Как найти окружность круга вписанного в треугольник

Радиус вписанной окружности в треугольник

Радиус вписанной в треугольник окружности
рассчитать и выразить через периметр, площадь,
высоту, основание, стороны, диаметр. Формулы
радиуса окружности вписанной в треугольник.

Центр вписанной в треугольник окружности — это одна
из замечательных точек треугольника, она расположена
в точке пересечения биссектрис треугольника, её
иногда называют инцентром.

Центр вписанной окружности правильного треугольника — это
точка, где пересекаются высоты, медианы и биссектрисы.

В любой треугольник можно вписать только одну
окружность, которая находится внутри треугольника.
Центр вписанной окружности равноудален от всех
сторон треугольника. Точка, где окружность пересекается
со стороной треугольника, называется точкой касания.

Все отрезки, которые проведены от точки касания к центру
вписанной окружности имеют одинаковую длину.

Чтобы найти радиус окружности вписанной в треугольник
надо площадь разделить на полупериметр.

Диаметр вписанной окружности в треугольник численно
равен двум радиусам вписанной окружности. Радиус
вписанной окружности можно найти по разным
формулам, все зависит от того, какой треугольник.

Всего различают четыре вида треугольников:

  • Разносторонний / любой
  • Правильный / равносторонний
  • Равнобедренный / равнобочный
  • Прямоугольный / прямой

Радиус вписанной окружности в любой треугольник

  1. Радиус вписанной окружности в любой треугольник через площадь и полупериметр

S — площадь; p — полупериметр;
Радиус вписанной окружности в любой треугольник через все стороны и полупериметр

a, b, c — стороны; p — полупериметр;
Радиус вписанной окружности в любой треугольник через основание, высоту и полупериметр

a — основание, сторона на которую падает высота; h — высота; p — полупериметр;
Радиус вписанной окружности в любой треугольник через диаметр вписанной окружности

D — диаметр вписанной окружности;

Радиус вписанной окружности в правильный треугольник

  1. Радиус вписанной окружности в правильный треугольник через сторону

a — сторона;
Радиус вписанной окружности в правильный треугольник через радиус описанной окружности

R — радиус описанной окружности;
Радиус вписанной окружности в правильный треугольник через диаметр вписанной окружности

D — диаметр вписанной окружности;

Радиус вписанной окружности в равнобедренный треугольник

  1. Радиус вписанной окружности в равнобедренный треугольник через боковые стороны и основание

a — боковая сторона; b — основание;
Радиус вписанной окружности в равнобедренный треугольник через высоту и основание

b — основание; h — высота;
Радиус вписанной окружности в равнобедренный треугольник через диаметр вписанной окружности

D — диаметр вписанной окружности;

Радиус вписанной окружности в прямоугольный треугольник

  1. Радиус вписанной окружности в прямоугольный треугольник через два катета и гипотенузу

a, b — катеты; с — гипотенуза.
Радиус вписанной окружности в прямоугольный треугольник через гипотенузу и два катета

c — гипотенуза; a, b — катеты;
Радиус вписанной окружности в прямоугольный треугольник через диаметр вписанной окружности

D — диаметр вписанной окружности;

Вписанная окружность в треугольник — это окружность,
которая вписана в треугольник и касается всех его сторон.

Радиус вписанной окружности в треугольник — это отрезок,
проведенный от центра вписанной окружности до любой стороны.

Длина радиуса вписанной окружности, диаметра
вписанной окружности а также других величин
измеряется в мм, см, м, км и так далее.

В любом треугольнике все радиусы и диаметры
равны, имеют одинаковую длину.

Окружность, вписанная в треугольник. Основное свойство биссектрисы угла

Существование окружности, вписанной в треугольник. Основное свойство биссектрисы угла

Определение 1 . Биссектрисой угла называют луч, делящий угол на две равные части.

Теорема 1 (Основное свойство биссектрисы угла) . Каждая точка биссектрисы угла находится на одном и том же расстоянии от сторон угла (рис.1).

