Как найти общую площадь всех фигур

Две фигуры называют равными, если одну их них можно так наложить на другую,
что эти фигуры совпадут.

Площади равных фигур равны. Их периметры тоже равны.

Площадь квадрата

Запомните!
!

Для вычисления площади квадрата нужно умножить его длину на саму себя.

S = a · a

Пример:

площадь квадрата
SEKFM = EK · EK

SEKFM = 3 · 3 = 9 см2

Формулу площади квадрата, зная
определение степени,
можно записать следующим образом:

S = a2

Площадь прямоугольника

Запомните!
!

Для вычисления площади прямоугольника нужно умножить его длину на ширину.

S = a · b

Пример:

площадь прямоугольника
SABCD = AB · BC

SABCD = 3 · 7 = 21 см2

Запомните!
!

Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.

Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.

Площадь сложных фигур

Запомните!
!

Площадь всей фигуры равна сумме площадей её частей.

Задача: найти площадь огородного участка.

площадь фигуры

Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя
правило выше.

Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.

площадь сложной фигуры
SABCE = AB · BC
SEFKL = 10 · 3 = 30 м2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м2

Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м2

Ответ: S = 65 м2 — площадь огородного участка.


Свойство ниже может вам пригодиться при решении задач на площадь.

Запомните!
!

Диагональ прямоугольника делит прямоугольник на два равных треугольника.

Площадь любого из этих треугольников равна половине площади прямоугольника.

Рассмотрим прямоугольник:

диагональ прямоугольника делит на равные треугольники

АС — диагональ прямоугольника
ABCD. Найдём площадь треугольников
знак треугольника
ABC и
знак треугольникаACD

Вначале найдём площадь прямоугольника по формуле.

SABCD = AB · BC
SABCD = 5 · 4 = 20 см2

Sзнак треугольника
ABC
= SABCD : 2

Sзнак треугольника
ABC
= 20 : 2 = 10 см2

Sзнак треугольника
ABC
=
Sзнак треугольника
ACD
= 10 см2


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

3 декабря 2015 в 22:54

Ирина Петренко
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Ирина Петренко
Профиль
Благодарили: 0

Сообщений: 1

как написать правильно площадь треугольника?undecided

0
Спасибоthanks
Ответить

9 декабря 2015 в 19:41
Ответ для Ирина Петренко

Тима Клюев
(^-^)
Профиль
Благодарили: 0

Сообщений: 8

(^-^)
Тима Клюев
Профиль
Благодарили: 0

Сообщений: 8


S(рисуешь мини треугольник) = ,,,,,

0
Спасибоthanks
Ответить


Как найти общую площадь

Площадью называют количественную меру плоскости, ограниченной периметром какой-либо двухмерной фигуры. Поверхность многогранников составлена не менее чем из четырех граней, каждая из которых может иметь собственную форму и размеры, а значит, и площадь. Поэтому вычисление общей площади объемных фигур с плоскими гранями не всегда простая задача.

Как найти общую площадь

Инструкция

Полная площадь поверхности таких многогранников как, например, призма, параллелепипед или пирамида складывается из суммы площадей граней разной величины и формы. У этих объемных фигур есть боковые поверхности и основания. Вычисляйте раздельно площади этих поверхностей, исходя из их формы и размеров, а затем суммируйте полученные значения. Например, общая площадь (S) шести граней параллелепипеда может быть найдена удвоением суммы произведений длины (a) на ширину (w), длины на высоту (h) и ширины на высоту: S = 2*(a*w + a*h + w*h).

Полная площадь поверхности правильного многогранника (S) складывается из суммы площадей каждой его грани. Так как все боковые поверхности этой объемной фигуры по определению имеют одинаковые формы и размеры, достаточно рассчитать площадь одной грани, чтобы получить возможность найти общую площадь. Если из условий задачи кроме числа боковых поверхностей (N) вам известна длина любого ребра фигуры (a) и число вершин (n) многоугольника, который образует каждую грань, сделать это можно с использованием одной из тригонометрических функций — тангенса. Найдите тангенс от угла, равного отношению 360° к удвоенному числу вершин и увеличьте результат в четыре раза: 4*tg(360°/(2*n)). Затем на полученную величину разделите произведение числа вершин на квадрат длины стороны многоугольника: n*a²/(4*tg(360°/(2*n))). Это и будет площадь каждой грани, а общую площадь поверхности многогранника рассчитайте, умножив ее на число боковых поверхностей: S = N*n*a²/(4*tg(360°/(2*n))).

