Как найти общую точку пересечения двух прямых

Для того, чтобы решить геометрическую задачу методом координат, необходима точка пересечения, координаты которой используются при решении. Возникает ситуация, когда требуется искать координаты пересечения двух прямых на плоскости или определить координаты тех же прямых в пространстве. Данная статья рассматривает случаи нахождения координат точек, где пересекаются заданные прямые.

Точка пересечения двух прямых – определение

Необходимо дать определение точкам пересечения двух прямых.

Раздел взаимного расположения прямых на плоскости показывает, что они могут совпадать , быть параллельными, пересекаться в одной общей точке или скрещивающимися. Две прямые, находящиеся  в пространстве, называют пересекающимися, если они имеют одну общую точку.

Определение точки пересечения прямых звучит так:

Определение 1

Точка, в которой пересекаются две прямые, называют их точкой пересечения. Иначе говоря, что точка пересекающихся прямых и есть точка пересечения.

Рассмотрим на рисунке, приведенном ниже.

Точка пересечения двух прямых – определение

Нахождение координат точки пересечения двух прямых на плоскости

Перед нахождением координат точки пересечения двух прямых, необходимо рассмотреть предлагаемый ниже пример.

Если на плоскости имеется система координат Оху, то задаются две прямые a и b. Прямой a соответствует общее уравнение вида A1x+B1y+C1=0, для прямой b — A2x+B2y+C2=0. Тогда M0(x0, y0) является некоторой точкой плоскости необходимо выявить , будет ли точка М0 являться точкой пересечения этих прямых.

Чтобы решить поставленную задачу, необходимо придерживаться определения. Тогда прямые должны пересекаться  в точке, координаты которой  являются решением заданных уравнений A1x+B1y+C1=0 и A2x+B2y+C2=0. Значит, координаты точки пересечения подставляются во все заданные уравнения. Если они при подстановке дают верное тождество, тогда M0(x0, y0) считается их точкой пересечения.

Пример 1

Даны две пересекающиеся прямые 5x-2y-16=0 и 2x-5y-19=0. Будет ли точка М0 с координатами (2,-3) являться точкой пересечения.

Решение

Чтобы пересечение прямых было действительным, необходимо, чтобы координаты точки М0 удовлетворяли уравнениям прямых. Это проверяется при помощи их подстановки. Получаем, что 

5·2-2·(-3)-16=0⇔0=02·2-5·(-3)-19=0⇔0=0

Оба равенства верные, значит М0 (2, -3) является точкой пересечения заданных прямых.

Изобразим данное решение на координатной прямой рисунка, приведенного ниже.

Нахождение координат точки пересечения двух прямых на плоскости

Ответ:  заданная точка с координатами (2,-3) будет являться точкой пересечения заданных прямых.

Пример 2

Пересекутся ли прямые 5x+3y-1=0 и 7x-2y+11=0 в точке M0 (2, -3)?

Решение

Для решения задачи необходимо подставить координаты точки во все уравнения. Получим, что

5·2+3·(-3)-1=0⇔0=07·2-2·(-3)+11=0⇔31=0

Второе равенство не является верным, значит, что заданная точка не принадлежит прямой 7x-2y+11=0. Отсюда имеем, что точка М0 не точка пересечения прямых.

Чертеж наглядно показывает, что М0 — это не точка пересечения прямых. Они имеют общую точку с координатами (-1,2).

Нахождение координат точки пересечения двух прямых на плоскости

Ответ: точка с координатами (2,-3) не является точкой пересечения заданных прямых.

Переходим к нахождению координат точек пересечения двух прямых при помощи заданных уравнений на  плоскости.

Задаются две пересекающиеся прямые a и b уравнениями вида A1x+B1y+C1=0 и A2x+B2y+C2=0, расположенных в Оху. При обозначении точки пересечения М0 получим, что следует  продолжить поиск координат по уравнениям A1x+B1y+C1=0 и A2x+B2y+C2=0.

Из определения очевидно, что М0 является общей точкой пересечения прямых. В этом случае ее координаты должны удовлетворять уравнениям A1x+B1y+C1=0 и A2x+B2y+C2=0. Иными словами это и есть решение полученной системы A1x+B1y+C1=0A2x+B2y+C2=0.

Значит, для нахождения координат точки пересечения , необходимо все уравнения добавить в систему и решить ее.

Пример 3

Заданы две прямые x-9y+14=0 и 5x-2y-16=0 на плоскости. необходимо найти их пересечение.

Решение

Данные по условию уравнения необходимо собрать в систему, после чего получим x-9y+14=05x-2y-16=0. Чтобы решить его, разрешается первое уравнение относительно x, подставляется выражение во второе:

x-9y+14=05x-2y-16=0⇔x=9y-145x-2y-16=0⇔⇔x=9y-145·9y-14-2y-16=0⇔x=9y-1443y-86=0⇔⇔x=9y-14y=2⇔x=9·2-14y=2⇔x=4y=2

Получившиеся числа являются координатами, которые необходимо было найти.

Ответ: M0 (4, 2) является точкой  пересечения прямых x-9y+14=0 и 5x-2y-16=0.

Поиск координат сводится к решению системы линейных уравнений. Если по условию дан другой вид уравнения, тогда следует привести его к нормальному виду.

Пример 4

Определить координаты точек пересечения прямых x-5=y-4-3 и x=4+9·λy=2+λ, λ∈R.

Решение

Для начала необходимо привести уравнения к общему виду.  Тогда получаем, что x=4+9·λy=2+λ, λ∈R преобразуется таким образом:

x=4+9·λy=2+λ⇔λ=x-49λ=y-21⇔x-49=y-21⇔⇔1·(x-4)=9·(y-2)⇔x-9y+14=0

После чего беремся за уравнение канонического вида x-5=y-4-3 и преобразуем. Получаем, что 

x-5=y-4-3⇔-3·x=-5·y-4⇔3x-5y+20=0

Отсюда имеем, что координаты – это точка пересечения

x-9y+14=03x-5y+20=0⇔x-9y=-143x-5y=-20

Применим метод Крамера для нахождения координат:

∆=1-93-5=1·(-5)-(-9)·3=22∆x=-14-9-20-5=-14·(-5)-(-9)·(-20)=-110⇒x=∆x∆=-11022=-5∆y=1-143-20=1·(-20)-(-14)·3=22⇒y=∆y∆=2222=1

Ответ: M0 (-5, 1).

Имеется еще способ для нахождения координат точки пересечения прямых, находящихся на плоскости. Он применим, когда одна из прямых задается параметрическими уравнениями, имеющими вид x=x1+ax·λy=y1+ay·λ, λ∈R. Тогда вместо значения x подставляется x=x1+ax·λ и y=y1+ay·λ, где получим λ=λ0, соответствующее точке пересечения, имеющей координаты x1+ax·λ0, y1+ay·λ0.

