Как найти операторное уравнение

Операторные уравнения

Пример операторного уравнения:

где — оператор,  — функция.

Функция , которая удовлетворяет операторному уравнению

[ L f=lf ]

, называется собственной функцией оператора. Число (не переменная) l называется собственным значением оператора.

где — собственное значение,  — собственная функция оператора.

Например, рассмотрим оператор дифференцирования:

  1. f=e^{kx}

    widehat{L}f = frac{d}{dx}e^{kx} = underset{substack{ downarrow l}} {k}e^{kx}=lf

    Вывод: функция f является собственной функцией оператора, собственное значение k.

  2. f = x^2

    widehat{L}f = frac{d}{dx}x^2 = 2x = frac{2}{x}fneq lf

    Вывод: функция f не является собственной, так как не соответствует операторному уравнению (l содержит в себе переменную).

Основная задача квантовой химии сводится к нахождению собственных функций и собственных значений оператора полной энергии для молекул.

Содержание

  1. Является ли собственная функция единственной для оператора, или у него может быть несколько собственных функций?​
  2. Пусть есть разные операторы. Будут ли их собственные функции разными или они могут быть одинаковыми?​
  3. Всегда ли разным собственным функциям отвечают разные собственные значения?​
  4. Физический смысл собственного значения​
  5. Проблема точных и средних значений физических величин. Энергия известна точно или это вероятностная величина?​

Является ли собственная функция единственной для оператора, или у него может быть несколько собственных функций?​

Рассмотрим оператор дифференцирования:

widehat{L}=frac{d}{dx}

e^{kx} longrightarrow e^x,e^{2x},…,e^{kx}

Собственное значение — k.

Для оператора может существовать различное множество собственных функций. Причем собственные функции самосопряженного оператора ортогональны друг другу и образуют базис пространства функций.

Пусть есть разные операторы. Будут ли их собственные функции разными или они могут быть одинаковыми?​

Если операторы коммутируют друг с другом , то они имеют общую систему собственных функций. Собственные функции коммутирующих операторов одни и те же.

Всегда ли разным собственным функциям отвечают разные собственные значения?​

Рассмотрим оператор дифференцирования:

widehat{L} = frac{partial}{partial{x}}

f = e^{kx} qquad widehat{L}f = ke^{kx} = kf, quad l_1 =k g = ye^{kx} qquad widehat{L}g = kye^{kx} = kg, quad l_2 =k gneq fqquad l_1=l_2

Собственные волновые функции для которых собственное значения одинаковые называются вырожденными.

Физический смысл собственного значения​

Запишем операторное уравнение:

widehat{L}f=lf

Умножим левую и правую часть равнения на комплексно-сопряженную функцию f^*:

f^*widehat{L}f=f^*lf

Проинтегрируем:

Собственное значение есть значение физической величины (из 5 постулата). Т.е. для оператора полной энергии системы (гамильтониана H) — собственное значение Е есть значение физической величины полной энергии системы.

1 следствие: константа Е в уравнении Шредингера является полной энергией системы.

widehat{H}Psi = EPsi

2 следствие: Для любого состояния системы можно найти его энергию.

Проблема точных и средних значений физических величин. Энергия известна точно или это вероятностная величина?​

Физическая величина определяется интегралом:

1) Ψ — собственная, тогда физическая величина l — точное значение;

2) Ψ — не собственная:

Ψ — не собственная:

Физическая величина вычисляемая по 5 постулату является точной, если волновая функция является собственной функцией оператора.

Если волновая функция не является собственной функцией оператора, то физическая является средней.

2 следствия:

  • энергия любой системы может быть определена точно (это не средняя величина)

    widehat{H}Psi=EPsi

  • физические величины, соответствующие коммутирующим операторам могут быть одновременно определены с любой степенью точности. И обратное: если операторы не коммутируют, то их физические величины не могут быть одновременно точно определены.

Получение
операторных уравнений элементов САР
рассмотрим на следующих примерах.

1)
Пусть имеется уравнение одноемкостного
объекта.

(1)

Используя
свойство преобразования Лапласа заменим
каждый член уравнения его изображением
по Лапласу.

(2)

(3)

Уравнение
в передаточной функции ПНД – закона
регулирования

Рассмотрим
общий случай звена с одним входом и
одним выходом, которое описывается
дифференцированным уравнением

Общий
вид оператора уравнения звена с данным
входом и одним выходом.


собственный оператор звена, отражающий
его внутреннее свойства, например,
устойчивость

К(S)
— оператор воздействия

Оператор
уравнения такого звена имеет вид:

,

где — собственный оператор звена, определяющийся
выражением (7)


оператор воздействия по входному
сигналу, определяющийся выражением
(8).

Для
одноемкостного объекта, которое является
звеном, с двумя входными воздействиями

14 Передаточные функции

Пусть
имеется звено САР с одним входом и одним
выходом

Для
этого звена найдено его операторное
уравнение.

(1)

Найдем
изображение выходного сигнала в явном
виде:

(2)

Обозначим:

(3)


передаточная функция звена,

тогда:

(4)

Передаточной
функцией

называется операторное выражение,
переводящее изображение входного
сигнала звена в изображение входного
сигнала.

Передаточной
функцией
называется
отношение изображений по Лапласу
выходного и входного сигналов звена.

Уравнение
в передаточной функции ПНД – закона
регулирования.

Из
операторного уравнения звена запаздывания:

Передаточная
функция общего звена с одним входом:

Для
звена с несколькими входами уравнение
в передаточных функциях имеет вид:

где

передаточная функция звена по воздействию

Пример:
для одноемкостного объекта с операторным
уравнением

Общий
вид уравнения ОР в передаточных функциях.


передаточная функция ОР по регулируемому
воздействию


передаточная функция ОР по нагрузке

Пример:

Для
звеньев САУ, описываемых линейными
дифференциальными уравнениями с
постоянными коэффициентами, их
передаточные функции являются дробно
– радикальными выражениями комплексной
переменной .

Передаточная
функция звена запаздывания является
трансцендентной.

15 Структурные системы

Для
САР составляем структурные системы,
которые в наглядной форме отражают
состав элементов взаимосвязи между
элементами.

Структурные
системы соответствуют дифференциальным
уравнениям, операторным уравнениям и
передаточным функциям.

Преобразования
структурных схем с помощью набора правил
позволяет достаточно просто находить
передаточные функции регуляторов
разомкнутых и замкнутых систем.

Покажем
составление структурной схемы на примере
САР частоты вращения турбогенератора.

Полагаем,
что для элементов САР получены на
уравнения в передаточных функциях

Строим
структурную схему, используя передаточные
функции элементов.

На
структурных схемах обозначаются
величины, а не их изображения.

Структурные
схемы содержат следующие элементы.

1)
звенья направленного действия,
характеризуемые передаточными формулами.

2)
Элемент суммирования.

Элемент
вычитания.

4)
Линии связи показывают направление
передачи сигналов и соединение элементов.

5)
Точки разветвления сигналов, из которых
сигнал расходится по ?????

Для
упрощения структурных схем получения
передаточных функций САР применяют
преобразование структурных схем, эти
преобразования базируются на решении
операторных уравнений

1)
Последовательное соединение звеньев.

Требуется
заменить цепочку одним звеном, выполняющим
такое преобразование сигнала Х в сигнал
Y,
что и исходная цепочка.

Подставим
последовательно каждое предыдущее
уравнение в последующее

W(s)
— передаточная функция последовательного
соединения звеньев.

Пример

7)
Параллельное соединение звеньев

подставляем
все уравнения в последнее и получим.

Пример

3)
перенос точки разветвления с выходного
сигнала звена на входной.

перенос
точки разветвления с входного сигнала
звена на выходной

замкнутый
контур с ООС

Пример


проверить

6)
замкнутый контур с ПОС.

Проведя
аналогичные выкладки можно получить.

7)
Замкнутый контур с единичной отрицательной
обратной связью.

8)
Замкнутый контур с единичной ПОС

Соседние файлы в папке ТАУ

  • #

    12.03.201521.5 Кб40ТАУ №1 Графики 2.xls

  • #

    12.03.2015107.93 Кб25ТАУ №1 Графики.numbers

  • #
  • #
  • #
  • #

Операционное исчисление играет важную роль при решении прикладных задач, особенно в современной автоматике и телемеханике.

Операционное исчисление — один из методов математического анализа, позволяющий в ряде случаев сводить исследование дифференциальных и некоторых типов интегральных операторов и решение уравнений, содержащих эти операторы, к рассмотрению более простых алгебраических задач.

Методы операционного исчисления предполагают реализацию следующей условной схемы решения задачи.

  1. От искомых функций переходят к некоторым другим функциям — их изображениям.
  2. Над изображениями производят операции, соответствующие заданным операциям над самими функциями.
  3. Получив некоторый результат при действиях над изображениями, возвращаются к самим функциям.

В качестве преобразования, позволяющего перейти от функции к их изображениям, будем применять так называемое преобразование Лапласа.