В вычислениях второго шага использованы градусные меры углов, но часто вместо них применяют радианные. Тогда в формулы нужно внести поправки исходя из того, что углу в 180° соответствует количество радиан, равное числу Пи. Замените угол в 360° в формулах на величину, равную двум таким константам, и итоговая формула даже немного упростится: S = N*n*a²/(4*tg(2*π/(2*n))) = N*n*a²/(4*tg(π/n)).

Видео по теме

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

1. Формула площади равнобедренной трапеции через стороны и угол

Формула площади равнобедренной трапеции через стороны и угол

b — верхнее основание

a — нижнее основание

c — равные боковые стороны

α — угол при нижнем основании

Формула площади равнобедренной трапеции через стороны, (S):

Формула площади равнобедренной трапеции через стороны

Формула площади равнобедренной трапеции через стороны и угол, (S):

Формула площади равнобедренной трапеции через стороны и угол

Формула площади равнобедренной трапеции через стороны и угол

Формула площади равнобедренной трапеции через стороны и угол

2. Формула площади равнобокой трапеции через радиус вписанной окружности

Формула площади равнобокой трапеции через радиус вписанной окружности

R — радиус вписанной окружности

D — диаметр вписанной окружности

O — центр вписанной окружности

H — высота трапеции

α, β — углы трапеции

Формула площади равнобокой трапеции через радиус вписанной окружности, (S):

Формула площади равнобокой трапеции через радиус вписанной окружности

СПРАВЕДЛИВО, для вписанной окружности в равнобокую трапецию:

площадь для вписанной окружности в равнобокую трапецию

3. Формула площади равнобедренной трапеции через диагонали и угол между ними

Формула площади равнобедренной трапеции через диагонали и угол между ними

d — диагональ трапеции

α, β — углы между диагоналями

Формула площади равнобедренной трапеции через диагонали и угол между ними, (S):

4. Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании

Формула площади равнобедренной трапеции через среднюю линию

m — средняя линия трапеции

c — боковая сторона

α, β — углы при основании

Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании, (S ):

Формула площади равнобедренной трапеции через среднюю линию

5. Формула площади равнобедренной трапеции через основания и высоту

Формула площади равнобедренной трапеции через основания и высоту

b — верхнее основание

a — нижнее основание

h — высота трапеции

Формула площади равнобедренной трапеции через основания и высоту, (S):

Формула площади равнобедренной трапеции через основания и высоту

A combined figure is a geometrical shape that is the combination of many simple geometrical shapes. 

To find the area of combined figures we will follow the steps:

Step I: First we divide the combined figure into its simple geometrical shapes. 

Step II: Then calculate the area of these simple geometrical shapes separately, 

Step III: Finally, to find the required area of the combined figure we need to add or subtract these areas.

Solved Examples on Area of combined figures:

1. Find the area of the shaded region of the adjoining figure. (Use π = (frac{22}{7}))

Area of Combined Figures

JKLM is a square of side 7 cm. O is the centre of the
semicircle MNL.

Solution:

Step I: First we divide the combined figure into
its simple geometrical shapes.

The given combined shape is combination of a
square and a semicircle.

Step II: Then calculate the area of
these simple geometrical shapes separately.

Area of the square JKLM = 72 cm2

                                    =
49 cm2

Area of the semicircle LNM = (frac{1}{2}) π ∙ ((frac{7}{2})^{2}) cm2 , [Since,
diameter LM = 7 cm]

                                       =
(frac{1}{2})  ∙  (frac{22}{7}) ∙ (frac{49}{4}) cm2

                                       =
(frac{77}{4}) cm2

                                       =
19.25 cm2

Step III: Finally, add these areas up to get
the total area of the combined figure.

Therefore, the required area = 49 cm2 + 19.25 cm2

                                          =
68.25 cm2.