Пример 5

Определить координаты точки пересечения прямой x=4+9·λy=2+λ, λ∈R и x-5=y-4-3.

Решение

Необходимо выполнить подстановку в x-5=y-4-3 выражением x=4+9·λ, y=2+λ, тогда получим:

4+9·λ-5=2+λ-4-3

При решении получаем, что λ=-1. Отсюда следует, что имеется точка пересечения между прямыми x=4+9·λy=2+λ, λ∈R и x-5=y-4-3. Для вычисления координат необходимо подставить выражение λ=-1 в параметрическое уравнение. Тогда получаем, что x=4+9·(-1)y=2+(-1)⇔x=-5y=1.

Ответ: M0 (-5, 1).

Для полного понимания темы, необходимо знать некоторые нюансы.

Предварительно необходимо понять расположение прямых. При их пересечении мы найдем координаты, в других случаях решения существовать не будет. Чтобы не делать эту проверку, можно составлять систему вида A1x+B1y+ C1=0A2x+B2+C2=0 При наличии решения делаем вывод о том, что прямые пересекаются. Если решение отсутствует, то они параллельны. Когда система имеет бесконечное множество решений, тогда говорят, что они совпадают.

Пример 6

Даны прямые x3+y-4=1 и y=43x-4. Определить, имеют ли они общую точку.

Решение

Упрощая заданные уравнения, получаем 13x-14y-1=0 и 43x-y-4=0.  

Следует собрать уравнения в систему для последующего решения:

13x-14y-1=013x-y-4=0⇔13x-14y=143x-y=4

Отсюда видно, что уравнения выражаются друг через друга, тогда получим бесконечное множество решений. Тогда уравнения x3+y-4=1 и y=43x-4 определяют одну и ту же прямую. Поэтому нет точек пересечения.

Ответ: заданные уравнения определяют одну и ту же прямую.

Пример 7

Найти координаты точки пересекающихся прямых 2x+(2-3)y+7=0 и 23+2x-7y-1=0.

Решение

По условию возможно такое, прямые не будут пересекаться. Необходимо составить систему уравнений и решать. Для решения необходимо использовать метод Гаусса, так как с его помощью есть возможность проверить уравнение на совместимость. Получаем систему вида:

2x+(2-3)y+7=02(3+2)x-7y-1=0⇔2x+(2-3)y=-72(3+2)x-7y=1⇔⇔2x+2-3y=-72(3+2)x-7y+(2x+(2-3)y)·(-(3+2))=1+-7·(-(3+2))⇔⇔2x+(2-3)y=-70=22-72

Получили неверное равенство, значит система не имеет решений. Делаем вывод, что прямые являются параллельными. Точек пересечения нет.

Второй способ решения.

Для начала нужно определить наличие пересечения прямых.

n1→=(2, 2-3) является нормальным вектором прямой 2x+(2-3)y+7=0, тогда вектор n2→=(2(3+2), -7 — нормальный вектор для прямой 23+2x-7y-1=0.

Необходимо выполнить проверку коллинеарности векторов n1→=(2, 2-3) и n2→=(2(3+2), -7). Получим равенство вида 22(3+2)=2-3-7. Оно верное, потому как 223+2-2-3-7=7+2-3(3+2)7(3+2)=7-77(3+2)=0. Отсюда следует, что векторы коллинеарны. Значит, прямые являются параллельными и не имеют точек пересечения.

Ответ: точек пересечения нет, прямые параллельны.

Пример 8

Найти координаты пересечения заданных прямых 2x-1=0 и y=54x-2.

Решение

Для решения составляем систему уравнений. Получаем

2x-1=054x-y-2=0⇔2x=154x-y=2

Найдем определитель основной матрицы. Для этого 2054-1=2·(-1)-0·54=-2. Так как он не равен нулю, система имеет 1 решение. Отсюда следует, что прямые пересекаются. Решим систему для нахождения координат точек пересечения:

2x=154x-y=2⇔x=1245x-y=2⇔x=1254·12-y=2⇔x=12y=-118

Получили, что точка пересечения заданных прямых имеет координаты M0(12, -118).

Ответ: M0(12, -118).

Нахождения координат точки пересечения двух прямых в пространстве

Таким же образом находятся точки пересечения прямых пространства.

Когда заданы прямые a и b в координатной плоскости Охуz уравнениями пересекающихся плоскостей, то имеется прямая a , которая  может быть определена при помощи заданной системы A1x+B1y+C1z+D1=0A2x+B2y+C2z+D1=0 а прямая b — A3x+B3y+C3z+D3=0A4x+B4y+C4z+D4=0.

Когда точка М0 является точкой пересечения прямых, тогда ее координаты должны быть решениями обоих уравнений. Получим линейные уравнения в системе:

A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0A3x+B3y+C3z+D3=0A4x+B4y+C4z+D4=0

Рассмотрим подобные задания на примерах.

Пример 9

Найти координаты точки пересечения заданных прямых x-1=0y+2z+3=0 и 3x+2y+3=04x-2z-4=0

Решение

Составляем систему x-1=0y+2z+3=03x+2y+3=04x-2z-4=0 и решим ее. Чтобы найти координаты, необходимо решать через матрицу. Тогда получим основную матрицу вида   A=10001232040-2 и расширенную T=1001012-340-24. Определяем ранг матрицы по Гауссу.

Получаем, что

1=1≠0, 1001=1≠0, 100012320=-4≠0, 1001012-3320-340-24=0

Отсюда следует, что ранг расширенной матрицы имеет значение 3. Тогда система уравнений  x-1=0y+2z+3=03x+2y+3=04x-27-4=0 в результате дает только одно решение.

Базисный минор имеет определитель 100012320=-4≠0, тогда последнее уравнение не подходит. Получим, что x-1=0y+2z+3=03x+2y+3=04x-2z-4=0⇔x=1y+2z=-33x+2y-3 . Решение системы x=1y+2z=-33x+2y=-3⇔x=1y+2z=-33·1+2y=-3⇔x=1y+2z=-3y=-3⇔⇔x=1-3+2z=-3y=-3⇔x=1z=0y=-3.

Значит, имеем, что точка пересечения x-1=0y+2z+3=0 и 3x+2y+3=04x-2z-4=0   имеет координаты (1, -3, 0).

Ответ: (1, -3, 0).

Система вида A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0A3x+B3y+C3z+D3=0A4x+B4y+C4z+D4=0 имеет только одно решение. Значит, прямые a и b пересекаются.

В остальных случаях уравнение не имеет решения, то есть и общих точек тоже. То есть невозможно найти точку с координатами, так как ее нет.