Преобразование Лапласа

Оригиналы и их изображения:

Основными первоначальными понятиями операционного исчисления являются понятия функции-оригинала и функции-изображения.

Пусть f(t) — действительная функция действительного переменного t (под t будем понимать время или координату).

Функция f(t) называется оригиналом, если она удовлетворяет следующим условиям:

  1. Операционное исчисление
  2. f(t) — кусочно-непрерывная при Операционное исчисление т. е. она непрерывна или имеет точки разрыва I рода, причем на каждом конечном промежутке оси t таких точек лишь конечное число.
  3. Существуют такие числа Операционное исчисление что для всех t выполняется неравенство Операционное исчисление, т. е. при возрастании t функция f(t) может возрастать не быстрее некоторой показательной функции. Число Операционное исчисление называется показателем роста f(t).

Условия 1-3 выполняются для большинства функций, описывающих различные физические процессы.

Первое условие означает, что процесс начинается с некоторого момента времени; удобнее считать, что в момент t = 0. Третьему условию удовлетворяют ограниченные функции (для них можно положить Операционное исчисление), степенные Операционное исчисление и другие (для функций вида Операционное исчисление( условие 3 не выполняется). Не является оригиналом, например, функция Операционное исчисление(не удовлетворяет второму условию).

Замечание:

Функция f(t) может быть и комплексной функцией действительно переменного, т. е. иметь вид Операционное исчисление она считается оригиналом, если действительные функции Операционное исчислениеявляются оригиналами.

Изображением оригинала f(t) называется функция F(p) комплексного переменного Операционное исчисление, определяемая интегралом

Операционное исчисление

Операцию перехода от оригинала f(t) к изображению F(p) называют преобразованием Лапласа. Соответствие между оригиналом f(t) и изображением F(p) записывается в виде Операционное исчисление или Операционное исчисление(принято оригиналы обозначать малыми буквами, а их изображения — соответствующими большими буквами).

Теорема:

Существование изображения. Для всякого оригинала f(t) изображение F(p) существует (определено) в полуплоскости Операционное исчисление— показатель роста функции f(t) , причем функция F(p) является аналитической в этой полуплоскости Операционное исчисление.

Докажем первую часть теоремы. Пусть Операционное исчисление произвольная точка полуплоскости Операционное исчисление (см. рис. 302).

Операционное исчисление

Учитывая, что Операционное исчисление находим:

Операционное исчисление

так как

Операционное исчисление

Таким образом,

Операционное исчисление

Отсюда вытекает абсолютная сходимость интеграла (78.1), т. е. изображение F(p) существует и однозначно в полуплоскости Операционное исчисление

Следствие:

Необходимый признак существования изображения. Если функция F(p) является изображением функции f(t) , то

Операционное исчисление

Это утверждение непосредственно вытекает из неравенства (78.2), когдаОперационное исчисление

Так как F(p) — аналитическая функция в полуплоскости

Операционное исчисление

по любому направлению. Отсюда, в частности, следует, что функции Операционное исчисление не могут быть изображениями.

Отметим, что из аналитичности функции F(p) следует, что все ее особые точки должны лежать левее прямой Операционное исчисление или на самой этой прямой. Функция F(p) , не удовлетворяющая этому условию, не является изображением функции f(t). Не является изображением, например, функция Операционное исчисление (ее особые точки расположены на всей оси s).

Теорема:

О единственности оригинала. Если функция F(p) служит изображением двух оригиналов Операционное исчисление, то эти оригиналы совпадают друг с другом во всех точках, в которых они непрерывны.
(Примем без доказательства.)

Пример:

Найти изображение единичной функции Хевисайда

Операционное исчисление

(см. рис. 303).

Операционное исчисление

Решение:

По формуле (78.1) при Операционное исчисление находим:

Операционное исчисление

т. e. Операционное исчисление, или, в символической записи, Операционное исчисление

Замечание:

В дальнейшем функцию-оригинал будем кратко записывать в виде f(t) , подразумевал, что

Операционное исчисление

Пример:

Найти изображение функции Операционное исчисление — любое число.

Решение:

Данная функция является оригиналом. По формуле (78.1) имеем

Операционное исчисление

если Re(p — a) > 0. Таким образом,

Операционное исчисление

Пример:

Найти изображение функции f(t) = t.

Решение:

В этом случае преобразование Лапласа имеет вид

Операционное исчисление

Операционное исчисление

Замечание:

Функция Операционное исчисление является аналитической не только в полуплоскости Rep > Re а, где интеграл (78.1) сходится, а на всей комплексной плоскости р, кроме точки р = а. Такая особенность наблюдается и для многих других изображений. Далее для нас будет более важным, как правило, само изображение функции, а не область, в которой оно выражается интегралом (78.1).

Свойства преобразования Лапласа

Находить изображения, пользуясь только определением изображения, не всегда просто и удобно. Свойства преобразования Лапласа существенно облегчают задачу нахождения изображений для большого числа разнообразных функций, а также задачу отыскания оригиналов по их изображениям.

Линейность

Линейной комбинации оригиналов соответствует такая же линейная комбинация изображений, т. е. если

Операционное исчисление

— постоянные числа, то

Операционное исчисление

Используя свойства интеграла, находим

Операционное исчисление

Пример:

Найти изображения функций Операционное исчисление — любое число), с (const), Операционное исчисление

Решение:

Пользуясь свойством линейности, формулой (78.3), находим:

Операционное исчисление

т. е.

Операционное исчисление

Аналогично получаем формулу

Операционное исчисление

Далее, Операционное исчислениет. е.

Операционное исчисление

Наконец,

Операционное исчисление

Операционное исчисление

Аналогично получаем формулу

Операционное исчисление

Подобие

Если

Операционное исчисление

т.е. умножение аргумента оригинала на положительное число Операционное исчисление приводит к делению изображения и его аргумента на это число.

По формуле (78.1) имеем

Операционное исчисление

(так как безразлично, какой буквой обозначена переменная интегрирования).
Например, пусть Операционное исчисление. Тогда

Операционное исчисление

Смещение (затухание)

Если

Операционное исчисление

т. е. умножение оригинала на функциюОперационное исчисление влечет за собой смещение переменной р.

В силу формулы (78.1) имеем

Операционное исчисление

Операционное исчисление

Благодаря этому свойству можно расширить таблицу соответствия между оригиналами и их изображениями:

Операционное исчисление

Операционное исчисление

Пример:

Найти оригинал по его изображению

Операционное исчисление

Решение:

Преобразуем данную дробь так, чтобы можно было воспользоваться свойством смещения:

Операционное исчисление

(См. формулы (78.9), (78.10) и свойство линейности.)

Запаздывание

Если

Операционное исчисление

т. е. запаздывание оригинала на положительную величину Операционное исчислениеприводит к умножению изображения оригинала без запаздывания на Операционное исчисление.

Положив Операционное исчисление, получим

Операционное исчисление

Поясним термин «запаздывание». Графики функции f(t) и Операционное исчислениеимеют одинаковый вид, но график функции Операционное исчисление сдвинут на Операционное исчисление единиц

Рис. 304
Рис. 305
вправо (см. рис. 304). Следовательно, функции f(t) и Операционное исчисление описывают один и тот же процесс, но процесс, описываемый функцией Операционное исчисление, начинается с опозданием на время Операционное исчисление.

Свойство запаздывания удобно применять при отыскании изображения функций, которые на разных участках задаются различными аналитическими выражениями; функций, описывающих импульсные процессы.

Функция

Операционное исчисление

называется обобщенной единично ной функцией (см. рис 305).

Так как

Операционное исчисление

Запаздывающую функцию

Операционное исчисление

можно записать так:

Операционное исчисление

Пример:

Найти изображение f(t) = t — 1.

Решение:

Для того чтобы быть оригиналом, функция f(t) должна удовлетворять условиям 1-3 (см. п. 78.1). В этом смысле исходную задачу можно понимать двояко.

Если понимать функцию f(t) как

Операционное исчисление

т. е. Операционное исчисление (см. рис. 306, а), то, зная, что Операционное исчисление(см. формулу (78.4)), Операционное исчисление и, используя свойство линейности, находим

Операционное исчисление

Если же понимать функцию f(t) как

Операционное исчисление

т. е. Операционное исчисление (см. рис. 306, б), то, используя свойство запаздывания, находим

Операционное исчисление

Операционное исчисление

Пример:

Найти изображение функции

Операционное исчисление

Решение:

Данная функция описывает единичный импульс (см. рис. 307), который можно рассматривать как разность двух оригиналов: единичной функции Операционное исчисление и обобщенной единичной функции Операционное исчисление. Поэтому

Операционное исчисление

Пример:

Найти изображение функции

Операционное исчисление

Операционное исчисление

Решение:

Функция-оригинал изображена на рис. 308. Запишем ее одним аналитическим выражением, используя функции Хевисайда Операционное исчисление:

Операционное исчисление

Раскроем скобки и приведем подобные слагаемые:

Операционное исчисление

Изображение функции f(t) будет равно

Операционное исчисление

Замечания:

1.Изображение периодического оригинала с периодом, равным Т,

есть Операционное исчисление

2.Свойство опережения

Операционное исчисление

применяется значительно реже.

