rolling a 6 on a die. Finding probability is easy using the probability formula (the number of favorable outcomes divided by the total number of outcomes). In this article, we’ll walk you through exactly how to use the probability formula step by step, plus show you some examples of the probability formula in action.

  1. Image titled Calculate Probability Step 1

    1

    Choose an event with mutually exclusive outcomes. Probability can only be calculated when the event whose probability you’re calculating either happens or doesn’t happen. The event and its opposite both cannot occur at the same time. Rolling a 5 on a die, a certain horse winning a race, are examples of mutually exclusive events. Either a 5 is rolled or it isn’t; either the horse wins or it doesn’t.[1]

    Example: It would be impossible to calculate the probability of an event phrased as: “Both a 5 and a 6 will come up on a single roll of a die.”

  2. Image titled Calculate Probability Step 2

    2

    Define all possible events and outcomes that can occur. Let’s say you’re trying to find the likelihood of rolling a 3 on a 6-sided die. “Rolling a 3” is the event, and since we know that a 6-sided die can land any one of 6 numbers, the number of outcomes is 6. So, we know that in this case, there are 6 possible events and 1 outcome whose probability we’re interested in calculating.[2]
    Here are 2 more examples to help you get oriented:

    • Example 1: What is the likelihood of choosing a day that falls on the weekend when randomly picking a day of the week? «Choosing a day that falls on the weekend» is our event, and the number of outcomes is the total number of days in a week: 7.
    • Example 2: A jar contains 4 blue marbles, 5 red marbles and 11 white marbles. If a marble is drawn from the jar at random, what is the probability that this marble is red? «Choosing a red marble» is our event, and the number of outcomes is the total number of marbles in the jar, 20.

    Advertisement

  3. Image titled Calculate Probability Step 3

    3

    Divide the number of events by the number of possible outcomes. This will give us the probability of a single event occurring. In the case of rolling a 3 on a die, the number of events is 1 (there’s only a single 3 on each die), and the number of outcomes is 6. You can also express this relationship as 1 ÷ 6, 1/6, 0.166, or 16.6%.[3]
    Here’s how you find the probability of our remaining examples:[4]

    • Example 1: What is the likelihood of choosing a day that falls on the weekend when randomly picking a day of the week? The number of events is 2 (since 2 days out of the week are weekends), and the number of outcomes is 7. The probability is 2 ÷ 7 = 2/7. You could also express this as 0.285 or 28.5%.
    • Example 2: A jar contains 4 blue marbles, 5 red marbles and 11 white marbles. If a marble is drawn from the jar at random, what is the probability that this marble is red? The number of events is 5 (since there are 5 red marbles), and the number of outcomes is 20. The probability is 5 ÷ 20 = 1/4. You could also express this as 0.25 or 25%.
  4. Image titled Calculate Probability Step 4

    4

    Add up all possible event likelihoods to make sure they equal 1. The likelihood of all possible events needs to add up to 1 or to 100%. If the likelihood of all possible events doesn’t add up to 100%, you’ve most likely made a mistake because you’ve left out a possible event. Recheck your math to make sure you’re not omitting any possible outcomes.[5]

    • For example, the likelihood of rolling a 3 on a 6-sided die is 1/6. But the probability of rolling all five other numbers on a die is also 1/6. 1/6 + 1/6 + 1/6 + 1/6 + 1/6 + 1/6 = 6/6 , which = 100%.

    Note: If you had, for example, forgotten about the number 4 on the dice, adding up the probabilities would only reach 5/6 or 83%, indicating a problem.

  5. Image titled Calculate Probability Step 5

    5

    Represent the probability of an impossible outcome with a 0. This just means that there is no chance of an event happening, and occurs anytime you deal with an event that simply cannot happen. While calculating a 0 probability is not likely, it’s not impossible either.[6]

    • For example, if you were to calculate the probability of the Easter holiday falling on a Monday in the year 2020, the probability would be 0 because Easter is always on a Sunday.
  6. Advertisement

  1. Image titled Calculate Probability Step 6

    1

    Deal with each probability separately to calculate independent events. Once you’ve figured out what these probabilities are, you’ll calculate them separately. Say you wanted to know the probability of rolling a 5 twice consecutively on a 6-sided die. You know that the probability of rolling one five is 1/6, and the probability of rolling another five with the same die is also 1/6. The first outcome doesn’t interfere with the second.[7]

    Note: The probability of the 5s being rolled are called independent events, because what you roll the first time does not affect what happens the second time.