Поэтому система вида A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0A3x+B3y+C3z+D3=0A4x+B4y+C4z+D4=0 решается методом Гаусса. При ее несовместимости прямые не являются пересекающимися. Если решений бесконечное множество, то они совпадают.

Можно произвести решение при помощи вычисления основного и расширенного ранга матрицы, после чего применить теорему Кронекера-Капелли. Получим одно, множество или полное отсутствие решений.

Пример 10

Заданы уравнения прямых x+2y-3z-4=02x-y+5=0 и x-3z=03x-2y+2z-1=0. Найти точку пересечения.

Решение

Для начала составим систему уравнений. Получим, что x+2y-3z-4=02x-y+5=0x-3z=03x-2y+2z-1=0 . решаем ее методом Гаусса:

12-342-10-510-303-221~12-340-56-130-20-40-811-11~~12-340-56-1300-125650075-1595~12-340-56-1300-1256500031110

Очевидно, что система не имеет решений, значит прямые не пересекаются. Точки пересечения нет.

Ответ: нет точки пересечения.

Если прямые заданы при помощи кононических или параметрических уравнений, нужно привести к виду уравнений пересекающихся плоскостей, после чего найти координаты.

Пример 11

Заданы две прямые x=-3-λy=-3·λz=-2+3·λ, λ∈R и x2=y-30=z5 в Охуz. Найти точку пересечения.

Решение

Задаем прямые уравнениями двух пересекающихся плоскостей. Получаем, что

x=-3-λy=-3·λz=-2+3·λ⇔λ=x+3-1λ=y-3λ=z+23⇔x+3-1=y-3=z+23⇔⇔x+3-1=y-3x+3-1=z+23⇔3x-y+9=03x+z+11=0x2=y-30=z5⇔y-3=0x2=z5⇔y-3=05x-2z=0

Находим координаты 3x-y+9=03x+z+11=0y-3=05x-2z=0, для этого посчитаем ранги матрицы. Ранг матрицы равен 3, а базисный минор 3-10301010=-3≠0, значит, что из системы необходимо исключить последнее уравнение. Получаем, что

3x-y+9=03x+z+11=0y-3=05x-2z=0⇔3x-y+9=03x+z+11=0y-3=0

Решим систему методом Крамер. Получаем, что x=-2y=3z=-5. Отсюда получаем, что пересечение заданных прямых дает точку с координатами (-2, 3, -5).

Ответ: (-2, 3, -5).

Point of intersection is the point where two lines or two curves meet each other. The point of intersection of two lines of two curves is a point. If two planes meet each other then the point of intersection is a line. More precisely it is defined as the common point of both the lines or curves that satisfy both the curves which can be derived by solving the equation of the curves.

If we consider two lines a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0 the point of intersection of these two lines is given by:

Point of Intersection (x, y) = ((b1×c2 − b2×c1)/(a1×b2 − a2×b1), (c1×a2 − c2×a1)/(a1×b2 − a2×b1))

Point of intersection

Derivation of point of intersection of two lines: 

Given equations:

a1x + b1y + c1 = 0 -> eq-1

a2x + b2y + c2 = 0 -> eq-2

Solving the equations using cross multiplication method:

       x     y     1

    b1    c1    a1    b1

    b2    c2    a2    b2

On cross-multiplying the constants we obtain:

x/(b1*c2 – b2* c1) = y/(c1*a2-c2*a1) = 1/(a1*b2-a2*b1)

Solving for x:

=> x/(b1*c2 – b2* c1) = 1/(a1*b2-a2*b1) 

=> x = (b1*c2 – b2* c1)/(a1*b2-a2*b1)

Solving for y:

=> y/(c1*a2-c2*a1) = 1/(a1*b2-a2*b1)

=> y=(c1*a2−c2*a1)/(a1*b2−a2*b1)

Hence point of intersection:

(x,y) = ((b1×c2 − b2×c1)/(a1×b2 − a2×b1), (c1×a2 − c2×a1)/(a1×b2 − a2×b1))

If two lines are parallel they never intersect each other:

Condition for two lines a1x + b1y + c1 = 0, a2x + b2y + c2 = 0 to be parallel 

 a1/b1 = a2/b2. 

Sample Problems

Question 1: Find the point of intersection of line 3x + 4y + 5 = 0, 2x + 5y +7 = 0.

Solution:

The point of intersection of two lines is given by :

 (x, y) = ((b1*c2−b2*c1)/(a1*b2−a2*b1), (c1*a2−c2*a1)/(a1*b2−a2*b1))

 a1 = 3, b1 = 4, c1 = 5

 a2 = 2, b2 = 5, c2 = 7

 (x,y) = ((28-25)/(15-8), (10-21)/(15-8))

 (x,y) = (3/7,-11/7)

Question 2: Find the point of intersection of line 9x + 3y + 3 = 0, 4x + 5y + 6 = 0.

Solution:

The point of intersection of two lines is given by :

 (x,y) = ((b1*c2−b2*c1)/(a1*b2−a2*b1), (c1*a2−c2*a1)/(a1*b2−a2*b1))

 a1 = 9, b1 = 3, c1 = 3

 a2 = 4, b2 = 5, c2 = 6

 (x, y) = ((18-15)/(45-15), (54-12)/(45-15))

 (x, y) = (1/10, 7/5)

Question 3: Check if the two lines are parallel or not  2x + 4y + 6 = 0, 4x + 8y + 6 = 0

Solution:

To check whether the lines are parallel or not we need to check a1/b1 = a2/b2

a1 = 2, b1 = 4

a2 = 4, b2 = 8

2/4 = 4/8

1/2 = 1/2

Since the condition is satisfied the lines are parallel and can’t intersect each other.

Question 4: Check if the two lines are parallel or not  3x + 4y + 8 = 0, 4x + 8y + 6 = 0

Solution:

To check whether the lines are parallel or not we need to check a1/b1 = a2/b2

a1 = 3, b1 = 4

a2 = 4, b2 = 8

3/4 is not equal to 4/8

Since the condition is not satisfied the lines are not parallel.

Question 5: Check whether the point (3, 5) is point of intersection of lines 2x + 3y – 21 = 0, x + 2y – 13 = 0.

Solution:

A point to be a point of intersection it should satisfy both the lines.

Substituting (x,y) = (3,5) in both the lines

Check for equation 1: 2*3 + 3*5 – 21 =0 —-> satisfied

Check for equation 2: 3 + 2* 5 -13 =0 —-> satisfied

Since both the equations are satisfied it is a point of intersection of both the lines.

Question 6: Check whether the point (2, 5) is point of intersection of lines x + 3y – 17 = 0, x + y – 13 = 0

Solution:

A point to be a point of intersection it should satisfy both the lines.