Доказательство . Рассмотрим произвольную точку D , лежащую на биссектрисе угла BAC , и опустим из точки D перпендикуляры DE и DF на стороны угла (рис.1). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны острые углы DAF и DAE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Теорема 2 (обратная теорема к теореме 1) . Если некоторая точка находится на одном и том же расстоянии от сторон угла, то она лежит на биссектрисе угла (рис.2).

Доказательство . Рассмотрим произвольную точку D , лежащую внутри угла BAC и находящуюся на одном и том же расстоянии от сторон угла. Опустим из точки D перпендикуляры DE и DF на стороны угла (рис.2). Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE , а гипотенуза AD – общая. Следовательно,

что и требовалось доказать.

Определение 2 . Окружность называют окружностью, вписанной в угол , если она касается касается сторон этого угла.

Теорема 3 . Если окружность вписана в угол, то расстояния от вершины угла до точек касания окружности со сторонами угла равны.

Доказательство . Пусть точка D – центр окружности, вписанной в угол BAC , а точки E и F – точки касания окружности со сторонами угла (рис.3).

Прямоугольные треугольники ADF и ADE равны, поскольку у них равны катеты DF и DE (как радиусы окружности радиусы окружности ), а гипотенуза AD – общая. Следовательно

что и требовалось доказать.

Замечание . Теорему 3 можно сформулировать и по-другому: отрезки касательных касательных , проведенных к окружности из одной точки, равны.

Определение 3 . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника, и соединяющий вершину треугольника с точкой на противоположной стороне.

Теорема 4 . В любом треугольнике все три биссектрисы пересекаются в одной точке.

Доказательство . Рассмотрим две биссектрисы, проведённые из вершин A и C треугольника ABC , и обозначим точку их пересечения буквой O (рис. 4).

Опустим из точки O перпендикуляры OD , OE и OF на стороны треугольника. Поскольку точка O лежит на биссектрисе угла BAC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на биссектрисе угла ACB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на биссектрисе угла ABC . Таким образом, все три биссектрисы треугольника проходят через одну и ту же точку, что и требовалось доказать

Определение 4 . Окружностью, вписанной в треугольник , называют окружность, которая касается всех сторон треугольника (рис.5). В этом случае треугольник называют треугольником, описанным около окружности .

Следствие . В любой треугольник можно вписать окружность, причем только одну. Центром вписанной в треугольник окружности является точка, в которой пересекаются все биссектрисы треугольника.

Формулы для радиуса окружности, вписанной в треугольник

Формулы, позволяющие найти радиус вписанной в треугольник окружности , удобно представить в виде следующей таблицы.

a, b, c – стороны треугольника,
S – площадь,
r – радиус вписанной окружности,
p – полупериметр

.

a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Фигура Рисунок Формула Обозначения
Произвольный треугольник
Равнобедренный треугольник
Равносторонний треугольник
Прямоугольный треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Произвольный треугольник
Равнобедренный треугольник
Равносторонний треугольник
Прямоугольный треугольник
Произвольный треугольник

где
a, b, c – стороны треугольника,
S –площадь,
r – радиус вписанной окружности,
p – полупериметр
.

где
a, b, c – стороны треугольника,
r – радиус вписанной окружности,
p – полупериметр
.

Равнобедренный треугольник

Равносторонний треугольник

где
a – сторона равностороннего треугольника,
r – радиус вписанной окружности

Прямоугольный треугольник

Вывод формул для радиуса окружности, вписанной в треугольник

Теорема 5 . Для произвольного треугольника справедливо равенство

где a, b, c – стороны треугольника, r – радиус вписанной окружности, – полупериметр (рис. 6).

с помощью формулы Герона получаем:

что и требовалось.

Теорема 6 . Для равнобедренного треугольника справедливо равенство

где a – боковая сторона равнобедренного треугольника, b – основание, r – радиус вписанной окружности (рис. 7).

то, в случае равнобедренного треугольника, когда

что и требовалось.

Теорема 7 . Для равностороннего треугольника справедливо равенство

где a – сторона равностороннего треугольника, r – радиус вписанной окружности (рис. 8).

то, в случае равностороннего треугольника, когда

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в равносторонний треугольник, непосредственно, т.е. без использования общих формул для радиусов окружностей, вписанных в произвольный треугольник или в равнобедренный треугольник.

