Как найти определитель матрицы 3×3


Загрузить PDF


Загрузить PDF

Определители матриц часто используются в вычислениях, в линейной алгебре и аналитической геометрии. Вне академического мира определители матриц постоянно требуются инженерам и программистам, в особенности тем, кто работает с компьютерной графикой. Если вы уже знаете, как найти определитель матрицы размерностью 2×2, то из инструментов для нахождения определителя матрицы 3×3 вам будут необходимы только сложение, вычитание и умножение.

  1. Изображение с названием Find the Determinant of a 3X3 Matrix Step 1

    1

    Запишите матрицу размерностью 3 x 3. Запишем матрицу размерностью 3 x 3, которую обозначим M, и найдем ее определитель |M|. Далее приводится общая форма записи матрицы, которую мы будем использовать, и матрица для нашего примера:

    • M={begin{pmatrix}a_{{11}}&a_{{12}}&a_{{13}}\a_{{21}}&a_{{22}}&a_{{23}}\a_{{31}}&a_{{32}}&a_{{33}}end{pmatrix}}={begin{pmatrix}1&5&3\2&4&7\4&6&2end{pmatrix}}
  2. Изображение с названием Find the Determinant of a 3X3 Matrix Step 2

    2

    Выберите строку или столбец матрицы. Эта строка (или столбец) будет опорной. Результат будет одинаков, независимо от того, какую строку или какой столбец вы выберете. В данном примере давайте возьмем первую строку. Чуть позже вы найдете несколько советов касательно того, как выбирать строку или столбец, чтобы упростить вычисления.

    • Давайте выберем первую строку матрицы M в нашем примере. Обведите числа 1 5 3. В общей форме обведите a11 a12 a13.
  3. Изображение с названием Find the Determinant of a 3X3 Matrix Step 3

    3

    Зачеркните строку или столбец с первым элементом. Обратитесь к опорной строке (или к опорному столбцу) и выберите первый элемент. Проведите горизонтальную и вертикальную черту через этот элемент, вычеркнув таким образом столбец и строку с этим элементом. Должно остаться четыре числа. Будем считать эти элементы новой матрицей размерностью 2 x 2.

    • В нашем примере, опорной строкой будет 1 5 3. Первый элемент находится на пересечении первого столбца и первой строки. Вычеркните строку и столбец с этим элементом, то есть первую сроку и первый столбец. Запишите оставшиеся элементы в виде матрицы 2 x 2:
    •  1  5 3
    •  2  4 7
    •  4  6 2
  4. Изображение с названием Find the Determinant of a 3X3 Matrix Step 4

    4

    Найдите определитель матрицы 2 x 2. Запомните, что определитель матрицы {begin{pmatrix}a&b\c&dend{pmatrix}} вычисляется как ad — bc.[1]
    Опираясь на это, вы можете вычислить определитель полученной матрицы 2 x 2, которую, если хотите, можете обозначить как X. Умножьте два числа матрицы X, соединенных по диагонали слева направо (то есть так: ). Затем вычтите результат умножения двух других чисел по диагонали справа налево (то есть так: / ). Используйте эту формулу, чтобы вычислить определитель матрицы, которую вы только что получили.

    • В нашем примере определитель матрицы {begin{pmatrix}4&7\6&2end{pmatrix}} = 4*2 — 7*6 = -34.
    • Этот определитель называется минором элемента, который мы выбрали в нашей первоначальной матрице.[2]
      Другими словами, мы только что нашли минор a11.
  5. Изображение с названием Find the Determinant of a 3X3 Matrix Step 5

    5

    Умножьте полученный ответ на выбранный элемент матрицы M. Вспомните, какой элемент из опорной строки (или столбца) мы использовали, когда вычеркивали другие элементы строки и столбца, чтобы получить новую матрицу. Умножьте этот элемент на полученный минор (определитель матрицы 2×2, которую мы обозначили X).

    • В нашем примере мы выбирали элемент a11, который равнялся 1. Умножим его на -34 (определитель матрицы 2×2), и у нас получится 1*-34 = -34.
  6. Изображение с названием Find the Determinant of a 3X3 Matrix Step 6

    6

    Определите знак полученного результата. Далее вам понадобится умножить полученный результат на 1, либо на -1, чтобы получить алгебраическое дополнение (кофактор) выбранного элемента. Знак кофактора будет зависеть от того, в каком месте матрицы 3×3 стоит элемент. Запомните эту простую схему знаков, чтобы знать знак кофактора:

    • + — +
    • — + —
    • + — +
    • Поскольку мы работали с элементом a11, для которого стоит знак +, то мы будем умножать полученное значение на +1 (то есть оставим его как есть). Алгебраическое дополнение нашего элемента будет равно -34.
    • Вы также можете найти знак алгебраического дополнения по формуле (-1)i+j, где i и j — номер столбца и строки выбранного элемента соответственно.[3]
  7. Изображение с названием Find the Determinant of a 3X3 Matrix Step 7

    7

    Повторите все вышеописанные действия со вторым элементом опорной строки (или столбца). Вернитесь к исходной матрице размерностью 3×3 и строке, которую мы обвели в самом начале вычислений. Повторите все действия с этим элементом:

  8. Изображение с названием Find the Determinant of a 3X3 Matrix Step 8

    8

    Повторите с третьим элементом. Далее вам понадобится найти еще одно алгебраическое дополнение. Вычислите его для последнего элемента опорной строки или опорного столбца. Далее приводится краткое описание того, как вычисляется алгебраическое дополнение для a13 в нашем примере:

    • Зачеркните первую строку и третий столбец, чтобы получить матрицу {begin{pmatrix}2&4\4&6end{pmatrix}}
    • Ее определитель равен 2*6 — 4*4 = -4.
    • Умножьте результат на элемент a13: -4 * 3 = -12.
    • Элемент a13 имеет знак + в приведенной выше таблице, поэтому ответ будет -12.
  9. Изображение с названием Find the Determinant of a 3X3 Matrix Step 9

    9

    Сложите полученные результаты. Это последний шаг. Вам необходимо сложить полученные алгебраические дополнения элементов опорной строки (или опорного столбца). Сложите их вместе, и вы получите значение определителя матрицы 3×3.

    • В нашем примере определитель равен -34 + 120 + -12 = 74.

    Реклама

  1. Изображение с названием Find the Determinant of a 3X3 Matrix Step 10

    1

    Выбирайте в качестве опорной строки (или столбца) ту, что имеет больше нулей. Помните, что в качестве опорной вы можете выбрать любую строку или столбец. Выбор опорной строки или столбца не влияет на результат. Если вы выберете строку с наибольшим количеством нулей, вам придется выполнять меньше вычислений, поскольку вам будет необходимо вычислить алгебраические дополнения только для ненулевых элементов. Вот почему:

    • Допустим, вы выбрали 2 строку с элементами a21, a22, and a23. Чтобы найти определитель, вам будет необходимо найти определители трех различных матриц размерностью 2×2. Давайте назовем их A21, A22, and A23.
    • То есть определитель матрицы 3×3 равен a21|A21| — a22|A22| + a23|A23|.
    • Если оба элемента a22 и a23 равны 0, то наша формула становится намного короче a21|A21| — 0*|A22| + 0*|A23| = a21|A21| — 0 + 0 = a21|A21|. То есть необходимо вычислить только алгебраическое дополнение одного элемента.
  2. Изображение с названием Find the Determinant of a 3X3 Matrix Step 11

    2

    Используйте сложение строк, чтобы упростить матрицу. Если вы возьмете одну строку и прибавите к ней другую, то определитель матрицы не изменится. То же самое верно и для столбцов. Подобные действия можно выполнять несколько раз, кроме того, вы можете умножать значения строки на постоянную (перед сложением) для того, чтобы получить как можно больше нулей. Подобные действия могут сэкономить массу времени.

  3. Изображение с названием Find the Determinant of a 3X3 Matrix Step 12

    3

    Помните, что вычислять определитель треугольных матриц намного проще. Определитель треугольных матриц вычисляется как произведение элементов на главной диагонали, от a11 в верхнем левом углу до a33 в нижнем правом углу. Речь в данном случае идет о треугольных матрицах размерностью 3×3. Треугольные матрицы могут быть следующих видов, в зависимости от расположения ненулевых значений:[4]

    • Верхняя треугольная матрица: Все ненулевые элементы находятся на главной диагонали и выше нее. Все элементы ниже главной диагонали равны нулю.
    • Нижняя треугольная матрица: Все ненулевые элементы находятся ниже главной диагонали и на ней.
    • Диагональная матрица: Все ненулевые элементы находятся на главной диагонали. Является частным случаем вышеописанных матриц.

    Реклама

Советы

  • Описанный метод распространяется на квадратные матрицы любого ранга. Например, если вы используете его для матрицы 4×4, то после «вычеркивания» будут оставаться матрицы 3×3, для которых определитель будет вычисляться вышеупомянутым способом. Будьте готовы к тому, что вычислять определитель для матриц таких размерностей вручную — очень трудоемкая задача!
  • Если все элементы строки или столбца равны 0, то определитель матрицы тоже равен 0.

Реклама

Об этой статье

Эту страницу просматривали 119 322 раза.

Была ли эта статья полезной?


Download Article


Download Article

The determinant of a matrix is frequently used in calculus, linear algebra, and advanced geometry. Finding the determinant of a matrix can be confusing at first, but it gets easier once you do it a few times.

  1. Image titled Find the Determinant of a 3X3 Matrix Step 1

    1

    Write your 3 x 3 matrix. We’ll start with a 3 x 3 matrix A, and try to find its determinant |A|. Here’s the general matrix notation we’ll be using, and our example matrix:[1]

    • M={begin{pmatrix}a_{{11}}&a_{{12}}&a_{{13}}\a_{{21}}&a_{{22}}&a_{{23}}\a_{{31}}&a_{{32}}&a_{{33}}end{pmatrix}}={begin{pmatrix}1&5&3\2&4&7\4&6&2end{pmatrix}}
  2. Image titled Find the Determinant of a 3X3 Matrix Step 2

    2

    Choose a single row or column. This will be your reference row or column. You’ll get the same answer no matter which one you choose. For now, just pick the first row. Later, we’ll give some advice on how to choose the easiest option to calculate.[2]

    • Let’s choose the first row of our example matrix A. Circle the 1 5 3. In general terms, circle a11 a12 a13.