Substituting (x,y) = (2,5) in both the lines

Check for equation 1: 2+ 3*5 – 17 =0 —-> satisfied

Check for equation 2: 7 -13 = -6  —>not satisfied

Since both the equations are not satisfied it is not a point of intersection of both the lines.

Question 7: Find the point of intersection of lines x = -2 and 3x + y + 4 = 0

Solution:

On substituting x = -2 in 3x + y + 4 = 0

-6 + y + 4 = 0;

y = 2;

So the point of intersection is (x,y) = (-2,2)                   

Last Updated :
20 Dec, 2021

Like Article

Save Article


Загрузить PDF


Загрузить PDF

В двумерном пространстве две прямые пересекаются только в одной точке,[1]
задаваемой координатами (х,y). Так как обе прямые проходят через точку их пересечения, то координаты (х,y) должны удовлетворять обоим уравнениям, которые описывают эти прямые. Воспользовавшись некоторыми дополнительными навыками, вы сможете находить точки пересечения парабол и других квадратичных кривых.

  1. Изображение с названием Algebraically Find the Intersection of Two Lines Step 1

    1

    Запишите уравнение каждой прямой, обособив переменную «у» на левой стороне уравнения. Другие члены уравнения должны размещаться на правой стороне уравнения. Возможно, данное вам уравнение вместо «у» будет содержать переменную f(x) или g(x); в этом случае обособьте такую переменную. Для обособления переменной выполните соответствующие математические операции на обеих сторонах уравнения.

  2. Изображение с названием Algebraically Find the Intersection of Two Lines Step 2

    2

    Приравняйте выражения, расположенные с правой стороны каждого уравнения. Наша задача — найти точку пересечения обеих прямых, то есть точку, координаты (х,у) которой удовлетворяют обоим уравнениям. Так как на левой стороне каждого уравнения находится переменная «у», то выражения, расположенные с правой стороны каждого уравнения, можно приравнять. Запишите новое уравнение.

  3. Изображение с названием Algebraically Find the Intersection of Two Lines Step 3

    3

    Найдите значение переменной «х». Новое уравнение содержит только одну переменную «х». Для нахождения «х» обособьте эту переменную на левой стороне уравнения, выполнив соответствующие математические операции на обеих сторонах уравнения. Вы должны получить уравнение вида х = __ (если это невозможно, перейдите в конец этого раздела).

  4. Изображение с названием Algebraically Find the Intersection of Two Lines Step 4

    4

    Используйте найденное значение переменной «х» для вычисления значения переменной «у». Для этого подставьте найденное значение «х» в уравнение (любое) прямой.

  5. Изображение с названием Algebraically Find the Intersection of Two Lines Step 5

    5

    Проверьте ответ. Для этого подставьте значение «х» в другое уравнение прямой и найдите значение «у». Если вы получите разные значение «у», проверьте правильность ваших вычислений.

  6. Изображение с названием Algebraically Find the Intersection of Two Lines Step 6

    6

    Запишите координаты (х,у). Вычислив значения «х» и «у», вы нашли координаты точки пересечения двух прямых. Запишите координаты точки пересечения в виде (х,у).

  7. Изображение с названием Algebraically Find the Intersection of Two Lines Step 7

    7

    Вычисления в особых случаях. В некоторых случаях значение переменной «х» найти нельзя. Но это не значит, что вы допустили ошибку. Особый случай имеет место при выполнении одного из следующих условий:

    Реклама

  1. Изображение с названием Algebraically Find the Intersection of Two Lines Step 8

    1

    Определение квадратичной функции. В квадратичной функции одна или несколько переменных имеют вторую степень (но не выше), например, x^{2} или y^{2}. Графиками квадратичных функций являются кривые, которые могут не пересекаться или пересекаться в одной или двух точках. В этом разделе мы расскажем вам, как найти точку или точки пересечения квадратичных кривых.

    • Если уравнение включает выражение в скобках, раскройте их, чтобы удостовериться, что функция является квадратичной. Например, функция y=(x+3)(x) является квадратичной, так как, раскрыв скобки, вы получите y=x^{2}+3x.
    • Функция, описывающая окружность, включает как x^{2}, так и y^{2}.[2]
      [3]
      Если у вас возникли проблемы при решении задач с такой функцией, перейдите в раздел «Советы».
  2. Изображение с названием Algebraically Find the Intersection of Two Lines Step 9

    2

    Перепишите каждое уравнение, обособив переменную «у» на левой стороне уравнения. Другие члены уравнения должны размещаться на правой стороне уравнения.

  3. Изображение с названием Algebraically Find the Intersection of Two Lines Step 10

    3

    Приравняйте выражения, расположенные с правой стороны каждого уравнения. Так как на левой стороне каждого уравнения находится переменная «у», то выражения, расположенные с правой стороны каждого уравнения, можно приравнять.

  4. Изображение с названием Algebraically Find the Intersection of Two Lines Step 11

    4

    Перенесите все члены полученного уравнения на его левую сторону, а на правой стороне запишите 0. Для этого выполните базовые математические операции. Это позволит вам решить полученное уравнение.

  5. Изображение с названием Algebraically Find the Intersection of Two Lines Step 12

    5

  6. Изображение с названием Algebraically Find the Intersection of Two Lines Step 13

    6

    Не забудьте про вторую точку пересечения двух графиков. В спешке можно забыть про вторую точку пересечения. Вот как найти координаты «х» двух точек пересечения:

  7. Изображение с названием Algebraically Find the Intersection of Two Lines Step 14

    7

    Графики пересекаются в одной точке или вообще не пересекаются. Такие ситуации имеют место при соблюдении следующих условий:

  8. Изображение с названием Algebraically Find the Intersection of Two Lines Step 15

    8

    Подставьте найденное значение переменной «х» в уравнение (любое) кривой. Так вы найдете значение переменной «у». Если у вас есть два значения переменной «х», проделайте описанный процесс с обоими значениями «х».

  9. Изображение с названием Algebraically Find the Intersection of Two Lines Step 16

    9

    Запишите координаты точки пересечения в виде (х,у). Вычислив значения «х» и «у», вы нашли координаты точки пересечения двух графиков. Если вы определили по два значения «х» и «у», запишите две пары координат, не перепутав соответствующие значения «х» и «у».

    Реклама

Советы

  • Функция, описывающая окружность, включает как x^{2}, так и y^{2}. Для нахождения точки (точек) пересечения окружности и прямой вычислите «х», используя линейное уравнение.[4]
    Затем подставьте найденное значение «х» в функцию, описывающую окружность, и вы получите простое квадратное уравнение, которое может не иметь решения или иметь одно или два решения.
  • Окружность и кривая (квадратичная или иная) могут не пересекаться или пересекаться в одной, двух, трех, четырех точках. В этом случае необходимо найти значение x2 (а не «х»), а затем подставить его во вторую функцию. Вычислив «у», вы получите одно или два решения или вообще не получите решений. Теперь подставьте найденное значение «у» в одну из двух функций и найдите значение «х». В этом случае вы получите одно или два решения или вообще не получите решений.

