Как найти общее увеличение микроскопа ответ

Наша компания имеет богатый опыт сотрудничества и участия в тендерах с государственными и частными компаниями. Мы предлагаем большой набор готовых решений для образовательных учреждений, а также работаем по индивидуальным техническим заданиям.

Если вы являетесь участником или организатором тендера или госзакупки, заполните, пожалуйста, форму и опишите свой запрос. Наш специалист по работе с корпоративными заказчиками обязательно с вами свяжется. Вы также можете связаться с нами по телефону: +7 (812) 418-29-44 (доб. 117 или доб. 106).

Чтобы изучить внутреннее устройство клетки используют такой увеличительный прибор, как микроскоп. Первым создателем микроскопа принято считать математика и физика Галилео Галилея (1610 год). Всего одна линза и увеличительное стекло было в самых первых микроскопах.

У современного светового микроскопа есть штатив, к которому крепится тубус и предметный столик, и основание. В тубусе расположены объективы и окуляр, объектив направлен на изучаемый объект, а через окуляр можно его рассмотреть. Изучаемый объект закрепляют зажимами на предметном столике, а для его освещения используется находящийся под ним источник света — лампа или обыкновенное зеркало. При помощи двух винтов (микро- и макровинт) регулируется чёткость изображения.



В микроскопе имеется две линзы для увеличение изображения, одна из них располагается в окуляре, а другая — в объективе, которых может быть несколько. Для того чтобы определить общее увеличение микроскопа, достаточно перемножить увеличение окуляра и объектива.

А теперь ответы на вопросы…

1) Людмила на рисунке обозначила буквой А — зеркало, которое служит в микроскопе для направления луча света на предметный столик под рассматриваемый объект, благодаря чему улучшается его освещённость.

Правильный ответ: А — зеркало.

2) Для определения максимального увеличения микроскопа нужно перемножить увеличение окуляра и увеличение объектива:

7 х 8 = 56 крат;

7 х 20 = 140 крат;

7 х 40 = 280 крат.

Правильный ответ: 56, 140 и 280 крат.

Увеличение микроскопа

Увеличением
микроскопа

называется отношение линейных размеров
изображения предмета, видимого в
микроскоп, к линейным размерам того же
предмета, видимого невооруженным глазом
на расстоянии наилучшего видения (для
нормального глаза оно равняется 25см).

Известно,
что увеличение микроскопа можно найти,
пользуясь формулой:

,

(1)

где
l
– расстояние между верхним фокусом
объектива и нижним фокусом окуляра; L
– расстояние наилучшего видения; равное
25 см; F1
и F2
– фокусные расстояния объектива и
окуляра.

Зная
фокусные расстояния F1,
F2
и расстояние между ними l
можно найти увеличение микроскопа.

На
практике не используются микроскопы с
увеличением свыше 1500–2000, т.к. возможность
различения мелких деталей объекта в
микроскопе ограничена. Это ограничение
обусловливается влиянием дифракции
света, в проходящей структуре данного
объекта. В связи с этим пользуются
понятиями предела разрешения и разрешающей
способности микроскопа.

Определение предела разрешения микроскопа

Пределом
разрешения микроскопа

называется то наименьшее расстояние
между двумя точками предмета, при котором
они видимы в микроскопе раздельно. Это
расстояние определяется по формуле:

,

(2)

где
λ – длина волны света; n
– показатель преломления среды между
объективом и объектом; u
– апертурный угол объектива, равный
углу между крайними лучами конического
светового пучка, входящего в объектив
микроскопа.

Реально
свет от предмета распространяется к
объективу микроскопа в некотором конусе
(рис. 2 а), который характеризуется угловой
апертурой – углом u
между крайними лучами конического
светового пучка, входящего в оптическую
систему. В предельном случае, согласно
Аббе, крайними лучами конического
светового пучка будут лучи, соответствующие
центральному (нулевому) и 1-му главному
максимумам (рис. 2 б).

Величина
2nsin
U
называется числовой апертурой микроскопа.
Числовая апертура может быть увеличена
с помощью специальной жидкой среды –
иммерсии

в пространстве между объективом и
покровным стеклом микроскопа.

а)

б)

Рис.
2. Конус распространения света (а) и
его угловая апертура (б)

В
иммерсионных системах по сравнению с
тождественными «сухими» системами
получают больший апертурный угол (рис.
3).

Рис.3.
Схема иммерсионной системы

В
качестве иммерсии используют воду (n
=
1,33),
кедровое масло (n
=
1,514) и др. Для каждой иммерсии специально
рассчитывают объектив, и его можно
применять только с данной иммерсией.

Из
формулы видно, что предел разрешения
микроскопа зависит от длины волны света
и числовой апертуры микроскопа. Чем
меньше длина волны света и чем больше
величина апертуры, тем меньше Z, а,
следовательно, больше предел разрешения
микроскопа. Для белого (дневного) света
можно принять среднее значение длины
волны λ
= 0,55мкм. Показатель преломления для
воздуха равен n
= 1.