Теорема 8 . Для прямоугольного треугольника справедливо равенство

Доказательство . Рассмотрим рисунок 9.

Поскольку четырёхугольник CDOF является прямоугольником прямоугольником , у которого соседние стороны DO и OF равны, то этот прямоугольник – квадрат квадрат . Следовательно,

В силу теоремы 3 справедливы равенства

Следовательно, принимая также во внимание теорему Пифагора, получаем

что и требовалось.

Замечание . Рекомендуем читателю вывести в качестве упражнения формулу для радиуса окружности, вписанной в прямоугольный треугольник, с помощью общей формулы для радиуса окружности, вписанной в произвольный треугольник.

Все формулы для радиуса вписанной окружности

Радиус вписанной окружности в треугольник

a , b , c — стороны треугольника

p — полупериметр, p=( a + b + c )/2

Формула радиуса вписанной окружности в треугольник ( r ):

Радиус вписанной окружности в равносторонний треугольник

a — сторона треугольника

r — радиус вписанной окружности

Формула для радиуса вписанной окружности в равносторонний треугольник ( r ):

Радиус вписанной окружности равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

α — угол при основании

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны ( r ) :

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол ( r ) :

2. Формулы радиуса вписанной окружности если известны: сторона и высота

a — равные стороны равнобедренного треугольника

b — сторона ( основание)

h — высота

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту ( r ) :

источники:

http://www.resolventa.ru/uslugi/uslugischoolrost.htm

http://www-formula.ru/2011-09-24-00-40-48

Как найти радиус вписанной окружности треугольника

Содержание:

  • Окружность, вписанная в треугольник — как найти радиус
  • Свойства вписанной в треугольник окружности

    • Первое свойство
    • Второе свойство
    • Третье свойство
  • Формулы вычисления радиуса вписанной окружности

    • Произвольный треугольник
    • Прямоугольный треугольник
    • Равнобедренный треугольник
    • Равносторонний треугольник
  • Как найти через высоту или стороны, примеры решения

Окружность, вписанная в треугольник — как найти радиус

Определение

Вписанной в треугольник окружностью называют такую окружность, которая занимает внутреннее пространство геометрической фигуры, соприкасаясь со всеми ее сторонами.

В таком случае грани треугольника представляют собой касательные к этой окружности. Сама геометрическая фигура с тремя углами считается описанной вокруг рассматриваемой окружности.

Вписанная окружность

Источник: people-ask.ru

Свойства вписанной в треугольник окружности

Окружность, которую вписали в треугольник, обладает определенными свойствами. Основные из них можно записать таким образом:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

  1. Центр окружности, которую вписали в треугольник, совпадает с точкой пересечения биссектрис этой геометрической фигуры.
  2. Во внутреннее пространство любого треугольника можно вписать лишь одну окружность.
  3. Формула радиуса окружности, который вписали во многоугольник с тремя углами, будет иметь такой вид:

Радиус

Источник: people-ask.ru

В представленной формуле радиуса окружности использованы следующие величины:

  • S – является площадью треугольника;
  • р – представляет собой полупериметр геометрической фигуры;
  • a, b, c – являются сторонами треугольника.

Перечисленные свойства необходимо доказать.

Первое свойство

Требуется доказать, что центр окружности, которую вписали в фигуру с тремя углами, совпадает с точкой пересечения биссектрис.

Доказательство построено в несколько этапов:

  1. Необходимо опустить из центральной точки окружности перпендикулярные прямые OL, OK и OM, которые опускаются на стороны треугольника АВС. Из вершин треугольника следует провести прямые, соединяющие их с центром фигуры OA, OC и OB.

