Как найти одз тригонометрические уравнения

Тригонометрические уравнения

  • Замена переменной и сведение к квадратному уравнению

  • Разложение на множители

  • Однородные уравнения

  • Введение дополнительного угла

  • Универсальная подстановка

  • Учет ОДЗ уравнения

  • Метод оценки

  • Тригонометрические уравнения повышенной сложности.
    Приемы решения

В данной статье мы расскажем об основных типах тригонометрических уравнений и методах их решения. Тригонометрические уравнения чаще всего встречаются в задаче 12 ЕГЭ.

В вариантах ЕГЭ задача, где нужно решить уравнение, состоит из двух пунктов. Первый пункт – решение самого уравнения. Второй – нахождение его корней на некотором отрезке.

Некоторые из методов (например, замена переменной или разложение на множители) являются универсальными, то есть применяются и в других разделах математики. Другие являются специфическими именно для тригонометрии.

Необходимых формул по тригонометрии не так уж и много. Учите наизусть!
Тригонометрические формулы.

Любой метод решения тригонометрических уравнений состоит в том, чтобы привести их к простейшим, то есть к уравнениям вида sin x = a, cos x = a, tg x = a, ctg x = a.

Если вы не помните, как решать простейшие тригонометрические уравнения, — читайте материал на нашем сайте: Простейшие тригонометрические уравнения, часть 1.

О том, что такое арксинус, арккосинус, арктангенс и арккотангенс, — еще одна статья на нашем сайте: Простейшие тригонометрические уравнения,часть 2.

Теперь — сами методы. Теория и примеры решения задач.

к оглавлению ▴

Замена переменной и сведение к квадратному уравнению

Это универсальный способ. Применяется в любых уравнениях — степенных, показательных, тригонометрических,  логарифмических, каких угодно. Замена не всегда видна сразу, и уравнение нужно сначала преобразовать.

1. а) Решите уравнение: 2cos^{2}x+5sinx=5.
б) Найдите корни уравнения, принадлежащие отрезку displaystyle left [ -frac{pi }{2}; 2pi right ].

Решение:

а) Рассмотрим уравнение 2cos^{2}x+5sinx=5.

Преобразуем его, применив основное тригонометрическое тождество:

2left ( 1-sin^{2} xright )+5sinx=5;

2sin^{2}x-5sinx+3=0.

Заменяя sin x на t, приходим к квадратному уравнению:

2t^{2}-5t+3=0.

Решая его, получим:

displaystyle t_{1}=frac{3}{2}, t_{2}=1.

Теперь вспоминаем, что мы обозначили за t. Первый корень приводит нас к уравнению displaystyle sinx=frac{3}{2}.
Оно не имеет решений, поскольку -1leq sinxleq 1.

Второй корень даёт простейшее уравнение sinx=1.

Решаем его: displaystyle x=frac{pi }{2}+2pi n, nin Z.

б) Найдем корни уравнения на отрезке displaystyle left [ -frac{pi }{2}; 2pi right ] с помощью двойного неравенства.

displaystyle -frac{pi }{2}leq frac{pi }{2}+2pi nleq 2pi .

Разделим обе части неравенства на pi :

displaystyle -frac{1}{2}leq frac{1}{2}+2nleq 2.

Вычтем displaystyle frac{1}{2} из обеих частей неравенства:

-1leq 2nleq 1,5.

Разделим на 2 обе части неравенства:

-0,5leq nleq 0,75.

Единственное целое решение – это n=0. Тогда displaystyle x=frac{pi }{2} — это единственный корень, который принадлежит отрезку displaystyle left [ -frac{pi }{2}; 2pi right ].

Ответ: displaystyle frac{pi }{2}.

2. а) Решите уравнение: cos2x-5sqrt{2}cosx-5=0.
б) Укажите корни этого уравнения, принадлежащие отрезку displaystyle left [ -3pi ; -frac{3pi }{2} right ].

Решение:

а) cos2x-5sqrt{2}cosx-5=0.

Выразим косинус двойного угла по формуле cos2x=2cos^{2}x-1.

Получим:

2cos^{2}x-1-5sqrt{2}cosx-5=0;

2cos^{2}x-5sqrt{2}cosx-6 =0.

Заменяя cos⁡x на t, приходим к квадратному уравнению:

2t^{2}-5sqrt{2}t-6=0;

D=50+48=98.

displaystyle t_{1}=-frac{sqrt{2}}{2}; t_{2}=3sqrt{2}.

1) displaystyle cosx=-frac{sqrt{2}}{2}; x=pm frac{3pi }{4}+2pi n, nin Z;

2) cosx=3sqrt{2}; нет решений, т. к. 3sqrt{2}textgreater 1.

Получим: displaystyle x=pm frac{3pi }{4}+2pi n, nin Z.

б) Отметим отрезок displaystyle left [ -3pi ; -frac{3pi }{2} right ] и найденные серии решений на единичной окружности.

Видим, что данному отрезку принадлежит только точка displaystyle x=-2pi -frac{3pi }{4}=-frac{11pi }{4}.

Ответ: а) displaystyle x=pm frac{3pi }{4}+2pi n, nin Z.
б) displaystyle -frac{11pi }{4}.

3. а) Решите уравнение: displaystyle 8sin^{2}x-2sqrt{3}cosleft ( frac{pi }{2}-x right )-9=0.
б) Найдите все корни этого уравнения, принадлежащие отрезку displaystyle left [ -frac{5pi }{2}; -pi right ].

Решение:

а)  Чтобы упростить уравнение displaystyle 8sin^{2}x-2sqrt{3}cosleft ( frac{pi }{2}-x right )-9=0, применяем формулу приведения.

Так как displaystyle cosleft ( frac{pi }{2}-x right )=sinx, получим:

displaystyle 8sin^{2}x-2sqrt{3}sinx-9=0.

Сделаем замену:  sinx=t.  Получим квадратное уравнение:

8t^{2}-2sqrt{3}t-9=0;

displaystyle frac{D}{4}=3+72=75.

displaystyle t_1={frac{3sqrt{3}}{4}}; t_{2}=-frac{sqrt{3}}{2}.

Сделаем обратную замену.

1) displaystyle sinx={frac{3sqrt{3}}{4}} — нет решений, т. к.  displaystyle {frac{3sqrt{3}}{4}}textgreater 1.

