Как найти оптический центр вогнутого зеркала

Каждое утро, умываясь, вы смотрите в плоское зеркало и видите свое четкое отражение в нем. Но поверхность зеркала может быть не только плоской, но и искривленной. Параллельные лучи света, отражаясь от искривленной поверхности, не останутся параллельными. Но отражаются они упорядоченно и могут как сходиться, так и расходиться (рис. 111).

Самый простой пример искривленной отражающей поверхности – сферическая поверхность. Зеркало с такой поверхностью  называют сферическим.

Различают два типа сферических зеркал: вогнутые, если зеркальной является внутренняя поверхность сферы (рис. 112, а), и выпуклые, если — внешняя (рис. 112, б).

Основные характеристики сферических зеркал.

Рассмотрим основные характеристики сферических зеркал на примере вогнутого зеркала (рис. 113). Центр сферы O называется оптическим центром зеркала, его радиус Rрадиусом зеркала. Вершина шарового сегмента P  называется полюсом зеркала. Прямая линия OP, проходящая через оптический центр и полюс зеркала, называется главной оптической осью. Любая прямая, например прямая OM, проходящая через оптический центр O  и поверхность зеркала (за исключением его главной оптической оси), называется побочной оптической осью.

Так как поверхность зеркала сферическая, то из ее геометрических свойств  следует, что любая оптическая ось перпендикулярна поверхности зеркала. Поэтому луч, идущий по направлению к зеркалу по какой-либо из оптических осей, отразившись от зеркала, пойдет по той же самой оптической оси, но уже в обратном направлении.

В отличие от плоских зеркал, в которых изображение точечного источника всегда является точечным, в сферических зеркалах такое свойство выполняется только в случае, когда пучок падающих на зеркало лучей можно считать параксиальным (приосевым) (от греч. παρα — возле и лат. axis — ось). Это означает, что он состоит из лучей, образующих малые углы с оптической осью и находящихся на небольших расстояниях h по сравнению  с радиусом кривизны R зеркала (h<<R).


В плоских зеркалах изображение точечного источника всегда является точечным. Сферические зеркала дают неискаженные изображения только в том случае, если предмет достаточно мал и лучи распространяются вблизи главной оптической оси.

Если направить пучок лучей, параллельных главной оптической оси сферического зеркала, то все они пересекут главную оптическую ось в одной и той же точке (см. рис. 113, б).  Рассмотрим луч KM, параллельный главной оптической оси  OP (см. рис. 113, б).  OM— нормаль к поверхности зеркала. Следовательно KMO=α, угол является углом падения. По закону отражения света луч, падающий на сферическое зеркало, и луч отраженный составляют с радиусом зеркала одинаковые углы α и лежат с ним в одной плоскости  KMO = OMF. После отражения от зеркала луч пройдет через точку F на главной оптической оси (рис. 114, а). Так как треугольник ΔOMF равнобедренный, то OF=MF. Если расстояние h<<R, то FPMF. Следовательно, FPFFO=R/2. 

Если направить пучок лучей параллельно главной оптической оси вогнутого сферического зеркала, то все они пересекут главную оптическую ось в одной и той же точке на расстоянии F=R/2  (рис. 113, 114, а). Аналогичные построения можно сделать и для выпуклого зеркала (рис. 114, б).
Только в отличие от вогнутого зеркала пересекаться в фокусе будут не лучи, а их продолжения. Эта точка находится на главной оптической оси на расстоянии  от полюса зеркала — в мнимом фокусе.

Точка F (см. рис. 113, 114) называется главным фокусом зеркала. Расстояние PF = F от вершины зеркала до фокуса называется фокусным расстоянием. Фокусное расстояние зеркала равно половине радиуса его кривизны. Плоскость, проходящая через главный фокус F линзы перпендикулярно главной оптической оси, называется фокальной.
Из свойства обратимости оптических лучей следует, что луч, идущий от источника и проходящий через фокус F, после отражения пойдет параллельно главной оптической оси.
При падении пучка параллельных лучей под углом к главной оптической оси лучи после отражения пересекут побочную оптическую ось в точке называемой побочным фокусом F′ (рис. 115).

Построение изображений в сферических зеркалах

Для построения изображения любой точки в сферическом зеркале достаточно построить ход двух любых лучей в зеркале и найти их точку пересечения. Естественно, что для этого следует выбрать лучи, построить ход которых в зеркале проще всего.
Как правило, для построений выбирают один из четырех стандартных (характерных) лучей (рис. 116):

  • луч (1) — через центр зеркала — отраженный луч пойдет по тому же направлению в обратную сторону;
  • луч (2) — параллельный главной оптической оси — отраженный луч проходит через главный фокус;
  • луч (3) — через главный фокус — отраженный луч проходит параллельно главной оптической оси;
  • луч (4) — падающий на зеркало в его полюсе — отраженный луч идет симметрично главной оптической оси.