3 Доказательство

Источник: people-ask.ru
  1. Далее можно рассмотреть пару треугольников AOM и AOK. Можно отметить, что они являются прямоугольными, так как OM и OK являются перпендикулярами к сторонам AC и AB. Гипотенуза OA является общей для пары этих фигур.
  2. Исходя из того, что касательная к окружности является перпендикуляром к радиусу, который проведен в точку касания, согласно свойству касательной к окружности, то катеты OМ и OК представляют собой радиусы окружности и, следовательно, равны.
  3. Согласно полученным утверждениям, можно сделать вывод о равенстве прямоугольных треугольников AOМ и AOК по гипотенузе и катету. Таким образом, углы OAМ и OAК тоже равны. Получается, что OA является биссектрисой угла BAC.
  4. Аналогично можно доказать, что OC является биссектрисой угла ACB, а OB – биссектрисой угла ABC.
  5. Таким образом, биссектрисы треугольника совпадают в одной точке, которая представляет собой центр вписанной окружности.

Данное свойство окружности доказано.

Второе свойство

Необходимо представить доказательства свойства окружности, согласно которому в любой треугольник можно вписать окружность, причем только одну.

Доказательство состоит из нескольких этапов:

  1. Окружность получится вписать в треугольник в том случае, когда существует точка, удаленная на равные расстояния от сторон геометрической фигуры.
  2. Можно построить пару биссектрис ОА и ОС. Из точки, в которой они пересекаются, необходимо опустить перпендикулярные прямые OK, OL и OM ко всем граням многоугольника с тремя углами ABC.

4 Второе свойство

Источник: people-ask.ru
  1. Затем следует рассмотреть пару треугольников AOK и AOM.
  2. Эти фигуры обладают общей гипотенузой АО. Углы OAK и OAM равны, так как OA является биссектрисой угла KAM. Углы OKA и OMA прямые, то есть также равны, так как OK и OM являются перпендикулярами к сторонам AB и AC.
  3. Исходя из того, что две пары углов равны, можно сделать вывод о равенстве третьей пары AOM и AOK.
  4. Таким образом, получилось подтвердить равенство треугольников AOK и AOM по стороне AO и двум углам, которые к ней прилегают.

5 Второе свойство

Источник: people-ask.ru
  1. Удалось определить равенство сторон ОМ и ОК, то есть они удалены на одинаковое расстояние от сторон геометрической фигуры АС и АВ.
  2. Аналогично можно доказать, что OM и OL равны, то есть равноудалены от граней AC и BC.
  3. Таким образом, точка равноудалена от сторон треугольника, что делает ее центром окружности, которая вписана в этот многоугольник.
  4. Аналогичным способом можно определить точку во внутреннем пространстве любой геометрической фигуры с тремя углами, которая будет удалена на равные расстояния от его сторон, и представляет собой центр окружности, вписанной в этот треугольник.
  5. Исходя из вышесказанного, можно сделать вывод о том, что в любой треугольник можно вписать окружность.
  6. Необходимо заметить, что центральная точка окружности совпадает с точкой, в которой пересекаются биссектрисы треугольника.
  7. Можно допустить ситуацию, при которой в геометрическую фигуру с тремя углами можно вписать две и более окружности.
  8. Необходимо провести три прямые из вершин геометрической фигуры к центральной точке окружности, вписанной в нее, и опустить перпендикулярные прямые к каждой грани треугольника. Таким образом, будет доказано, что рассматриваемая окружность лежит на пересечении биссектрис треугольника, согласно доказательству ее первого свойства.
  9. Получим совпадение центральной точки окружности и центра первой окружности, которая уже была вписана в этот треугольник, а ее радиус соответствует перпендикуляру, опущенному на сторону треугольника так же, как и в первом случае. Можно сделать вывод о совпадении этих окружностей.
  10. Аналогично любая другая окружность, вписанная в геометрическую фигуру с тремя углами, будет совпадать с первой окружностью.
  11. Таким образом, в треугольник получается вписать лишь одну окружность.

Свойство доказано.