2) displaystyle sinx=-frac{sqrt{3}}{2}Leftrightarrow left[begin{array}{c}displaystyle x=-frac{pi }{3}+2pi k, kin Z\displaystyle x=-frac{2pi }{3}+2pi k\end{array}right. .

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ -frac{5pi }{2}; -pi right ], с помощью двойного неравенства.

Для серии решений displaystyle x=-frac{pi }{3}+2pi k, kin Z получим:

displaystyle -frac{5pi }{2}leq -frac{pi }{3}+2pi kleq -pi;

displaystyle -frac{13}{12}leq kleq -frac{2}{6}.

Так как kin Z, то displaystyle k=-1; x=-frac{7pi }{3}.

Для серии решений displaystyle x=-frac{2pi }{3}+2pi k получим:

displaystyle -frac{5pi }{2}leq -frac{2pi }{3}+2pi kleq -pi; отсюда

displaystyle -frac{11}{12}leq kleq -frac{1}{6}.

У этого неравенства нет целых решенией, и значит, из второй серии ни одна точка в указанный отрезок не входит.

Ответ: а) displaystyle -frac{pi }{3}+2pi k; -frac{2pi }{3}+2pi k, kin Z.
б) displaystyle -frac{7pi }{3}.

к оглавлению ▴

Разложение на множители

Во многих случаях уравнение удаётся представить в таком виде, что в левой части стоит произведение двух или нескольких множителей, а в правой части — ноль. Произведение двух или нескольких множителей равно нулю тогда и только тогда, когда хотя бы один из них равен нулю. Сложное уравнение, таким образом, распадается в совокупность более простых.

4. а) Решите уравнение: sin2x=cosx.
б) Найдите все корни уравнения на отрезке [-pi; pi ].

Решение:

а) Применяем формулу синуса двойного угла:

2sinxcosx=cosx.

Ни в коем случае не сокращайте на косинус! Ведь может случиться, что cos x обратится в нуль, и мы потеряем целую серию решений. Переносим всё в одну часть, и общий множитель выносим за скобки:

2sinxcosx-cosx=0;

cosxleft ( 2sinx-1 right )=0.

Полученное уравнение равносильно совокупности двух уравнений: cosx = 0 и 2sinx — 1 = 0.

Получим:

left[begin{array}{c}cosx=0\displaystyle sinx=frac{1}{2}\end{array}right. Leftrightarrow left[begin{array}{c}displaystyle x=frac{pi }{2}+2pi n, nin Z\\displaystyle x=frac{pi }{6}+2pi n\\displaystyle x=frac{5pi }{6}+2pi n\end{array}right. .

Все эти три серии решений являются ответом в части (а).

б) Отметим отрезок [-pi; pi ]. и найденные серии решений на единичной окружности.

Видим, что данному отрезку принадлежат точки displaystyle x_{1}=frac{pi }{6}; x_{2}=frac{5pi }{6}.

Ответ: а) displaystyle frac{pi }{6}+2pi n; frac{pi }{2}+2pi n; frac{5pi }{6}+2pi n, nin Z.
б) displaystyle frac{pi }{6}; frac{5pi }{6}.

5. а) Решите уравнение: sin3x+sin7x=2sin5x.
б) Найдите все корни уравнения на отрезке displaystyle left [ -frac{pi }{2}; pi right ].

Решение:

Применим формулу суммы синусов:

2sin5xcos2x=2sin5x.

Дальше действуем так же, как и в предыдущей задаче:

2sin5xcos2x-2sin5x=0;

2sin5xleft (cos2x-1 right )=0.

Решаем уравнение sin5x=0:

displaystyle x=frac{pi n}{5}, nin Z. (1)

Решаем уравнение cos2x-1=0:

x=pi n, nin Z (2)

Ну что, перечисляем обе серии (1) и (2) в ответе через запятую? Нет! Серия (2) является в данном случае частью серии (1). Действительно, если в формуле (1) число n кратно 5, то мы получаем все решения серии (2).

Поэтому ответ в пункте (а): displaystyle x=frac{pi n}{5}, nin Z.

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ -frac{pi }{2}; pi right ], с помощью двойного неравенства:

displaystyle -frac{pi }{2}leq frac{pi n}{5}leq pi;

displaystyle -frac{5}{2}leq {n}leq 5.

Этот промежуток содержит 8 целых чисел: -2; -1; 0; 1; 2; 3; 4; 5.

Для каждого из этих n найдем x. Получим 8 решений на данном промежутке:

displaystyle -frac{2pi }{5}; -frac{pi }{5}; 0; frac{pi }{5}; frac{2pi }{5}; frac{3pi }{5}; frac{4pi }{5}; pi .

Ответ: а) displaystyle frac{pi n}{5}, nin Z.
б) displaystyle -frac{2pi }{5}; -frac{pi }{5}; 0; frac{pi }{5}; frac{2pi }{5}; frac{3pi }{5}; frac{4pi }{5}; pi .

6. В следующей задаче также применяется метод разложения на множители. Но это заметно не сразу.

а) Решите уравнение:sin^{2}2x+sin^{2}3x=1.
б) Найдите все корни уравнения на отрезке displaystyle left [ 0; frac{pi }{2} right ].

Решение:

Используем формулу понижения степени: displaystyle sin^{2}alpha =frac{1-cos2alpha }{2}.

Получаем:

displaystyle frac{1-cos4x}{2}+frac{1-cos6x}{2}=1;

cos4x+cos6x=0.

Применяем формулу суммы косинусов: displaystyle cosalpha +cosbeta =2cosfrac{alpha +beta }{2}cdot cosfrac{alpha -beta }{2}.

Получаем: 2cos5xcdot cosx=0.

Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Уравнение равносильно совокупности:

left[begin{array}{c}cos5x=0\cosx=0\end{array}right.Leftrightarrow left[begin{array}{c}displaystyle 5x=frac{pi }{2}+pi n, nin Z\\displaystyle x=frac{pi }{2}+pi k, kin Z\end{array}right. Leftrightarrow left[begin{array}{c}displaystyle x=frac{pi }{10}+frac{pi n}{5}, nin Z\\displaystyle x=frac{pi }{2}+pi k, kin Z\end{array}right. .

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ 0; frac{pi }{2} right ], с помощью двойного неравенства:

1) displaystyle 0leq frac{pi }{10}+frac{pi n}{5}leq frac{pi }{2}.