  2. Image titled Calculate Probability Step 7

    2

    Consider the effect of prior events when calculating probability for dependent events. If the occurrence of 1 event alters the probability of a second event occurring, you are measuring the probability of dependent events. For example, if you choose 2 cards out of a deck of 52 cards, when you choose the first card, that affects what cards are available when you choose the second card. To calculate the probability for the second of two dependent events, you’ll need to subtract 1 from the possible number of outcomes when calculating the probability of the second event.[8]

    • Example 1: Consider the event: Two cards are drawn randomly from a deck of cards. What is the likelihood that both cards are clubs? The likelihood that the first card is a club is 13/52, or 1/4. (There are 13 clubs in every deck of cards.)

      • Now, the likelihood that the second card is a club is 12/51, since 1 club will have already been removed. This is because what you do the first time affects the second. If you draw a 3 of clubs and don’t put it back, there will be one less club and one less card in the deck (51 instead of 52).
    • Example 2: A jar contains 4 blue marbles, 5 red marbles, and 11 white marbles. If 3 marbles are drawn from the jar at random, what is the probability that the first marble is red, the second marble is blue, and the third is white?

      • The probability that the first marble is red is 5/20, or 1/4. The probability of the second marble being blue is 4/19, since we have 1 less marble, but not 1 less blue marble. And the probability that the third marble is white is 11/18, because we’ve already chosen 2 marbles.
  3. Image titled Calculate Probability Step 8

    3

    Multiply the probabilities of each separate event by one another. Regardless of whether you’re dealing with independent or dependent events, and whether you’re working with 2, 3, or even 10 total outcomes, you can calculate the total probability by multiplying the events’ separate probabilities by one another. This will give you the probability of multiple events occurring one after another. So, for the scenario; What is the probability of rolling two consecutive fives on a six-sided die? the probability of both independent events is 1/6. This gives us 1/6 x 1/6 = 1/36. You could also express this as 0.027 or 2.7%.[9]

    • Example 1: Two cards are drawn randomly from a deck of cards. What is the likelihood that both cards are clubs? The probability of the first event happening is 13/52. The probability of the second event happening is 12/51. The probability is 13/52 x 12/51 = 12/204 = 1/17. You could also express this as 0.058 or 5.8%.
    • Example 2: A jar contains 4 blue marbles, 5 red marbles and 11 white marbles. If three marbles are drawn from the jar at random, what is the probability that the first marble is red, the second marble is blue, and the third is white? The probability of the first event is 5/20. The probability of the second event is 4/19. And the probability of the third event is 11/18. The probability is 5/20 x 4/19 x 11/18 = 44/1368 = 0.032. You could also express this as 3.2%.
  4. Advertisement

  1. Image titled Calculate Probability Step 9

    1

    Set the odds as a ratio with the positive outcome as a numerator. For example, let’s return to our example dealing with colored marbles. Say you want to figure out the probability of drawing a white marble (of which there are 11) out of the total pot of marbles (which contains 20). The odds of the event happening is the ratio of the probability that it will occur over the probability that it will not occur. Since there are 11 white and 9 non-white marbles, you’ll write the odds as the ratio 11:9.

    • The number 11 represents the likelihood of choosing a white marble and the number 9 represents the likelihood of choosing a marble of a different color.
    • So, odds are that you will draw a white marble.
  2. Image titled Calculate Probability Step 10

    2

    Add the numbers together to convert the odds to probability. Converting odds is pretty simple. First ,break the odds into 2 separate events: the odds of drawing a white marble (11) and the odds of drawing a marble of a different color (9). Add the numbers together to calculate the number of total outcomes. Write this as a probability, with the newly calculated total number of outcomes as the denominator.