Характеристики изображений

Если предмет AB (см. рис. 116, 117) перпендикулярен главной оптической оси в вогнутом сферическом зеркале, то его изображение будет также перпендикулярно этой оси. Поэтому достаточно построить изображение только точки B. Из свойств обратимости светового луча следует, что предмет AB и его изображение A1B1 можно поменять местами. Если предмет находится за оптическим центром зеркала, то изображение предмета — действительное, обратное и уменьшенное — находится между главным фокусом и центром зеркала (рис. 117).
Если предмет находится между фокусом и оптическим центром зеркала (см. рис. 117), то изображение A1B1 предмета — действительное, обратное и увеличенное — находится за центром зеркала.

Если предмет находится между полюсом зеркала и его фокусом, то изображение A1B1 предмета — мнимое, прямое и увеличенное — находится за зеркалом (рис. 118, а).
Построим изображение предмета AB в выпуклом зеркале (рис. 118, б).
Изображение в таком зеркале всегда получается прямым, мнимым, уменьшенным.
Все возможные изображения предметов в сферических зеркалах построены на рисунке 119.
Поскольку вогнутые зеркала фокусируют любое электромагнитное излучение, то они находят широкое применение в радиолокации, радиосвязи, радиоастрономии, в телевидении. В частности, вогнутые зеркала применяют в телескопах — приборах для наблюдения звезд, галактик.

Чертеж первого прожектора был составлен Леонардо да Винчи в Атлантическом кодексе.

Первый прожектор был построен в 1779 г. русским механиком И.П. Кулибиным.

В настоящее время широко применяются светодиодные прожекторы (рис. 120). Они имеют рекордно низкое потребление электроэнергии, большой ресурс работ, небольшой вес, большую компактность и могут работать в широком температурном диапазоне

Первый зеркальный телескоп-рефлектор был построен в 1668 г. И. Ньютоном (рис. 121).

Современные телескопы-рефлекторы имеют зеркала большого диаметра. Так диаметр  главного зеркала телескопа Маунт-Паломарской обсерватории в США — 5 м, а диаметр телескопа специальной обсерватории на Северном Кавказе в России — 6 м.

Любые отражающие поверхности в курсе школьной физики принято называть зеркалами. Рассматривают две геометрические формы зеркал:

  • плоское
  • сферическое

Плоское зеркало — отражающая поверхность, формой которой является плоскость. Построение изображения в плоском зеркале основывается на законах отражения, которые, в общем случае, даже можно упростить (рис. 1).

Плоское зеркало

Рис. 1. Плоское зеркало

Пусть источником в нашем примере будет точка А (точечный источник света). Лучи от источника распространяются во все стороны. Чтобы найти положение изображения, достаточно проанализировать ход двух любых лучей и найти построением точку их пересечения. Первый луч (1) пустим под любым углом к плоскости зеркала, и, по законам отражения, его дальнейшее движение будет под углом отражения, равным углу падения. Второй луч (2) также можно пускать под любым углом, но проще нарисовать его перпендикулярно поверхности, т.к., в этом случае, он не испытает преломления. Продолжения лучей 1 и 2 сходятся в точке B, в нашем случае, данная точка и есть изображение точки А (мнимое) (рис. 1.1).

Однако получившиеся на рисунке 1.1 треугольники одинаковы (по двум углам и общей стороне), тогда в качестве правила построения изображения в плоском зеркале можно принять: при построении изображения в плоском зеркале достаточно из источника А опустить перпендикуляр на плоскость зеркала, а затем продолжить данный перпендикуляр на ту же длину по другую сторону от зеркала (рис. 1.2).

Воспользуемся этой логикой (рис. 2).

Примеры построения в плоском зеркале

Рис. 2. Примеры построения в плоском зеркале

В случае не точечного предмета важно помнить, что форма предмета в плоском зеркале не меняется. Если учесть, что любой предмет фактически состоит из точек, то, в общем случае, надо отразить каждую точку. В упрощённом варианте (например, отрезок или простая фигура) можно отразить крайние точки, а потом соединить их прямыми (рис. 3). При этом АВ — предмет, А’В’ — изображение.

Построение предмета в плоском зеркале

Рис. 3. Построение предмета в плоском зеркале

Также нами было введено новое понятие — точечный источник света — источник, размерами которого можно пренебречь в нашей задаче.