    Advertisement

  3. Image titled Find the Determinant of a 3X3 Matrix Step 3

    3

    Cross out the row and column of your first element. Look at the row or column you circled and select the first element. Draw a line through its row and column. You should be left with four numbers. We’ll treat these as a 2 x 2 matrix.[3]

    • In our example, our reference row is 1 5 3. The first element is in row 1 and column 1. Cross out all of row 1 and column 1. Write the remaining elements as a 2 x 2 matrix:
    •  1  5 3
       2  4 7
       4  6 2
  4. Image titled Find the Determinant of a 3X3 Matrix Step 4

    4

    Find the determinant of the 2 x 2 matrix. Remember, the matrix {begin{pmatrix}a&b\c&dend{pmatrix}} has a determinant of ad — bc. You may have learned this by drawing an X across the 2 x 2 matrix. Multiply the two numbers connected by the of the X. Then subtract the product of the two numbers connected by the /. Use this formula to calculate the determinate of the matrix you just found.[4]

    • In our example, the determinant of the matrix {begin{pmatrix}4&7\6&2end{pmatrix}} = 4 * 2 — 7 * 6 = -34.
    • This determinant is called the minor of the element we chose in our original matrix.[5]
      In this case, we just found the minor of a11.
  5. Image titled Find the Determinant of a 3X3 Matrix Step 5

    5

    Multiply the answer by your chosen element. Remember, you selected an element from your reference row (or column) when you decided which row and column to cross out. Multiply this element by the determinant you just calculated for the 2×2 matrix.[6]

    • In our example, we selected a11, which had a value of 1. Multiply this by -34 (the determinant of the 2×2) to get 1*-34 = -34.
  6. Image titled Find the Determinant of a 3X3 Matrix Step 6

    6

    Determine the sign of your answer. Next, you’ll multiply your answer either by 1 or by -1 to get the cofactor of your chosen element. Which you use depends on where the element was placed in the 3×3 matrix. Memorize this simple sign chart to track which element causes which:

    • + — +
      — + —
      + — +
    • Since we chose a11, marked with a +, we multiply the number by +1. (In other words, leave it alone.) The answer is still -34.
    • Alternatively, you can find the sign with the formula (-1)i+j, where i and j are the element’s row and column.[7]
  7. Image titled Find the Determinant of a 3X3 Matrix Step 7

    7

    Repeat this process for the second element in your reference row or column. Return to the original 3×3 matrix, with the row or column you circled earlier. Repeat the same process with this element:[8]

  8. Image titled Find the Determinant of a 3X3 Matrix Step 8

    8

    Repeat with the third element. You have one more cofactor to find. Calculate i for the third term in your reference row or column. Here’s a quick rundown of how you’d calculate the cofactor of a13 in our example:

    • Cross out row 1 and column 3 to get {begin{pmatrix}2&4\4&6end{pmatrix}}
    • Its determinant is 2*6 — 4*4 = -4.
    • Multiply by element a13: -4 * 3 = -12.
    • Element a13 is + on the sign chart, so the answer is -12.
  9. Image titled Find the Determinant of a 3X3 Matrix Step 9

    9

    Add your three results together. This is the final step. You’ve calculated three cofactors, one for each element in a single row or column. Add these together and you’ve found the determinant of the 3×3 matrix.

    • In our example the determinant is -34 + 120 + -12 = 74.
  10. Advertisement

  1. Image titled Find the Determinant of a 3X3 Matrix Step 10

    1

    Pick the reference with the most zeroes. Remember, you can pick any row or column as your reference. You’ll get the same answer no matter which you pick. If you pick a row or column with zeros, you only need to calculate the cofactor for the nonzero elements. Here’s why:[9]

    • Let’s say you pick row 2, with elements a21, a22, and a23. To solve this problem, we’ll be looking at three different 2×2 matrices. Let’s call them A21, A22, and A23.
    • The determinant of the 3×3 matrix is a21|A21| — a22|A22| + a23|A23|.
    • If terms a22 and a23 are both 0, our formula becomes a21|A21| — 0*|A22| + 0*|A23| = a21|A21| — 0 + 0 = a21|A21|. Now we only have to calculate the cofactor of a single element.
  2. Image titled Find the Determinant of a 3X3 Matrix Step 11

    2

    Use row addition to make the matrix easier. If you take the values of one row and add them to a different row, the determinant of the matrix does not change. The same is true of columns. You can do this repeatedly — or multiply the values by a constant before adding — to get as many zeroes in the matrix as possible. This can save you a lot of time.

  3. Image titled Find the Determinant of a 3X3 Matrix Step 12

    3

    Learn the shortcut for triangular matrices. In these special cases, the determinant is simply the product of the elements along the main diagonal, from a11 in the top left to a33 in the lower right. We’re still talking about 3×3 matrices, but «triangular» ones have special patterns of nonzero values:[10]

    • Upper triangular matrix: All the non-zero elements are on or above the main diagonal. Everything below is a zero.
    • Lower triangular matrix: All the non-zero elements are on or below the main diagonal.
    • Diagonal matrix: All the non-zero elements are on the main diagonal. (A subset of the above.)
    • You can use the method of minors or the elementary row operations to find the inverse of a 3 x 3 matrix.[11]
    • If you use the latter method to find the inverse of a matrix A, begin by setting up the formula [A | I]. Where I is the 3 x 3 identity matrix.[12]
    • Then, use elementary row operations to reduce the left-hand side of the formula to I. The resulting formula will be [I | A-1], where A-1 is the inverse of A.[13]
  4. Advertisement

Add New Question

  • Question

    Why is the formula for the determinant (b^2-4ac)^(1/2) instead of ad-bc?

    Community Answer

    I think the OP was confused. They were referring to the discriminant, something you use in the quadratic formula. The formula for the determinant is different for every matrix, but for a 3×3 one is very hard to type out. It might be easier to Google it.

  • Question

    How do I adjoin a matrix?

    Community Answer

    The adjoint of a square matrix is the transpose of the matrix Cij (cofactor of the original matrix).

  • Question

    What is the formula for the determinant?

    Prem Shah

    Prem Shah

    Community Answer

    The formula to find the determinant for a quadratic formula is (b^2-4ac), which is all in a square root.

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • If all elements of a row or column are 0, the determinant of that matrix is 0.

  • This method extends to square matrices of any size. For example, if using this for a 4×4 matrix, your «crossing out» leaves you with a 3×3 matrix, for which you calculate the determinate as described above. Be warned, this gets very tedious by hand!

Advertisement

About This Article

Article SummaryX

1. Write your 3 x 3 matrix.
2. Choose a single row or column.
3. Cross out the row and column of your first element.
4. Find the determinant of the 2 x 2 matrix.
5. Multiply the answer by your chosen element.
6. Find the sign of your answer (+ or -) using the formula (-1)*(i+j), where i and j are the element’s row and column. The formula will tell you whether your answer is positive or negative.
7. Repeat this process for the second element in your reference row or column.
8. Repeat with the third element.
9. Add your three results together.

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,636,901 times.

Did this article help you?

Содержание:

  • Вычисления определителей второго порядка
  • Методы вычисления определителей третьего порядка
  • Приведение определителя к треугольному виду
  • Правило треугольника
  • Правило Саррюса
  • Разложение определителя по строке или столбцу
  • Разложение определителя по элементам строки или столбца
  • Теорема Лапласа

В общем случае правило вычисления определителей
$n$-го порядка
является довольно громоздким. Для определителей второго и третьего порядка существуют рациональные способы их вычислений.

Вычисления определителей второго порядка

Чтобы вычислить определитель матрицы второго порядка, надо от произведения
элементов главной диагонали отнять произведение
элементов побочной диагонали:

$$left| begin{array}{ll}{a_{11}} & {a_{12}} \ {a_{21}} & {a_{22}}end{array}right|=a_{11} cdot a_{22}-a_{12} cdot a_{21}$$

Пример

Задание. Вычислить определитель второго порядка
$left| begin{array}{rr}{11} & {-2} \ {7} & {5}end{array}right|$

Решение. $left| begin{array}{rr}{11} & {-2} \ {7} & {5}end{array}right|=11 cdot 5-(-2) cdot 7=55+14=69$

Ответ. $left| begin{array}{rr}{11} & {-2} \ {7} & {5}end{array}right|=69$

Методы вычисления определителей третьего порядка

Для вычисления определителей третьего порядка существует такие правила.

Правило треугольника

Схематически это правило можно изобразить следующим образом:

Определитель матрицы по правилу треугольника

Произведение элементов в первом определителе, которые соединены прямыми,
берется со знаком «плюс»; аналогично, для второго определителя — соответствующие произведения берутся со знаком «минус», т.е.

$$left| begin{array}{ccc}{a_{11}} & {a_{12}} & {a_{13}} \ {a_{21}} & {a_{22}} & {a_{23}} \ {a_{31}} & {a_{32}} & {a_{33}}end{array}right|=a_{11} a_{22} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-$$

$$-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}-a_{13} a_{22} a_{31}$$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Вычислить определитель $left| begin{array}{rrr}{3} & {3} & {-1} \ {4} & {1} & {3} \ {1} & {-2} & {-2}end{array}right|$ методом треугольников.

Решение. $left| begin{array}{rrr}{3} & {3} & {-1} \ {4} & {1} & {3} \ {1} & {-2} & {-2}end{array}right|=3 cdot 1 cdot(-2)+4 cdot(-2) cdot(-1)+$

$$+3 cdot 3 cdot 1-(-1) cdot 1 cdot 1-3 cdot(-2) cdot 3-4 cdot 3 cdot(-2)=54$$

Ответ. $left| begin{array}{rrr}{3} & {3} & {-1} \ {4} & {1} & {3} \ {1} & {-2} & {-2}end{array}right|=54$

Правило Саррюса

Справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей
параллельных, берут со знаком «плюс»; а произведения элементов побочной диагонали и диагоналей, ей параллельных,
со знаком «минус»:

$$-a_{13} a_{22} a_{31}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}$$

Пример

Задание. Вычислить определитель $left| begin{array}{rrr}{3} & {3} & {-1} \ {4} & {1} & {3} \ {1} & {-2} & {-2}end{array}right|$ с помощью правила Саррюса.