Реклама

Об этой статье

Эту страницу просматривали 94 840 раз.

Была ли эта статья полезной?

Привет, сегодня поговорим про координаты точки пересечения двух прямых — ы нахождения , обещаю рассказать все что знаю. Для того чтобы лучше понимать что такое
координаты точки пересечения двух прямых — ы нахождения , настоятельно рекомендую прочитать все из категории Стереометрия.

При решении некоторых геометрических задач методом координат приходится находить координаты точки пересечения прямых. Наиболее часто приходится искать координаты точки пересечения двух прямых на плоскости, однако иногда возникает необходимость в определении координат точки пересечения двух прямых в пространстве. В этой статье мы как раз разберемся с нахождением координат точки, в которой пересекаются две прямые.

Навигация по странице.

  • Точка пересечения двух прямых – определение.
  • Нахождение координат точки пересечения двух прямых на плоскости.
  • Нахождение координат точки пересечения двух прямых в пространстве.

Точка пересечения двух прямых – определение.

Давайте для начала дадим определение точки пересечения двух прямых.

В разделе взаимное расположение прямых на плоскости показано, что две прямые на плоскости могут либо совпадать (при этом они имеют бесконечно много общих точек), либо быть параллельными (при этом две прямые не имеют общих точек), либо пересекаться, имея одну общую точку. Вариантов взаимного расположения двух прямых в пространстве больше – они могут совпадать (иметь бесконечно много общих точек), могут быть параллельными (то есть, лежать в одной плоскости и не пересекаться), могут быть скрещивающимися (не лежащими в одной плоскости), а также могут иметь одну общую точку, то есть, пересекаться. Итак, две прямые и на плоскости и в пространстве называются пересекающимися, если они имеют одну общую точку.

Из определения пересекающихся прямых следует определение точки пересечения прямых: точка, в которой пересекаются две прямые, называется точкой пересечения этих прямых. Другими словами, единственная общая точка двух пересекающихся прямых есть точка пересечения этих прямых.

Приведем для наглядности графическую иллюстрацию точки пересечения двух прямых на плоскости и в пространстве.

Координаты точки пересечения двух прямых - примеры нахождения.

К началу страницы

Нахождение координат точки пересечения двух прямых на плоскости.

Прежде чем находить координаты точки пересечения двух прямых на плоскости по их известным уравнениям, рассмотрим вспомогательную задачу.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и заданы две пересекающиеся прямые a и b. Будем считать, что прямой a соответствует общее уравнение прямой вида Координаты точки пересечения двух прямых - примеры нахождения., а прямой b – вида Координаты точки пересечения двух прямых - примеры нахождения.. Пусть Координаты точки пересечения двух прямых - примеры нахождения. – некоторая точка плоскости, и требуется выяснить, является ли точка М0 точкой пересечения заданных прямых.

Решим поставленную задачу.

Если M0 является точкой пересечения прямых a и b, то по определению она принадлежит и прямой a и прямой b, то есть, ее координаты должны удовлетворять одновременно и уравнению Координаты точки пересечения двух прямых - примеры нахождения. и уравнению Координаты точки пересечения двух прямых - примеры нахождения.. Следовательно, нам нужно подставить координаты точки М0 в уравнения заданных прямых и посмотреть, получаются ли при этом два верных равенства. Если координаты точки М0 удовлетворяют обоим уравнениям Координаты точки пересечения двух прямых - примеры нахождения. и Координаты точки пересечения двух прямых - примеры нахождения., то Координаты точки пересечения двух прямых - примеры нахождения. – точка пересечения прямых a и b, в противном случае М0 не является точкой пересечения прямых.

Пример.

Является ли точка М0 с координатами (2, -3) точкой пересечения прямых 5x-2y-16=0 и2x-5y-19=0?

Решение.

Если М0 действительно точка пересечения заданных прямых, то ее координаты удовлетворяют уравнениям прямых. Проверим это, подставив координаты точки М0 в заданные уравнения:
Координаты точки пересечения двух прямых - примеры нахождения.

Получили два верных равенства, следовательно, М0 (2, -3) — точка пересечения прямых5x-2y-16=0 и 2x-5y-19=0.

Для наглядности приведем чертеж, на котором изображены прямые и видны координаты точки их пересечения.

Координаты точки пересечения двух прямых - примеры нахождения.

Ответ:

да, точка М0 (2, -3) является точкой пересечения прямых 5x-2y-16=0 и 2x-5y-19=0.

Пример.

Пересекаются ли прямые 5x+3y-1=0 и 7x-2y+11=0 в точке M0 (2, -3)?

Решение.

Подставим координаты точки М0 в уравнения прямых, этим действием будем осуществлена проверка принадлежности точки М0 обеим прямым одновременно:
Координаты точки пересечения двух прямых - примеры нахождения.

Так как второе уравнение при подстановке в него координат точки М0 не обратилось в верное равенство, то точка М0 не принадлежит прямой 7x-2y+11=0. Из этого факта можно сделать вывод о том, что точка М0 не является точкой пересечения заданных прямых.

На чертеже также хорошо видно, что точка М0 не является точкой пересечения прямых5x+3y-1=0 и 7x-2y+11=0. Очевидно, заданные прямые пересекаются в точке с координатами (-1, 2).

Координаты точки пересечения двух прямых - примеры нахождения.

Ответ:

М0 (2, -3) не является точкой пересечения прямых 5x+3y-1=0 и 7x-2y+11=0.

Теперь можно переходить к задаче нахождения координат точки пересечения двух прямых по заданным уравнениям прямых на плоскости.

Пусть на плоскости зафиксирована прямоугольная декартова система координат Oxy и заданы две пересекающиеся прямые a и b уравнениями Координаты точки пересечения двух прямых - примеры нахождения. и Координаты точки пересечения двух прямых - примеры нахождения.соответственно. Обозначим точку пересечения заданных прямых как М0 и решим следующую задачу: найти координаты точки пересечения двух прямых a и b по известным уравнениям этих прямых Координаты точки пересечения двух прямых - примеры нахождения. и Координаты точки пересечения двух прямых - примеры нахождения..

Точка M0 принадлежит каждой из пересекающихся прямых a и b по определению. Тогда координаты точки пересечения прямых a и b удовлетворяют одновременно и уравнению Координаты точки пересечения двух прямых - примеры нахождения. и уравнению Координаты точки пересечения двух прямых - примеры нахождения.. Следовательно, координаты точки пересечения двух прямых a и b являются решением системы уравнений Координаты точки пересечения двух прямых - примеры нахождения.(смотрите статью решение систем линейных алгебраических уравнений).