Третье свойство

Требуется доказать, что радиус окружности, которую вписали в геометрическую фигуру с тремя углами, представляет собой отношение площади треугольника к полупериметру:

6 Формула

Источник: people-ask.ru

Кроме того, необходимо представить доказательства следующему равенству:

7 Формула

Источник: people-ask.ru

Доказательство:

8 Треугольник

Источник: people-ask.ru
  1. Следует рассмотреть произвольный треугольник АВС, стороны которого соответствуют a, b и c. Для расчета полупериметра данного треугольника целесообразно использовать формулу:

9 Формула

Источник: people-ask.ru
  1. Центральная точка окружности совпадает с точкой пересечения биссектрис геометрической фигуры с тремя углами. Прямые OA, OB и OC, которые соединяют O с вершинами треугольника АВС, разделяют геометрическую фигуру на три части: AOC, COB, BOA. Площадь треугольника ABC представляет собой сумму площадей этих трех частей.

10 Формула

Источник: people-ask.ru
  1. Исходя из того, что площадь какого-либо треугольника представляет собой половину произведения его основания на высоту, а высота треугольников AOC, COB, BOA рассчитывается, как радиус окружности r, то площади треугольников AOC, COB и BOA можно определить по формулам:

11 Формула

Источник: people-ask.ru
  1. Далее необходимо представить площадь S геометрической фигуры АВС, как сумму площадей нескольких треугольников:

12 Формула

Источник: people-ask.ru
  1. Следует отметить, что второй множитель является полупериметром геометрической фигуры с тремя углами АВС, что можно записать в виде равенства:

13 Формула

Источник: people-ask.ru

14 Формула

Источник: people-ask.ru
  1. Таким образом, доказано равенство радиуса вписанной окружности и отношения площади треугольника к полупериметру.
  2. Можно записать формулу Герона, смысл которой заключается в следующем: площадь треугольника (S) равняется квадратному корню из произведения его полупериметра (p) на разности полупериметра и каждой из его сторон (a, b, c)

15 Формула

Источник: people-ask.ru
  1. Далее следует преобразовать формулу для расчета радиуса:

16 Формула

Источник: people-ask.ru

Свойство окружности доказано.

Формулы вычисления радиуса вписанной окружности

Параметры окружности, которую вписали в геометрическую фигуру с тремя углами, можно рассчитать с помощью стандартных формул. Радиус окружности будет определен в зависимости от типа треугольника.

Произвольный треугольник

Определить радиус окружности, которая вписана в какой-либо треугольник, можно, как удвоенную площадь треугольника, поделенную на его периметр.

17 Формула

Источник: microexcel.ru

В данном случае, a, b, c являются сторонами геометрической фигуры с тремя углами, S – ее площадь.

Прямоугольный треугольник

Радиус окружности, которую вписали в треугольник с прямым углом, представляет собой дробь с числителем в виде суммы катетов за минусом гипотезы и знаменателем, равным числу 2.

18 Формула

Источник: microexcel.ru

В формуле a и b являются катетами, c – гипотенузой треугольника.

Равнобедренный треугольник

Радиус окружности, которая вписана в равнобедренный треугольник, определяют по формуле:

19 Формула

Источник: microexcel.ru

В этом случае a – боковые стороны, b – основание треугольника.

Равносторонний треугольник

Расчет радиуса окружности, которая вписана в правильный или равносторонний треугольник, выполняют по формуле:

20 Формула

Источник: microexcel.ru

где a – сторона геометрической фигуры с тремя углами.

Как найти через высоту или стороны, примеры решения

Задача 1

Имеется геометрическая фигура с тремя углами, стороны которой составляют 5, 7 и 10 см. Требуется определить радиус окружности, которая вписана в этот треугольник.

Решение

В первую очередь необходимо определить, какова площадь треугольника. Для этого можно воспользоваться формулой Герона:

21 Формула

Источник: microexcel.ru

Затем применим формулу для расчета радиуса круга:

22 Формула

Источник: microexcel.ru

Ответ: радиус окружности составляет примерно 1,48 см.

Задача 2

Необходимо рассчитать радиус окружности, которая вписана в равнобедренный треугольник. Боковые стороны геометрической фигуры составляют 16 см, а основание равно 7 см.

Решение

Следует использовать подходящую формулу для расчета радиуса, подставив в нее известные величины:

23 Формула

Источник: microexcel.ru

Ответ: радиус окружности примерно равен 2,8 см.