Решение.

$$+(-1) cdot 4 cdot(-2)-(-1) cdot 1 cdot 1-3 cdot 3 cdot(-2)-3 cdot 4 cdot(-2)=54$$

Ответ. $left| begin{array}{rrr}{3} & {3} & {-1} \ {4} & {1} & {3} \ {1} & {-2} & {-2}end{array}right|=54$

Разложение определителя по строке или столбцу

Определитель равен сумме произведений элементов строки определителя на их
алгебраические дополнения. Обычно выбирают
ту строку/столбец, в которой/ом есть нули. Строку или столбец, по которой/ому ведется разложение, будет обозначать стрелкой.

Пример

Задание. Разложив по первой строке, вычислить определитель $left| begin{array}{lll}{1} & {2} & {3} \ {4} & {5} & {6} \ {7} & {8} & {9}end{array}right|$

Решение. $left| begin{array}{lll}{1} & {2} & {3} \ {4} & {5} & {6} \ {7} & {8} & {9}end{array}right| leftarrow=a_{11} cdot A_{11}+a_{12} cdot A_{12}+a_{13} cdot A_{13}=$

$1 cdot(-1)^{1+1} cdot left| begin{array}{cc}{5} & {6} \ {8} & {9}end{array}right|+2 cdot(-1)^{1+2} cdot left| begin{array}{cc}{4} & {6} \ {7} & {9}end{array}right|+3 cdot(-1)^{1+3} cdot left| begin{array}{cc}{4} & {5} \ {7} & {8}end{array}right|=-3+12-9=0$

Ответ. $left| begin{array}{lll}{1} & {2} & {3} \ {4} & {5} & {6} \ {7} & {8} & {9}end{array}right|=0$

Этот метод позволяет вычисление определителя свести к вычислению определителя более низкого порядка.

Пример

Задание. Вычислить определитель $left| begin{array}{lll}{1} & {2} & {3} \ {4} & {5} & {6} \ {7} & {8} & {9}end{array}right|$

Решение. Выполним следующие
преобразования над строками определителя: из второй строки отнимем четыре
первых, а из третьей первую строку, умноженную на семь, в результате, согласно свойствам определителя, получим определитель,
равный данному.

$$left| begin{array}{ccc}{1} & {2} & {3} \ {4} & {5} & {6} \ {7} & {8} & {9}end{array}right|=left| begin{array}{ccc}{1} & {2} & {3} \ {4-4 cdot 1} & {5-4 cdot 2} & {6-4 cdot 3} \ {7-7 cdot 1} & {8-7 cdot 2} & {9-7 cdot 3}end{array}right|=$$

$$=left| begin{array}{rrr}{1} & {2} & {3} \ {0} & {-3} & {-6} \ {0} & {-6} & {-12}end{array}right|=left| begin{array}{ccc}{1} & {2} & {3} \ {0} & {-3} & {-6} \ {0} & {2 cdot(-3)} & {2 cdot(-6)}end{array}right|=0$$

Определитель равен нулю, так как вторая и третья строки являются пропорциональными.

Ответ. $left| begin{array}{lll}{1} & {2} & {3} \ {4} & {5} & {6} \ {7} & {8} & {9}end{array}right|=0$

Для вычисления определителей четвертого порядка и выше применяется либо разложение по строке/столбцу, либо приведение
к треугольному виду, либо с помощью теоремы Лапласа.

Разложение определителя по элементам строки или столбца

Пример

Задание. Вычислить определитель
$left| begin{array}{llll}{9} & {8} & {7} & {6} \ {5} & {4} & {3} & {2} \ {1} & {0} & {1} & {2} \ {3} & {4} & {5} & {6}end{array}right|$ , разложив его по элементам какой-то строки или какого-то столбца.

Решение. Предварительно выполним
элементарные преобразования над строками определителя, сделав
как можно больше нулей либо в строке, либо в столбце. Для этого вначале от первой строки отнимем девять третьих,
от второй — пять третьих и от четвертой — три третьих строки, получаем:

$$left| begin{array}{cccc}{9} & {8} & {7} & {6} \ {5} & {4} & {3} & {2} \ {1} & {0} & {1} & {2} \ {3} & {4} & {5} & {6}end{array}right|=left| begin{array}{cccc}{9-1} & {8-0} & {7-9} & {6-18} \ {5-5} & {4-0} & {3-5} & {2-10} \ {1} & {0} & {1} & {2} \ {0} & {4} & {2} & {0}end{array}right|=left| begin{array}{rrrr}{0} & {8} & {-2} & {-12} \ {0} & {4} & {-2} & {-8} \ {1} & {0} & {1} & {2} \ {0} & {4} & {2} & {0}end{array}right|$$

Полученный определитель разложим по элементам первого столбца:

$$left| begin{array}{rrrr}{0} & {8} & {-2} & {-12} \ {0} & {4} & {-2} & {-8} \ {1} & {0} & {1} & {2} \ {0} & {4} & {2} & {0}end{array}right|=0+0+1 cdot(-1)^{3+1} cdot left| begin{array}{rrr}{8} & {-2} & {-12} \ {4} & {-2} & {-8} \ {4} & {2} & {0}end{array}right|+0$$

Полученный определитель третьего порядка также разложим по элементам строки и столбца, предварительно получив нули,
например, в первом столбце. Для этого от первой строки отнимаем две вторые строки, а от третьей — вторую:

$$left| begin{array}{rrr}{8} & {-2} & {-12} \ {4} & {-2} & {-8} \ {4} & {2} & {0}end{array}right|=left| begin{array}{rrr}{0} & {2} & {4} \ {4} & {-2} & {-8} \ {0} & {4} & {8}end{array}right|=4 cdot(-1)^{2+2} cdot left| begin{array}{ll}{2} & {4} \ {4} & {8}end{array}right|=$$

$$=4 cdot(2 cdot 8-4 cdot 4)=0$$

Ответ. $left| begin{array}{cccc}{9} & {8} & {7} & {6} \ {5} & {4} & {3} & {2} \ {1} & {0} & {1} & {2} \ {3} & {4} & {5} & {6}end{array}right|=0$

Замечание

Последний и предпоследний определители можно было бы и не вычислять,
а сразу сделать вывод о том, что они равны нулю, так как содержат пропорциональные строки.

Приведение определителя к треугольному виду

С помощью элементарных преобразований над строками или столбцами определитель приводится к треугольному виду и тогда его
значение, согласно свойствам определителя, равно произведению
элементов стоящих на главной диагонали.

Пример

Задание. Вычислить определитель
$Delta=left| begin{array}{rrrr}{-2} & {1} & {3} & {2} \ {3} & {0} & {-1} & {2} \ {-5} & {2} & {3} & {0} \ {4} & {-1} & {2} & {-3}end{array}right|$ приведением его к треугольному виду.

Решение. Сначала делаем нули в первом столбце под главной диагональю. Все преобразования
будет выполнять проще, если элемент $a_{11}$ будет
равен 1. Для этого мы поменяем местами первый и второй столбцы определителя, что, согласно свойствам определителя,
приведет к тому, что он сменит знак на противоположный:

$$Delta=left| begin{array}{rrrr}{-2} & {1} & {3} & {2} \ {3} & {0} & {-1} & {2} \ {-5} & {2} & {3} & {0} \ {4} & {-1} & {2} & {-3}end{array}right|=-left| begin{array}{rrrr}{1} & {-2} & {3} & {2} \ {0} & {3} & {-1} & {2} \ {2} & {-5} & {3} & {0} \ {-1} & {4} & {2} & {-3}end{array}right|$$

Далее получим нули в первом столбце, кроме элемента $a_{11}$ ,
для этого из третьей строки вычтем две первых, а к четвертой строке прибавим первую, будем иметь:

$$Delta=-left| begin{array}{rrrr}{1} & {-2} & {3} & {2} \ {0} & {3} & {-1} & {2} \ {0} & {-1} & {-3} & {-4} \ {0} & {2} & {5} & {-1}end{array}right|$$

Далее получаем нули во втором столбце на месте элементов, стоящих под главной диагональю. И снова, если
диагональный элемент будет равен $pm 1$ , то
вычисления будут более простыми. Для этого меняем местами вторую и третью строки (и при этом меняется на
противоположный знак определителя):

$$Delta=left| begin{array}{rrrr}{1} & {-2} & {3} & {2} \ {0} & {-1} & {-3} & {-4} \ {0} & {3} & {-1} & {2} \ {0} & {2} & {5} & {-1}end{array}right|$$

Далее делаем нули во втором столбце под главной диагональю, для этого поступаем следующим образом:
к третьей строке прибавляем три вторых, а к четвертой — две вторых строки, получаем:

$$Delta=left| begin{array}{rrrr}{1} & {-2} & {3} & {2} \ {0} & {-1} & {-3} & {-4} \ {0} & {0} & {-10} & {-10} \ {0} & {0} & {-1} & {-9}end{array}right|$$

Далее из третьей строки выносим (-10) за определитель и делаем нули в третьем столбце под
главной диагональю, а для этого к последней строке прибавляем третью:

$$Delta=-10 left| begin{array}{rrrr}{1} & {-2} & {3} & {2} \ {0} & {-1} & {-3} & {-4} \ {0} & {0} & {1} & {1} \ {0} & {0} & {-1} & {-9}end{array}right|=$$

$$=-10 cdot left| begin{array}{cccc}{1} & {-2} & {3} & {2} \ {0} & {-1} & {-3} & {-4} \ {0} & {0} & {1} & {1} \ {0} & {0} & {0} & {-8}end{array}right|=(-10) cdot 1 cdot(-1) cdot 1 cdot(-8)=-80$$

Ответ. $Delta=-80$

Теорема Лапласа

Теорема

Пусть $Delta$ — определитель
$n$-го порядка. Выберем в нем произвольные
$k$ строк (или столбцов), причем
$k leq n-1$ . Тогда сумма произведений всех
миноров
$k$-го порядка, которые содержатся в выбранных
$k$ строках (столбцах), на их
алгебраические дополнения равна определителю.