Сферическое зеркало — отражающая поверхность, формой которой является часть сферы. Логика поиска изображения та же — найти два луча, идущих от источника, пересечение которых (или их продолжений) и даст искомое изображение. На самом деле, для сферического тела есть три достаточно простых луча, преломление которых можно легко предсказать (рис. 4). Пусть displaystyle S — точечный источник света.

Сферическое зеркало

Рис. 4. Сферическое зеркало

Для начала введём характерную линию и точки сферического зеркала. Точка 4 называется оптическим центром сферического зеркала. Эта точка является геометрическим центром системы. Линия 5 — главная оптическая ось сферического зеркала — линия, проходящая через оптический центр сферического зеркала и перпендикулярно касательной к зеркалу в этой точке. Точка Fфокус сферического зеркала, обладающая особыми свойствами (об этом позже).

Тогда существует три хода лучей, достаточно простых для рассмотрения:

  1. синий. Луч, проходящий через фокус, отражаясь от зеркала, проходит параллельно главной оптической оси (свойство фокуса),
  2. зелёный. Луч, падающий на главный оптический центр сферического зеркала, отражается под тем же углом (законы отражения),
  3. красный. Луч, идущий параллельно главной оптической оси, после преломления проходит через фокус (свойство фокуса).

Выбираем любые два луча и их пересечение даёт изображение нашего предмета (displaystyle S').

Фокус — условная точка на главной оптической оси, в которую сходятся лучи,  отражённые от сферического зеркала шедшие параллельно главной оптический оси.

Для сферического зеркала фокусное расстояние (расстояние от оптического центра зеркала до фокуса) чисто геометрическое понятие, и данный параметр может быть найден через соотношение:

displaystyle F=frac{R}{2} (1)

  • где

Вывод: для зеркал используются самые общие законы отражения. Для плоского зеркала существует упрощение для построения изображений (рис. 1.2). Для сферических зеркал существуют три хода луча, два любых из которых дают изображение (рис. 4).

В этой главе…

  • Знакомимся с основами оптики
  • Наблюдаем за искривлением света
  • Изучаем поведение плоских, вогнутых и выпуклых зеркал
  • Смотрим сквозь собирающие и рассеивающие линзы

Эта глава “просветит” читателя, т.е. в ней он познакомится с основами оптики и узнает о том, что происходит со светом в различных условиях и при прохождении разных материалов. Свет искривляется при прохождении границы между воздухом и водой, что можно легко заметить на рыбалке. При прохождении линзы свет либо собирается (что можно заметить при поджигании бумаги с помощью солнечных лучей), либо рассеивается (как в очках для близоруких людей). Здесь также описывается поведение света при отражении от зеркал.

Содержание

  • Все о зеркалах
  • Изучаем преломление света
    • Преломление света по закону Снелла
    • Измеряем глубину водоема на глазок
  • Всего лишь зеркала и ничего более
    • Увеличиваем объект с помощью вогнутого зеркала
      • Строим схемы хода лучей света
      • Анализируем ход лучей
      • Вычисляем увеличение вогнутого зеркала
    • Уменьшаем объект с помощью выпуклого зеркала
  • Смотрим сквозь линзы
    • Увеличиваем объект с помощью собирающих линз
      • Строим схему хода лучей в линзе
      • Выводим формулу линзы
      • Вычисляем увеличение линзы
    • Уменьшаем объект с помощью рассеивающей линзы

Все о зеркалах

Как известно, свет отражается от зеркал, и законы физики могут многое сказать о том, как это происходит. Рассмотрим типичный случай, показанный на рис. 20.1. Свет падает на зеркало слева и отражается от зеркала вправо. Как видите, свет падает на зеркало под определенным углом к нормали (нормаль — это прямая, проведенная перпендикулярно к поверхности зеркала). Такой угол между линией падения и нормалью называется углом падения и обозначается ​( theta_п )​. А угол, под которым свет отражается (т.е. между линией отражения и нормалью), называется углом отражения и обозначается ( theta_о ).

Согласно закону отражения, угол падения равен углу отражения: ( theta_п=theta_о ).

Иначе говоря, если свет падает на зеркало под углом 30°, то и отражается он под тем же углом 30°.

Изучаем преломление света

Рассмотрим случай, показанный на рис. 20.2. Свет падает на стеклянную пластинку под определенным углом ​( theta_1 )​ к нормали (см. предыдущий раздел), а входит в стекло уже под углом ( theta_2 ) к нормали.