Таким образом, чтобы найти координаты точки пересечения двух прямых, определенных на плоскости общими уравнениями, нужно решить систему, составленную из уравнений заданных прямых.

Рассмотрим решение примера.

Пример.

Найдите точку пересечения двух прямых, определенных в прямоугольной системе координат на плоскости уравнениями x-9y+14=0 и 5x-2y-16=0.

Решение.

Нам даны два общих уравнения прямых, составим из них систему: Координаты точки пересечения двух прямых - примеры нахождения. . Об этом говорит сайт https://intellect.icu . Решения полученной системы уравнений легко находятся, если разрешить ее первое уравнение относительно переменной x и подставить это выражение во второе уравнение:
Координаты точки пересечения двух прямых - примеры нахождения.

Найденное решение системы уравнений дает нам искомые координаты точки пересечения двух прямых.

Ответ:

M0 (4, 2) – точка пересечения прямых x-9y+14=0 и 5x-2y-16=0.

Итак, нахождение координат точки пересечения двух прямых, определенных общими уравнениями на плоскости, сводится к решению системы из двух линейных уравнений с двумя неизвестными переменными. А как же быть, если прямые на плоскости заданы не общими уравнениями, а уравнениями другого вида (смотрите виды уравнения прямой на плоскости)? В этих случаях можно сначала привести уравнения прямых к общему виду, а уже после этого находить координаты точки пересечения.

Пример.

Определите координаты точки пересечения прямых Координаты точки пересечения двух прямых - примеры нахождения. и Координаты точки пересечения двух прямых - примеры нахождения..

Решение.

Перед нахождением координат точки пересечения заданных прямых приведем их уравнения к общему виду. Переход от параметрических уравнений прямой Координаты точки пересечения двух прямых - примеры нахождения. к общему уравнению этой прямой выглядит следующим образом:
Координаты точки пересечения двух прямых - примеры нахождения.

Теперь проведем необходимые действия с каноническим уравнением прямой Координаты точки пересечения двух прямых - примеры нахождения.:
Координаты точки пересечения двух прямых - примеры нахождения.

Таким образом, искомые координаты точки пересечения прямых являются решением системы уравнений вида Координаты точки пересечения двух прямых - примеры нахождения.. Используем для ее решения метод Крамера:
Координаты точки пересечения двух прямых - примеры нахождения.

Ответ:

M0 (-5, 1)

Существует еще один способ нахождения координат точки пересечения двух прямых на плоскости. Его удобно применять, когда одна из прямых задана параметрическими уравнениями вида Координаты точки пересечения двух прямых - примеры нахождения., а другая – уравнением прямой иного вида. В этом случае в другое уравнение вместо переменных x и y можно подставить выражения Координаты точки пересечения двух прямых - примеры нахождения. и Координаты точки пересечения двух прямых - примеры нахождения., откуда можно будет получить значение Координаты точки пересечения двух прямых - примеры нахождения., которое соответствует точке пересечения заданных прямых. При этом точка пересечения прямых имеет координаты Координаты точки пересечения двух прямых - примеры нахождения..

Найдем координаты точки пересечения прямых из предыдущего примера этим способом.

Пример.

Определите координаты точки пересечения прямых Координаты точки пересечения двух прямых - примеры нахождения. и Координаты точки пересечения двух прямых - примеры нахождения..

Решение.

Ответ:

M0 (-5, 1).

Для полноты картины следует обговорить еще один момент.

Перед нахождением координат точки пересечения двух прямых на плоскости полезно убедиться в том, что заданные прямые действительно пересекаются. Если выяснится, что исходные прямые совпадают или параллельны, то о нахождении координат точки пересечения таких прямых не может быть и речи.

Можно, конечно, обойтись и без такой проверки, а сразу составить систему уравнений вида Координаты точки пересечения двух прямых - примеры нахождения. и решить ее. Если система уравнений имеет единственное решение, то оно дает координаты точки, в которой исходные прямые пересекаются. Если система уравнений решений не имеет, то можно делать вывод о параллельности исходных прямых (так как не существует такой пары действительных чисел x и y, которая бы удовлетворяла одновременно обоим уравнениям заданных прямых). Из наличия бесконечного множества решений системы уравнений следует, что исходные прямые имеют бесконечно много общих точек, то есть, совпадают.

Рассмотрим примеры, подходящие под эти ситуации.

Пример.

Выясните, пересекаются ли прямые Координаты точки пересечения двух прямых - примеры нахождения. и Координаты точки пересечения двух прямых - примеры нахождения., и если пересекаются, то найдите координаты точки пересечения.

Решение.

Ответ:

уравнения Координаты точки пересечения двух прямых - примеры нахождения. и Координаты точки пересечения двух прямых - примеры нахождения. определяют в прямоугольной системе координатOxy одну и ту же прямую, поэтому мы не можем говорить о нахождении координат точки пересечения.

Пример.

Найдите координаты точки пересечения прямых Координаты точки пересечения двух прямых - примеры нахождения. и Координаты точки пересечения двух прямых - примеры нахождения., если это возможно.

Решение.

Условие задачи допускает, что прямые могут быть не пересекающимися. Составим систему из данных уравнений. Применим для ее решения метод Гаусса, так как он позволяет установить совместность или несовместность системы уравнений, а в случае ее совместности найти решение:
Координаты точки пересечения двух прямых - примеры нахождения.

Последнее уравнение системы после прямого хода метода Гаусса обратилось в неверное равенство, следовательно, система уравнений не имеет решений. Отсюда можно сделать вывод, что исходные прямые параллельны, и мы не можем говорить о нахождении координат точки пересечения этих прямых.

Второй способ решения.

Давайте выясним, пересекаются ли заданные прямые.

Координаты точки пересечения двух прямых - примеры нахождения. — нормальный вектор прямой Координаты точки пересечения двух прямых - примеры нахождения., а вектор Координаты точки пересечения двух прямых - примеры нахождения. является нормальным вектором прямой Координаты точки пересечения двух прямых - примеры нахождения.. Проверим выполнение условия коллинеарности векторов Координаты точки пересечения двух прямых - примеры нахождения. и Координаты точки пересечения двух прямых - примеры нахождения.: равенство Координаты точки пересечения двух прямых - примеры нахождения. верно, так как Координаты точки пересечения двух прямых - примеры нахождения., следовательно, нормальные векторы заданных прямых коллинеарны. Тогда, эти прямые параллельны или совпадают. Таким образом, мы не можем найти координаты точки пересечения исходных прямых.

Ответ:

координаты точки пересечения заданных прямых найти невозможно, так как эти прямые параллельны.

Пример.

Найдите координаты точки пересечения прямых 2x-1=0 и Координаты точки пересечения двух прямых - примеры нахождения., если они пересекаются.