Пример

Задание. Используя теорему Лапласа, вычислить определитель
$left| begin{array}{rrrrr}{2} & {3} & {0} & {4} & {5} \ {0} & {1} & {0} & {-1} & {2} \ {3} & {2} & {1} & {0} & {1} \ {0} & {4} & {0} & {-5} & {0} \ {1} & {1} & {2} & {-2} & {1}end{array}right|$

Решение. Выберем в данном определителе пятого порядка две строки —
вторую и третью, тогда получаем (слагаемые, которые равны нулю, опускаем):

$$left| begin{array}{rrrrr}{2} & {3} & {0} & {4} & {5} \ {0} & {1} & {0} & {-1} & {2} \ {3} & {2} & {1} & {0} & {1} \ {0} & {4} & {0} & {-5} & {0} \ {1} & {1} & {2} & {-2} & {1}end{array}right|=left| begin{array}{cc}{1} & {-1} \ {4} & {-5}end{array}right| cdot(-1)^{2+4+2+4} cdot left| begin{array}{ccc}{2} & {0} & {5} \ {3} & {1} & {1} \ {1} & {2} & {1}end{array}right|+$$

$$+left| begin{array}{ll}{1} & {2} \ {4} & {0}end{array}right| cdot(-1)^{2+4+2+5} cdot left| begin{array}{rrr}{2} & {0} & {4} \ {3} & {1} & {0} \ {1} & {2} & {-2}end{array}right|+left| begin{array}{cc}{-1} & {2} \ {-5} & {0}end{array}right| cdot(-1)^{2+4+5} cdot left| begin{array}{ccc}{2} & {3} & {0} \ {3} & {2} & {1} \ {1} & {1} & {2}end{array}right|=$$

$$=-23+128+90=195$$

Ответ. $left| begin{array}{rrrrr}{2} & {3} & {0} & {4} & {5} \ {0} & {1} & {0} & {-1} & {2} \ {3} & {2} & {1} & {0} & {1} \ {0} & {4} & {0} & {-5} & {0} \ {1} & {1} & {2} & {-2} & {1}end{array}right|=195$

Читать дальше: обратная матрица.

Автор статьи

Александр Мельник

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Детерминант можно посчитать только для квадратных матриц, поэтому при постановке вопроса о нахождении детерминанта для матрицы с размерностью 3 имеют в виду именно квадратную матрицу.

Ниже мы рассмотрим различные способы нахождения определителя 3х3.

Разложение определителя матрицы по строчке

Этот метод сложнее на словах, чем на деле.

Суть его в том, что определитель записывается как сумма произведений элементов первой или любой другой строчки и соответствующих им определителей размером 2 на 2.

Определитель для каждого произведения состоит из элементов, записанных без элементов той строчки и столбца, в которых стоит единичный элемент-множитель.

Также можно осуществлять разложение не только по первой строчке, но и по любой другой или даже столбцу.

Чтобы определить знак, который записывается перед очередным произведением, необходимо помнить, что знаки при элементах чередуются, у первого элемента первой строки — плюс.

То есть произведение при первом элементе первой строчки будет записываться положительным.

Пример 1

Вычислите определитель для $M$ разложением по любой строчке:

$M = begin{pmatrix} -1 & 2 & 5 \ 7 & -4 & 3 \ -5 & 0 & 10 \ end{pmatrix}$

Решение:

Пример матрицы 3х3. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Пример матрицы 3х3. Автор24 — интернет-биржа студенческих работ

В последней строчке присутствует нуль, поэтому удобно будет сделать разложение именно по ней:

$Δ= (-5) cdot begin{array}{|cc|} 2 & 5 \ -4 & 3 \ end{array} – 0 cdot begin{array} {|cc|} — 1 & 5 \ 7 & 3 \ end{array} + 10 cdot begin{array}{|cc|} -1 & 2 \ 7 & -4 \ end{array} = ( — 5 cdot (6 + 20) – 0 + 10 cdot (4 – 14) = (-5) cdot 26 – 0 – 100 = -230$.

«Определитель матрицы 3 на 3» 👇

Способ «по-французски»: правило Саррюса

Самый легко запоминаемый способ.

Первые два столбика матрицы переписываются рядом справа с исходной матрицей, а дальше рассматриваются левые и правые образуемые диагонали.

Тройки произведений чисел с розовых диагоналей записываются с плюсом, а с синих – с минусом.

Как посчитать матрицу 3 на 3. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Как посчитать матрицу 3 на 3. Автор24 — интернет-биржа студенческих работ

Пример 2

Посчитайте определитель $М$ этим методом.

Решение:

$Δ = (-1) cdot (-4) cdot 10 + 2 cdot 3 cdot (-5) + 5 cdot 7 cdot 0 – 2 cdot 7 cdot 10 — (-1) cdot 3 cdot 0 – 5 cdot (-4) cdot (-5) = 40 – 30 + 0 -140 – 0 – 100 = 230$.

Мнемоническое правило с треугольниками

Несколько более сложный способ для запоминания в отличие от предыдущего.

Суть его в том, что произведения троек значений с главной диагонали и с двух треугольников, одна из сторон для каждого параллельна главной диагонали, записываются с плюсом, а с минусом записываются те произведения, что на побочной диагонали и двух треугольниках с параллельными ей сторонами (смотрите рисунок).

Как найти детерминант матрицы 3 на 3. Автор24 — интернет-биржа студенческих работ

Рисунок 3. Как найти детерминант матрицы 3 на 3. Автор24 — интернет-биржа студенческих работ

Приведение матричной таблицы к треугольной

В этом методе нужно получить матрицу, элементы которой сверху или снизу от главной диагонали равны нулю.

Пример 3

Найти определитель для М с помощью получения треугольной матрицы.

Решение:

Вспомним свойство определителя: из любой строки или столбца можно вынести общий для этой строчки или столбца множитель.

Поэтому:

$begin{array} {|ccc|} -1 & 2 & 5 \ 7 & -4 & 3 \ -5 & 0 & 10 \ end{array} = begin{array} {|ccc|} -1 & 2 & 5 \ 7 & -4 & 3 \ -1 cdot 5 & 0 cdot 5 & 2 cdot 5 \ end{array}= 5 cdot begin{array} {|ccc|} -1 & 2 & 5 \ 7 & -4 & 3 \ -1 & 0 & 2 \ end{array} = 5 cdot begin{array} {|ccc|} -1 & 1 cdot 2 & 5 \ 7 & -2 cdot 2 & 3 \ -1 & 0 cdot 2 & 2 \ end{array}= 10 cdot begin{array} {|ccc|} -1 & 1 & 5 \ 7 & -2 & 3 \ -1 & 0 & 2 \ end{array}$.

Теперь преобразуем полученную таблицу, для этого начинаем приводить к нулям элементы крайнего левого столбца. Строчки для удобства будем записывать как (n), где n — это номер строчки.

1) (2) $cdot frac17$ + (3), результат запишем в третьей строчке:

$ begin{array} {|ccc|} -1 & 1 & 5 \ 7 & -2 & 3 \ 0 & -frac27 & frac{17}{7} \ end{array}$ ;

2) (1) $ cdot 7$ + (2), полученное запишем во второй строчке:

$ begin{array} {|ccc|} -1 & 1 & 5 \ 0 & 5 & 38 \ 0 & -frac27 & frac{17}{7} \ end{array}$ ;

3) (2) $cdot frac{2}{35}$ + (3)$, пишем в 3-ью:, пишем в 3-ью:

$ begin{array} {|ccc|} -1 & 1 & 5 \ 0 & 5 & 38 \ 0 & 0 & frac{23}{5} \ end{array}$ ;

Получили матрицу нужного типа. Посчитаем $D$:

$Δ = 10 cdot (-1) cdot 5 cdot frac{23}{5} = -230$.

Во время использования данного способа внимательно следите за знаками, а также за порядком вычислений.

Теперь вы умеете решать определители матриц наиболее распространёнными способами.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Определитель матрицы и его свойства

8 февраля 2018

В этом уроке мы детально рассмотрим несколько ключевые вопросов и определений, благодаря чему вы раз и навсегда разберётесь и с матрицами, и с определителями, и со всеми их свойствами.

Определители — центральное понятие в алгебре матриц. Подобно формулам сокращённого умножения, они будут преследовать вас на протяжении всего курса высшей математики. Поэтому читаем, смотрим и разбираемся досконально.:)

И начнём мы с самого сокровенного — а что такое матрица? И как правильно с ней работать.

Правильная расстановка индексов в матрице

Матрица — это просто таблица, заполненная числами. Нео тут ни при чём.

Одна из ключевых характеристик матрицы — это её размерность, т.е. количество строк и столбцов, из которых она состоит. Обычно говорят, что некая матрица $A$ имеет размер $left[ mtimes n right]$, если в ней имеется $m$ строк и $n$ столбцов. Записывают это так:

[A=left[ mtimes n right]]

Или вот так:

[A=left( {{a}_{ij}} right),quad 1le ile m;quad 1le jle n.]

Бывают и другие обозначения — тут всё зависит от предпочтений лектора/ семинариста/ автора учебника. Но в любом случае со всеми этими $left[ mtimes n right]$ и ${{a}_{ij}}$ возникает одна и та же проблема:

Какой индекс за что отвечает? Сначала идёт номер строки, затем — столбца? Или наоборот?

При чтении лекций и учебников ответ будет казаться очевидным. Но когда на экзамене перед вами — только листик с задачей, можно переволноваться и внезапно запутаться.