2. In the adjoining figure, PQRS is a square of side 14 cm
and O is the centre of the circle touching all sides of the square. 

Area of a Composite Figure

Find the area of the shaded region.

Solution:

Step I: First we divide the combined figure into its simple geometrical shapes.

The given combined shape is combination of a square and a circle.

Step II: Then calculate the area of these simple geometrical shapes separately.

Area of the square PQRS = 142 cm2

                                    = 196 cm2

Area of the circle with centre O = π ∙ 72 cm2, [Since, diameter SR = 14 cm]

                                             = (frac{22}{7}) ∙ 49 cm2

                                             = 22 × 7 cm2

                                             = 154 cm2

Step III: Finally, to find the required area of the combined figure we need to subtract the area of the circle from the area of the square.

Therefore, the required area = 196 cm2 — 154 cm2

                                          = 42 cm2

3. In the adjoining figure alongside, there are four equal quadrants of circles each of radius 3.5 cm, their centres being P, Q, R and S. 

Area of Compound Shapes

Find the area of the shaded region.

Solution:

Step I: First we divide the combined figure into its simple geometrical shapes.

The given combined shape is combination of a square and four quadrants.

Step II:Then calculate the area of these simple geometrical shapes separately.

Area of the square PQRS = 72 cm2, [Since, side of the square = 7 cm]

                                                = 49 cm2

Area of the quadrant APB = (frac{1}{4}) π ∙ r2 cm2

                                = (frac{1}{4}) ∙ (frac{22}{7})  ∙  ((frac{7}{2})^{2}) cm2, [Since, side of the square = 7 cm and radius of the quadrant = (frac{7}{2}) cm]

                                = (frac{77}{8}) cm2

There are four quadrants and they have the same area.

So, total area of the four quadrants = 4 × (frac{77}{8}) cm2

                                                    = (frac{77}{2}) cm2

                                                    = (frac{77}{2}) cm2

Step III: Finally, to find the required area of the combined figure we need to subtract the area of the four quadrants from the area of the square.

Therefore, the required area = 49 cm2 — (frac{77}{2}) cm2

                                          = (frac{21}{2}) cm2

                                          = 10.5 cm2

10th Grade Math

From Areas of Combined Figures to HOME PAGE

Didn’t find what you were looking for? Or want to know more information
about
Math Only Math.
Use this Google Search to find what you need.

Все формулы по геометрии. Площади фигур

Чтобы решать задачи по геометрии, надо знать формулы — такие, как площадь треугольника или площадь параллелограмма — а также простые приёмы, о которых мы расскажем.

Начнем с квадрата.

Площадь квадрата равна квадрату его стороны.

Площадь прямоугольника равна произведению его длины и ширины.

Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне. Она также равна произведению его сторон на синус угла между ними.

Для площади треугольника есть целых 5 формул. И все они применяются в задачах ЕГЭ.

1) Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне: S=displaystyle frac{1}{2}ah_a=displaystyle frac{1}{2}bh_b=displaystyle frac{1}{2}ch_c.

2) Она также равна половине произведения его сторон на синус угла между ними:

S=displaystyle frac{1}{2}ab{sin C=displaystyle frac{1}{2}ac{sin B= } }displaystyle frac{1}{2}bc{sin A }.

3) По формуле Герона, S=sqrt{pleft(p-aright)left(p-bright)left(p-cright)}, где p=displaystyle frac{1}{2}left(a+b+cright) полупериметр.

4) Также площадь треугольника равна произведению его полупериметра на радис вписанной окружности, S = pr.

5) Еще один способ. Площадь треугольника равна произведению его сторон, деленному на 4 радиуса описанной окружности, S=displaystyle frac{abc}{4R}.

Есть и другие формулы для площади треугольника. Но для решения заданий ЕГЭ, и первой, и второй части, достаточно этих пяти.

Площадь прямоугольного треугольника равна половине произведения его катетов. Она также равна половине произведения гипотенузы на высоту, проведенную к этой гипотенузе:

S=displaystyle frac{1}{2}ab=displaystyle frac{1}{2}ch_{ }

Площадь правильного треугольника равна квадрату его стороны, умноженному на sqrt{3} и деленному на 4:

Площадь трапеции равна произведению полусуммы оснований на высоту, S=displaystyle frac{a+b}{2}cdot h.