Дифференцирование оригинала

Если Операционное исчисление и функции Операционное исчисление являются оригиналами, то

Операционное исчисление

По определению изображения находим

Операционное исчисление

Итак,Операционное исчисление Пользуясь полученным результатом, найдем изображение второй производной f»(t):

Операционное исчисление

Аналогично найдем изображение третьей производной f»‘(t):

Операционное исчисление

Применяя формулу (78.11) (п — 1) раз, получим формулу (78.14).

Замечание. Формулы (78.11)-(78.14) просто выглядят при нулевых начальных условиях: если

Операционное исчисление

т. е. дифференцированию оригинала соответствует умножение его изображения на р.

Рассмотренное свойство дифференцирования оригинала вместе со свойством линейности широко используется при решении линейных дифференциальных уравнений.

Пример:

Найти изображение выражения

Операционное исчисление

Операционное исчисление

Решение:

Пусть Операционное исчисление Тогда, согласно формулам (78.11)—(78.13), имеем

Операционное исчисление

Следовательно,

Операционное исчисление

Дифференцирование изображения

Если Операционное исчисление то

Операционное исчисление

т. е. дифференцированию изображения соответствует умножение его оригинала на (-t).

Согласно теореме 78.1 существования изображения, F(p) является аналитической функцией в полуплоскости Операционное исчислениеСледовательно, у нее существует производная любого порядка. Дифференцируя интеграл (78.1) по параметру р (обоснование законности этой операции опустим), получим

Операционное исчисление

Операционное исчисление

Пример:

Найти изображения функций Операционное исчисление

Операционное исчисление

Решение:

Так как Операционное исчисление, то, в силу свойства дифференцирования изображения, имеем Операционное исчисление т. е.

Операционное исчисление

Далее находим

Операционное исчисление

Продолжая дифференцирование, получим

Операционное исчисление

С учетом свойства смещения получаем

Операционное исчисление

Согласно формуле (78.5), Операционное исчисление Следовательно,

Операционное исчисление

Операционное исчисление

Аналогично, используя формулы (78.6), (78.7) и (78.8), находим

Операционное исчисление

С учетом свойства смещения и формул (78.15) и (78.16), получаем

Операционное исчисление

Интегрирование оригинала

Если

Операционное исчисление

т. е. интегрированию оригинала от 0 до t соответствует деление его изображения на р.

Функция Операционное исчисление является оригиналом (можно проверить).

Пусть Операционное исчисление Тогда по свойству дифференцирования оригинала имеем

Операционное исчисление

(так как Операционное исчисление). А так как

Операционное исчисление

Операционное исчисление

Интегрирование изображения

Если Операционное исчисление и интеграл Операционное исчисление сходится, то Операционное исчислениет. е. интегрированию изображения от p до Операционное исчисление соответствует деление его оригинала на t.

Используя формулу (78.1) и изменяя порядок интегрирования (обоснование законности этой операции опускаем), получаем

Операционное исчисление

Пример:

Найти изображение функции Операционное исчисление найти изображение интегрального синуса Операционное исчисление

Решение:

Так как

Операционное исчисление

т. е. Операционное исчисление Применяя свойство интегрирования t оригинала, получаем

Операционное исчисление

Умножение изображений

Если Операционное исчислението

Операционное исчисление

Можно показать, что функция Операционное исчислениеявляется оригиналом.

Используя преобразование Лапласа (78.1), можно записать

Операционное исчисление

Область D интегрирования полученного двукратного интеграла определяется условиями Операционное исчисление (см. рис. 309).

Операционное исчисление

Изменяя порядок интегрирования и полагая Операционное исчисление, получим

Операционное исчисление

Интеграл в правой части формулы (78.17) называется сверткой функции Операционное исчисление и обозначается символом Операционное исчисление, т. е.

Операционное исчисление

Можно убедиться (положив Операционное исчисление), что свертывание обладает свойством переместительности, т. е. Операционное исчисление

Умножение изображений соответствует свертыванию их оригиналов, т. е.

Операционное исчисление

Пример:

Найти оригинал функций

Операционное исчисление

Решение:

Так как

Операционное исчисление

то

Операционное исчисление

Операционное исчисление

т. e.

Операционное исчисление

Аналогично получаем

Операционное исчисление

Следствие:

Если Операционное исчисление также является оригиналом, то

Операционное исчисление

Запишем произведение Операционное исчисление в виде

Операционное исчисление

или

Операционное исчисление

Первое слагаемое в правой части есть произведение изображений, соответствующих оригиналам Операционное исчисление Поэтому на основании свойства умножения изображений и линейности можно записать Операционное исчисление или

Операционное исчисление

Формула (78.18) называется формулой Дюамеля. На основании свойства переместительности свертки формулу Дюамеля можно записать в виде

Операционное исчисление

Формулу Дюамеля можно применять для определения оригиналов по известным изображениям.

Пример:

Найти оригинал, соответствующий изображению

Операционное исчисление

Решение:

Так как

Операционное исчисление

то на основании формулы Дюамеля (78.18) имеем

Операционное исчисление

Умножение оригиналов

Операционное исчисление

где путь интегрирования — вертикальная прямая Операционное исчисление (см. рис. 310) (примем без доказательства).

Операционное исчисление

Резюме

Рассмотренные свойства преобразования Лапласа представляют собой основные правила (аппарат) операционного исчисления. Для удобства пользования перечислим эти свойства.

Операционное исчисление

Операционное исчисление

6. Дифференцирование изображения

Операционное исчисление

Операционное исчисление

Операционное исчисление

Таблица оригиналов и изображений

Составим краткую таблицу, устанавливающую соответствие между некоторыми оригиналами (часто встречающимися на практике) и их изображениями. Достаточно полная таблица оригиналов и изображений, позволяющая по заданному оригиналу находить изображение и наоборот, есть, в частности, в книге «Справочник по операционному исчислению» (авторы В. А. Диткин и П. И. Кузнецов).

Операционное исчисление

Операционное исчисление

Операционное исчисление

Обратное преобразование Лапласа

Теоремы разложения:

Рассмотрим две теоремы, называемые теоремами разложения, позволяющие по заданному изображению F(p) находить соответствующий ему оригинал f(t).

Теорема:

Если функция F(p) в окрестности точки Операционное исчисление может быть представлена в виде ряда Лорана

Операционное исчисление

то функция

Операционное исчисление

является оригиналом, имеющим изображение F(p), т. е.

Операционное исчисление

Примем эту теорему без доказательства.

Пример:

Найти оригинал f(t), если

Операционное исчисление

Решение:

Имеем

Операционное исчисление

Следовательно, на основании теоремы 79.1

Операционное исчисление

Запишем лорановское разложение функции Операционное исчисление в окрестности точкиОперационное исчисление:

Операционное исчисление

где Операционное исчислениеСледовательно,

Операционное исчисление

Теорема:

Если Операционное исчислениеправильная рациональная дробь, знаменатель которой В(р) имеет лишь простые корни (нули)Операционное исчисление то функция

Операционное исчисление

является оригиналом, имеющим изображение F(p).

Отметим, что дробь Операционное исчисление должна быть правильной (степень многочлена А(р) ниже степени многочлена В(р)) в противном случае не выполняется необходимый признак существования изображения

Операционное исчисление

не может быть изображением.

Разложим правильную рациональную дробь Операционное исчисление на простейшие:

Операционное исчисление

где Операционное исчисление— неопределенные коэффициенты. Для определения коэффициента Операционное исчисление этого разложения умножим обе части этого равенства почленно на Операционное исчисление:

Операционное исчисление

Переходя в этом равенстве к пределу при Операционное исчисление, получаем

Операционное исчисление

Итак, Операционное исчислениеАналогичным путем (умножая обе части равенства (79.2) на Операционное исчисление найдем Операционное исчисление

Подставляя найденные значения Операционное исчисление в равенство (79.2), получим

Операционное исчисление

Так как по формуле (78.3)

Операционное исчисление

то на основании свойства линейности имеем

Операционное исчисление

Замечание:

Легко заметить, что коэффициенты Операционное исчислениеопределяются как вычеты комплексной функции F(p) в простых полюсах (формула (77.4)):

Операционное исчисление

Можно показать, что если Операционное исчисление правильная дробь, но корни (нули)Операционное исчисление знаменателя В(р) имеют кратности Операционное исчисление соответственно, то в этом случае оригинал изображения F(p) определяется формулой

Операционное исчисление

Теорему 79.2 можно сформулировать следующим образом:
Теорема:

Если изображение Операционное исчислениеявляется дробно-рациональной функцией от Операционное исчисление — простые или кратные полюсы этой функции, то оригинал f(t), соответствующий изображению F(p), определяется формулой

Операционное исчисление

Формула Римана-Меллина

Общий способ определения оригинала по изображению дает обратное преобразование Лапласа (формула обращения Римана-Меллина), имеющее вид

Операционное исчисление

где интеграл берется вдоль любой прямой Операционное исчисление.