Решив неравенство, получим: -0,5leq nleq 2,5.

Так как n ∈ Z, получим для n целые значения: 0, 1, 2.

Им соответствуют решения: displaystyle frac{pi }{10}; frac{3pi }{10}; frac{pi }{2}.

2) Из серии решений displaystyle frac{pi }{2}+pi k, kin Z на указанном отрезке лежит только корень displaystyle x=frac{pi }{2}. Но он уже входит в первую серию решений.

Можно также заметить, что вся вторая серия решений является подмножеством первой.

Ответ: а) displaystyle frac{pi }{10}+frac{pi n}{5}, nin Z.
б) displaystyle frac{pi }{10}; frac{3pi }{10}; frac{pi }{2}.

к оглавлению ▴

Однородные уравнения

7. а) Решите уравнение: sin^{2}x+2sinxcosx-3cos^{2}x=0.
б) Найдите все корни уравнения на отрезке displaystyle left [ -frac{3pi }{2}; frac{pi }{2} right ].

Решение:

Такое уравнение называется однородным.

Степень каждого слагаемого в левой части равна двум. Точно так же, как в обычном многочлене a^{2}+2ab-3b^{2}, степень каждого слагаемого равна двум. Мы помним, что степень одночлена — это сумма степеней входящих в него сомножителей.

Для однородных уравнений существует стандартный приём решения — деление обеих его частей на cos^{2}x.

Возможность этого деления, однако, должна быть обоснована: а что, если косинус равен нулю?

Следующий абзац предлагаем выучить наизусть и всегда прописывать его при решении однородных уравнений.

Предположим, что cosx = 0. Тогда в силу уравнения и sinx = 0, что противоречит основному тригонометрическому тождеству. Следовательно, любое решение данного уравнения удовлетворяет условию cosx neq 0, и мы можем поделить обе его части на cos^{2}x.

В результате деления приходим к равносильному квадратному уравнению относительно тангенса: tg^{2}x+2tgx-3=0.

Сделаем замену: tgx=t, получим:

left[begin{array}{c}tgx=-3 \tgx=1\end{array}right. Leftrightarrow left[begin{array}{c}x=-arctg3+pi k, kin Z \displaystyle x=frac{pi }{4}+pi k, kin Z\end{array}right..

б) Отметим отрезок displaystyle left [ -frac{3pi }{2}; frac{pi }{2} right ] и найденные серии решений на единичной окружности.

О том, как отметить на единичной окружности точки из первой серии решений, то есть арктангенс минус трех, читайте здесь: Простейшие тригонометрические уравнения, часть 2.

Видим, что данному отрезку принадлежат  точки:

x_{1}=-pi -arctg3;

displaystyle x_{2}=-pi +frac{pi }{4}=-frac{3pi }{4};

x_{3}= -arctg3;

displaystyle x_{4}=frac{pi }{4}.

Ответ: а) displaystyle -arctg3+pi k; frac{pi }{4}+pi k, kin Z.
б) -pi -arctg3; displaystyle -frac{3pi }{4}; -arctg3; frac{pi }{4}.

8. а) Решите уравнение: 10sin^{2}x+5sinxcosx+cos^{2}x=3.
б) Найдите все корни уравнения на отрезке displaystyle left [ 0; frac{pi }{2} right ].

Если бы в правой части стоял нуль, уравнение было бы однородным. Мы поправим ситуацию изящным приёмом: заменим число 3 на выражение 3(sin^{2}x+cos^{2}x):

10sin^{2}x+5sinxcosx+cos^{2}x=3(sin^{2}x+cos^{2}x);

7sin^{2}x+5sinxcosx-2cos^{2}x=0.

Получили однородное уравнение второй степени.

Так как не существует такой точки на единичной окружности, в которой одновременно синус и косинус равнялись бы нулю, мы разделим обе части уравнения на cos^{2}xneq 0.

Получим: 7tg^{2}x+5tgx-2=0.

Выполним замену: tgx = y, получим:

7y^{2}x+5y-2=0.

D=25+56=81;

displaystyle y_{1,2}=frac{-5pm 9}{14};left[begin{array}{c}y=-1\displaystyle y=frac{2}{7}\end{array}right. .

Обратная замена: left[begin{array}{c}tgx=-1\displaystyle tgx=frac{2}{7}\end{array}right. Leftrightarrow left[begin{array}{c}displaystyle x=-frac{pi }{4}+pi k, kin Z\displaystyle x=arctgfrac{2}{7}+pi k, kin Z\end{array}right. .

Ответом в пункте (а) являются  две серии решений.

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ 0; frac{pi }{2} right ], с помощью единичной окружности. Для этого отметим на ней данный отрезок и  найденные серии решений.

Видим, что данному отрезку принадлежит только точка displaystyle x_1=arctgfrac{2}{7}.

Ответ: а) displaystyle  -frac{pi }{4}+pi k; arctgfrac{2}{7}+pi k, kin Z.
б) displaystyle arctgfrac{2}{7}.

к оглавлению ▴

Введение дополнительного угла

Этот метод применяется для уравнений вида acosx + bsinx=c. Он присутствует в школьных учебниках. Правда, в них рассматриваются только частные случаи — когда числа a и b являются значениями синуса и косинуса углов в 30°, 45° или 60°.

9. а) Решим уравнение: sqrt{3}sinx+cosx=2.
б) Найдите все корни уравнения на отрезке [0; 3pi ].

Решение:

Делим обе части на 2:

displaystyle frac{sqrt{3}}{2}sinx+frac{1}{2}cosx=1.

Замечаем, что displaystyle frac{sqrt{3}}{2}=cosfrac{pi }{6}; frac{1}{2}=sinfrac{pi }{6}:

displaystyle cosfrac{pi }{6}sinx+sinfrac{pi }{6}cosx=1.

В левой части получили синус суммы:

displaystyle sinleft ( x+frac{pi }{6} right )=1, отсюда displaystyle x+frac{pi }{6}=frac{pi }{2}; x=frac{pi }{3}+2pi n, nin Z.

б) Отметим на единичной окружности отрезок [0; 3pi ]. и найденные серии решений.

Обратите внимание, что в этой задаче отрезок больше, чем полный круг. Как нам поступить? Один из способов – нарисовать рядом две окружности.


