Как найти одну сторону прямоугольника 2 класс


Cтороны прямоугольника

4.4

Средняя оценка: 4.4

Всего получено оценок: 202.

4.4

Средняя оценка: 4.4

Всего получено оценок: 202.

В этой статье мы разберем в подробностях, как найти каждую из сторон прямоугольника. Посмотрим, какие ситуации возможны в задачах и разберем самые трудные и интересные из задач.

Длины прямоугольника

Очень часто понятия длины и ширины путаются. Некоторые источники утверждают, что вертикальные стороны прямоугольника – это ширина. Но это редкость, обычно длиной называется большая сторона прямоугольника, а шириной меньшая.

Для лучшего восприятия стоит располагать фигуру так, чтобы длина находилась в основании, а боковые стороны имели размеры ширины. Так будет проще решать задачи.

Перед тем, как перейти непосредственно к решению задач, нужно повторить несколько фактов, которые облегчат решение:

  • Диагонали прямоугольника равны.
  • Диагонали точкой пересечения делятся пополам.
  • Диагонали прямоугольника делят прямоугольник на 4 равнобедренных треугольника, которые равны между собой.

Рис. 1. Прямоугольник

Примеры решения задач

Решим задачу, связанную с формулами вычисления сторон прямоугольника. Рассмотрим несколько вариантов нахождения длин сторон при различных известных параметрах.

Задача 1

  • Известно, что площадь прямоугольника равна 21, а периметр 20. Найти стороны прямоугольника.

Такая задача содержит две неизвестных. Величины сторон a и b. Чтобы найти оба значения необходимо составить систему уравнений:

$(a+b)*2=P$ (уравнение нахождения периметра как суммы сторон фигуры)

$a*b=S$ (уравнение для нахождения площади)

При наличии двух неизвестных для решения системы необходимо наличие двух уравнений. Поэтому невозможно найти стороны прямоугольника, зная только площадь или только периметр.

Продолжим решение. Выразим значение a из первого выражения системы.

  • $(а+b)*2=Р$
  • $а+b={Рover{2}}$
  • $а={Рover{2}}-b$
  • Подставим значение периметра: $а={20over{2}}-b=10-b$

Подставим получившееся выражение в уравнение нахождения площади:

$a*b=S$

$(10-b)*b=21$

$b^2-10b-21=0$

Это квадратное уравнение. Решим его с помощью теоремы Виета. Такое уравнение будет иметь два корня. Сумма корней будет равна 10, а произведение 21. Такое возможно при значении корней 3 и 7, так как это единственные числа, подходящие под данные условия.

$а=10-b$

Значит, при $b=3$, $а=10-3=7$

При $b=7$, $a=10-7=3$. То есть в любом случае, стороны будут равны 7 и 3. Это и есть ответ задачи.

Задача 2

  • Известно, что сторона прямоугольника равна 16, а диагональ 20. Найти другую сторону прямоугольника.

Рис. 2. Рисунок к задаче.

Задача решается теоремой Пифагора. Диагональ делит прямоугольник на два равных прямоугольных треугольника. В таком треугольнике нам известна гипотенуза (20) и катет (16).

Сумма квадратов катетов равняется квадрату гипотенузы. Искать будем сторону а, предположив, что известная нам сторона это сторона b.

$D^2=a^2+b^2$

$A^2=d^2-b^2$

$а^2=400-256=144$

Корень квадратный из 144 равен 12. Это и есть ответ к задаче.

Задача 3

  • Известно, что прямоугольник представляет собой ромб. Площадь ромба равна 25, необходимо найти все стороны четырехугольника.

Рис. 3. Квадрат.

У прямоугольника все углы прямые, а у ромба все стороны между собой равны. Значит, четырехугольник, который одновременно является и ромбом, и прямоугольником это фигура с 4 прямыми углами и сторонами, равными между собой. Такой фигурой может быть только квадрат.

Стороны квадрата равны, значит нас интересует одно значение. Площадь квадрата это значение стороны, возведенное в квадрат.

$а^2=S$

$а^2=25$

$а=5$

Заключение

Что мы узнали?

Мы узнали, как найти длины прямоугольника. Рассмотрели различные типовые ситуации и научились решать задачи, связанные с нахождением длин прямоугольника.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка статьи

4.4

Средняя оценка: 4.4

Всего получено оценок: 202.


А какая ваша оценка?

Сторона прямоугольника через диагональ и известную сторону.

Где d — диагональ,b — сторона.

Сторона прямоугольника через диагональ и угол между ними.

Где d — диагональ,α — угол между диагональю и искомой стороной.

Сторона прямоугольника через диагональ и противоположный угол.

Где d — диагональ,α — угол между диагональю и другой стороной.

Сторона прямоугольника через площадь и другую известную сторону.

Где S — площадь, b— известная сторона.

Сторона прямоугольника через периметр и известную сторону.

Где P — периметр, b — известная сторона.

Сторона прямоугольника через диагонали и угол между ними.

Где d — диагональ, α — угол между диагоналями.

прямоугольник

  • Прямоугольник  — это четырехугольник у которого противоположные стороны равны и параллельны AB = CD и  BC = DA. 
  • Стороны прямоугольника являются его высотами.
  • Между прилегающими сторонами угол всегда 90°.

Как найти длину стороны прямоугольника?

Сторона прямоугольника может быть легко найдена с помощью нашего онлайн калькулятора. Так же Вы можете воспользоваться формулами ниже для самостоятельного расчета.