Преломление света по закону Снелла

Как с точки зрения физики правильно рассчитать такое изменение направления распространения света в стеклянной пластинке? Физикам известно, что углы ( theta_1 ) и ( theta_2 ) связаны следующей формулой:

Что такое ​( n_1 )​ и ( n_2 )? Это так называемые показатели преломления. Изменение направления распространения света при пересечении границы между разными веществами называется преломлением света. Разные материалы могут обладать разными показателями преломления.

Закон физики, который описывает изменение направления распространения света при пересечении границы между разными веществами, называется законом Снелла преломления света. (Он был открыт в начале XVII-ro века голландским математиком Виллебрордом Снеллом, или Снеллиусом. — Примеч. ред.) Этот закон утверждает, что когда луч света падает под углом ( theta_1 ) между падающим на поверхность лучом и нормалью к границе раздела двух сред с показателями преломления ( n_1 ) и ( n_2 ), то угол ( theta_2 ) между прошедшим через границу лучом и нормалью к поверхности будет таким, что ​( n_1sintheta_1=n_2sintheta_2 )​. Например, показатель преломления воздуха в нормальных условиях 1,0002926 приблизительно равен показателю преломления вакуума 1 (точная величина). В большинстве случаев показатель преломления стекла приблизительно равен 1,5, поэтому можно сказать, что если ( theta_1 ) = 45° для случая, показанного на рис. 20.2, то:

или

С помощью последнего равенства можно найти ( theta_2 ):

Получается, что ​( theta_2 )​ = 28,1°. Иначе говоря, свет преломляется по отношению к нормали так, как показано на рис. 20.2.

Измеряем глубину водоема на глазок

На рис. 20.2 показан рыбак, который прицелился острогой в рыбу, плавающую в воде. Луч света, отразившись от рыбы, пересекает границу между водой и воздухом и преломляется на ней. Рыбак подсознательно предполагает, что луч света от рыбы идет прямолинейно и поэтому считает, что она находится на кажущейся глубине, показанной на рисунке. Однако это не так.

Воображаемую и настоящую глубину можно связать следующим равенством:

Не забывайте, что ​( n_1 )​ — это показатель преломления материала, из которого свет выходит (в данном случае это вода), а ( n_2 ) — показатель преломления материала, в который света входит (в данном случае это воздух).

Например, если рыбаку кажется, что рыба находится на глубине 2 м, а показатель преломления воды примерно равен 1,33 (у воздуха он равен 1), тогда:

Преломление и скорость света

Показатель преломления материала в действительности является отношением скорости света в вакууме, деленной на скорость света в материале:

п = (скорость света в вакууме)/(скорость света в материале).

Итак, когда говорят, что показатель преломления стекла равен 1,5, то подразумевают — свет “путешествует” через стекло в 1,5 раза медленнее.

Итак, подставив в формулу числа, получаем:

В действительности рыба находится на глубине 2,66 м.

Всего лишь зеркала и ничего более

В повседневной жизни зеркала окружают нас всюду. Что происходит, когда мы смотрим на них? На рис. 20.4 показан пример отражения света в плоском зеркале. Некий объект находится перед зеркалом, а свет от него, отразившись от зеркала, попадает в глаз. Впрочем, с точки зрения глаза свет пришел от объекта, расположенного за зеркалом, причем на том же расстоянии от зеркала, что и настоящий объект, находящийся перед зеркалом. Однако на самом деле никакого объекта за зеркалом нет, поэтому изображение в зеркале называют мнимым изображением действительного объекта.

С плоским зеркалом все легко и просто. Но что происходит в случае отражения света в искривленном зеркале?

Увеличиваем объект с помощью вогнутого зеркала

Для анализа отражения света от искривленного зеркала придется приложить гораздо больше усилий. Обратите внимание на зеркало, показанное на рис. 20.5. Оно имеет вогнутую форму, т.е. похоже на часть внутренней стороны сферы.

Вогнутое зеркало легко представить, если вспомнить внутреннюю форму обыкновенной чашки, подобную “вогнутому” зеркалу.

Итак, что же происходит, если поместить объект рядом с вогнутым зеркалом?

Для вогнутых зеркал особую важность представляют две точки: центр кривизны и фокус, обозначаемые соответственно как ​( C )​ и ​( F )​. Точка ( C ) располагается на горизонтальной оси ( CF ) на расстоянии, равном радиусу кривизны ( R ) сферической поверхности, частью которой является зеркало.

В точке ​( F )​ фокусируются (т.е. собираются) лучи света, падающие в зеркало параллельно горизонтальной оси ( CF ) (на небольшом расстоянии от нее). Для вогнутого зеркала ​( f= R /2 )​, где ​( f )​ — это расстояние от зеркала до точки ( F ) по горизонтальной оси ( CF ). На рис. 20.5 объект показан между центром кривизны сферической поверхности и фокусом зеркала. Где появится изображение объекта в этом случае? Для этого потребуются дополнительные сведения, т.е. физические формулы.