Видим, что данному отрезку принадлежат точки: displaystyle x_{1}=frac{pi }{3}; x_{2}=2pi +frac{pi }{3}=frac{7pi }{3}.

Ответ: а) displaystyle frac{pi }{3}+2pi n, nin Z.
б) displaystyle frac{pi }{3}; frac{7pi }{3}.

Другой пример.

10. а) Решите уравнение: cosx+sinx=1.
б) Найдите все корни уравнения на отрезке [0; pi ].

Решение:

Делим обе части на sqrt{2}:

displaystyle frac{1}{sqrt{2}}cosx+frac{1}{sqrt{2}}sinx=frac{1}{sqrt{2}}.

Сделаем теперь для разнообразия в левой части косинус разности:

displaystyle cosfrac{pi }{4}cosx+sinfrac{pi }{4}sinx=frac{1}{sqrt{2}};

displaystyle cosleft ( x-frac{pi }{4} right )=frac{1}{sqrt{2}};

displaystyle x-frac{pi }{4}=pm frac{pi }{4}+2pi n;

displaystyle x_{1}=frac{pi }{2}+2pi n; x_{2}=2pi n, nin Z.

б) Найдем корни уравнения, принадлежащие отрезку [0; pi ] с помощью единичной окружности. Отметим на ней данный отрезок и найденные серии решений.

Видим, что данному отрезку принадлежат  точки 0 и displaystyle frac{pi }{2}.

Ответ: а) displaystyle frac{pi }{2}+2pi n; 2pi n, nin Z.
б) 0; displaystyle frac{pi }{2}.

Покажем, как применяется метод введения дополнительного угла в общем случае.

Рассмотрим  уравнение acosx+bsinx=c.

Делим обе части на sqrt{a^{2}+b^{2}}:

displaystyle frac{a}{sqrt{a^{2}+b^{2}}}cosx+frac{b}{sqrt{a^{2}+b^{2}}}sinx=frac{c}{sqrt{a^{2}+b^{2}}}. (4)

Для чего мы выполнили это деление? Всё дело в получившихся коэффициентах при косинусе и синусе. Легко видеть, что сумма их квадратов равна единице:

displaystyle left ( frac{a}{sqrt{a^{2}+b^{2}}} right )^{2}+left ( frac{b}{sqrt{a^{2}+b^{2}}} right )^{2}=1.

Это означает, что данные коэффициенты сами являются косинусом и синусом некоторого угла :

displaystyle frac{a}{sqrt{a^{2}+b^{2}}}=cosalpha , frac{b}{sqrt{a^{2}+b^{2}}}=sinalpha.

Соотношение (4) тогда приобретает вид:

displaystyle cosalpha cosx+sinalpha sinx=frac{c}{sqrt{a^{2}+b^{2}}}

или

displaystyle cos(x-alpha )=frac{c}{sqrt{a^{2}+b^{2}}}.

Исходное уравнение сведено к простейшему. Теперь понятно, почему рассматриваемый метод называется введением дополнительного угла. Этим дополнительным углом как раз и является угол alpha .

к оглавлению ▴

Универсальная подстановка

Запомним две важные формулы:

Их ценность в том, что они позволяют выразить синус и косинус через одну и ту же функцию — тангенс половинного угла. Именно поэтому они получили название универсальной тригонометрической подстановки. 

Единственная неприятность, о которой не надо забывать: правые части этих формул не определены при . Поэтому если применение универсальной подстановки приводит к сужению ОДЗ, то данную серию нужно проверить непосредственно.

11. а) Решите уравнение: 
б) Найдите все корни уравнения на отрезке [0; pi ].

Решение:

Выражаем , используя универсальную тригонометрическую подстановку:

Делаем замену  :

Получаем кубическое уравнение:

Оно имеет единственный корень .

Стало быть, , откуда .

Сужения ОДЗ в данном случае не было, так как уравнение с самого начала содержало .

б) Найдем корни уравнения, принадлежащие отрезку [0; pi ],   с помощью двойного неравенства:

displaystyle 0leq frac{pi }{4}+pi nleq pi , nin Z;

displaystyle -frac{1}{4}leq nleq frac{3}{4}.

Получим, что displaystyle n=0; x=frac{pi }{4}.

Ответ: а) displaystyle frac{pi }{4}+pi n, nin Z.
б) displaystyle frac{pi }{4}.

Универсальная тригонометрическая подстановка может также пригодиться при решении задач по планиметрии из второй части ЕГЭ. Поэтому формулы лучше выучить.

к оглавлению ▴

Учет ОДЗ уравнения

12. а) Рассмотрим уравнение: 
б) Найдите все корни уравнения на отрезке displaystyle left [ -frac{pi }{2}; frac{3pi }{2} right ].

Решение:

Перепишем уравнение в виде, пригодном для возведения в квадрат:

Тогда наше уравнение равносильно системе:

Решаем уравнение системы:

,

,

Второе уравнение данной совокупности не имеет решений, а первое даёт две серии:

Теперь нужно произвести отбор решений в соответствии с неравенством . Серия  не удовлетворяет этому неравенству, а серия удовлетворяет ему. Следовательно, решением исходного уравнения служит только серия .

Ответ в пункте (а):  .

б) Найдем корни уравнения, принадлежащие отрезку displaystyle left [ -frac{pi }{2}; frac{3pi }{2} right ], с помощью двойного неравенства:

displaystyle frac{-pi }{2}leq -frac{pi }{3}+2pi nleq frac{3pi }{2};

displaystyle -frac{1}{12}leq nleq frac{11}{12}.

Неравенство имеет единственное целое решение n=0.

Тогда displaystyle x=-frac{pi }{3}.

Ответ: а) displaystyle -frac{pi }{3}+2pi n, nin Z.
б) displaystyle -frac{pi }{3}.

Мы рассмотрели основные методы решения тригонометрических уравнений, которые применяются в задаче 12 ЕГЭ.

Где же еще нам могут встретиться тригонометрические уравнения? Конечно, в задачах с параметрами. Или на олимпиадах по математике. Сейчас мы увидим еще несколько полезных приемов решения.

к оглавлению ▴

Метод оценки

В некоторых уравнениях на помощь приходят оценки .