    • The event that you’ll draw a white marble is 11; the event another color will be drawn is 9. The total number of outcomes is 11 + 9, or 20.
  3. Image titled Calculate Probability Step 11

    3

    Find the odds as if you were calculating the probability of a single event. You have calculated that there are a total of 20 possibilities and that, essentially, 11 of those outcomes are drawing a white marble. So, the probability of drawing a white marble can now be approached like any other single-event probability calculation. Divide 11 (number of positive outcomes) by 20 (number of total events) to get the probability.

    • So, in our example, the probability of drawing a white marble is 11/20. Divide this out: 11 ÷ 20 = 0.55 or 55%.
  4. Advertisement

Probability Cheat Sheets

Add New Question

  • Question

    How do you find the probability of a single event?

    Mario Banuelos, PhD

    Mario Banuelos is an Assistant Professor of Mathematics at California State University, Fresno. With over eight years of teaching experience, Mario specializes in mathematical biology, optimization, statistical models for genome evolution, and data science. Mario holds a BA in Mathematics from California State University, Fresno, and a Ph.D. in Applied Mathematics from the University of California, Merced. Mario has taught at both the high school and collegiate levels.

    Mario Banuelos, PhD

    Assistant Professor of Mathematics

    Expert Answer

    Support wikiHow by
    unlocking this expert answer.

    In general, you take the total number of potential outcomes as the denominator, and the number of times it may occur as the numerator. If you’re trying to calculate the probability of rolling a 1 on a 6-sided die, the side with the 1 occurs once and there’s a total of 6 sides, so the probability of rolling a 1 would be 1/6.

  • Question

    What are the rules of probability?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    Support wikiHow by
    unlocking this staff-researched answer.

    The 3 basic rules, or laws, of probability are as follows. 1) The law of subtraction: The probability that event A will occur is equal to 1 minus the probability that event A will not occur. 2) The law of multiplication: The probability that events A and B both occur is equal to the probability that event A occurs times the probability that event B occurs, given that event A has occurred. 3) The law of addition: The probability that event A or event B occurs is equal to the probability that event A occurs plus the probability that event B occurs minus the probability that both events A and B occur.

  • Question

    How do you find probabilities with percentages?

    wikiHow Staff Editor

    This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.

    wikiHow Staff Editor

    wikiHow Staff Editor

    Staff Answer

    Support wikiHow by
    unlocking this staff-researched answer.

    To calculate a probability as a percentage, solve the problem as you normally would, then convert the answer into a percent. For example, if the number of desired outcomes divided by the number of possible events is .25, multiply the answer by 100 to get 25%. If you have the odds of a particular outcome in percent form, divide the percentage by 100 and then multiply it by the number of events to get the probability.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • Mathematicians typically use the term “relative probability” to refer to the chances of an event happening. They insert the word «relative» since no outcome is 100% guaranteed. For example, if you flip a coin 100 times, you probably won’t get exactly 50 heads and 50 tails. Relative probability takes this caveat into account.[10]

  • You may need to know that that in sports betting and bookmaking, odds are expressed as “odds against,” which means that the odds of an event happening are written first, and the odds of an event not happening come second. Although it can be confusing, it’s important to know this if you’re planning to bet on a sporting event.

  • The most common ways of writing down probabilities include putting them as fractions, as decimals, as percentages, or on a 1–10 scale.

Show More Tips

Advertisement

References

About This Article

Article SummaryX

Probability is the likelihood that a specific event will occur. To calculate probability, first define the number of possible outcomes that can occur. For example, if someone asks, “What is the probability of choosing a day that falls on the weekend when randomly picking a day of the week,” the number of possible outcomes when choosing a random day of the week is 7, since there are 7 days of the week. Now define the number of events. In this example, the number of events is 2 since 2 days out of the week fall on the weekend. Finally, divide the number of events by the number of outcomes to get the probability. In our example, we would divide 2, the number of events, by 7, the number of outcomes, and get 2/7, or 0.28. You could also express the answer as a percentage, or 28.5%. Therefore, there’s a 28.5% probability that you would choose a day that falls on the weekend when randomly picking a day of the week. To learn how to calculate the probability of multiple events happening in a row, keep reading!