1. Формулы радиуса вписанной окружности если известны: диагональ, стороны и угол

Радиус вписанной окружности в ромб

a — сторона ромба

D — большая диагональ

d — меньшая диагональ

α — острый угол

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в ромб через диагонали ( r ) :

Формула 1 радиуса вписанной окружности в ромб

Формула радиуса вписанной окружности в ромб через сторону и угол ( r ) :

Формула 2 радиуса вписанной окружности в ромб

Формула радиуса вписанной окружности в ромб через диагональ и угол ( r ) :

Формула 3 радиуса вписанной окружности в ромб

Формула 4 радиуса вписанной окружности в ромб

Формула радиуса вписанной окружности в ромб через диагональ и сторону ( r ) :

Формула 5 радиуса вписанной окружности в ромб

Формула 6 радиуса вписанной окружности в ромб

2. Радиус вписанной окружности ромба, равен половине его высоты

Радиус вписанной окружности в ромб

a — сторона ромба

h — высота

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в ромб ( r ) :

Формула 7 радиуса вписанной окружности в ромб

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, вписанной в произвольный (любой), прямоугольный, равнобедренный или равносторонний треугольник. Также разберем примеры решения задач для закрепления представленного теоретического материала.

  • Формулы вычисления радиуса вписанной окружности

    • Произвольный треугольник

    • Прямоугольный треугольник

    • Равнобедренный треугольник

    • Равносторонний треугольник

  • Примеры задач

Формулы вычисления радиуса вписанной окружности

Произвольный треугольник

Радиус окружности, вписанной в любой треугольник, равняется удвоенной площади треугольника, деленной на его периметр.

Формула расчета радиуса вписанной в треугольник окружности

Треугольник abc со вписанной окружностью с радиусом r

где a, b, c – стороны треугольника, S – его площадь.

Прямоугольный треугольник

Радиус окружности, вписанной в прямоугольный треугольник, равняется дроби, в числителе которого сумма катетов минус гипотенуза, в знаменателе – число 2.

Формула вычисления радиуса вписанной в прямоугольный треугольник окружности

Прямоугольный треугольник со вписанной окружностью

где a и b – катеты, c – гипотенуза треугольника.

Равнобедренный треугольник

Радиус вписанной в равнобедренный треугольник окружности вычисляется по формуле ниже:

Формула вычисления радиуса вписанной в равнобедренный треугольник окружности

Равнобедренный треугольник со вписанной окружностью

где a – боковые стороны, b – основание треугольника.

Равносторонний треугольник

Радиус вписанной в правильный (равносторонний) треугольник окружности рассчитывается следующим образом:

Формула вычисления радиуса вписанной в равносторонний треугольник окружности

Равносторонний треугольник со вписанной окружностью

где a – сторона треугольника.

Примеры задач

Задание 1
Дан треугольник со сторонами 5, 7 и 10 см. Вычислите радиус вписанной в него окружности.

Решение
Сперва вычислим площадь треугольника. Для этого применим формулу Герона:

Примера расчета площади треугольника по формуле Герона

Остается только применить соответствующую формулу для вычисления радиуса круга:

Пример расчета радиуса вписанной в треугольник окружности через стороны и площадь

Задание 2
Боковые стороны равнобедренного треугольника равны 16 см, а основание 7 см. Найдите радиус вписанной в фигуру окружности.

Решение
Воспользуемся подходящей формулой, подставив в нее известные значения:

Пример вычисления радиуса вписанной в равнобедренный треугольник окружности

Радиус вписанной в треугольник окружности
рассчитать и выразить через периметр, площадь,
высоту, основание, стороны, диаметр. Формулы
радиуса окружности вписанной в треугольник.

Центр вписанной в треугольник окружности — это одна
из замечательных точек треугольника, она расположена
в точке пересечения биссектрис треугольника, её
иногда называют инцентром.

Центр вписанной окружности правильного треугольника — это
точка, где пересекаются высоты, медианы и биссектрисы.

В любой треугольник можно вписать только одну
окружность, которая находится внутри треугольника.
Центр вписанной окружности равноудален от всех
сторон треугольника. Точка, где окружность пересекается
со стороной треугольника, называется точкой касания.

Все отрезки, которые проведены от точки касания к центру
вписанной окружности имеют одинаковую длину.