13. Рассмотрим уравнение: 

Так как оба синуса не превосходят единицы, данное равенство может быть выполнено лишь в том случае, когда они равны единице одновременно:

Таким образом, должны одновременно выполняться следующие равенства:

Обратите внимание, что сейчас речь идёт о пересечении множества решений (а не об их объединении, как это было в случае разложения на множители). Нам ещё предстоит понять, какие значения x удовлетворяют обоим равенствам. Имеем:

Умножаем обе части на 90 и сокращаем на π:

;

;

Правая часть, как видим, должна делиться на 5. Число n при делении на 5 может давать остатки от 0 до 4; иначе говоря, число n может иметь один из следующих пяти видов: 5n, 5m + 1, 5m + 2, 5m + 3 и 5m + 4, где. Для того, чтобы 9n+ 1 делилось на 5, годится лишь n = 5m + 1.

Искать k, в принципе, уже не нужно. Сразу находим x:

Ответ:

14. Рассмотрим уравнение: 

Ясно, что данное равенство может выполняться лишь в двух случаях: когда оба синуса одновременно равны 1 или −1. Действуя так, мы должны были бы поочерёдно рассмотреть две системы уравнений.

Лучше поступить по-другому: умножим обе части на 2 и преобразуем левую часть в разность косинусов:

;

Тем самым мы сокращаем работу вдвое, получая лишь одну систему:

Имеем:

Ищем пересечение:

Умножаем на 21 и сокращаем на π:

Данное равенство невозможно, так как в левой части стоит чётное число, а в правой — нечётное.

Ответ: решений нет.

Это был тренировочный пример. А в задачах ЕГЭ решения есть всегда.

Посмотрите, как применяется метод оценки в задачах с параметрами.

15. Страшное с виду уравнение  также решается методом оценок.

В самом деле, из неравенства  следует, что .

Следовательно, , причём равенство возможно в том и только в том случае, когда

left{begin{matrix}sin^{5}x=sin^{2}x\cos^{8}x=cos^{2}x\end{matrix}right. .

Остаётся решить полученную систему. Это не сложно.

Перенесем в левую часть и вынесем общий множитель за скобки ,  получим:

left{begin{matrix}sin^{2}x(sin^{3}x-1)=0 \cos^{2}x(cos^{6}x-1)=0 \end{matrix}right. .

Произведение равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл.

Каждое уравнение равносильно совокупности:

left{begin{matrix}left[begin{array}{c}sinx=0\sinx=1\end{array}right. \left[begin{array}{c}cosx=0\cosx=1\cosx=-1\end{array}right. \end{matrix}right. .

Это значит, что синус угла х равен нулю, а его косинус равен 0, 1 или -1.

Или синус угла х равен 1, а косинус этого угла равен 0, 1 или -1.

Такие углы легко найти на тригонометрическом круге. Найденные серии решений запишем в ответ.

Ответ: displaystyle 2pi n; frac{pi }{2}+2pi n; pi +2pi n, nin Z.

к оглавлению ▴

Тригонометрические уравнения повышенной сложности.
Приемы решения

16. Рассмотрим такое уравнение: 

Сделаем замену .

Как выразить  через t? Имеем:

,

откуда . Получаем:

t^{2}-1=t+1;

t^{2}-t-2=0;

t_{1}=-1; t_{2}=2.

left[begin{array}{c}cosx+sinx=-1\cosx+sinx=2\end{array}right. .

Начнем со второго уравнения.

Так как -1leq sinxleq 1 и  -1leq cosxleq 1, то их сумма может быть равна 2, только оба слагаемых равны 1. Но на единичной окружности не существует точки, в которой одновременно синус и косинус равен единице. Значит, второе уравнение корней не имеет.

Решим первое уравнение методом введения дополнительного угла.

Для этого разделим обе части уравнения на sqrt{2} и получим:

displaystyle cosx+sinx=-1Leftrightarrow frac{1}{sqrt{2}}cosx+frac{1}{sqrt{2}}sinx=-frac{1}{sqrt{2}}Leftrightarrow

displaystyle Leftrightarrow cosxcdot cosfrac{pi }{4}+sinxcdot sinfrac{pi }{4}=-frac{1}{sqrt{2}}Leftrightarrow cosleft ( x+frac{pi }{4} right )=-frac{1}{sqrt{2}}Leftrightarrow

displaystyle Leftrightarrow x+frac{pi }{4}=pm frac{3pi }{4}+2pi k, kin Z;

left[begin{array}{c}displaystyle x=frac{pi }{2}+2pi k, kin Z\x=-pi +2pi k, kin Z\end{array}right. .

Ответ: displaystyle frac{pi }{2}+2pi k; -pi +2pi k, kin Z.

17. Помним формулы косинуса и синуса тройного угла:

,

Вот, например, уравнение:

Оно сводится к уравнению относительно :

,

,

Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю, а другой при этом имеет смысл. Уравнение равносильно совокупности:

left[begin{array}{c}sinx=0\4sin^{2}x+4sinx-3=0\end{array}right. .

Решим второе уравнение с помощью замены sinx = t.

Получим: displaystyle 4t^{2}+4t-3=0; D=16+48=64; t=-frac{3}{2} или  displaystyle t=frac{1}{2}.

Обратная замена:

left[begin{array}{c}displaystyle sinx=-frac{3}{2}\\displaystyle sinx=frac{1}{2}\end{array}right. Leftrightarrow left[begin{array}{c}xin O \\displaystyle x=frac{pi }{6}+2pi n, nin Z\\displaystyle x=frac{5pi }{6}+2pi n, nin Z\end{array}right. .

А решением первого уравнения sinx = 0 являются числа вида x=pi k, kin Z.

Ответ: displaystyle pi k, kin Z; frac{pi }{6}+2pi n; frac{5pi }{6}+2pi n, nin Z.

Интересно, что формулы синуса и косинуса тройного угла также могут пригодиться вам в решении задач по планиметрии из второй части ЕГЭ.

18. Как бороться с суммой четвёртых степеней синуса и косинуса?

Рассмотрим уравнение: 

Выделяем полный квадрат!

;

;

;

;

;

;

19. А как быть с суммой шестых степеней?

Рассмотрим такое уравнение: 

Раскладываем левую часть на множители как сумму кубов: .

Получим:

;

С суммой четвёртых степеней вы уже умеете обращаться.

Мы рассмотрели основные методы решения тригонометрических уравнений. Знать их нужно обязательно, это — необходимая база.