Поэтому давайте разберёмся с этим вопросом раз и навсегда. Для начала вспомним обычную систему координат из школьного курса математики:

Введение системы координат на плоскости

Помните её? У неё есть начало координат (точка $O=left( 0;0 right)$) оси $x$и $y$, а каждая точка на плоскости однозначно определяется по координатам: $A=left( 1;2 right)$, $B=left( 3;1 right)$ и т.д.

А теперь давайте возьмём эту конструкцию и поставим её рядом с матрицей так, чтобы начало координат находилось в левом верхнем углу. Почему именно там? Да потому что открывая книгу, мы начинаем читать именно с левого верхнего угла страницы — запомнить это легче лёгкого.

Но куда направить оси? Мы направим их так, чтобы вся наша виртуальная «страница» была охвачена этими осями. Правда, для этого придётся повернуть нашу систему координат. Единственно возможный вариант такого расположения:

Наложение системы координат на матрицу

Теперь всякая клетка матрицы имеет однозначные координаты $x$ и $y$. Например запись ${{a}_{24}}$ означает, что мы обращаемся к элементу с координатами $x=2$ и $y=4$. Размеры матрицы тоже однозначно задаются парой чисел:

Определение индексов в матрице

Просто всмотритесь в эту картинку внимательно. Поиграйтесь с координатами (особенно когда будете работать с настоящими матрицами и определителями) — и очень скоро поймёте, что даже в самых сложных теоремах и определениях вы прекрасно понимаете, о чём идёт речь.

Разобрались? Что ж, переходим к первому шагу просветления — геометрическому определению определителя.:)

Геометрическое определение

Прежде всего хотел бы отметить, что определитель существует только для квадратных матриц вида $left[ ntimes n right]$. Определитель — это число, которое cчитается по определённым правилам и является одной из характеристик этой матрицы (есть другие характеристики: ранг, собственные вектора, но об этом в других уроках).

Ну и что это за характеристика? Что он означает? Всё просто:

Определитель квадратной матрицы $A=left[ ntimes n right]$ — это объём $n$-мерного параллелепипеда, который образуется, если рассмотреть строки матрицы в качестве векторов, образующих рёбра этого параллелепипеда.

Например, определитель матрицы размера 2×2 — это просто площадь параллелограмма, а для матрицы 3×3 это уже объём 3-мерного параллелепипеда — того самого, который так бесит всех старшеклассников на уроках стереометрии.

На первый взгляд это определение может показаться совершенно неадекватным. Но давайте не будем спешить с выводами — глянем на примеры. На самом деле всё элементарно, Ватсон:

Задача. Найдите определители матриц:

[left| begin{matrix} 1 & 0 \ 0 & 3 \end{matrix} right|quad left| begin{matrix} 1 & -1 \ 2 & 2 \end{matrix} right|quad left| begin{matrix}2 & 0 & 0 \ 1 & 3 & 0 \ 1 & 1 & 4 \end{matrix} right|]

Решение. Первые два определителя имеют размер 2×2. Значит, это просто площади параллелограммов. Начертим их и посчитаем площадь.

Первый параллелограмм построен на векторах ${{v}_{1}}=left( 1;0 right)$ и ${{v}_{2}}=left( 0;3 right)$:

Определитель 2×2 — это площадь параллелограмма

Очевидно, это не просто параллелограмм, а вполне себе прямоугольник. Его площадь равна

[S=1cdot 3=3]

Второй параллелограмм построен на векторах ${{v}_{1}}=left( 1;-1 right)$ и ${{v}_{2}}=left( 2;2 right)$. Ну и что с того? Это тоже прямоугольник:

Ещё один определитель 2×2

Стороны этого прямоугольника (по сути — длины векторов) легко считаются по теореме Пифагора:

[begin{align} & left| {{v}_{1}} right|=sqrt{{{1}^{2}}+{{left( -1 right)}^{2}}}=sqrt{2}; \ & left| {{v}_{2}} right|=sqrt{{{2}^{2}}+{{2}^{2}}}=sqrt{8}=2sqrt{2}; \ & S=left| {{v}_{1}} right|cdot left| {{v}_{2}} right|=sqrt{2}cdot 2sqrt{2}=4. \end{align}]

Осталось разобраться с последним определителем — там уже матрица 3×3. Придётся вспоминать стереометрию:

Определитель 3×3 — это объём параллелепипеда

Выглядит мозговыносяще, но по факту достаточно вспомнить формулу объёма параллелепипеда:

[V=Scdot h]

где $S$ — площадь основания (в нашем случае это площадь параллелограмма на плоскости $OXY$), $h$ — высота, проведённая к этому основанию (по сути, $z$-координата вектора ${{v}_{3}}$).

Площадь параллелограмма (мы начертили его отдельно) тоже считается легко:

[begin{align} & S=2cdot 3=6; \ & V=Scdot h=6cdot 4=24. \end{align}]

Вот и всё! Записываем ответы.

Ответ: 3; 4; 24.

Небольшое замечание по поводу системы обозначений. Кому-то наверняка не понравится, что я игнорирую «стрелочки» над векторами. Якобы так можно спутать вектор с точкой или ещё с чем.

Но давайте серьёзно: мы с вами уже взрослые мальчики и девочки, поэтому из контекста прекрасно понимаем, когда речь идёт о векторе, а когда — о точке. Стрелки лишь засоряют повествование, и без того под завязку напичканное математическими формулами.

И ещё. В принципе, ничто не мешает рассмотреть и определитель матрицы 1×1 — такая матрица представляет собой просто одну клетку, а число, записанное в этой клетке, и будет определителем. Но тут есть важное замечание:

В отличие от классического объёма, определитель даст нам так называемый «ориентированный объём», т.е. объём с учётом последовательности рассмотрения векторов-строк.

И если вы хотите получить объём в классическом смысле этого слова, придётся взять модуль определителя, но сейчас не стоит париться об этом — всё равно через несколько секунд мы научимся считать любой определитель с любыми знаками, размерами и т.д.:)

Алгебраическое определение

При всей красоте и наглядности геометрического подхода у него есть серьёзный недостаток: он ничего не говорит нам о том, как этот самый определитель считать.

Поэтому сейчас мы разберём альтернативное определение — алгебраическое. Для этого нам потребуется краткая теоретическая подготовка, зато на выходе мы получим инструмент, позволяющий считать в матрицах что и как угодно.

Правда, там появится новая проблема… но обо всём по порядку.

Перестановки и инверсии

Давайте выпишем в строчку числа от 1 до $n$. Получится что-то типа этого:

[1;2;3;4;5;…;n-1;n]

Теперь (чисто по приколу) поменяем парочку чисел местами. Можно поменять соседние:

[1;3;2;4;5;…;n-1;n]

А можно — не особо соседние:

[n;2;3;4;5;…;n-1;1]

И знаете, что? А ничего! В алгебре эта хрень называется перестановкой. И у неё есть куча свойств.

Определение. Перестановка длины $n$ — строка из $n$ различных чисел, записанных в любой последовательности. Обычно рассматриваются первые $n$ натуральных чисел (т.е. как раз числа 1, 2, …, $n$), а затем их перемешивают для получения нужной перестановки.

Обозначаются перестановки так же, как и векторы — просто буквой и последовательным перечислением своих элементов в скобках. Например: $p=left( 1;3;2 right)$ или $p=left( 2;5;1;4;3 right)$. Буква может быть любой, но пусть будет $p$.:)

Далее для простоты изложения будем работать с перестановками длины 5 — они уже достаточно серьёзны для наблюдения всяких подозрительных эффектов, но ещё не настолько суровы для неокрепшего мозга, как перестановки длины 6 и более. Вот примеры таких перестановок:

[begin{align} & {{p}_{1}}=left( 1;2;3;4;5 right) \ & {{p}_{2}}=left( 1;3;2;5;4 right) \ & {{p}_{3}}=left( 5;4;3;2;1 right) \end{align}]

Естественно, перестановку длины $n$ можно рассматривать как функцию, которая определена на множестве $left{ 1;2;…;n right}$ и биективно отображает это множество на себя же. Возвращаясь к только что записанным перестановкам ${{p}_{1}}$, ${{p}_{2}}$ и ${{p}_{3}}$, мы вполне законно можем написать:

[{{p}_{1}}left( 1 right)=1;{{p}_{2}}left( 3 right)=2;{{p}_{3}}left( 2 right)=4;]

Количество различных перестановок длины $n$ всегда ограничено и равно $n!$ — это легко доказуемый факт из комбинаторики. Например, если мы захотим выписать все перестановки длины 5, то мы весьма заколебёмся, поскольку таких перестановок будет

[n!=5!=1cdot 2cdot 3cdot 4cdot 5=120]

Одной из ключевых характеристик всякой перестановки является количество инверсий в ней.

Определение. Инверсия в перестановке $p=left( {{a}_{1}};{{a}_{2}};…;{{a}_{n}} right)$ — всякая пара $left( {{a}_{i}};{{a}_{j}} right)$ такая, что $i lt j$, но ${{a}_{i}} gt {{a}_{j}}$. Проще говоря, инверсия — это когда большее число стоит левее меньшего (не обязательно соседнего).

Мы будем обозначать через $Nleft( p right)$ количество инверсий в перестановке $p$, но будьте готовы встретиться и с другими обозначениями в разных учебниках и у разных авторов — единых стандартов тут нет. Тема инверсий весьма обширна, и ей будет посвящён отдельный урок. Сейчас же наша задача — просто научиться считать их в реальных задачах.

Например, посчитаем количество инверсий в перестановке $p=left( 1;4;5;3;2 right)$:

[left( 4;3 right);left( 4;2 right);left( 5;3 right);left( 5;2 right);left( 3;2 right).]

Таким образом, $Nleft( p right)=5$. Как видите, ничего страшного в этом нет. Сразу скажу: дальше нас будет интересовать не столько само число $Nleft( p right)$, сколько его чётность/ нечётность. И тут мы плавно переходим к ключевому термину сегодняшнего урока.