Также можно сказать, что площадь трапеции равна произведению ее средней линии на высоту, S=mcdot h

Площадь произвольного четырехугольника равна половине произведения его диагоналей на синус угла между ними, S=displaystyle frac{1}{2}ACcdot BDcdot {sin alpha  }

Площадь ромба равна произведению квадрата его стороны на синус угла ромба. Она также равна половине произведения диагоналей:

Площадь круга равна произведению числа pi и квадрата радиуса круга.

Ее также можно записать как произведение числа pi и квадрата диаметра круга, деленного на 4:

Вспомним важные свойства площадей фигур.

  1. Равные фигуры имеют равные площади.
    Иногда фигуры, имеющие равные площади, еще называют равновеликими.
  2. Если фигура составлена из нескольких фигур, не имеющих общих внутренних точек, то ее площадь равна сумме площадей этих фигур.

Пример. Найдем площадь фигуры, изображенной на клетчатой бумаге с размером клетки 1смtimes1см.

Решение:

Найдем площадь фигуры на рисунке как сумму площадей нескольких фигур.

На рисунке это три треугольника и трапеция, указаны их площади. Тогда площадь фигуры равна 10 + 3,5 + 1,5 + 3 = 18.

Ответ: 18.

3. Отношение площадей подобных фигур равно квадрату коэффициента подобия.

Треугольники АВС и A_1B_1C_1 на рисунке называются подобными.

У треугольника A_1B_1C_1 все стороны в k раз длиннее, чем у треугольника АВС. Высота треугольника A_1B_1C_1 в k раз длиннее, чем высота треугольника АВС. Тогда площадь треугольника A_1B_1C_1 в k^2 раз больше, чем площадь треугольника АВС.

4. На рисунке показаны треугольники АВС и BCD, имеющие общую высоту. Отношение площадей этих треугольников равно отношению АС к CD:

displaystyle frac{S_{ABC}}{S_{BCD}}=displaystyle frac{AC}{CD}

5. Треугольники АВС и АЕС на рисунке имеют одинаковое основание и разные высоты.

Отношение площадей этих треугольников равно отношению их высот:

displaystyle frac{S_{ABC}}{S_{AEC}}=displaystyle frac{BD}{EH}.

6. Медиана треугольника делит его на два равновеликих, то есть равных по площади, треугольника.

На рисунке СМ — медиана треугольника АВС. Площади треугольников АСМ и ВСМ равны.

7. Три медианы треугольника делят его на шесть равных по площади треугольников.

На рисунке все 6 треугольников, из которых состоит треугольник АВС, имеют равные лощади.

Задачи ЕГЭ и ОГЭ по теме: Площади фигур.

Задача 1. Найдите площадь треугольника, две стороны которого равны 8 и 12, а угол между ними равен {30}^circ.

Решение:

Площадь треугольника равна половине произведения его сторон на синус угла между ними. Поэтому

S=displaystyle frac{1}{2}cdot 8cdot 12cdot {sin 30{}^circ =displaystyle frac{1}{2}cdot 8cdot 12cdot displaystyle frac{1}{2}=24 }.

Ответ: 24.

Задача 2. Площадь треугольника ABC равна 4, DE — средняя линия, параллельная стороне AB. Найдите площадь треугольника CDE.

Решение:

Так как DE и АВ параллельны, треугольники CDE и САВ подобны с коэффициентом подобия displaystyle frac{1}{2}. Площади подобных фигур относятся как квадрат коэффициента подобия. Тогда

S=displaystyle frac{1}{4}cdot 4=1.

Ответ: 1.

Задача 3. У треугольника со сторонами 9 и 6 проведены высоты к этим сторонам. Высота, проведенная к первой стороне, равна 4. Чему равна высота, проведенная ко второй стороне?

Решение:

Выразим площадь двумя способами:
S_{ABC}=displaystyle frac{1}{2}CHcdot AB=displaystyle frac{1}{2}AKcdot CB.

Тогда AK=displaystyle frac{CHcdot AB}{CB}=displaystyle frac{4cdot 9}{6}=6.