В более сложных и нестандартных задачах нужно ещё догадаться, как использовать те или иные методы. Это приходит только с опытом. Именно этому мы и учим на наших занятиях.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Тригонометрические уравнения» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Поздравляю вас, дорогие читатели!

Наконец-то мы дошли до решения тригонометрических уравнений. Сейчас мы решим несколько уравнений, которые похожи на задания ЕГЭ. Конечно, в реальном экзамене, задачи будут немного сложнее, но суть останется та же.

Для начала рассмотрим легкое уравнение (подобные мы уже решали в прошлых уроках, но повторить всегда полезно).

$$(2cos x + 1) (2sin x — sqrt{3}) = 0.$$

Думаю, объяснения, как решать, излишни.

$$2cos x + 1 = 0 text{ или } 2sin x — sqrt{3} =0,$$

$$cos x = -frac{1}{2} text{ или } sin x = frac{sqrt{3}}{2},$$

Решение тригонометрического уравнения

Горизонтальным пунктиром отмечено решение для уравнения с синусом, вертикальным — с косинусом.

Таким образом, итоговое решение можно записать, например, так:

$$left[ begin{array}{l}x= pm frac{2pi}{3},\x = frac{pi}{3}+2pi k. end{array}right.$$

Тригонометрическое уравнение с ОДЗ

$$(1+cos x)left(frac{1}{sin x} — 1right) = 0.$$

Важное отличие в этом примере, что в знаменателе появился синус. Хотя мы немного решали подобные уравнения в предыдущих уроках, стоит остановиться на ОДЗ поподробнее.

ОДЗ

`sin x neq 0 Rightarrow x neq pi k`. Когда мы будем отмечать решение на круге, эту серию корней мы отметим специально проколотыми (открытыми) точками, чтобы показать, что `x` не может принимать такие значения.

Решение

Приведем к общему знаменателю, а затем поочередно приравняем обе скобки к нулю.

$$(1+cos x)left(frac{1-sin x}{sin x}right) = 0,$$

$$1+cos x = 0 text{ или } frac{1-sin x}{sin x} = 0,$$

$$cos x = -1 text{ или } sin x=1.$$

Надеюсь, решение этих уравнений не вызовет затруднений.

Серии корней — решений уравнения — показаны ниже красными точками. ОДЗ отмечена на рисунке синим.

Решение уравнения с ОДЗ

Таким образом, понимаем, что решение уравнения `cos x = -1` не удовлетворяет ОДЗ.
 В ответ пойдет только серия корней `x = frac{pi}{2} + 2pi k`.

Решение квадратного тригонометрического уравнения

Следующий пункт нашей программы — решение квадратного уравнения. Ничего сложного собой не представляет. Главное — увидеть квадратное уравнение и выполнить замену как будет показано ниже.

$$3sin^2 x + sin x =2,$$

$$3sin^2 x + sin x -2=0.$$

Пусть `t= sin x`, тогда получим:

$$3t^2 + t-2=0.$$

$$t_1 = frac{2}{3}, t_2 = -1.$$

Выполним обратную замену.

$$sin x = frac{2}{3} text{ или } sin x = -1.$$

Решение квадратного уравнения на круге

$$left[begin{array}{l}x = arcsin frac{2}{3} + 2pi k, \  x = pi — arcsin frac{2}{3} + 2pi k, \ x = -frac{pi}{2} + 2pi k. end{array} right.$$

Решение квадратного уравнения с тангенсом

Решим следующее уравнение:

$$newcommand{tg}{mathop{mathrm{tg}}}{tg}^2 2x — 6tg 2x +5 =0, $$

Обратим внимание, что аргумент у тангенса равен `2x` и чтобы получить окончательный ответ, нужно будет поделить на `2`. Пусть `t=tg 2x`, тогда

$$t^2 — 6t +5 =0, $$

$$t_1 = 5, t_2 = 1.$$

Обратная замена.

$$tg x = 5, tg x = 1.$$

les5 C1 4

$$left[begin{array}{l}2x = arctan{5}+pi k, \ 2x = frac{pi}{4} + pi k. end{array} right.$$

Теперь поделим обе серии на два, чтобы узнать, чему равен, собственно, `x`.

$$left[begin{array}{l}x = frac{1}{2}arctan{5}+frac{pi k}{2}, \ 2x = frac{pi}{8} + frac{pi k}{2}. end{array} right.$$

Вот мы и получили ответ.

Последнее уравнение (произведение тангенса на синус)

$$tg x cdot sin 2x = 0.$$

ОДЗ

Поскольку тангенс — это дробь, знаменателем которой является косинус, то в ОДЗ получим, что `cos x neq 0 Rightarrow x neq frac{pi}{2}+pi k.`

Решение

$$tg x =0 text{ или } sin 2x = 0.$$

Эти уравнения решаются легко. Получим:

$$x = pi k  text{ или } 2x = pi k,$$

$$x = pi k  text{ или } x = frac{pi k}{2}.$$

Теперь самое интересное: поскольку у нас было ОДЗ, нужно выполнить отбор корней. Отметим полученные серии корней на круге. (Как это сделать, детально показано в приложенном видео.)

Все отмечено на круге. Ура!

Синим отмечено ОДЗ, красным — решения. Видно, что ответ будет `x = pi k`.

На этом пятый урок закончен. Обязательно практикуйтесь в решении уравнений. Одно дело в знать ход решения в общих чертах, другое дело — сориентироваться, при решении конкретной задачи. Постепенно отрабатывайте каждый элемент решения задачи. Сейчас главное — научиться грамотно работать с тригонометрическим кругом, находить с его помощью решения, видеть ОДЗ и правильно делать замены для квадратных уравнений.

Задачи для тренировки

Решите уравнения:

  • `2 cos^2 frac{x}{2} + sqrt{3} cos frac{x}{2} = 0`,
  • `3 {tg}^2 2x + 2tg 2x -1= 0`,
  • `2cos^2 3x — 5cos 3x -3  =0`,
  • `sin^2 4x + sin x — cos^2x =0` (применить основное тригонометрическое тождество),
  • `4sin^2 left(x-frac{pi}{3} right) — 3 =0`.