Чтобы найти радиус окружности вписанной в треугольник
надо площадь разделить на полупериметр.

Диаметр вписанной окружности в треугольник численно
равен двум радиусам вписанной окружности. Радиус
вписанной окружности можно найти по разным
формулам, все зависит от того, какой треугольник.

Всего различают четыре вида треугольников:

  • Разносторонний / любой
  • Правильный / равносторонний
  • Равнобедренныйравнобочный
  • Прямоугольный / прямой

Содержание

  1. Радиус вписанной окружности в любой треугольник
  2. Радиус вписанной окружности в правильный треугольник
  3. Радиус вписанной окружности в равнобедренный треугольник
  4. Радиус вписанной окружности в прямоугольный треугольник

Радиус вписанной окружности в любой треугольник

  1. Радиус вписанной окружности в любой треугольник через площадь и полупериметр

    [ r = frac{S}{p} ]

    S — площадь; p — полупериметр;

  2. Радиус вписанной окружности в любой треугольник через все стороны и полупериметр

    [ r = sqrtfrac{{(p-a)(p-b)(p-c)}}{p} ]

    a, b, c — стороны; p — полупериметр;

  3. Радиус вписанной окружности в любой треугольник через основание, высоту и полупериметр

    [ r = frac{frac{1}{2}a cdot h}{p} ]

    a — основание, сторона на которую падает высота; h — высота; p — полупериметр;

  4. Радиус вписанной окружности в любой треугольник через диаметр вписанной окружности

    [ r = frac{D}{2} ]

    D — диаметр вписанной окружности;


Радиус вписанной окружности в правильный треугольник

  1. Радиус вписанной окружности в правильный треугольник через сторону

    [ r = frac{a}{2sqrt 3} ]

    a — сторона;

  2. Радиус вписанной окружности в правильный треугольник через радиус описанной окружности

    [ r = frac{R}{2} ]

    R — радиус описанной окружности;

  3. Радиус вписанной окружности в правильный треугольник через диаметр вписанной окружности

    [ r = frac{D}{2} ]

    D — диаметр вписанной окружности;


Радиус вписанной окружности в равнобедренный треугольник

  1. Радиус вписанной окружности в равнобедренный треугольник через боковые стороны и основание

    [ r = frac{b}{2} cdot sqrt{frac{2a-b}{2a+b}} ]

    a — боковая сторона; b — основание;

  2. Радиус вписанной окружности в равнобедренный треугольник через высоту и основание

    [ r = frac{bh}{b + sqrt{4h^2+b^2}} ]

    b — основание; h — высота;

  3. Радиус вписанной окружности в равнобедренный треугольник через диаметр вписанной окружности

    [ r = frac{D}{2} ]

    D — диаметр вписанной окружности;


Радиус вписанной окружности в прямоугольный треугольник

  1. Радиус вписанной окружности в прямоугольный треугольник через два катета и гипотенузу

    [ r = frac{a+b-c}{2} ]

    a, b — катеты; с — гипотенуза.

  2. Радиус вписанной окружности в прямоугольный треугольник через гипотенузу и два катета

    [ r = frac{ab}{a+b+c} ]

    c — гипотенуза; a, b — катеты;

  3. Радиус вписанной окружности в прямоугольный треугольник через диаметр вписанной окружности

    [ r = frac{D}{2} ]

    D — диаметр вписанной окружности;


Вписанная окружность в треугольник — это окружность,
которая вписана в треугольник и касается всех его сторон.

Радиус вписанной окружности в треугольник — это отрезок,
проведенный от центра вписанной окружности до любой стороны.

Длина радиуса вписанной окружности, диаметра
вписанной окружности а также других величин
измеряется в мм, см, м, км и так далее.

В любом треугольнике все радиусы и диаметры
равны, имеют одинаковую длину.

Понравилась статья? Поделить с друзьями:
  • Как исправить ошибку в ворде автоматически
  • Как найти вирус в службах
  • Фонит сабвуфер в машине при заведенном двигателе как исправить
  • Как найти работу где ты не нужен
  • Как найти испорченное яйцо