Ответ: 6.

Задача 4. Площадь треугольника ABC равна 10, DE — средняя линия, параллельная стороне AB. Найдите площадь трапеции ABED.

Решение:

Треугольник CDE подобен треугольнику CAB с коэффициентом displaystyle frac{1}{2}. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому

S_{CDE}=displaystyle frac{1}{4}cdot 10=2.5.

Следовательно, .

Ответ: 7,5.

Задача 5. В параллелограмме ABCD AB = 3, AD = 21, {sin A=displaystyle frac{6}{7}}. Найдите большую высоту параллелограмма.

Решение:

Большая высота — это DH, потому что проведена к меньшей стороне. Из треугольника АDН:

DH=AD{sin A=21cdot displaystyle frac{6}{7}=3cdot 6=18 }.

Ответ: 18.

Задача 6. Найдите площадь квадрата, если его диагональ равна 1.

Решение:

Квадрат — это частный случай ромба. Площадь квадрата равна половине произведения его диагоналей. Поэтому она равна 0,5.

Ответ: 0,5.

Задача 7. Найдите периметр прямоугольника, если его площадь равна 18, а отношение соседних сторон равно 1:2.

Решение:

Площадь прямоугольника равна произведению его длины на ширину. Периметр прямоугольника равен сумме длин всех сторон. Пусть одна из сторон прямоугольника равна a, тогда вторая равна 2a. Площадь прямоугольника равна S = 2a^2= 18, тогда одна из сторон равна 3, а другая 6. Периметр P = 2 · 3 + 2 · 6 = 18.

Ответ: 18.

Задача 8. Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь равна половине площади прямоугольника. Ответ дайте в градусах.

Решение:

Площадь параллелограмма равна произведению его сторон на синус угла между ними. Площадь прямоугольника равна произведению длины на ширину. Пусть одна сторона параллелограмма и прямоугольника равна a, вторая равна  b, а острый угол параллелограмма равен alpha . Тогда площадь параллелограмма равна S=acdot bcdot {sin alpha }, а площадь прямоугольника равна   S_2=acdot b.

По условию площадь прямоугольника вдвое больше:

{S_2=2S_1} . Следовательно, acdot b=2acdot bcdot {sin alpha Leftrightarrow {sin alpha  }=0,5 }Leftrightarrow alpha =30{}^circ.

Ответ: 30.

Задача 9. Площадь параллелограмма равна 40, две его стороны равны 5 и 10. Найдите большую высоту этого параллелограмма.

Решение:

Площадь параллелограмма равна произведению его основания на высоту, проведенную к этому основанию. Пусть высоты равны соответственно a и b. Тогда S = 5 · a = 10 · b = 40. Поэтому a = 8, b = 4. Большая высота равна 8.

Ответ: 8.

Задача 10. Найдите площадь ромба, если его высота равна 2, а острый угол 30{}^circ.

Решение:

Площадь ромба равна произведению квадрата его стороны на синус угла ромба. С другой стороны, площадь ромба равна произведению его основания на высоту, проведенную к этому основанию. Пусть сторона ромба равна a.

Получим уравнение:

a^2=a{sin alpha }.

Корень уравнения a = 4, поэтому S=2 cdot  4=8.

Ответ: 8.

Задача 11. Найдите площадь ромба, если его диагонали равны 4 и 12.

Решение:

Площадь ромба равна половине произведения его диагоналей. S=displaystyle frac{1}{2}cdot 4cdot 12=24.

Ответ: 24.

Задача 12. Основания равнобедренной трапеции равны 14 и 26, а ее периметр равен 60. Найдите площадь трапеции.

Решение:

Трапеция равнобедренная, значит,

AH=displaystyle frac{AB-DC}{2}=6;

AD=displaystyle frac{P_{ABCD}-left(AB+DCright)}{2}=10.

Тогда по теореме Пифагора из треугольника ADH:

DH=sqrt{{AD}^2-{AH}^2}=8;

S=displaystyle frac{AB+CD}{2}cdot DH=20cdot 8=160.

Ответ: 160.

Задача 13. Найдите площадь прямоугольной трапеции, основания которой равны 6 и 2, большая боковая сторона составляет с основанием угол 45{}^circ.