Что такое определитель

Пусть дана квадратная матрица $A=left[ ntimes n right]$. Тогда:

Определение. Определитель матрицы $A=left[ ntimes n right]$ — это алгебраическая сумма $n!$ слагаемых, составленных следующим образом. Каждое слагаемое — это произведение $n$ элементов матрицы, взятых по одному из каждой строки и каждого столбца, умноженное на (−1) в степени количество инверсий:

[left| A right|=sumlimits_{n!}{{{left( -1 right)}^{Nleft( p right)}}cdot {{a}_{1;pleft( 1 right)}}cdot {{a}_{2;pleft( 2 right)}}cdot …cdot {{a}_{n;pleft( n right)}}}]

Принципиальным моментом при выборе множителей для каждого слагаемого в определителе является тот факт, что никакие два множителя не стоят в одной строчке или в одном столбце.

Благодаря этому можно без ограничения общности считать, что индексы $i$ множителей ${{a}_{i;j}}$ «пробегают» значения 1, …, $n$, а индексы $j$ являются некоторой перестановкой от первых:

[j=pleft( i right),quad i=1,2,…,n]

А когда есть перестановка $p$, мы легко посчитаем инверсии $Nleft( p right)$ — и очередное слагаемое определителя готово.

Естественно, никто не запрещает поменять местами множители в каком-либо слагаемом (или во всех сразу — чего мелочиться-то?), и тогда первые индексы тоже будут представлять собой некоторую перестановку. Но в итоге ничего не поменяется: суммарное количество инверсий в индексах $i$ и $j$ сохраняет чётность при подобных извращениях, что вполне соответствует старому-доброму правилу:

От перестановки множителей произведение чисел не меняется.

Вот только не надо приплетать это правило к умножению матриц — в отличие от умножения чисел, оно не коммутативно. Но это я отвлёкся.:)

Матрица 2×2

Вообще-то можно рассмотреть и матрицу 1×1 — это будет одна клетка, и её определитель, как нетрудно догадаться, равен числу, записанному в этой клетке. Ничего интересного.

Поэтому давайте рассмотрим квадратную матрицу размером 2×2:

[left[ begin{matrix} {{a}_{11}} & {{a}_{12}} \ {{a}_{21}} & {{a}_{22}} \end{matrix} right]]

Поскольку количество строк в ней $n=2$, то определитель будет содержать $n!=2!=1cdot 2=2$ слагаемых. Выпишем их:

[begin{align} & {{left( -1 right)}^{Nleft( 1;2 right)}}cdot {{a}_{11}}cdot {{a}_{22}}={{left( -1 right)}^{0}}cdot {{a}_{11}}cdot {{a}_{22}}={{a}_{11}}{{a}_{22}}; \ & {{left( -1 right)}^{Nleft( 2;1 right)}}cdot {{a}_{12}}cdot {{a}_{21}}={{left( -1 right)}^{1}}cdot {{a}_{12}}cdot {{a}_{21}}={{a}_{12}}{{a}_{21}}. \end{align}]

Очевидно, что в перестановке $left( 1;2 right)$, состоящей из двух элементов, нет инверсий, поэтому $Nleft( 1;2 right)=0$. А вот в перестановке $left( 2;1 right)$ одна инверсия имеется (собственно, 2 < 1), поэтому $Nleft( 2;1 right)=1.$

Итого универсальная формула вычисления определителя для матрицы 2×2 выглядит так:

[left| begin{matrix} {{a}_{11}} & {{a}_{12}} \ {{a}_{21}} & {{a}_{22}} \end{matrix} right|={{a}_{11}}{{a}_{22}}-{{a}_{12}}{{a}_{21}}]

Графически это можно представить как произведение элементов, стоящих на главной диагонали, минус произведение элементов на побочной:

Определитель матрицы 2×2

Рассмотрим пару примеров:

Задача. Вычислите определитель:

[left| begin{matrix} 5 & 6 \ 8 & 9 \end{matrix} right|;quad left| begin{matrix} 7 & 12 \ 14 & 1 \end{matrix} right|.]

Решение. Всё считается в одну строчку. Первая матрица:

[5cdot 9-8cdot 6=45-48=-3]

И вторая:

[7cdot 1-14cdot 12=7-168=-161]

Ответ: −3; −161.

Впрочем, это было слишком просто. Давайте рассмотрим матрицы 3×3 — там уже интересно.

Матрица 3×3

Теперь рассмотрим квадратную матрицу размера 3×3:

[left[ begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \end{matrix} right]]

При вычислении её определителя мы получим $3!=1cdot 2cdot 3=6$ слагаемых — ещё не слишком много для паники, но уже достаточно, чтобы начать искать какие-то закономерности. Для начала выпишем все перестановки из трёх элементов и посчитаем инверсии в каждой из них:

[begin{align} & {{p}_{1}}=left( 1;2;3 right)Rightarrow Nleft( {{p}_{1}} right)=Nleft( 1;2;3 right)=0; \ & {{p}_{2}}=left( 1;3;2 right)Rightarrow Nleft( {{p}_{2}} right)=Nleft( 1;3;2 right)=1; \ & {{p}_{3}}=left( 2;1;3 right)Rightarrow Nleft( {{p}_{3}} right)=Nleft( 2;1;3 right)=1; \ & {{p}_{4}}=left( 2;3;1 right)Rightarrow Nleft( {{p}_{4}} right)=Nleft( 2;3;1 right)=2; \ & {{p}_{5}}=left( 3;1;2 right)Rightarrow Nleft( {{p}_{5}} right)=Nleft( 3;1;2 right)=2; \ & {{p}_{6}}=left( 3;2;1 right)Rightarrow Nleft( {{p}_{6}} right)=Nleft( 3;2;1 right)=3. \end{align}]

Как и предполагалось, всего выписано 6 перестановок ${{p}_{1}}$, … ${{p}_{6}}$ (естественно, можно было бы выписать их в другой последовательности — суть от этого не изменится), а количество инверсий в них меняется от 0 до 3.

В общем, у нас будет три слагаемых с «плюсом» (там, где $Nleft( p right)$ — чётное) и ещё три с «минусом». А в целом определитель будет считаться по формуле:

[left| begin{matrix} {{a}_{11}} & {{a}_{12}} & {{a}_{13}} \ {{a}_{21}} & {{a}_{22}} & {{a}_{23}} \ {{a}_{31}} & {{a}_{32}} & {{a}_{33}} \end{matrix} right|=begin{matrix} {{a}_{11}}{{a}_{22}}{{a}_{33}}+{{a}_{12}}{{a}_{23}}{{a}_{31}}+{{a}_{13}}{{a}_{21}}{{a}_{32}}- \ -{{a}_{13}}{{a}_{22}}{{a}_{31}}-{{a}_{12}}{{a}_{21}}{{a}_{33}}-{{a}_{11}}{{a}_{23}}{{a}_{32}} \end{matrix}]

Вот только не надо сейчас садиться и яростно зубрить все эти индексы! Вместо непонятных цифр лучше запомните следующее мнемоническое правило:

Правило треугольника. Для нахождения определителя матрицы 3×3 нужно сложить три произведения элементов, стоящих на главной диагонали и в вершинах равнобедренных треугольников со стороной, параллельной этой диагонали, а затем вычесть такие же три произведения, но на побочной диагонали. Схематически это выглядит так:

Определитель матрицы 3×3: правило треугольников

Именно эти треугольники (или пентаграммы — кому как больше нравится) любят рисовать во всяких учебниках и методичках по алгебре. Впрочем, не будем о грустном. Давайте лучше посчитаем один такой определитель — для разминки перед настоящей жестью.:)

Задача. Вычислите определитель:

[left| begin{matrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 1 \end{matrix} right|]

Решение. Работаем по правилу треугольников. Сначала посчитаем три слагаемых, составленных из элементов на главной диагонали и параллельно ей:

[begin{align} & 1cdot 5cdot 1+2cdot 6cdot 7+3cdot 4cdot 8= \ & =5+84+96=185 \end{align}]

Теперь разбираемся с побочной диагональю:

[begin{align} & 3cdot 5cdot 7+2cdot 4cdot 1+1cdot 6cdot 8= \ & =105+8+48=161 \end{align}]

Осталось лишь вычесть из первого числа второе — и мы получим ответ:

[185-161=24]

Вот и всё!

Ответ: 24.

Тем не менее, определители матриц 3×3 — это ещё не вершина мастерства. Самое интересное ждёт нас дальше.:)

Общая схема вычисления определителей

Как мы знаем, с ростом размерности матрицы $n$ количество слагаемых в определителе составляет $n!$ и быстро растёт. Всё-таки факториал — это вам не хрен собачий довольно быстро растущая функция.

Уже для матриц 4×4 считать определители напролом (т.е. через перестановки) становится как-то не оч. Про 5×5 и более вообще молчу. Поэтому к делу подключаются некоторые свойства определителя, но для их понимания нужна небольшая теоретическая подготовка.

Готовы? Поехали!

Что такое минор матрицы

Пусть дана произвольная матрица $A=left[ mtimes n right]$. Заметьте: не обязательно квадратная. В отличие от определителей, миноры — это такие няшки, которые существуют не только в суровых квадратных матрицах. Выберем в этой матрице несколько (например, $k$) строк и столбцов, причём $1le kle m$ и $1le kle n$. Тогда:

Определение. Минор порядка $k$ — определитель квадратной матрицы, возникающей на пересечении выбранных $k$ столбцов и строк. Также минором мы будем называть и саму эту новую матрицу.

Обозначается такой минор ${{M}_{k}}$. Естественно, у одной матрицы может быть целая куча миноров порядка $k$. Вот пример минора порядка 2 для матрицы $left[ 5times 6 right]$:

Выбор $k = 2$ столбцов и строк для формирования минора

Совершенно необязательно, чтобы выбранные строки и столбцы стояли рядом, как в рассмотренном примере. Главное, чтобы количество выбранных строк и столбцов было одинаковым (это и есть число $k$).

Есть и другое определение. Возможно, кому-то оно больше придётся по душе:

Определение. Пусть дана прямоугольная матрица $A=left[ mtimes n right]$. Если после вычеркивания в ней одного или нескольких столбцов и одной или нескольких строк образуется квадратная матрица размера $left[ ktimes k right]$, то её определитель — это и есть минор ${{M}_{k}}$. Саму матрицу мы тоже иногда будем называть минором — это будет ясно из контекста.