Did this summary help you?

Thanks to all authors for creating a page that has been read 3,302,977 times.

Reader Success Stories

  • «I wanted to check the probability of winning two drawings. I had done the math and wanted to double check I got it…» more

Did this article help you?

Полезная страница? Сохрани или расскажи друзьям

Основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным, если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу, если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами или элементарными событиями. Исход называется благоприятствующим появлению события $А$, если появление этого исхода влечет за собой появление события $А$.

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события $A$ называют отношение числа $m$ благоприятствующих этому событию исходов к общему числу $n$ всех равновозможных несовместных элементарных исходов, образующих полную группу
$$P(A)=frac{m}{n}. quad(1)$$

Свойство 1. Вероятность достоверного события равна единице
Свойство 2. Вероятность невозможного события равна нулю.
Свойство 3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Итак, вероятность любого события удовлетворяет двойному неравенству $0 le P(A) le 1$ .

Полезные материалы

Онлайн-калькуляторы

Большой пласт задач, решаемых с помощью формулы (1) относится к теме гипергеометрической вероятности. Ниже по ссылкам вы можете найти описание популярных задач и онлайн-калькуляторы для их решений:

  • Задача про шары (в урне находится $k$ белых и $n$ черных шаров, вынимают $m$ шаров…)
  • Задача про детали (в ящике находится $k$ стандартных и $n$ бракованных деталей, вынимают $m$ деталей…)
  • Задача про лотерейные билеты (в лотерее участвуют $k$ выигрышных и $n$ безвыигрышных билета, куплено $m$ билетов…)

Обучающие статьи с примерами

  • Как найти вероятность в задачах про подбрасывания монеты?
  • Как найти вероятность в задачах про игральные кости?

Примеры решений на классическую вероятность

Пример. В урне 10 пронумерованных шаров с номерами от 1 до 10. Вынули один шар. Какова вероятность того, что номер вынутого шара не превосходит 10?

Решение. Пусть событие А = (Номер вынутого шара не превосходит 10). Число случаев благоприятствующих появлению события А равно числу всех возможных случаев m=n=10. Следовательно, Р(А)=1. Событие А достоверное.

Пример. В урне 10 шаров: 6 белых и 4 черных. Вынули два шара. Какова вероятность, что оба шара белые?

Решение. Вынуть два шара из десяти можно следующим числом способов: .
Число случаев, когда среди этих двух шаров будут два белых, равно .
Искомая вероятность
.

Пример. В урне 15 шаров: 5 белых и 10 черных. Какова вероятность вынуть из урны синий шар?

Решение. Так как синих шаров в урне нет, то m=0, n=15. Следовательно, искомая вероятность р=0. Событие, заключающееся в вынимании синего шара, невозможное.

Пример. Из колоды в 36 карт вынимается одна карта. Какова вероятность появления карты червовой масти?

Решение. Количество элементарных исходов (количество карт) n=36. Событие А = (Появление карты червовой масти). Число случаев, благоприятствующих появлению события А, m=9. Следовательно,
.

Пример. В кабинете работают 6 мужчин и 4 женщины. Для переезда наудачу отобраны 7 человек. Найти вероятность того, что среди отобранных лиц три женщины.

Решение. Общее число возможных исходов равно числу способов, которыми можно отобрать 7 человек из 10, т.е.
.

Найдем число исходов, благоприятствующих интересующему нас событию: трех женщин можно выбрать из четырех способами; при этом остальные четыре человека должны быть мужчинами, их можно отобрать способами. Следовательно, число благоприятствующих исходов равно .

Искомая вероятность
.

Еще больше примеров решений

Понравилась статья? Поделить с друзьями:
  • Как найти медиану в египетском треугольнике
  • Как быстро найти фазу
  • Точка долголетия под коленом как найти фото
  • Как найти свое место в этом мире
  • Как составить свою игру на компьютере