Решение:

Проведем высоту CH. Треугольник CHB — прямоугольный, в нем

angle B=45{}^circ , значит, он также равнобедренный, CH = HB = 4.
S_{ABCD}=displaystyle frac{AB+CD}{2}cdot CH=4cdot 4=16.

Ответ: 16.

Задача 14. Высота трапеции равна 5, площадь равна 75. Найдите среднюю линию трапеции.

Решение:

Средняя линия трапеции равна полусумме оснований. Выразим её из формулы площади трапеции:
S=displaystyle frac{a+b}{2}cdot hLeftrightarrow displaystyle frac{a+b}{2}cdot 5=75Leftrightarrow displaystyle frac{a+b}{2}=15.

Ответ: 15.

Задача 15. Основания трапеции равны 27 и 9, боковая сторона равна 8. Площадь трапеции равна 72. Найдите острый угол трапеции, прилежащий к данной боковой стороне. Ответ выразите в градусах.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту. Пусть высота равна h, тогда

S=displaystyle frac{27+9}{2}cdot h=72.

Из этого уравнения получим: h = 4.

Рассмотрим прямоугольный треугольник, гипотенузой которого является боковая сторона трапеции, равная 8, а катетом — высота трапеции. Длина катета равна половине гипотенузы, следовательно, он лежит напротив угла {30}^circ.

Ответ: 30.

Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём — разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь — как сумму площадей этих фигур.

Задача 16. Найдем площадь четырехугольника на рисунке.

Решение:

Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным 5. Высоты этих треугольников равны 2 и 3. Тогда площадь четырёхугольника равна сумме площадей двух треугольников: S=5+7,5=12,5.

Ответ: 12,5.

В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.

Задача 17. Найдем площадь треугольника, изображенного на клетчатой бумаге.

Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной 5 и трёх прямоугольных треугольников. Видите их на рисунке? Получаем:S=25-5-5-4,5=10,5.

Ответ: 10,5.

Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора — части круга.

Задача 18.

Найдите площадь сектора круга радиуса 1, длина дуги которого равна 2.

Решение:

На этом рисунке мы видим часть круга. Площадь всего круга равна pi R^2 =pi, так как R=1. Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна 2pi R=2pi (так как R = 1), а длина дуги данного сектора равна 2, следовательно, длина дуги в pi раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в pi раз меньше, чем полный круг (то есть 360 градусов). Значит, и площадь сектора будет в pi раз меньше, чем площадь всего круга.

Ответ: 1.

Формула Пика

Покажем, как вычислять площадь фигуры, изображенной на координатной плоскости, с помощью формулы Пика.

Задача 19. Найдите площадь многоугольника АВСDE, изображенного на рисунке.

Первый способ:

Площадь многоугольника ABCDE равна сумме площадей треугольника BCD, трапеции BKDE и треугольника AKE.

Имеем:

S_{vartriangle BCD}=displaystyle frac{1}{2}cdot 9cdot 2=9;

S_{BKDE}=displaystyle frac{1}{2}cdot (9+3)cdot 2=12;

S_{vartriangle AKE}=displaystyle frac{1}{2}cdot 3cdot 4=6;

S_{ABCDE}=9+12+6= 27.

Второй способ — применить формулу Пика.

Назовем точку координатной плоскости целочисленной, если обе ее координаты — целые числа. На нашем рисунке это точки на пересечениях линий, разделяющих клетчатую бумагу на клетки.

Площадь многоугольника с целочисленными вершинами равна

.

Здесь В — количество целочисленных точек внутри многоугольника, Г — количество целочисленных точек на границе многоугольника.

Главное — аккуратно посчитать. На нашем рисунке

В = 24 (показаны зеленым),

Г = 8 (показаны красным),

S = 24 + displaystyle frac{8}{2} — 1 = 27.

Ответ: 27.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Все формулы по геометрии. Площади фигур» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Понравилась статья? Поделить с друзьями:
  • Превышена дисковая квота linux как исправить
  • Как найти на инжекторе неисправность
  • Как найти массу одного моля смеси
  • Uplay update failed как исправить
  • Как найти сторону если известны координаты вершин