При определенных условиях интеграл (79.5) вычисляется по формуле

Операционное исчисление

Замечание:

На практике отыскание функции-оригинала обычно проводят по следующему плану: прежде всего следует по таблице оригиналов и изображений попытаться отыскать для заданного изображения F(p) соответствующий ему оригинал; второй путь состоит в том, что функцию F(p) стараются представить в виде суммы простейших рациональных дробей, а затем, пользуясь свойством линейности, найти оригинал; наконец, использовать теоремы разложения, свойство умножения изображений, формулу обращения и т.д.

Пример:

Найти оригинал по его изображению

Операционное исчисление

Решение:

Проще всего поступить так:

Операционное исчисление

(использовали свойство линейности и формулы (78.5) и (78.6)).

Если же использовать теорему 79.2 разложения, то будем иметь:

Операционное исчисление

корни знаменателяОперационное исчисление и, согласно формуле (79.1),

Операционное исчисление

Пример:

Найти функцию-оригинал, если ее изображение
задано как Операционное исчисление

Решение:

Здесь

Операционное исчисление

— простой корень знаменателя, Операционное исчисление — 3-кратный корень (m = 3). Используя формулы (79.1) и (79.3), имеем:

Операционное исчисление

Приведем другой способ нахождения f(t). Разобьем дробь Операционное исчисление

на сумму простейших дробей:

Операционное исчисление

Следовательно,

Операционное исчисление

Приведем третий способ нахождения f(t). Представим F(p) как
произведение Операционное исчислениеи так как Операционное исчислениепользуясь свойством умножения изображений, имеем:

Операционное исчисление

Операционный метод решения линейных дифференциальных уравнений и их систем

Пусть требуется найти частное решение линейного дифференциального уравнения с постоянными коэффициентами

Операционное исчисление

удовлетворяющее начальным условиям

Операционное исчисление

где Операционное исчисление — заданные числа.

Будем считать, что искомая функция y(t) вместе с ее рассматриваемыми производными и функция f(t) являются оригиналами.

Пусть Операционное исчислениеПользуясь свойствами дифференцирования оригинала и линейности, перейдем в уравнении(80.1) от оригиналов к изображениям:

Операционное исчисление

Полученное уравнение называют операторным (или уравнением в изображениях). Разрешим его относительно Y:

Операционное исчисление

— алгебраические многочлены от p степени п и п-1 соответственно. Из последнего уравнения находим

Операционное исчисление

Полученное равенство называют операторным решением дифференциального уравнения (80.1). Оно имеет более простой вид, если все начальные условия равны нулю, т. е.Операционное исчисление

В этом случае Операционное исчисление

Находя оригинал y(t), соответствующий найденному изображению (80.2), получаем, в силу теоремы единственности, частное решение дифференциального уравнения (80.1).

Замечание:

Полученное решение y(t) во многих случаях оказывается справедливым при всех значениях t (а не только при Операционное исчисление).

Пример:

Решить операционным методом дифференциальное уравнение Операционное исчисление при условиях Операционное исчисление

Решение:

Пусть Операционное исчисление Тогда

Операционное исчисление

Подставляя эти выражения в дифференциальное уравнение, получаем операторное уравнение:

Операционное исчисление

Отсюда Операционное исчисление Находим y(t). Можно разбить дробь на сумму простейших Операционное исчисление но так как корни знаменателя Операционное исчисление простые, то удобно воспользоваться второй теоремой разложения (формула (79.1)), в которой

Операционное исчисление

Получаем:

Операционное исчисление

Пример:

Найти решение уравнения

Операционное исчисление

при условии Операционное исчисление

Решение:

График данной функции имеет вид, изображенный на рисунке 311.

Операционное исчисление

С помощью единичной функции правую часть данного дифференциального уравнения можно записать одним аналитическим выражением:

Операционное исчисление

Операционное исчисление

Таким образом, имеем

Операционное исчисление

Операторное уравнение, при нулевых начальных условиях имеет вид

Операционное исчисление

Отсюда

Операционное исчисление

Так как

Операционное исчисление

то по теореме запаздывания находим:

Операционное исчисление

Аналогично применяется операционный метод для решения систем линейных дифференциальных уравнений с постоянными коэффициентами.

Покажем это на конкретном примере.

Пример:

Решить систему дифференциальных уравнений

Операционное исчисление

Решение:

Пусть

Операционное исчисление

Находим, что

Операционное исчисление

Система операторных уравнений принимает вид

Операционное исчисление

Решая эту систему алгебраических уравнений, находим:

Операционное исчисление

Переходя от изображений к оригиналам, получаем искомые решения:

Операционное исчисление

Операционное исчисление

Операционное исчисление

С помощью операционного исчисления можно также находить решения линейных дифференциальных уравнений с переменными коэффициентами, уравнений в частных производных, уравнений в конечных разностях (разностных уравнений); производить суммирование рядов; вычислять интегралы. При этом решение этих и других задач значительно упрощается.

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Прямая линия
  109. Уравнения прямой и плоскости в пространстве
  110. Кривые второго порядка
  111. Кривые и поверхности второго порядка
  112. Числовые ряды
  113. Степенные ряды
  114. Ряды Фурье
  115. Преобразование Фурье
  116. Функциональные ряды
  117. Функции многих переменных
  118. Метод координат
  119. Гармонический анализ
  120. Вещественные числа
  121. Предел последовательности
  122. Аналитическая геометрия
  123. Аналитическая геометрия на плоскости
  124. Аналитическая геометрия в пространстве
  125. Функции одной переменной
  126. Высшая алгебра
  127. Векторная алгебра
  128. Векторный анализ
  129. Векторы
  130. Скалярное произведение векторов
  131. Векторное произведение векторов
  132. Смешанное произведение векторов
  133. Операции над векторами
  134. Непрерывность функций
  135. Предел и непрерывность функций нескольких переменных
  136. Предел и непрерывность функции одной переменной
  137. Производные и дифференциалы функции одной переменной
  138. Частные производные и дифференцируемость функций нескольких переменных
  139. Дифференциальное исчисление функции одной переменной
  140. Матрицы
  141. Линейные и евклидовы пространства
  142. Линейные отображения
  143. Дифференциальные теоремы о среднем
  144. Теория устойчивости дифференциальных уравнений
  145. Функции комплексного переменного
  146. Преобразование Лапласа
  147. Теории поля
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Операционное исчисление с примерами решения и образцами выполнения

Операционное исчисление играет важную роль при решении прикладных задач, особенно в современной автоматике и телемеханике.

Операционное исчисление — один из методов математического анализа, позволяющий в ряде случаев сводить исследование дифференциальных и некоторых типов интегральных операторов и решение уравнений, содержащих эти операторы, к рассмотрению более простых алгебраических задач.

Методы операционного исчисления предполагают реализацию следующей условной схемы решения задачи.

  1. От искомых функций переходят к некоторым другим функциям — их изображениям.
  2. Над изображениями производят операции, соответствующие заданным операциям над самими функциями.
  3. Получив некоторый результат при действиях над изображениями, возвращаются к самим функциям.

В качестве преобразования, позволяющего перейти от функции к их изображениям, будем применять так называемое преобразование Лапласа.

Преобразование Лапласа

Оригиналы и их изображения:

Основными первоначальными понятиями операционного исчисления являются понятия функции-оригинала и функции-изображения.

Пусть f(t) — действительная функция действительного переменного t (под t будем понимать время или координату).

Функция f(t) называется оригиналом, если она удовлетворяет следующим условиям:

  1. f(t)— кусочно-непрерывная при т. е. она непрерывна или имеет точки разрыва I рода, причем на каждом конечном промежутке оси t таких точек лишь конечное число.
  2. Существуют такие числа что для всех t выполняется неравенство , т. е. при возрастании t функция f(t) может возрастать не быстрее некоторой показательной функции. Число называется показателем роста f(t).

Условия 1-3 выполняются для большинства функций, описывающих различные физические процессы.

Первое условие означает, что процесс начинается с некоторого момента времени; удобнее считать, что в момент t = 0. Третьему условию удовлетворяют ограниченные функции (для них можно положить ), степенные и другие (для функций вида ( условие 3 не выполняется). Не является оригиналом, например, функция (не удовлетворяет второму условию).

Замечание:

Функция f(t) может быть и комплексной функцией действительно переменного, т. е. иметь вид она считается оригиналом, если действительные функции являются оригиналами.

Изображением оригинала f(t) называется функция F(p) комплексного переменного , определяемая интегралом

Операцию перехода от оригинала f(t) к изображению F(p) называют преобразованием Лапласа. Соответствие между оригиналом f(t) и изображением F(p) записывается в виде или (принято оригиналы обозначать малыми буквами, а их изображения — соответствующими большими буквами).

Теорема:

Существование изображения. Для всякого оригинала f(t) изображение F(p) существует (определено) в полуплоскости — показатель роста функции f(t) , причем функция F(p) является аналитической в этой полуплоскости .