Как говорил мой кот, иногда лучше один раз навернуться с 11-го этажа есть корм, чем мяукать, сидя на балконе.

Пример. Пусть дана матрица

[A=left[ begin{matrix} begin{matrix} 1 \ 2 \ 3 \end{matrix} & begin{matrix} 7 \ 4 \ 0 \end{matrix} & begin{matrix} 9 \ 5 \ 6 \end{matrix} & begin{matrix} 0 \ 3 \ 1 \end{matrix} \end{matrix} right]]

Выбирая строку 1 и столбец 2, получаем минор первого порядка:

[{{M}_{1}}=left| 7 right|=7]

Выбирая строки 2, 3 и столбцы 3, 4, получаем минор второго порядка:

[{{M}_{2}}=left| begin{matrix} 5 & 3 \ 6 & 1 \end{matrix} right|=5-18=-13]

А если выбрать все три строки, а также столбцы 1, 2, 4, будет минор третьего порядка:

[{{M}_{3}}=left| begin{matrix} 1 & 7 & 0 \ 2 & 4 & 3 \ 3 & 0 & 1 \end{matrix} right|]

Считать этот определитель мне уже в лом. Но он равен 53.:)

Читателю не составит труда найти и другие миноры порядков 1, 2 или 3. Поэтому идём дальше.

Алгебраические дополнения

«Ну ok, и что дают нам эти миньоны миноры?» — наверняка спросите вы. Сами по себе — ничего. Но в квадратных матрицах у каждого минора появляется «компаньон» — дополнительный минор, а также алгебраическое дополнение. И вместе эти два ушлёпка позволят нам щёлкать определители как орешки.

Определение. Пусть дана квадратная матрица $A=left[ ntimes n right]$, в которой выбран минор ${{M}_{k}}$. Тогда дополнительный минор для минора ${{M}_{k}}$ — это кусок исходной матрицы $A$, который останется при вычёркивании всех строк и столбцов, задействованных при составлении минора ${{M}_{k}}$:

Дополнительный минор к минору ${{M}_{2}}$

Уточним один момент: дополнительный минор — это не просто «кусок матрицы», а определитель этого куска.

Обозначаются дополнительные миноры с помощью «звёздочки»: $M_{k}^{*}$:

[M_{k}^{*}=left| Anabla {{M}_{k}} right|]

где операция $Anabla {{M}_{k}}$ буквально означает «вычеркнуть из $A$ строки и столбцы, входящие в ${{M}_{k}}$». Эта операция не является общепринятой в математике — я её сам только что придумал для красоты повествования.:)

Дополнительные миноры редко используются сами по себе. Они являются частью более сложной конструкции — алгебраического дополнения.

Определение. Алгебраическое дополнение минора ${{M}_{k}}$ — это дополнительный минор $M_{k}^{*}$, умноженный на величину ${{left( -1 right)}^{S}}$, где $S$ — сумма номеров всех строк и столбцов, задействованных в исходном миноре ${{M}_{k}}$.

Как правило, алгебраическое дополнение минора ${{M}_{k}}$ обозначается через ${{A}_{k}}$. Поэтому:

[{{A}_{k}}={{left( -1 right)}^{S}}cdot M_{k}^{*}]

Сложно? На первый взгляд — да. Но это не точно. Потому что на самом деле всё легко. Рассмотрим пример:

Пример. Дана матрица 4×4:

[A=left[ begin{matrix} 1 & 2 & 3 & 4 \ 5 & 6 & 7 & 8 \ 9 & 10 & 11 & 12 \ 13 & 14 & 15 & 16 \end{matrix} right]]

Выберем минор второго порядка

[{{M}_{2}}=left| begin{matrix} 3 & 4 \ 15 & 16 \end{matrix} right|]

Капитан Очевидность как бы намекает нам, что при составлении этого минора были задействованы строки 1 и 4, а также столбцы 3 и 4. Вычёркиваем их — получим дополнительный минор:

[M_{2}^{*}=left| begin{matrix} 5 & 6 \ 9 & 10 \end{matrix} right|=50-54=-4]

Осталось найти число $S$ и получить алгебраическое дополнение. Поскольку мы знаем номера задействованных строк (1 и 4) и столбцов (3 и 4), всё просто:

[begin{align} & S=1+4+3+4=12; \ & {{A}_{2}}={{left( -1 right)}^{S}}cdot M_{2}^{*}={{left( -1 right)}^{12}}cdot left( -4 right)=-4end{align}]

Ответ: ${{A}_{2}}=-4$

Вот и всё! По сути, всё различие между дополнительным минором и алгебраическим дополнением — только в минусе спереди, да и то не всегда.

Наша задача сейчас — научиться быстро считать алгебраические дополнения, потому что они являются составной частью «Теоремы, Которую Нельзя Называть». Но мы всё же назовём. Встречайте:

Теорема Лапласа

И вот мы пришли к тому, зачем, собственно, все эти миноры и алгебраические дополнения были нужны.

Теорема Лапласа о разложении определителя. Пусть в матрице размера $left[ ntimes n right]$ выбрано $k$ строк (столбцов), причём $1le kle n-1$. Тогда определитель этой матрицы равен сумме всех произведений миноров порядка $k$, содержащихся в выбранных строках (столбцах), на их алгебраические дополнения:

[left| A right|=sum{{{M}_{k}}cdot {{A}_{k}}}]

Причём таких слагаемых будет ровно $C_{n}^{k}$.

Ладно, ладно: про $C_{n}^{k}$ — это я уже понтуюсь, в оригинальной теореме Лапласа ничего такого не было. Но комбинаторику никто не отменял, и буквально беглый взгляд на условие позволит вам самостоятельно убедиться, что слагаемых будет именно столько.:)

Мы не будем её доказывать, хоть это и не представляет особой трудности — все выкладки сводятся к старым-добрым перестановкам и чётности/ нечётности инверсий. Тем не менее, доказательство будет представлено в отдельном параграфе, а сегодня у нас сугубо практический урок.

Поэтому переходим к частному случаю этой теоремы, когда миноры представляют собой отдельные клетки матрицы.

Разложение определителя по строке и столбцу

То, о чём сейчас пойдёт речь — как раз и есть основной инструмент работы с определителями, ради которого затевались вся эта дичь с перестановками, минорами и алгебраическими дополнениями.

Читайте и наслаждайтесь:

Следствие из Теоремы Лапласа (разложение определителя по строке/столбцу). Пусть в матрице размера $left[ ntimes n right]$ выбрана одна строка. Минорами в этой строке будут $n$ отдельных клеток:

[{{M}_{1}}={{a}_{ij}},quad j=1,…,n]

Дополнительные миноры тоже легко считаются: просто берём исходную матрицу и вычёркиваем строку и столбец, содержащие ${{a}_{ij}}$. Назовём такие миноры $M_{ij}^{*}$.

Для алгебраического дополнения ещё нужно число $S$, но в случае с минором порядка 1 это просто сумма «координат» клетки ${{a}_{ij}}$:

[S=i+j]

И тогда исходный определитель можно расписать через ${{a}_{ij}}$ и $M_{ij}^{*}$ согласно теореме Лапласа:

[left| A right|=sumlimits_{j=1}^{n}{{{a}_{ij}}cdot {{left( -1 right)}^{i+j}}cdot {{M}_{ij}}}]

Это и есть формула разложения определителя по строке. Но то же верно и для столбцов.

Из этого следствия можно сразу сформулировать несколько выводов:

  1. Эта схема одинаково хорошо работает как для строк, так и для столбцов. На самом деле чаще всего разложение будет идти именно по столбцам, нежели по строкам.
  2. Количество слагаемых в разложении всегда ровно $n$. Это существенно меньше $C_{n}^{k}$ и уж тем более $n!$.
  3. Вместо одного определителя $left[ ntimes n right]$ придётся считать несколько определителей размера на единицу меньше: $left[ left( n-1 right)times left( n-1 right) right]$.

Последний факт особенно важен. Например, вместо зверского определителя 4×4 теперь достаточно будет посчитать несколько определителей 3×3 — с ними мы уж как-нибудь справимся.:)

Что ж, попробуем посчитать одну такую задачку?

Задача. Найдите определитель:

[left| begin{matrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{matrix} right|]

Решение. Разложим этот определитель по первой строке:

[begin{align} left| A right|=1cdot {{left( -1 right)}^{1+1}}cdot left| begin{matrix} 5 & 6 \ 8 & 9 \end{matrix} right|+ & \ 2cdot {{left( -1 right)}^{1+2}}cdot left| begin{matrix} 4 & 6 \ 7 & 9 \end{matrix} right|+ & \ 3cdot {{left( -1 right)}^{1+3}}cdot left| begin{matrix} 4 & 5 \ 7 & 8 \end{matrix} right|= & \end{align}]

[begin{align} & =1cdot left( 45-48 right)-2cdot left( 36-42 right)+3cdot left( 32-35 right)= \ & =1cdot left( -3 right)-2cdot left( -6 right)+3cdot left( -3 right)=0. \end{align}]

Ответ: 0.

Задача. Найдите определитель:

[left| begin{matrix} 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 \end{matrix} right|]

Решение. Для разнообразия давайте в этот раз работать со столбцами. Например, в последнем столбце присутствуют сразу два нуля — очевидно, это значительно сократит вычисления. Сейчас увидите почему.