Сторона прямоугольника через диагональ и известную сторону.

a = d2b2

Сторона прямоугольника через диагональ и угол между ними.

a = d·cos(α)

Сторона прямоугольника через диагональ и противоположный угол

a = d·sin(α)

Сторона прямоугольника через площадь и другую известную сторону.

a =

S

b

Сторона прямоугольника через периметр и известную сторону.

a =

P — 2b

2

Сторона прямоугольника через диагонали и угол между ними.

a = d·sin(0.5·α)

Периметр любого прямоугольника составляет 2а+2с. То есть сумме удвоенных произведений противоположных сторон. Кроме того, по свойствам прямоугольника известно, что у него противоположные стороны попарно равны. То есть а=а, с=с. Отсюда имеем: 2а, 2с.

По условию задачи, 2а=1/5*400. то есть 2а=80.

Подставляем 2а в формулу периметра прямоугольника: 2а+2с. Получаем 80+2с=200. Отсюда находим с: с=(200-80):2. с=60. Вот мы нашли одну сторону прямоугольника (с).

Теперь находим сторону а. При этом снова используем формулу периметра прямоугольника, подставив туда найденное значение с. Получаем:

2а+2с=200

2а+120=200

2а=200-120

2а=80

а=40

Вот мы нашли вторую сторону (а).

Итак, стороны прямоугольника равны: а=40, с=60.

Проверка:

Находим периметр, имея заданные стороны (а и с)

Р=2а+2с. Подставляем известные нам а и с. Получаем:

Р=2*40+2*60

Р=80+120

Р=200

Итак, у нас периметр получился равным 200 см., что соответсвует условиям задачи. Значит, найденные значения а и с у нас правильные. а=40, с=60

Четырехугольник, у которого все углы прямые, противоположные стороны равны и параллельны друг другу, называется прямоугольником. Стороной прямоугольника является отрезок, соединяющий две вершины фигуры. Длинная сторона считается длиной, короткая сторона — шириной прямоугольника, прилегающие стороны перпендикулярны, они являются его высотами.

Расчет длины стороны прямоугольника через диагональ и сторону
Отрезок, соединяющий 2 противолежащие вершины прямоугольника, является его диагональю. В прямоугольнике две диагонали одинаковой длины. Каждая из них делит прямоугольник на два прямоугольных треугольника, гипотенузой которых является диагональ, а катетами — стороны прямоугольника. Соответственно, квадрат диагонали можно вычислить через теорему Пифагора: d2 = a2 + b2, а сумма квадратов диагоналей прямоугольника равна сумме квадратов его сторон:

2d2 = 2a2 + 2b2

где d — диагональ, а, b — стороны прямоугольника.
Если дана диагональ прямоугольника и одна из его сторон, находим длину другой стороны, как корень из разности: квадрат диагонали минус квадрат известной стороны:

a = √d2 — b2

b = √d2 — a2

где d — диагональ, а, b — стороны прямоугольника.

Расчет стороны прямоугольника через периметр и сорону
Периметр прямоугольника равняется сумме всех его сторон. Если известны длина (а) и ширина (b) прямоугольника, его периметр (Р) будет равен удвоенной сумме сторон, т.к. его противоположные стороны равны:

Р = 2a + 2b = 2 (а + b)

Если известны периметр и одна из сторон прямоугольника, другую находим по формуле:

a = (P — 2b) / 2

b = (P — 2a) / 2

Р — периметр, a — длина, b — ширина прямоугольника
Т.е. сторона прямоугольника равняется половине разности между периметром и удвоенной другой стороной.

Расчет стороны прямоугольника через площадь и сторону
Чтобы рассчитать площадь прямоугольника (S), необходимо его длину а умножить на ширину b:

S = аb

Если известна площадь прямоугольника и одна из его сторон, длину другой находим путем деления площади на длину известной стороны:

a = S / b

b = S / a

где S — площадь прямоугольника, a, b — его стороны.

прямоугольник.png

Пример:

измеряя с помощью линейки длины сторон прямоугольника, получим (2) см и (4) см. Противолежащие им стороны имеют такую же длину — (2) см и (4) см.

Найдём сумму длин всех сторон этого прямоугольника.

Для этого сложим все эти длины.

Получим:

(2) см  (+)  (4) см  (+)  (2) см  (+)  (4) см (=)  (12) см.

Периметр — это сумма длин всех сторон фигуры.

Значит,

складывая длины всех сторон прямоугольника, получаем периметр прямоугольника.

Периметр обозначается заглавной латинской буквой (Р).

Итак,

периметр прямоугольника (Р = 12) см.

Найдём периметр треугольника.

трекголь 1.png
Сначала измерим стороны треугольника.

Длины сторон треугольника равны (4) см, (3) см, (6) см.

Значит,

сумма длин всех сторон треугольника, т. е. периметр треугольника

равен:

(Р)  (=)  (3) см (+)  (4) см (+)  (6) см (=)  (13) см.

Дан квадрат, длина стороны которого равна (4) см.

квадрат.png

У квадрата все стороны равны.

Периметр квадрата равен сумме длин всех сторон квадрата.

Получим:

(Р)  (=)  (4) см (+)  (4) см (+)  (4) см (+)  (4) см (=)  (16) см.

Если у треугольника все стороны равны, такой треугольник называется равносторонний.

равност.png

Для определения периметра данного треугольника найдём сумму длин всех его сторон.

Получим:

(Р)  (=)  (5) см (+)  (5) см (+)  (5) см (=)  (15) см.

Источники:

Рис. 1. Прямоугольник. © ЯКласс

Рис. 2. Треугольник. © ЯКласс

Рис. 3. Квадрат. © ЯКласс

Рис. 4. Равносторонний треугольник. © ЯКласс

Понравилась статья? Поделить с друзьями:
  • Как найти школьную страницу
  • Пробили чек на большую сумму как исправить
  • Как найти дом в рассрочку
  • Как найти api key shodan
  • Как найти выключенный андроид без симки