На этом хватит. Будут вопросы — спрашивайте! Оставляйте лайки, если мой труд оказался полезен :)

 

Если проще: это уравнения, в которых неизвестные (иксы) или выражения с ними находятся внутри синусов, косинусов, тангенсов и котангенсов.

Примеры:

(2sin{⁡x} = sqrt{3})
tg({3x}=-) (frac{1}{sqrt{3}})
(4cos^2⁡x+4sin⁡x-1=0)
(cos⁡4x+3cos⁡2x=1)

Как решать тригонометрические уравнения:

Любое тригонометрическое уравнение нужно стремиться свести к одному из видов:

(sin⁡t=a),      (cos⁡t=a),      tg(t=a),     ctg(t=a)

где (t) – выражение с иксом, (a) – число. Такие тригонометрические уравнения называются простейшими. Их легко решать с помощью числовой окружности (тригонометрического круга) или специальных формул:

(sin ⁡x=a)  (⇔) ( left[ begin{gathered}x=arcsin a+2πn, n∈Z\ x=π-arcsin a+2πl, l∈Zend{gathered}right.)
если (a∈[-1;1])

(cos⁡x=a) (⇔) (x=±arccos⁡a+2πk, k∈Z)
если (a∈[-1;1])

tg⁡(x=a)
(x=)arctg⁡a(+πk, k∈Z)

ctg(x=a)
(x=)arcctg(a+πk, k∈Z)

Инфографику о решении простейших тригонометрических уравнений смотри здесь: (sinx=a), (cosx=a), (tgx=a) и (ctgx=a).

Пример. Решите тригонометрическое уравнение (sin⁡x=-)(frac{1}{2}).
Решение:

sin x=-0,5

Решим уравнение с помощью числовой окружности. Для этого:
1) Построим оси.
2) Построим окружность.
3) На оси синусов (оси (y)) отметим точку (-)(frac{1}{2}).
4) Проведем перпендикуляр к оси синусов через эту точку.
5) Отметим точки пересечения перпендикуляра и окружности.
6)Подпишем значения этих точек: (-)(frac{π}{6}),(-)(frac{5π}{6}).
7) Запишем все значения соответствующие этим точкам с помощью формулы (x=t+2πk), (k∈Z):
(x=-)(frac{π}{6})(+2πk), (k∈Z); (x=-)(frac{5π}{6})(+2πn), (n∈Z)

Ответ: (left[ begin{gathered}x=-frac{π}{6}+2πk, \ x=-frac{5π}{6}+2πn, end{gathered}right.)(k,n∈Z)

Что означает каждый символ в формуле корней тригонометрических уравнений смотри в видео.

Внимание! Уравнения (sin⁡x=a) и (cos⁡x=a) не имеют решений, если (a ϵ (-∞;-1)∪(1;∞)). Потому что синус и косинус при любых икс больше или равны (-1) и меньше или равны (1):

(-1≤sin x≤1)                           (-1≤cos⁡x≤1)

Пример. Решить уравнение (cos⁡x=-1,1).
Решение: (-1,1<-1), а значение косинуса не может быть меньше (-1). Значит у уравнения нет решения.
Ответ: решений нет.

Пример. Решите тригонометрическое уравнение tg(⁡x=1).
Решение:

tg x=1

Решим уравнение с помощью числовой окружности. Для этого:
1) Построим окружность)
2) Построим оси (x) и (y) и ось тангенсов (она проходит через точку ((0;1)) параллельно оси (y)).
3) На оси тангенсов отметим точку (1).
4) Соединим эту точку и начало координат — прямой.
5) Отметим точки пересечения этой прямой и числовой окружности.
6)Подпишем значения этих точек: (frac{π}{4}),(frac{5π}{4})
7) Запишем все значения этих точек. Так как они находятся друг от друга на расстоянии ровно в (π), то все значения можно записать одной формулой:

(x=)(frac{π}{4})(+πk), (k∈Z).

Ответ: (x=)(frac{π}{4})(+πk), (k∈Z).

Foxford

Пример. Решите тригонометрическое уравнение (cos⁡(3x+frac{π}{4})=0).
Решение:

cosx=0

Опять воспользуемся числовой окружностью.
1) Построим окружность, оси (x) и (y).
2) На оси косинусов (ось (x)) отметим (0).
3) Проведем перпендикуляр к оси косинусов через эту точку.
4) Отметим точки пересечения перпендикуляра и окружности.
5) Подпишем значения этих точек: (-)(frac{π}{2}),(frac{π}{2}).
6)Выпишем все значение этих точек и приравняем их к аргументу косинуса (к тому что внутри косинуса).

(3x+)(frac{π}{4})(=±)(frac{π}{2})(+2πk), (k∈Z)

7) Дальше решать в таком виде несколько трудновато, разобьем уравнение на два.

(3x+)(frac{π}{4})(=)(frac{π}{2})(+2πk)                  (3x+)(frac{π}{4})(=-)(frac{π}{2})(+2πk)

8) Как обычно в уравнениях будем выражать (x).
Не забывайте относиться к числам с (π), так же к (1), (2), (frac{1}{4}) и т.п. Это такие же числа, как и все остальные. Никакой числовой дискриминации!

(3x=-)(frac{π}{4})(+)(frac{π}{2})(+2πk)               (3x=-)(frac{π}{4})(+)(frac{π}{2})(+2πk)
(3x=)(frac{π}{4})(+2πk) (|:3)                    (3x=-)(frac{3π}{4})(+2πk) (|:3)
(x=)(frac{π}{12})(+)(frac{2πk}{3})                  (x=-)(frac{π}{4})(+)(frac{2πk}{3})

Ответ:    (x=)(frac{π}{12})(+)(frac{2πk}{3})           (x=-)(frac{π}{4})(+)(frac{2πk}{3}),   (k∈Z).

Сводить тригонометрические уравнения к простейшим – задача творческая, тут нужно использовать и тригонометрические формулы, и особые методы решений уравнений:
— Метод введения новой переменной (самый популярный в ЕГЭ). 
— Метод разложения на множители.
— Метод вспомогательных аргументов. 

Рассмотрим пример решения квадратно-тригонометрического уравнения

Пример. Решите тригонометрическое уравнение (2cos^2⁡x-5cos⁡x+2=0)
Решение:

(2cos^2⁡x-5cos⁡x+2=0)

Сделаем замену (t=cos⁡x).