Решение.

Составим систему из уравнений, которые являются общими уравнениями заданных прямых: Координаты точки пересечения двух прямых - примеры нахождения.. Определитель основной матрицы этой системы уравнений отличен от нуля Координаты точки пересечения двух прямых - примеры нахождения., поэтому система уравнений имеет единственное решение, что свидетельствует о пересечении заданных прямых.

Для нахождения координат точки пересечения прямых нам нужно решить систему:
Координаты точки пересечения двух прямых - примеры нахождения.

Полученное решение дает нам координаты точки пересечения прямых, то есть, Координаты точки пересечения двух прямых - примеры нахождения. — точка пересечения прямых 2x-1=0 и Координаты точки пересечения двух прямых - примеры нахождения..

Ответ:

Координаты точки пересечения двух прямых - примеры нахождения.

К началу страницы

Нахождение координат точки пересечения двух прямых в пространстве.

Координаты точки пересечения двух прямых в трехмерном пространстве находятся аналогично.

Пусть пересекающиеся прямые a и b заданы в прямоугольной системе координат Oxyzуравнениями двух пересекающихся плоскостей, то есть, прямая a определяется системой вида Координаты точки пересечения двух прямых - примеры нахождения., а прямая b — Координаты точки пересечения двух прямых - примеры нахождения.. Пусть М0 – точка пересечения прямых a и b. Тогда точка М0 по определению принадлежит и прямой a и прямойb, следовательно, ее координаты удовлетворяют уравнениям обеих прямых. Таким образом, координаты точки пересечения прямых a и b представляют собой решение системы линейных уравнений вида Координаты точки пересечения двух прямых - примеры нахождения.. Здесь нам пригодится информация из разделарешение систем линейных уравнений, в которых число уравнений не совпадает с числом неизвестных переменных.

Рассмотрим решения примеров.

Пример.

Найдите координаты точки пересечения двух прямых, заданных в пространстве уравнениями Координаты точки пересечения двух прямых - примеры нахождения. и Координаты точки пересечения двух прямых - примеры нахождения..

Решение.

Составим систему уравнений из уравнений заданных прямых: Координаты точки пересечения двух прямых - примеры нахождения.. Решение этой системы даст нам искомые координаты точки пересечения прямых в пространстве. Найдем решение записанной системы уравнений.

Основная матрица системы имеет вид Координаты точки пересечения двух прямых - примеры нахождения., а расширенная — Координаты точки пересечения двух прямых - примеры нахождения..

Определим ранг матрицы А и ранг матрицы T. Используем метод окаймляющих миноров, при этом не будем подробно описывать вычисление определителей (при необходимости обращайтесь к статье вычисление определителя матрицы):
Координаты точки пересечения двух прямых - примеры нахождения.

Таким образом, ранг основной матрицы равен рангу расширенной матрицы и равен трем.

Следовательно, система уравнений Координаты точки пересечения двух прямых - примеры нахождения. имеет единственное решение.

Базисным минором примем определитель Координаты точки пересечения двух прямых - примеры нахождения., поэтому из системы уравнений следует исключить последнее уравнение, так как оно не участвует в образовании базисного минора. Итак,
Координаты точки пересечения двух прямых - примеры нахождения.

Решение полученной системы легко находится:
Координаты точки пересечения двух прямых - примеры нахождения.

Таким образом, точка пересечения прямых Координаты точки пересечения двух прямых - примеры нахождения. и Координаты точки пересечения двух прямых - примеры нахождения. имеет координаты (1, -3, 0).

Ответ:

(1, -3, 0).

Следует отметить, что система уравнений Координаты точки пересечения двух прямых - примеры нахождения. имеет единственное решение тогда и только тогда, когда прямые a и b пересекаются. Если же прямые а и bпараллельные или скрещивающиеся, то последняя система уравнений решений не имеет, так как в этом случае прямые не имеют общих точек. Если прямые a и b совпадают, то они имеют бесконечное множество общих точек, следовательно, указанная система уравнений имеет бесконечное множество решений. Однако в этих случаях мы не можем говорить о нахождении координат точки пересечения прямых, так как прямые не являются пересекающимися.

Таким образом, если мы заранее не знаем, пересекаются заданные прямые a и b или нет, то разумно составить систему уравнений вида Координаты точки пересечения двух прямых - примеры нахождения. и решить ее методом Гаусса. Если получим единственное решение, то оно будет соответствовать координатам точки пересечения прямых a и b. Если система окажется несовместной, то прямые a и b не пересекаются. Если же система будет иметь бесконечное множество решений, то прямые a и bсовпадают.

Можно обойтись и без использования метода Гаусса. Как вариант, можно вычислить ранги основной и расширенной матриц этой системы, и на основании полученных данных и теоремы Кронекера-Капелли сделать вывод или о существовании единственного решения, или о существовании множества решений, или об отсутствии решений. Это дело вкуса.

Пример.

Если прямые Координаты точки пересечения двух прямых - примеры нахождения. и Координаты точки пересечения двух прямых - примеры нахождения. пересекаются, то определите координаты точки пересечения.

Решение.

Составим систему из заданных уравнений: Координаты точки пересечения двух прямых - примеры нахождения.. Решим ее методом Гаусса в матричной форме:
Координаты точки пересечения двух прямых - примеры нахождения.

Стало видно, что система уравнений не имеет решений, следовательно, заданные прямые не пересекаются, и не может быть и речи о поиске координат точки пересечения этих прямых.

Ответ:

мы не можем найти координаты точки пересечения заданных прямых, так как эти прямые не пересекаются.

Когда пересекающиеся прямые заданы каноническими уравнениями прямой в пространствеили параметрическими уравнениями прямой в пространстве, то следует сначала получить их уравнения в виде двух пересекающихся плоскостей, а уже после этого находить координаты точки пересечения.

Пример.

Две пересекающиеся прямые заданы в прямоугольной системе координат Oxyzуравнениями Координаты точки пересечения двух прямых - примеры нахождения. и Координаты точки пересечения двух прямых - примеры нахождения.. Найдите координаты точки пересечения этих прямых.

Решение.

Ответ:

(-2, 3, -5).

Понравилась статья про координаты точки пересечения двух прямых — ы нахождения ? Откомментируйте её Надеюсь, что теперь ты понял что такое координаты точки пересечения двух прямых — ы нахождения
и для чего все это нужно, а если не понял, или есть замечания,
то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории
Стереометрия

Точка пересечения двух прямых на плоскости

Методы решения. Существует два метода решения плоских задач на определение координат точки пересечения прямых:

  • графический
  • аналитический

Графический метод решения. Используя уравнения, начертить графики прямых и с помощью линейки найти координаты точки пересечения.