Докажем первую часть теоремы. Пусть произвольная точка полуплоскости (см. рис. 302).

Учитывая, что находим:

Отсюда вытекает абсолютная сходимость интеграла (78.1), т. е. изображение F(p) существует и однозначно в полуплоскости

Следствие:

Необходимый признак существования изображения. Если функция F(p) является изображением функции f(t) , то

Это утверждение непосредственно вытекает из неравенства (78.2), когда

Так как F(p) — аналитическая функция в полуплоскости

по любому направлению. Отсюда, в частности, следует, что функции не могут быть изображениями.

Отметим, что из аналитичности функции F(p) следует, что все ее особые точки должны лежать левее прямой или на самой этой прямой. Функция F(p) , не удовлетворяющая этому условию, не является изображением функции f(t). Не является изображением, например, функция (ее особые точки расположены на всей оси s).

Теорема:

О единственности оригинала. Если функция F(p) служит изображением двух оригиналов , то эти оригиналы совпадают друг с другом во всех точках, в которых они непрерывны.
(Примем без доказательства.)

Пример:

Найти изображение единичной функции Хевисайда

Решение:

По формуле (78.1) при находим:

т. e. , или, в символической записи,

В дальнейшем функцию-оригинал будем кратко записывать в виде f(t) , подразумевал, что

Пример:

Найти изображение функции — любое число.

Решение:

Данная функция является оригиналом. По формуле (78.1) имеем

если Re(p — a) > 0. Таким образом,

Пример:

Найти изображение функции f(t) = t.

Решение:

В этом случае преобразование Лапласа имеет вид

Замечание:

Функция является аналитической не только в полуплоскости Rep > Re а, где интеграл (78.1) сходится, а на всей комплексной плоскости р, кроме точки р = а. Такая особенность наблюдается и для многих других изображений. Далее для нас будет более важным, как правило, само изображение функции, а не область, в которой оно выражается интегралом (78.1).

Свойства преобразования Лапласа

Находить изображения, пользуясь только определением изображения, не всегда просто и удобно. Свойства преобразования Лапласа существенно облегчают задачу нахождения изображений для большого числа разнообразных функций, а также задачу отыскания оригиналов по их изображениям.

Линейность

Линейной комбинации оригиналов соответствует такая же линейная комбинация изображений, т. е. если

— постоянные числа, то

Используя свойства интеграла, находим

Пример:

Найти изображения функций — любое число), с (const),

Решение:

Пользуясь свойством линейности, формулой (78.3), находим:

Аналогично получаем формулу

Далее, т. е.

Аналогично получаем формулу

т.е. умножение аргумента оригинала на положительное число приводит к делению изображения и его аргумента на это число.

По формуле (78.1) имеем

(так как безразлично, какой буквой обозначена переменная интегрирования).
Например, пусть . Тогда

Смещение (затухание)

т. е. умножение оригинала на функцию влечет за собой смещение переменной р.

В силу формулы (78.1) имеем

Благодаря этому свойству можно расширить таблицу соответствия между оригиналами и их изображениями:

Пример:

Найти оригинал по его изображению

Решение:

Преобразуем данную дробь так, чтобы можно было воспользоваться свойством смещения:

(См. формулы (78.9), (78.10) и свойство линейности.)

Запаздывание

т. е. запаздывание оригинала на положительную величину приводит к умножению изображения оригинала без запаздывания на .

Положив , получим

Поясним термин «запаздывание». Графики функции f(t) и имеют одинаковый вид, но график функции сдвинут на единиц

Рис. 304
Рис. 305
вправо (см. рис. 304). Следовательно, функции f(t) и описывают один и тот же процесс, но процесс, описываемый функцией , начинается с опозданием на время .

Свойство запаздывания удобно применять при отыскании изображения функций, которые на разных участках задаются различными аналитическими выражениями; функций, описывающих импульсные процессы.

называется обобщенной единично ной функцией (см. рис 305).

можно записать так:

Пример:

Найти изображение f(t) = t — 1.

Решение:

Для того чтобы быть оригиналом, функция f(t) должна удовлетворять условиям 1-3 (см. п. 78.1). В этом смысле исходную задачу можно понимать двояко.

Если понимать функцию f(t) как

т. е. (см. рис. 306, а), то, зная, что (см. формулу (78.4)), и, используя свойство линейности, находим

Если же понимать функцию f(t) как

т. е. (см. рис. 306, б), то, используя свойство запаздывания, находим

Пример:

Найти изображение функции

Решение:

Данная функция описывает единичный импульс (см. рис. 307), который можно рассматривать как разность двух оригиналов: единичной функции и обобщенной единичной функции . Поэтому

Пример:

Найти изображение функции

Решение:

Функция-оригинал изображена на рис. 308. Запишем ее одним аналитическим выражением, используя функции Хевисайда :

Раскроем скобки и приведем подобные слагаемые:

Изображение функции f(t) будет равно

Замечания:

1.Изображение периодического оригинала с периодом, равным Т,

есть

применяется значительно реже.

Дифференцирование оригинала

Если и функции являются оригиналами, то

По определению изображения находим

Итак, Пользуясь полученным результатом, найдем изображение второй производной f»(t):

Аналогично найдем изображение третьей производной f»‘(t):

Применяя формулу (78.11) (п — 1) раз, получим формулу (78.14).

Замечание. Формулы (78.11)-(78.14) просто выглядят при нулевых начальных условиях: если

т. е. дифференцированию оригинала соответствует умножение его изображения на р.

Рассмотренное свойство дифференцирования оригинала вместе со свойством линейности широко используется при решении линейных дифференциальных уравнений.

Пример:

Найти изображение выражения

Решение:

Пусть Тогда, согласно формулам (78.11)—(78.13), имеем

Дифференцирование изображения

Если то

т. е. дифференцированию изображения соответствует умножение его оригинала на (-t).

Согласно теореме 78.1 существования изображения, F(p) является аналитической функцией в полуплоскости Следовательно, у нее существует производная любого порядка. Дифференцируя интеграл (78.1) по параметру р (обоснование законности этой операции опустим), получим

Пример:

Найти изображения функций

Решение:

Так как , то, в силу свойства дифференцирования изображения, имеем т. е.

Продолжая дифференцирование, получим

С учетом свойства смещения получаем

Согласно формуле (78.5), Следовательно,

Аналогично, используя формулы (78.6), (78.7) и (78.8), находим

С учетом свойства смещения и формул (78.15) и (78.16), получаем

Интегрирование оригинала

т. е. интегрированию оригинала от 0 до t соответствует деление его изображения на р.

Функция является оригиналом (можно проверить).

Пусть Тогда по свойству дифференцирования оригинала имеем

(так как ). А так как

Интегрирование изображения

Если и интеграл сходится, то т. е. интегрированию изображения от p до соответствует деление его оригинала на t.

Используя формулу (78.1) и изменяя порядок интегрирования (обоснование законности этой операции опускаем), получаем

Пример:

Найти изображение функции найти изображение интегрального синуса

Решение:

т. е. Применяя свойство интегрирования t оригинала, получаем

Умножение изображений

Если то

Можно показать, что функция является оригиналом.

Используя преобразование Лапласа (78.1), можно записать

Область D интегрирования полученного двукратного интеграла определяется условиями (см. рис. 309).

Изменяя порядок интегрирования и полагая , получим

Интеграл в правой части формулы (78.17) называется сверткой функции и обозначается символом , т. е.

Можно убедиться (положив ), что свертывание обладает свойством переместительности, т. е.

Умножение изображений соответствует свертыванию их оригиналов, т. е.

Пример:

Найти оригинал функций

Решение:

Следствие:

Если также является оригиналом, то

Запишем произведение в виде

Первое слагаемое в правой части есть произведение изображений, соответствующих оригиналам Поэтому на основании свойства умножения изображений и линейности можно записать или

Формула (78.18) называется формулой Дюамеля. На основании свойства переместительности свертки формулу Дюамеля можно записать в виде

Формулу Дюамеля можно применять для определения оригиналов по известным изображениям.

Пример:

Найти оригинал, соответствующий изображению

Решение:

то на основании формулы Дюамеля (78.18) имеем

Умножение оригиналов

где путь интегрирования — вертикальная прямая (см. рис. 310) (примем без доказательства).

Рассмотренные свойства преобразования Лапласа представляют собой основные правила (аппарат) операционного исчисления. Для удобства пользования перечислим эти свойства.

6. Дифференцирование изображения

Таблица оригиналов и изображений

Составим краткую таблицу, устанавливающую соответствие между некоторыми оригиналами (часто встречающимися на практике) и их изображениями. Достаточно полная таблица оригиналов и изображений, позволяющая по заданному оригиналу находить изображение и наоборот, есть, в частности, в книге «Справочник по операционному исчислению» (авторы В. А. Диткин и П. И. Кузнецов).

Обратное преобразование Лапласа

Теоремы разложения:

Рассмотрим две теоремы, называемые теоремами разложения, позволяющие по заданному изображению F(p) находить соответствующий ему оригинал f(t).