(t=cos⁡x)

(2t^2-5t+2=0)

Наше уравнение превратилось в типичное квадратное. Можно его решить с помощью дискриминанта.

(D=25-4 cdot 2 cdot 2=25-16=9)

(t_1=)(frac{5-3}{4})(=)(frac{1}{2});      (t_2=)(frac{5+3}{4})(=2)

Делаем обратную замену.

(cos⁡x=)(frac{1}{2});                 (cos⁡x=2)

Первое уравнение решаем с помощью числовой окружности.
Второе уравнение не имеет решений т.к. (cos⁡x∈[-1;1]) и двум быть равен не может ни при каких иксах.

cosx=0,5

Запишем все числа, лежащие на числовой окружности в этих точках.

Ответ: (x=±)(frac{π}{3})(+2πk), (k∈Z).

Пример решения тригонометрического уравнения с исследованием ОДЗ:

Пример(ЕГЭ). Решите тригонометрическое уравнение (frac{2cos^2⁡x-sin{⁡2x}}{ctg x})(=0)

(frac{2cos^2⁡x-sin{⁡2x}}{ctg x})(=0)

Есть дробь и есть котангенс – значит надо записать ОДЗ. Напомню, что котангенс это фактически дробь:

ctg(x=)(frac{cos⁡x}{sin⁡x})

Потому ОДЗ для ctg(x): (sin⁡x≠0).

ОДЗ: ctg(x ≠0);         (sin⁡x≠0)

одз в тригонометрическом уравнении

(x≠±)(frac{π}{2})(+2πk);     (x≠πn);       (k,n∈Z)

Отметим «нерешения» на числовой окружности.

Решение:

(frac{2cos^2⁡x-sin{⁡2x}}{ctg x})(=0)

Избавимся в уравнении от знаменателя, умножив его на ctg(x). Мы можем это сделать, так как выше написали, что ctg(x ≠0).

(2cos^2⁡x-sin⁡{2x}=0)

Применим формулу двойного угла для синуса: (sin⁡{2x}=2sin⁡xcos⁡x).

(2cos^2⁡x-2sin⁡xcos⁡x=0)

Если у вас руки потянулись поделить на косинус – одерните их! Делить на выражение с переменной можно если оно точно не равно нулю (например, такие: (x^2+1,5^x)). Вместо этого вынесем (cos⁡x) за скобки.

(cos⁡x (2cos⁡x-2sin⁡x)=0)

«Расщепим» уравнение на два.

(cos⁡x=0);                       (2cos⁡x-2sin⁡x=0)

Первое уравнение с решим с помощью числовой окружности. Второе уравнение поделим на (2) и перенесем (sin⁡x) в правую часть.

cosx=0

(x=±)(frac{π}{2})(+2πk), (k∈Z).            (cos⁡x=sin⁡x)

Корни, которые получились не входят в ОДЗ. Поэтому их в ответ записывать не будем.
Второе уравнение типичное однородное. Поделим его на (sin⁡x) ((sin⁡x=0) не может быть решением уравнения т.к. в этом случаи (cos⁡x=1) или (cos⁡x=-1)).

                                                           ctg(x=1)

Опять используем окружность.

ctg x=1
(x=)(frac{π}{4})(+πn),    (n∈Z)

Эти корни не исключаются ОДЗ, поэтому можно их записывать в ответ.

Ответ: (x=)(frac{π}{4})(+πn), (n∈Z).

  • Альфашкола
  • Уроки по математике
  • Подготовка к ЕГЭ. Профильный уровень.
  • Задача 13 (С1). Тригонометрические уравнения, исследование ОДЗ

К сожалению, информация по данному уроку пока отсутствует.




Задача 13 (С1). Тригонометрические уравнения, исследование ОДЗ

Отзывы:

Все было хорошо. Преподаватель понравился.

Спасибо за урок! Камо Аркадьевич, вы великолепный, талантливый педагог! С уважением, Анастасия.

Очень благодарна Вам за терпение и внимательность, а главное профессионализм-)

Похожие уроки

ОДЗ (Область допустимых значений) — подробнее

Давай разберем пример, наглядно показывающий, что такое ОДЗ:

Решим уравнение ( displaystyle sqrt{2x+3}=x).

Все очень просто, если ты уже освоил тему «Иррациональные уравнения».

Возводим левую и правую части уравнения в квадрат:

( displaystyle 2x+3={{x}^{2}}text{ }Leftrightarrow text{ }{{x}^{2}}-2{x}-3=0).

Теперь решаем квадратное уравнение. Я воспользуюсь теоремой Виета (если забыл, что это такое, – посмотри тему «Квадратные уравнения»).

Получаем корни:

( displaystyle left[ begin{array}{l}x=3\x=-1end{array} right.)

Вроде все? А давай-ка теперь сделаем проверку – подставим полученные значения в начальное уравнение:

( displaystyle x=3:text{ }sqrt{2cdot 3+3}=3text{ }Leftrightarrow text{ }sqrt{9}=3) – все верно.

( displaystyle x=-1:text{ }sqrt{2cdot left( -1 right)+3}=-1text{ }Leftrightarrow text{ }sqrt{1}=-1) – неверно! А все почему?

Да потому, что мы не учли ОДЗ! 

По определению квадратный корень из любого числа не может быть отрицательным. 

Значит, глядя на уравнение ( displaystyle sqrt{2x+3}=x) мы должны сразу же написать:

( displaystyle left{ begin{array}{l}xge 0;\2x+3ge 0.end{array} right.)

Если помнишь тему «Иррациональные уравнения», ты сразу скажешь, что второе условие в этой системе писать необязательно. И правда, мы ведь потом возведем все в квадрат, и получится, что ( displaystyle 2x+3={{x}^{2}}), а значит – автоматически неотрицательно.

Итак, с помощью этих рассуждений приходим к такой области допустимых значений:

( displaystyle xge 0).

Тогда сразу становится ясно, что корень ( displaystyle x=-1) не подходит. И остается единственный ответ ( displaystyle x=3).

Всего мы изучаем несколько разных функций, для которых важна ОДЗ. Вот они со своими ОДЗ в удобной табличке.

Понравилась статья? Поделить с друзьями:
  • Как найти улицу фрунзе
  • Одноклассники как найти свой комментарий
  • Как составить завещание на наследство дома
  • Как найти средство для клопов
  • Как найти кубический объем доски