Итак, раскладываем определитель по четвёртому столбцу:

[begin{align} left| begin{matrix} 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 \end{matrix} right|=0cdot {{left( -1 right)}^{1+4}}cdot left| begin{matrix} 1 & 0 & 1 \ 1 & 1 & 0 \ 1 & 1 & 1 \end{matrix} right|+ & \ +1cdot {{left( -1 right)}^{2+4}}cdot left| begin{matrix} 0 & 1 & 1 \ 1 & 1 & 0 \ 1 & 1 & 1 \end{matrix} right|+ & \ +1cdot {{left( -1 right)}^{3+4}}cdot left| begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 1 \end{matrix} right|+ & \ +0cdot {{left( -1 right)}^{4+4}}cdot left| begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 0 \end{matrix} right| & \end{align}]

И тут — о, чудо! — два слагаемых сразу улетают коту под хвост, поскольку в них есть множитель «0». Остаётся ещё два определителя 3×3, с которыми мы легко разберёмся:

[begin{align} & left| begin{matrix} 0 & 1 & 1 \ 1 & 1 & 0 \ 1 & 1 & 1 \end{matrix} right|=0+0+1-1-1-0=-1; \ & left| begin{matrix} 0 & 1 & 1 \ 1 & 0 & 1 \ 1 & 1 & 1 \end{matrix} right|=0+1+1-0-0-1=1. \end{align}]

Возвращаемся к исходнику и находим ответ:

[left| begin{matrix} 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 \ 1 & 1 & 0 & 1 \ 1 & 1 & 1 & 0 \end{matrix} right|=1cdot left( -1 right)+left( -1 right)cdot 1=-2]

Ну вот и всё. И никаких 4! = 24 слагаемых считать не пришлось.:)

Ответ: −2

Основные свойства определителя

В последней задаче мы видели, как наличие нулей в строках (столбцах) матрицы резко упрощает разложение определителя и вообще все вычисления. Возникает естественный вопрос: а нельзя ли сделать так, чтобы эти нули появились даже в той матрице, где их изначально не было?

Ответ однозначен: можно. И здесь нам на помощь приходят свойства определителя:

  1. Если поменять две строчки (столбца) местами, определитель поменяет знак;
  2. Если одну строку (столбец) умножить на число $k$, то весь определитель тоже умножится на число $k$;
  3. Если взять одну строку и прибавить (вычесть) её сколько угодно раз из другой, определитель не изменится;
  4. Если две строки определителя одинаковы, либо пропорциональны, либо одна из строк заполнена нулями, то весь определитель равен нулю;
  5. Все указанные выше свойства верны и для столбцов.
  6. При транспонировании матрицы определитель не меняется;
  7. Определитель произведения матриц равен произведению определителей.

Особую ценность представляет третье свойство: мы можем вычитать из одной строки (столбца) другую до тех пор, пока в нужных местах не появятся нули.

Чаще всего расчёты сводится к тому, чтобы «обнулить» весь столбец везде, кроме одного элемента, а затем разложить определитель по этому столбцу, получив матрицу размером на 1 меньше.

Давайте посмотрим, как это работает на практике:

Задача. Найдите определитель:

[left| begin{matrix} 1 & 2 & 3 & 4 \ 4 & 1 & 2 & 3 \ 3 & 4 & 1 & 2 \ 2 & 3 & 4 & 1 \end{matrix} right|]

Решение. Нулей тут как бы вообще не наблюдается, поэтому можно «долбить» по любой строке или столбцу — объём вычислений будет примерно одинаковым. Давайте не будем мелочиться и «обнулим» первый столбец: в нём уже есть клетка с единицей, поэтому просто возьмём первую строчку и вычтем её 4 раза из второй, 3 раза из третьей и 2 раза из последней.

В результате мы получим новую матрицу, но её определитель будет тем же:

[begin{matrix} left| begin{matrix} 1 & 2 & 3 & 4 \ 4 & 1 & 2 & 3 \ 3 & 4 & 1 & 2 \ 2 & 3 & 4 & 1 \end{matrix} right|begin{matrix} downarrow \ -4 \ -3 \ -2 \end{matrix}= \ =left| begin{matrix} 1 & 2 & 3 & 4 \ 4-4cdot 1 & 1-4cdot 2 & 2-4cdot 3 & 3-4cdot 4 \ 3-3cdot 1 & 4-3cdot 2 & 1-3cdot 3 & 2-3cdot 4 \ 2-2cdot 1 & 3-2cdot 2 & 4-2cdot 3 & 1-2cdot 4 \end{matrix} right|= \ =left| begin{matrix} 1 & 2 & 3 & 4 \ 0 & -7 & -10 & -13 \ 0 & -2 & -8 & -10 \ 0 & -1 & -2 & -7 \end{matrix} right| \end{matrix}]

Теперь с невозмутимостью Пятачка раскладываем этот определитель по первому столбцу:

[begin{matrix} 1cdot {{left( -1 right)}^{1+1}}cdot left| begin{matrix} -7 & -10 & -13 \ -2 & -8 & -10 \ -1 & -2 & -7 \end{matrix} right|+0cdot {{left( -1 right)}^{2+1}}cdot left| … right|+ \ +0cdot {{left( -1 right)}^{3+1}}cdot left| … right|+0cdot {{left( -1 right)}^{4+1}}cdot left| … right| \end{matrix}]

Понятно, что «выживет» только первое слагаемое — в остальных я даже определители не выписывал, поскольку они всё равно умножаются на ноль. Коэффициент перед определителем равен единице, т.е. его можно не записывать.

Зато можно вынести «минусы» из всех трёх строк определителя. По сути, мы трижды вынесли множитель (−1):

[left| begin{matrix} -7 & -10 & -13 \ -2 & -8 & -10 \ -1 & -2 & -7 \end{matrix} right|=cdot left| begin{matrix} 7 & 10 & 13 \ 2 & 8 & 10 \ 1 & 2 & 7 \end{matrix} right|]

Получили мелкий определитель 3×3, который уже можно посчитать по правилу треугольников. Но мы попробуем разложить и его по первому столбцу — благо в последней строчке гордо стоит единица:

[begin{align} & left( -1 right)cdot left| begin{matrix} 7 & 10 & 13 \ 2 & 8 & 10 \ 1 & 2 & 7 \end{matrix} right|begin{matrix} -7 \ -2 \ uparrow \end{matrix}=left( -1 right)cdot left| begin{matrix} 0 & -4 & -36 \ 0 & 4 & -4 \ 1 & 2 & 7 \end{matrix} right|= \ & =cdot left| begin{matrix} -4 & -36 \ 4 & -4 \end{matrix} right|=left( -1 right)cdot left| begin{matrix} -4 & -36 \ 4 & -4 \end{matrix} right| \end{align}]

Можно, конечно, ещё поприкалываться и разложить матрицу 2×2 по строке (столбцу), но мы же с вами адекватны, поэтому просто посчитаем ответ:

[left( -1 right)cdot left| begin{matrix} -4 & -36 \ 4 & -4 \end{matrix} right|=left( -1 right)cdot left( 16+144 right)=-160]

Вот так и разбиваются мечты. Всего-то −160 в ответе.:)

Ответ: −160.

Парочка замечаний перед тем, как мы перейдём к последней задаче:

  1. Исходная матрица была симметрична относительно побочной диагонали. Все миноры в разложении тоже симметричны относительно той же побочной диагонали.
  2. Строго говоря, мы могли вообще ничего не раскладывать, а просто привести матрицу к верхнетреугольному виду, когда под главной диагональю стоят сплошные нули. Тогда (в точном соответствии с геометрической интерпретацией, кстати) определитель равен произведению ${{a}_{ii}}$ — чисел на главной диагонали.

Идём дальше. Последняя задача в сегодняшнем уроке.

Задача. Найдите определитель:

[left| begin{matrix} 1 & 1 & 1 & 1 \ 2 & 4 & 8 & 16 \ 3 & 9 & 27 & 81 \ 5 & 25 & 125 & 625 \end{matrix} right|]

Решение. Ну, тут первая строка прямо-таки напрашивается на «обнуление». Берём первый столбец и вычитаем ровно один раз из всех остальных:

[begin{align} & left| begin{matrix} 1 & 1 & 1 & 1 \ 2 & 4 & 8 & 16 \ 3 & 9 & 27 & 81 \ 5 & 25 & 125 & 625 \end{matrix} right|= \ & =left| begin{matrix} 1 & 1-1 & 1-1 & 1-1 \ 2 & 4-2 & 8-2 & 16-2 \ 3 & 9-3 & 27-3 & 81-3 \ 5 & 25-5 & 125-5 & 625-5 \end{matrix} right|= \ & =left| begin{matrix} 1 & 0 & 0 & 0 \ 2 & 2 & 6 & 14 \ 3 & 6 & 24 & 78 \ 5 & 20 & 120 & 620 \end{matrix} right| \end{align}]

Раскладываем по первой строке, а затем выносим общие множители из оставшихся строк:

[cdot left| begin{matrix} 2 & 6 & 14 \ 6 & 24 & 78 \ 20 & 120 & 620 \end{matrix} right|=cdot left| begin{matrix} 1 & 3 & 7 \ 1 & 4 & 13 \ 1 & 6 & 31 \end{matrix} right|]

Снова наблюдаем «красивые» числа, но уже в первом столбце — раскладываем определитель по нему:

[begin{align} & 240cdot left| begin{matrix} 1 & 3 & 7 \ 1 & 4 & 13 \ 1 & 6 & 31 \end{matrix} right|begin{matrix} downarrow \ -1 \ -1 \end{matrix}=240cdot left| begin{matrix} 1 & 3 & 7 \ 0 & 1 & 6 \ 0 & 3 & 24 \end{matrix} right|= \ & =240cdot {{left( -1 right)}^{1+1}}cdot left| begin{matrix} 1 & 6 \ 3 & 24 \end{matrix} right|= \ & =240cdot 1cdot left( 24-18 right)=1440 \end{align}]

Порядок. Задача решена.

Ответ: 1440

Всё. Хорош читать этот бред.:)

Смотрите также:

  1. Обратная матрица
  2. Умножение матриц
  3. Геометрическая вероятность
  4. Решение задач B12: №448—455
  5. Задачи на проценты: формула, упрощающая вычисления
  6. Задача B4 про три дороги — стандартная задача на движение

Понравилась статья? Поделить с друзьями:
  • Ошибка 1073 4game как исправить
  • Штрих принт ошибка установки нуля как исправить ошибку
  • Как в поисковике найти информацию по картинке
  • Windows 10 не видит привод dvd как это исправить
  • Как найди площадь прямоугольного треугольника формула