Теорема:

Если функция F(p) в окрестности точки может быть представлена в виде ряда Лорана

является оригиналом, имеющим изображение F(p), т. е.

Примем эту теорему без доказательства.

Пример:

Найти оригинал f(t), если

Решение:

Следовательно, на основании теоремы 79.1

Запишем лорановское разложение функции в окрестности точки:

где Следовательно,

Теорема:

Если правильная рациональная дробь, знаменатель которой В(р) имеет лишь простые корни (нули) то функция

является оригиналом, имеющим изображение F(p).

Отметим, что дробь должна быть правильной (степень многочлена А(р) ниже степени многочлена В(р)) в противном случае не выполняется необходимый признак существования изображения

не может быть изображением.

Разложим правильную рациональную дробь на простейшие:

где — неопределенные коэффициенты. Для определения коэффициента этого разложения умножим обе части этого равенства почленно на :

Переходя в этом равенстве к пределу при , получаем

Итак, Аналогичным путем (умножая обе части равенства (79.2) на найдем

Подставляя найденные значения в равенство (79.2), получим

Так как по формуле (78.3)

то на основании свойства линейности имеем

Замечание:

Легко заметить, что коэффициенты определяются как вычеты комплексной функции F(p) в простых полюсах (формула (77.4)):

Можно показать, что если правильная дробь, но корни (нули) знаменателя В(р) имеют кратности соответственно, то в этом случае оригинал изображения F(p) определяется формулой

Теорему 79.2 можно сформулировать следующим образом:
Теорема:

Если изображение является дробно-рациональной функцией от — простые или кратные полюсы этой функции, то оригинал f(t), соответствующий изображению F(p), определяется формулой

Формула Римана-Меллина

Общий способ определения оригинала по изображению дает обратное преобразование Лапласа (формула обращения Римана-Меллина), имеющее вид

где интеграл берется вдоль любой прямой .

При определенных условиях интеграл (79.5) вычисляется по формуле

Замечание:

На практике отыскание функции-оригинала обычно проводят по следующему плану: прежде всего следует по таблице оригиналов и изображений попытаться отыскать для заданного изображения F(p) соответствующий ему оригинал; второй путь состоит в том, что функцию F(p) стараются представить в виде суммы простейших рациональных дробей, а затем, пользуясь свойством линейности, найти оригинал; наконец, использовать теоремы разложения, свойство умножения изображений, формулу обращения и т.д.

Пример:

Найти оригинал по его изображению

Решение:

Проще всего поступить так:

(использовали свойство линейности и формулы (78.5) и (78.6)).

Если же использовать теорему 79.2 разложения, то будем иметь:

корни знаменателя и, согласно формуле (79.1),

Пример:

Найти функцию-оригинал, если ее изображение
задано как

Решение:

— простой корень знаменателя, — 3-кратный корень (m = 3). Используя формулы (79.1) и (79.3), имеем:

Приведем другой способ нахождения f(t). Разобьем дробь

на сумму простейших дробей:

Приведем третий способ нахождения f(t). Представим F(p) как
произведение и так как пользуясь свойством умножения изображений, имеем:

Операционный метод решения линейных дифференциальных уравнений и их систем

Пусть требуется найти частное решение линейного дифференциального уравнения с постоянными коэффициентами

удовлетворяющее начальным условиям

где — заданные числа.

Будем считать, что искомая функция y(t) вместе с ее рассматриваемыми производными и функция f(t) являются оригиналами.

Пусть Пользуясь свойствами дифференцирования оригинала и линейности, перейдем в уравнении(80.1) от оригиналов к изображениям:

Полученное уравнение называют операторным (или уравнением в изображениях). Разрешим его относительно Y:

— алгебраические многочлены от p степени п и п-1 соответственно. Из последнего уравнения находим

Полученное равенство называют операторным решением дифференциального уравнения (80.1). Оно имеет более простой вид, если все начальные условия равны нулю, т. е.

В этом случае

Находя оригинал y(t), соответствующий найденному изображению (80.2), получаем, в силу теоремы единственности, частное решение дифференциального уравнения (80.1).

Замечание:

Полученное решение y(t) во многих случаях оказывается справедливым при всех значениях t (а не только при ).

Пример:

Решить операционным методом дифференциальное уравнение при условиях

Решение:

Пусть Тогда

Подставляя эти выражения в дифференциальное уравнение, получаем операторное уравнение:

Отсюда Находим y(t). Можно разбить дробь на сумму простейших но так как корни знаменателя простые, то удобно воспользоваться второй теоремой разложения (формула (79.1)), в которой

Пример:

Найти решение уравнения

при условии

Решение:

График данной функции имеет вид, изображенный на рисунке 311.

С помощью единичной функции правую часть данного дифференциального уравнения можно записать одним аналитическим выражением:

Таким образом, имеем

Операторное уравнение, при нулевых начальных условиях имеет вид

то по теореме запаздывания находим:

Аналогично применяется операционный метод для решения систем линейных дифференциальных уравнений с постоянными коэффициентами.

Покажем это на конкретном примере.

Пример:

Решить систему дифференциальных уравнений

Решение:

Система операторных уравнений принимает вид

Решая эту систему алгебраических уравнений, находим:

Переходя от изображений к оригиналам, получаем искомые решения:

С помощью операционного исчисления можно также находить решения линейных дифференциальных уравнений с переменными коэффициентами, уравнений в частных производных, уравнений в конечных разностях (разностных уравнений); производить суммирование рядов; вычислять интегралы. При этом решение этих и других задач значительно упрощается.

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Применение преобразования Лапласа к решению
линейных дифференциальных уравнений и систем

1°. Общие сведения о преобразовании Лапласа: оригинал и изображение

Функцией-оригиналом называется комплекснозначная функция действительного переменного , удовлетворяющая следующим условиям:

2) функция интегрируема на любом конечном интервале оси ;

3) с возрастанием модуль функции растет не быстрее некоторой показательной функции, т. е. существуют числа 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADoAAAAQBAMAAAC1onFLAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAD3RSTlMAgUHAYqEh5RGR0VIxELEI83NdAAABBklEQVQY02NgIAAcBRWA5EVBMVRhDjUwdfq/AZCc/kUBVXa6sC2IYjNfwMDANN8AVZKxguExiGYR/sDAwOcvAGK7XIDJsgcw7D8ApFlVfzAwCM0HG8yysAEqe16AQR+kgZ3xEwNbwHqIIMvKBAgDaJY+yLJklt8MfB2foXpYTCHS8gIM+SBZR6aPDFu4P8IsZDI9AJXtB8kGsX3leMD5Ce5aJuMDEFmwyQUMnzkTuD4gZIORZNkMGJYrQkyBmgx2PdDB+hOAzhBgsDdg2C8AleSGuqp9AsP+DQwMXQIMQL/GQ8ORZSnUR5y1DOFA3/7/zyDJsB5IooYG7yvXGoz4aoAzeYQYGADRdjuTYajQpgAAAABJRU5ErkJggg==» /> и такие, что для всех имеем

Изображением функции-оригинала по Лапласу называется функция комплексного переменного , определяемая равенством

при s_0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAFIAAAATBAMAAADxBkdhAAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADXRSTlMAQcCBEFor0KCR6LBxSK9m8wAAAVlJREFUKM9jYCAaJBsbGx8jSqVj71LRWVuIUiqrwMB6iViVDHcT0AQNcaoUQBN0LsVh+3UGBlYlVSAnqUVaFarUASrPuKkFprJQ8JQKA0NUQmwAA0vBpZZciPnOxVClUQmzYSoXW1xyYGC7ycBewMB65DYD7waIOCtUaTHDDQY2EajtQMR8WVD6AgNj6lUGXgWoEawVYKWrpiYw9AglQFSyX2PgvGFsbMDAwHmFQXYDTKUGWOXZuwVsC1gVICqZ7jAw3wHLAl1gGwBVWAkOOja38IvMCowXoCpvMrDdYGAAKvGdwLAKotAV6szYCYzXgCovglQWMHBcZ1OYlcDWABRX4FmG6vVTCcwKTGCVsnfvKrDUWgQwX9oElJvb0ZSAGvJOmzUcOCFmgkP3IBCDDClngxjVipSEGBig7kQGLDexJg2g3zegCfFcxZ6KZoSjJ6FJShOwGwqMIwCRZlRL/vuSSQAAAABJRU5ErkJggg==» style=»vertical-align: middle;» />. Условие 3 обеспечивает существование интеграла (2).

Преобразование (2), ставящее в соответствие оригиналу его изображение , называется преобразованием Лапласа. При этом пишут .