Микроскоп мбс-1

МБС-1
– cтереоскопический
микроскоп, дающий прямое объемное
изображение рассматриваемого предмета
как в проходящем, так и в отраженном
свете.

Микроскоп
состоит из 4 основных частей:

– cтолик;

– штатив;

– оптическая
головка с механизмом грубой подачи;

– окулярная
насадка.

Столик
микроскопа состоит из круглого корпуса,
внутри которого вмонтирован поворотный
отражатель с зеркальной и матовой
поверхностями. Для работы с дневным
освещением в корпусе предусмотрен
вырез, через который свободно проходит
свет. С задней стороны корпуса столика
имеется резьбовое отверстие для работы
с электрическим осветителем. На штативе
микроскопа крепится оптическая головка
– основная часть прибора, в которую
вмонтированы наиболее ответственные
оптические узлы.

В
корпусе оптической головки помещен
барабан с с установленными в нем
галилеевыми системами. Вращением оси
барабана с помощью рукояток с нанесенными
цифрами 0,6; 1; 2; 4; 7 добиваются различного
увеличения объективов. Каждое положение
барабана четко фиксируется специальным
пружинным фиксатором. С помощью рукоятки
на штативе микроскопа, перемещающей
оптическую головку, добиваются наиболее
резкого изображения рассматриваемого
объекта.

Вся
оптическая головка может перемещаться
по стержню штатива и закрепляться в
любом положении с помощью винта. Окулярная
насадка состоит из направляющей,
представляющей прямоугольную деталь
с двумя отверстиями для оправ объективов.

Наблюдая
в окуляры нужно разворотом окулярных
трубок найти такое положение, при котором
два изображения сводятся в одно. Далее
произвести фокусировку микроскопа на
исследуемый предмет, а вращением
отражателя добиться равномерного
освещения поля. При настройке освещенности
патрон с лампой перемещается в сторону
коллектора до получения наилучшей
освещенности наблюдаемого объекта.

В
основном МБС-1 предназначен для
препарировальных работ, для наблюдения
объектов, а также для проведения линейных
измерений или измерений площадей
участков препарата. Оптическая схема
микроскопа представлена на рис. 4.

Оптическая
схема микроскопа МБС-1 представлена на
рис. 4.

При
работе в проходящем свете источник
света (1) с помощью отражателя (2) и
коллектора (3) освещает прозрачный
препарат, установленный на предметный
столик (4).

В
качестве объектива применена специальная
система, состоящая из 4-х линз (5) с фокусным
расстоянием = 80 мм и 2-х пар галилеевых
систем (6) и (7), за которыми находятся
объективы (8) с фокусным расстоянием 160
мм, которые образуют изображение объекта
в фокальных плоскостях окуляров.

Общее
линейное увеличение оптической системы,
состоящей из объектива (5), галилеевых
систем (6) и (7) и объективов (8) составляет:
0,6;
1;
2;
4;
7.
За объективами (8) установлены 2 призмы
Шмидта (9), которые позволяют разворачивать
окулярные трубки по глазу наблюдателя
без разворота изображения объектива.


5

4

6

2

6

3

1

10

9

8

7

7

1
– источник света;

2
– отражатель;

3
– коллектор;

4
– предметный столик;

5
– объектив (F
= 80 мм);

6,
7 – галилеевы системы;

8
– объективы (F
= 160 мм);

9
– призмы Шмидта;

10
– окуляры.

Рис.
4. Оптическая схема микроскопа МБС-1

К
микроскопу МБС-1 прилагаются 3 пары
окуляров (10) с увеличением 6;
8;
12,5
и один окулярный микрометр 8-кратного
увеличения с сеткой. Они позволяют
варьировать общее увеличение микроскопа
от 3,6 до 88 (табл. 1). Общее увеличение
микроскопа – произведение увеличения
окуляра на увеличение объектива.

Таблица
1.

Оптическая
характеристика микроскопа МБС-1

Увеличение

окуляра

Увеличение
объектива

0,6

1

2

4

7

6

3,6

6

12

24

42

8

4,5

8

16

32

56

12,5

7

12,5

25

50

88

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #

    22.02.2015177.66 Кб137.doc

  • #
  • #
  • #
  • #

    22.02.2015335.87 Кб238.doc

  • #

    22.02.2015954.88 Кб808.doc

  • #

    22.02.2015374.78 Кб178.doc

  • #
  • #
  • #
  • #

Строение светового микроскопа

Чтобы ознакомиться со строением клетки и рассмотреть её составные части, нужно использовать увеличительное оборудование, одним из которых является световой микроскоп.

Первые микроскопы были похожи на увеличительные стёкла, и в них использовалось только одно стекло или линза из полированного горного хрусталя.

Одним из первых создателей (1610 г.) микроскопа считают физика и математика Галилео Галилея.

Большие технические возможности и лучшее качество изображения можно получить при помощи микроскопа с двумя линзами. Создание такого прибора связано с именем английского физика Роберта Гука (1665 г.). Этот микроскоп увеличивал в 30 раз.