Аналитический метод решения. Необходимо объединить уравнения прямых в систему, решение которой, позволит определить точные координаты точки пересечения прямых.

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны между собой)

Точка пересечения прямых

Пример 1. Найти точку пересечения прямых y = 2x — 1 и y = -3x + 1.

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2x — 1
y = -3x + 1

Вычтем из первого уравнения второе

yy = 2x — 1 — (-3x + 1)
y = -3x + 1
    =>    

0 = 5x — 2
y = -3x + 1

Из первого уравнения найдем значение x

5x = 2
y = -3x + 1
    =>    

x = 25 = 0.4
y = -3x + 1

Подставим значение x во второе уравнение и найдем значение y

x = 0.4
y = -3·(0.4) + 1 = -1.2 + 1 = -0.2

Ответ. Точка пересечения двух прямых имеет координаты (0.4, -0.2)

Точка пересечения прямых

Пример 2. Найти точку пересечения прямых y = 2x — 1 и x = 2t + 1y = t.

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2x — 1
x = 2t + 1
y = t

В первое уравнение подставим значения x и y из второго и третьего уравнений.

t = 2·(2t + 1) — 1
x = 2t + 1
y = t
    =>    

t = 4t + 1
x = 2t + 1
y = t
    =>    

-3t = 1
x = 2t + 1
y = t
    =>    

t = -13
x = 2t + 1
y = t

Подставим значение t во второе и третье уравнение

t = -13
x = 2·(-13) + 1 = -23 + 1 = 13
y = -13

Ответ. Точка пересечения двух прямых имеет координаты (13, -13)

Точка пересечения прямых

Пример 3 Найти точку пересечения прямых 2x + 3y = 0 и x — 23 = y4.

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

2x + 3y = 0
x — 23 = y4

Из второго уравнения выразим y через x

2x + 3y = 0
y = 4·x — 23

Подставим y в первое уравнение

2x + 3·4·x — 23 = 0
y = 4·x — 23
    =>    

2x + 4·(x — 2) = 0
y = 4·x — 23
    =>    

2x + 4x — 8 = 0
y = 4·x — 23
    =>    

6x = 8
y = 4·x — 23
    =>    

x = 86 = 43
y = 4·x — 23
    =>    

x = 86 = 43
y = 4·4/3 — 23 = 4·-2/3 3 = -89

Ответ. Точка пересечения двух прямых имеет координаты (43, -89)

Точка пересечения прямых

Пример 4. Найти точку пересечения прямых y = 2x — 1 и y = 2x + 1.

Решение: Обе прямые заданы уравнениями с угловым коэффициентом. Так как k1 = k2 = 2, то прямые параллельны. Так как эти прямые не совпадают то точек пересечения нет.

Решим также эту задачу используя систему уравнений:

y = 2x — 1
y = 2x + 1

Вычтем из первого уравнения второе

yy = 2x — 1 — (2x + 1)
y = -3x + 1
    =>    

0 = -2
y = -3x + 1

В первом уравнении получили противоречие (0 ≠ -2), значит система не имеет решений — отсутствуют точки пересечения прямых (прямые параллельны).

Ответ. Прямые не пересекаются (прямые параллельны).

Точка пересечения прямых

Пример 5. Проверить является ли точка N(1, 1) точкой пересечения прямых y = x и y = 3x — 2.

Решение: Подставим координаты точки N в уравнения прямых.

1 = 1

1 = 3·1 — 2 = 1

Ответ. Так как оба уравнения превратились в тождества, то точка N — точка пересечения этих прямых.

Точка пересечения двух прямых в пространстве

Метод решения. Для определение координат точки пересечения прямых в пространстве, необходимо объединить уравнения прямых в систему, решение которой, позволит определить точные координаты точки пересечения прямых.

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны или скрещиваются между собой)

Пример 6. Найти точку пересечения прямых x — 1 = y — 1 = z — 1 и x — 3-2 = 2 — y = z.

Решение: Составим систему уравнений

x — 1 = a
y — 1 = a
z — 1 = a
x — 3-2 = b
2 — y = b
z = b

  =>  

x = a + 1
y = a + 1
z = a + 1
x — 3-2 = b
2 — y = b
z = b

  =>  

Подставим значения x, y, z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = a + 1
y = a + 1
z = a + 1
a + 1 — 3-2 = b
2 — (a + 1) = b
a + 1 = b

  =>  

x = a + 1
y = a + 1
z = a + 1
a — 2-2 = b
1 — a = b
a + 1 = b

К шестому уравнению добавим пятое уравнение

x = a + 1
y = a + 1
z = a + 1
a — 2-2 = b
1 — a = b
a + 1 + (1 — a) = b + b

  =>  

x = a + 1
y = a + 1
z = a + 1
a — 2-2 = b
1 — a = b
b = 1

Подставим значение b в четвертое и пятое уравнения

x = a + 1
y = a + 1
z = a + 1
a — 2-2 = 1
1 — a = 1
b = 1

  =>  

x = a + 1
y = a + 1
z = a + 1
a — 2 = -2
a = 0
b = 1

  =>  

x = a + 1
y = a + 1
z = a + 1
a = 0
a = 0
b = 1

  =>  

x = 0 + 1 = 1
y = 0 + 1 = 1
z = 0 + 1 = 1
a = 0
a = 0
b = 1

Ответ. Прямые пересекаются в точке с координатами (1, 1, 1).

Замечание. Если уравнения прямых заданы параметрически, и в обоих уравнениях параметр задан одной и той же буквой, то при составлении системы в одном из уравнений необходимо заменить букву отвечающую за параметр.

Пример 7. Найти точку пересечения прямых
x = 2t — 3
y = t
z = —t + 2
и
x = t + 1
y = 3t — 2
z = 3
.

Решение: Составим систему уравнений заменив во втором уравнении параметр t на a

x = 2t — 3
y = t
z = —t + 2
x = a + 1
y = 3a — 2
z = 3

Подставим значения x, y, z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = 2t — 3
y = t
z = —t + 2
2t — 3 = a + 1
t = 3a — 2
t + 2 = 3

  =>  

x = 2t — 3
y = t
z = —t + 2
2t = a + 4
t = 3a — 2
t = -1

  =>  

Подставим значение t из шестого уравнения в остальные уравнения

x = 2·(-1) — 3
y = (-1)
z = -(-1) + 2
2·(-1) = a + 4
-1 = 3a — 2
t = -1

  =>  

x = -5
y = -1
z = 3
a = -6
a = 13
t = -1

Ответ. Так как -6 ≠ 13, то прямые не пересекаются.

Понравилась статья? Поделить с друзьями:
  • Как исправить косоглазие чем
  • Как мне найти яндекс карты
  • Как найти слона в африке
  • Как составить прогноз изменения показателя
  • Как исправить стул у ребенка