Свойства преобразования Лапласа

Всюду в дальнейшем считаем, что

I. Свойство линейности. Для любых комплексных постоянных и

II. Теорема подобия. Для любого постоянного 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADEAAAAQBAMAAABNQoq8AAAALVBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACttl6nAAAADnRSTlMAAcGe2BFbQSGBMfCxcU2qjNsAAADDSURBVBjTY2AgDYgvxCHB5WyyALtM9wW2HUhcDgs4006A8TGyyprjAlCWiwCjCpDNekkzACLQrA6RYnwkwKgHZK42DVFghkq5CcBlAhi4NjOwPSuGGtMJlmJ/xMCgV8DA9JSB6yXc8kg3IMEKkelTAOo2gMv4Iuypm8DA+DoArgVkGiPQbdpgGdY3DDAXQP3DAPKPiAFjkRMbiqsZ1iWwPweGkY+RafYxEL8IJsHA5jklAeSShQysIHtYEaHD2JbKwAAA/gYrl5lLD9QAAAAASUVORK5CYII=» />

III. Дифференцирование оригинала. Если есть оригинал, то

Обобщение: если раз непрерывно дифференцируема на и если есть оригинал, то

IV. Дифференцирование изображения равносильно умножению оригинала на «минус аргумент», т.е.

V. Интегрирование оригинала сводится к делению изображения на

VI. Интегрирование изображения равносильно делению на оригинала:

(предполагаем, что интеграл сходится).

VII. Теорема запаздывания. Для любого положительного числа

VIII. Теорема смещения (умножение оригинала на показательную функцию). Для любого комплексного числа

IX. Теорема умножения (Э. Борель). Произведение двух изображений и также является изображением, причем

Интеграл в правой части (14) называется сверткой функций и и обозначается символом

Теорема XI утверждает, что умножение изображений равносильно свертыванию оригиналов , т.е.

Отыскание оригиналов дробно-рациональных изображений

Для нахождения оригинала по известному изображению , где есть правильная рациональная дробь, применяют следующие приемы.

1) Эту дробь разлагают на сумму простейших дробей и находят для каждой из них оригинал, пользуясь свойствами I–IX преобразования Лапласа.

2) Находят полюсы этой дроби и их кратности . Тогда оригиналом для будет функция

где сумма берется по всем полюсам функции .

В случае, если все полюсы функции простые, т.е. , последняя формула упрощается и принимает вид

Пример 1. Найти оригинал функции , если

Решение. Первый способ. Представим в виде суммы простейших дробей

и найдем неопределенные коэффициенты . Имеем

Полагая в последнем равенстве последовательно , получаем

Находя оригиналы для каждой из простейших дробей и пользуясь свойствам линейности, получаем

Второй способ. Найдем полюсы функции . Они совпадают с нулями знаменателя . Таким образом, изображение имеет четыре простых полюса . Пользуясь формулой (17), получаем оригинал

Пример 2. Найти оригинал , если .

Решение. Данная дробь имеет полюс кратности и полюс кратности . Пользуясь формулой (16), получаем оригинал

2°. Решение задачи Коши для линейных дифференциальных уравнений с постоянными коэффициентами

Пусть требуется найти решение дифференциального уравнения второго порядка с постоянными коэффициентами

Будем считать, что функция и решение вместе с его производньь ми до второго порядка включительно являются функциями-оригиналами. Пусть . По правилу дифференцирования оригиналов с учетом (2) имеем

Применяя к обеим частям (1) преобразование Лапласа и пользуясь свойством линейности преобразования, получаем операторное уравнение

Решая уравнение (20), найдем операторное решение

Находя оригинал для , получаем решение уравнения (18), удовлетворяющее начальным условиям (19).

Аналогично можно решить любое уравнение n-го порядка с постоянными коэффициентами и с начальными условиями при .

Пример 3. Решить дифференциальное уравнение операторным методом

Решение. Пусть , тогда по правилу дифференцирования оригинала имеем

Известно, что поэтому, переходя отданной задачи (21)–(22) к операторному уравнению, будем иметь

Легко видеть, что функция удовлетворяет данному уравнению и начальному условию задачи.

Пример 4. Решить уравнение .

Решение. Так как и по условию , то операторное уравнение будет иметь вид

Отсюда находим операторное решение

Разлагаем правую часть на элементарные дроби:

Переходя к оригиналам, получаем искомое решение .

Пример 5. Решить уравнение .

Решение. Так как и по условию , то операторное уравнение будет иметь вид

и, следовательно, операторное решение

Разложим правую часть на элементарные дроби:

Переходя к оригиналам, получим решение поставленной задачи

3°. Решение систем линейных дифференциальных уравнений с постоянными коэффициентами

Пусть требуется найти решение системы двух уравнений с постоянными коэффициентами

удовлетворяющее начальным условиям

Будем предполагать, что функции , а также и являются функциями-оригиналами.

По правилу дифференцирования оригиналов с учетом (24) имеем

Применяя к обеим частям каждого из уравнений системы (23) преобразование Лапласа, получим операторную систему

Эта система является линейной алгебраической системой двух уравнений с двумя неизвестными и . Решая ее, мы найдем и , а затем, переходя к оригиналам, получим решение системы (23), удовлетворяющее начальным условиям (24). Аналогично решаются линейные системы вида

Пример 6. Найти решение системы дифференциальных уравнений операторным методом

удовлетворяющее начальному условию .

Решение. Так как и , то операторная система будет иметь вид

Решая систему, получаем

Разлагаем дроби, стоящие в правых частях, на элементарные:

Переходя к оригиналам, получим искомое решение

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Применения операционного исчисления

Решение задачи Коши для ОДУ с постоянными коэффициентами

Пример 1.

Решить однородное дифференциальное уравнение с постоянными коэффициентами. begin &x»’+2x»+5x’=0,\ &x(0)=-1, ,, x'(0)=2, ,, x»(0)=0. end

Записываем изображения для левой и правой частей дифференциального уравнения. Для левой части используем теорему о дифференцировании оригинала: begin &x(t) risingdotseq X(p),\ &x'(t) risingdotseq pX(p)-x(0)=pX(p)+1,\ &x»(t) risingdotseq p^2X(p)-px(0)-x'(0)=p^2X(p)+p-2,\ &x»'(t) risingdotseq p^3X(p)-p^2x(0)-px'(0)-x»(0)=p^3X(p)+p^2-2p-0. end Справа стоит $0$, изображение для него тоже $0$.

Запишем уравнение с изображениями (операторное уравнение). Оно уже будет алгебраическим, а не дифференциальным: begin p^3X(p)+p^2-2p+2(p^2X(p)+p-2)+5(pX(p)+1)=0. end И найдем из него неизвестное $X(p)$: begin X(p)=-frac. end Используя теоремы, приемы, таблицы операционного исчисления получим оригинал: begin X(p) risingdotseq x(t)=-displaystylefrac15-displaystylefrac45 e^<-t>mbox,2t+displaystylefrac35e^<-t>mbox,2t. end

Пример 2.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. begin x»-2x’-3x=e^<3t>,\ x(0)=x'(0)=0. end

Записываем изображения для левой и правой частей дифференциального уравнения. Для левой части используем теорему о дифференцировании оригинала: begin &x(t) risingdotseq X(p),\ &x'(t) risingdotseq pX(p)-x(0)=pX(p),\ &x»(t) risingdotseq p^2X(p)-px(0)-x'(0)=p^2X(p), end Справа стоит $e^<3t>$, изображение равно $displaystylefrac<1>$.

Запишем операторное уравнение: begin (p^2-2p-3)X(p)=frac<1>. end Находим $X(p)$: begin X(p)=frac<1><(p-3)^2(p+1)>. end Используя, например, вторую теорему разложения, получим оригинал: begin X(p) risingdotseq displaystylefrac14,te^<3t>-displaystylefrac<1><16>,e^<3t>+displaystylefrac<1><16>,e^<-t>. end

Пример 3.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. begin x»+3x’=mbox,2t,\ x(0)=2, ,, x'(0)=0. end

Пример 4.

Решить неоднородное дифференциальное уравнение с постоянными коэффициентами. begin x»+x’=e^t,\ x(1)=1, ,, x'(1)=2. end Так как начальные условия даны не при $t=0$, сразу применить теорему о дифференцировании оригинала мы не можем. Поставим вспомогательную задачу для функции $y(t)=x(t+1)$: begin y»+y’=e^,\ y(0)=1, ,, y'(0)=2. end Записываем операторное уравнение begin (p^2Y(p)-p-2)+(pY(p)-1)=displaystylefrac. end

Решаем полученное уравение: begin Y(p)=displaystylefrac<(p-1)(p^2+p)>+displaystylefrac. end begin y(t)=displaystylefrac12e^+left(displaystylefrac<2>-2right)e^<-t>+(3-e). end Со сдвигом на $1$ находим решение исходной задачи: begin x(t)=y(t-1)=displaystylefrac12e^+left(displaystylefrac<2>-2right)e^<-t+1>+(3-e). end

Решение задачи Коши для систем линейных ДУ

Пример 5.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. begin left < begin&x’ = 2x+8, \ &y’ = x+4y+1, \ &x(0)=1,, y(0)=0. \ end right. end

Запишем изображения: begin begin x(t) risingdotseq X(p), & x'(t) risingdotseq p,X(p)-1, \ y(t) risingdotseq Y(p), & y'(t) risingdotseq p,Y(p). end end begin 8 risingdotseq displaystylefrac<8>