Для своего времени превосходного мастерства в изготовлении микроскопов достиг нидерландский купец Антони ван Левенгук ( 1632 – 1723 ). Он умел производить линзы, увеличивающие в 200 – 270 раз. Линзы закреплялись на специальном штативе, так как, чтобы достичь такого увеличения, важно, чтобы исследуемый объект находился точно напротив линзы и на определённом расстоянии от неё. За свою жизнь Левенгук изготовил более 200 микроскопов.

Строение современного светового микроскопа

Корпус микроскопа образуют основание и штатив.

К штативу прикреплён предметный столик и присоединён тубус.

В верхней части тубуса расположен окуляр, через который рассматривают изучаемый объект, в нижней части тубуса микроскопа расположены объективы.

Рассматриваемый объект прикрепляется к предметному столику при помощи зажимов.

Важной составной частью микроскопа является источник света.

Освещённость регулируется при помощи диафрагмы.

Для перемещения предметного столика предусмотрены макровинт и микровинт.

Микроскоп

Микроскоп

Как узнать увеличение микроскопа?

Для увеличения изображения в микроскопе используются 2 линзы (увеличительных стекла). Одна из них находится в объективе, а другая — в окуляре.

Увеличение микроскопа равно произведению увеличения линзы окуляра на увеличение линзы объектива: Увеличение = окуляр х объектив.

Например, у микроскопа линза увеличивает в 10 раз и окуляр увеличивает в 10 раз. Каково увеличение микроскопа?

Увеличение = окуляр х объектив = 10 х 10 = 100 раз.


В школе обычно используются микроскопы с увеличением до 400 раз.

Работа с микроскопом

Чтобы успешно работать с микроскопом, необходимо соблюдать порядок работы.

  1. Включить свет.
  2. На предметный столик поместить препарат так, чтобы луч света просвечивал его, и прикрепить зажимами.
  3. Смотря в микроскоп, макровинт поворачивать в сторону от себя, чтобы предметный столик отдалялся от объектива, пока не появится чёткое изображение предмета (Если вращать винт в противоположном направлении, то можно повредить препарат или объектив).
  4. Рассматривая на малом увеличении (увеличение объектива 4х ), найти место, где образец является наиболее тонким, т. е. где клетки расположены в один слой.
  5. Поставить большее увеличение объектива ( 10x ) и рассмотреть препарат. Чёткость изображения настраивается микровинтом.
  6. Поставить большее увеличение объектива ( 40x ), рассмотреть препарат и зарисовать его.
  7. После просмотра убрать препарат. Микроскоп поставить малым объективом вниз, выключить свет.

Рисуя препарат, надо соблюдать требования к биологическому рисунку.

Клетка листа лилии

Клетка листа лилии

Увеличение микроскопа 400 раз (400х)

  1. Цитоплазма
  2. Хлоропласты
  3. Ядро
  4. Вакуоль
  5. Клеточная стенка.
  • У рисунка есть название.
  • Указано используемое увеличение.
  • На рисунке показана форма клетки, форма составных частей, размеры соответствуют видимым в микроскоп.
  • На рисунке есть обозначения.
  • Длина клетки на рисунке равна хотя бы 3 см.

Рассмотри рисунок светового микроскопа.

1. Какой буквой обозначен штатив?

Какой буквой обозначен тубус?


Какая составная часть микроскопа обозначена буквой I?
Источник света — лампа
Основание
Это предметный столик


Какая составная часть микроскопа обозначена буквой E?
Окуляр
Зажимы
Основание


Даны увеличения окуляра и объектива микроскопа. Напиши в окошке общее увеличение микроскопа.


Расположи этапы исследования препарата в правильной последовательности (в окошки вписывай заглавные буквы латинского алфавита).

A Отрегулируй резкость микровинтом.
B Смотри в окуляр и поворачивай макровинт так, чтобы предметный столик отдалился от объектива.
C Помести препарат на предметный столик микроскопа.
D Замени объектив с небольшим увеличением на больший, повернув его в сторону.


Кто усовершенствовал световой микроскоп?
Чарльз Дарвин
Антони ван Левенгук
Микеланжело



Даны увеличения окуляра и объектива микроскопа.
Напиши в окошке общее увеличение микроскопа.
(В окошко для ответа впиши только число!)

Огромная блогодарность тому кто поможет выполнить задание!

Светило науки — 11 ответов — 0 раз оказано помощи

Ответ:

1) 10*1.25=125 2) 5*0.75=3.75

Объяснение:

Чтобы найти общее увеличение микроскопа нужно увеличение окуляра умножить на увеличение объектива.

llloooiiiiffbggn

Светило науки — 2 ответа — 0 раз оказано помощи

Ответ: первое не разборчивое.

второе по-моему 5*60=300

Объяснение:

Понравилась статья? Поделить с друзьями:
  • Как исправить свой пароль
  • Please make sure plusmaster client is updated and running call of duty ghosts как исправить
  • Как по условному номеру найти адрес
  • Почтовую посылку как найти бесплатно
  • Фон папок стал черным как исправить