, ,, 1 risingdotseq displaystylefrac<1>

. end

Операторная система уравнений принимает вид: begin left < beginpX(p)-1 &= 2X(p)+displaystylefrac<8>

, \ pY(p) &= X(p)+4Y(p)+displaystylefrac<1>

.\ end right. end

Решаем систему, находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: begin X(p)=displaystylefrac risingdotseq x(t)=-4+5e^<2t>. end begin Y(p)=displaystylefrac<2p+6> risingdotseq y(t)=displaystylefrac34-displaystylefrac52,e^<2t>+displaystylefrac74,e^<4t>. end

Пример 6.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. begin left < begin&x’ = 2x+8y, \ &y’ = x+4y+1, \ &x(0)=1,, y(0)=0.\ end right. end

begin begin x(t) risingdotseq X(p), & x'(t) risingdotseq p,X(p)-1, \ y(t) risingdotseq Y(p), & y'(t) risingdotseq p,Y(p),\ 1 risingdotseq displaystylefrac<1>

. &\ end end

Операторная система уравнений принимает вид: begin left < beginpX(p)-1 &= 2X(p)+8Y(p), \ pY(p) &= X(p)+4Y(p)+displaystylefrac<1>

.\ end right. end

Решаем систему находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: begin X(p)=displaystylefrac risingdotseq x(t)=frac49-frac43,t+frac59,e^<6t>. end begin Y(p)=displaystylefrac<2(p-1)> risingdotseq y(t)=-displaystylefrac<5><18>+displaystylefrac13,t+displaystylefrac<5><18>,e^<6t>. end

Пример 7.

Решить систему линейных дифференциальных уравнений с постоянными коэффициентами. begin left < begin&x’-2x-4y = mbox, t, \ &y’+x+2y = mbox,t, \ &x(0)=0,, y(0)=0.\ end right. end

Операторная система уравнений принимает вид: begin left < begin(p-2)X(p)-4Y(p) &= frac

, \ X(p)+(p+2)Y(p) &= frac<1>.\ end right. end

Решаем систему находим изображения $X(p)$, $Y(p)$ и их оригиналы $x(t)$, $y(t)$: begin X(p)=displaystylefrac<2>

+displaystylefrac<4>-displaystylefrac<2p+3> risingdotseq x(t)=2+4t-2,mbox,t-3,mbox,t. end begin Y(p)=-displaystylefrac<2>+displaystylefrac<2> risingdotseq y(t)=-2t+2,mbox,t. end

Решение ОДУ с помощью интеграла Дюамеля

Введем обозначения:
Уравнение: $x^<(n)>(t)+a_1,x^<(n-1)>(t)+ldots+a_n,x(t)=f(t)$.
Начальные условия: $x(0)=x'(0)=ldots=x^<(n)>=0$.
Неизвестная функция $x(t)$, имеющая изображение $X(p)$.
Сложная функция в правой части $f(t)$, имеющая изображение $F(p)$.

Запишем алгоритм решения.
1. Решается вспомогательное уравнение $$ y^<(n)>(t)+a_1,y^<(n-1)>(t)+ldots+a_n,y(t)=1.$$ С учетом начальных условий левая и правые части уравнений будут иметь изображения: begin begin y(t) & risingdotseq Y(p),\ y'(t) & risingdotseq p,Y(p),\ y»(t)& risingdotseq p^2Y(p),\ &cdots\ y^<(n)>(t)& risingdotseq p^nY(p). end end Вспомогательное операторное уравнение запишем в виде: begin Y(p)cdot h(p) = frac<1>

,\ h(p)=p^n+a_1p^+ldots+a_n. end $$Y(p) risingdotseq y(t).$$

2. Решается исходное уравнение. Левая часть уравнения совпадает с левой частью вспомогательного, поэтому операторное уравнение записывается так: $$ X(p)cdot h(p) = F(p),$$ при этом $h(p)$, используя решение вспомогательного уравнения, можно записать в виде begin h(p)=frac<1>. end Тогда $$ X(p) = F(p),pY(p).$$ Для нахождения $x(t)$ необходимо найти оригинал для $pY(p)F(p)$, то есть вычислить интеграл из формулы Дюамеля: $$ p F(p) Y(p) risingdotseq y(0)cdot f(t)+intlimits_0^t f(tau),y'(t-tau),dtau,$$ где $y(t)$ — уже найденное решение вспомогательного уравнения.

Пример 8.

Решить задачу Коши с помощью интеграла Дюамеля. begin x»+2x’=frac<1><1+e^<2t>>, ,, x(0)=0, ,, x'(0)=0. end Решаем через интеграл Дюамеля в два этапа, как было описано выше.

2. Исходное уравнение в операторном виде: begin (p^2+2p)X(p)=F(p). end Правая часть этого уравнения такая же, как и для вспомогательного. Левую часть $frac<1><1+e^<2t>>$ обозначим $f(t)$, ее изображение $F(p)$. Тогда begin X(p)=frac. end Решая вспомогательное уравнение, мы находили: begin (p^2+2p)Y(p)=frac<1>

,, Rightarrow ,, p^2+2p=frac<1>. end Тогда begin X(p)=frac<frac<1>>=pF(p)Y(p). end

Теперь по формуле Дюамеля получаем: begin X(p)=p F(p) Y(p) risingdotseq x(t)=y(0)cdot f(t)+intlimits_0^t f(tau),y'(t-tau),dtau, end где $y(t)$ — уже найденное решение вспомогательного уравнения: begin begin & y(t)=-frac14+frac12t+frac14 e^<-2t>,\ & y(0)=0,\ & y'(t-tau)=frac12-frac12e^<-2(t-tau)>. end end

Решение задачи Коши с правой частью, содержащей функцию Хэвисайда

Пример 9

Решить задачу Коши, когда правая часть дифференциального уравнения содержит составную функцию (выражаемую через функцию Хэвисайда). begin left < begin&x»+x=eta(t)-eta(t-2), \ &x(0)=0,\ &x'(0)=0. end right. end

Запишем изображения для левой и правой частей уравнения: begin &x»+x risingdotseq p^2,X(p)+X(p),\ &eta(t)-eta(t-2) risingdotseq frac<1>

-frac>

. end Для правой части, содержащей функцию Хэвисайда, воспользовались теоремой запаздывания.

Находим изображение для $displaystylefrac<1>$ с помощью теоремы об интегрировании оригинала: begin &frac<1>risingdotseq mbox,t ,, Rightarrow\ &frac<1>risingdotseq intlimits_0^t,mbox,tau,dtau=-mbox,t+1. end Тогда изображение для $displaystylefrac>$ по теореме запаздывания будет равно: begin frac>risingdotseq (-mbox,(t-2)+1)eta(t-2). end

Решение заданного уравнения: begin x(t)= (1-mbox,t)eta(t)-(1-mbox,(t-2))eta(t-2). end

Пример 10

Решить задачу Коши, когда правая часть дифференциального уравнения задана графически (и выражается через функцию Хэвисайда). begin left < begin&x»+4x=f(t). \ &x(0)=0,\ &x'(0)=0. end right. end

Запишем аналитическое выражение для $f(t)$ с помощью функции Хэвисайда и найдем ее изображение: begin &f(t)=2teta(t)-4(t-1)eta(t-1)+2(t-2)eta(t-2),\ &F(p)=frac<2>(1-2e^<-p>+e^<-2p>). end Операторное уравнение имеет вид: begin &X(p)(p^2+4)=frac<2>(1-2e^<-p>+e^<-2p>),, Rightarrow\ &X(p)=frac<2>(1-2e^<-p>+e^<-2p>). end

Для первого слагаемого найдем оригинал, разложив дробь на сумму простейших: begin frac<2>=frac<1><2p^2>-frac<2> <4(p^2+4)>risingdotseq frac12t-frac14,mbox,2t. end Для остальных слагаемых воспользуемся теоремой запаздывания: begin X(p)risingdotseq x(t)= frac12left(t-frac12,mbox,2tright)eta(t)-\ -left((t-1)-frac12,mbox,2(t-1)right)eta(t-1)+\ +frac12left((t-2)-frac12,mbox,2(t-2)right)eta(t-2). end

Решение задачи Коши с периодической правой частью

Периодическую правую часть тоже очень удобно записывать с помощью функции Хэвисайда.

Пусть $f(t)$ — периодическая с периодом $T$ функция-оригинал. Обозначим через $f_0(t)$ функцию: begin f_0(t)=begin f(t),& 0 oplaplace/seminar5_2.txt · Последние изменения: 2021/05/28 18:23 — nvr

источники:

http://mathhelpplanet.com/static.php?p=reshenie-du-i-sistem-operatornym-metodom

http://vmath.ru/vf5/oplaplace/seminar5_2

Понравилась статья? Поделить с друзьями:
  • Как найти ник для персонажа
  • Как найти мощность по ваттметру
  • Как найти глагол в английском тексте
  • Как найти литературу на английском языке
  • Как найти фильм про немого