Строим схемы хода лучей света

Чтобы найти изображение объекта, размещенного между центром кривизны и фокусом, используем три луча света, показанные на рис. 20.5 и обозначенные цифрами 1, 2 и 3. Эти три луча света выходят из объекта, отражаются от зеркала и пересекаются на изображении объекта. Вот как проходят эти лучи от объекта до его изображения в зеркале:

  • луч 1 выходит из объекта, отражается от зеркала и проходит через центр кривизны;
  • луч 2 выходит из объекта горизонтально по направлению к зеркалу, отражается от него и проходит через фокус;
  • луч 3 идет из объекта через фокус, отражается от зеркала и идет параллельно горизонтальной оси.

Точка пересечения трех лучей и является местом, где находится изображение. На рис. 20.5 можно видеть, что изображение находится за центром кривизны; по сравнению с самим объектом оно является обратным (перевернутым) и увеличенным. Так как изображение находится по ту же сторону от зеркала, что и объект, оно называется действительным изображением. В месте появления действительного изображения можно поместить экран, на котором будет фокусироваться лучи света от объекта, создавая, таким образом, его изображение.

Теперь рассмотрим противоположный случай — когда объект находится далеко от центра кривизны (рис. 20.6). Где изображение окажется на этот раз? Воспользуемся теми же тремя лучами, как показано на рис. 20.6. Сейчас изображение располагается между центром кривизны и фокусом; оно прямое (не перевернутое), имеет уменьшенные размеры и тоже является действительным изображением.

Есть ли еще другие варианты размещения объекта? Да, объект может находиться еще ближе к зеркалу — между фокусом и самим зеркалом (как показано на рис. 20.7). Если проанализировать ход тех же трех лучей, то можно обнаружить, что они пересекаются не перед зеркалом, а, как видно на рисунке, за ним. Дело в том, что это изображение является мнимым: в действительности для его создания лучи света не пересекаются. На самом деле лучи, отражающиеся от зеркала, кажутся идущими от мнимого изображения, расположенного за зеркалом.

Анализируем ход лучей

При наличии формул можно легко вычислить место, где появится изображение объекта, полученное с помощью вогнутого зеркала. На рис. 20.8 показаны две схемы отражения объекта в зеркале.

Введем следующие обозначения для некоторых наиболее важных величин:

  • ( h_о )​ — высота объекта;
  • ( h_и ) — высота изображения;
  • ( d_о ) — расстояние до объекта;
  • ( d_и ) — расстояние до изображения.

Составим формулу, связывающую все эти величины, обращая внимание на то, что все треугольники, показанные на схеме А (рис. 20.8), являются подобными, и что все треугольники, показанные на схеме Б того же рисунка, также являются подобными. Как известно, у подобных треугольников одинаковые углы, а соотношения длин сторон сохраняются.

Из схемы А, согласно закону отражения (угол падения равен углу отражения), можно вывести следующее соотношение:

Аналогично, из схемы Б получаем, что:

Приравняв правые части этих равенств, получаем:

Иначе говоря, имеем:

Эта так называемая формула сферического зеркала; она связывает расстояние от предмета до зеркала и фокусное расстояние с расстоянием между зеркалом и образуемым изображением. Если изображение мнимое (образуется за пределами зеркала), то значение ​( d_и )​ будет отрицательным.

Допустим, что представители косметической компании предлагают создать зеркало для ванной, в котором люди выглядели бы больше, чем на самом деле, но чтобы полученное изображение не было обратным.

Попробуем решить эту задачу с помощью рис. 20.7. Если расположить лицо между зеркалом и фокусом, то в зеркале можно будет наблюдать увеличенное мнимое изображение. Допустим, что лицо находится на расстоянии 12 см от зеркала, зеркало имеет радиус кривизны 40 см, т.е. имеет фокусное расстояние 20 см. Где же появится мнимое изображение? Воспользуемся уже известной нам формулой:

Подставив в нее числа, получим:

Решением полученного уравнения будет ​( d_и )​ = -30 см.

Теперь смело можно сказать представителям косметической компании, что при использовании зеркала с радиусом кривизны 40 см изображение появится на расстоянии -30 см.

Предположим, что, выслушав вас, они переглянутся и спросят: “Ну а как насчет увеличения?” Хороший вопрос.

Вычисляем увеличение вогнутого зеркала

Увеличение ​( m )​ зеркала — это отношение высоты изображения и высоты объекта, т.е. ​( h_и/h_о )​. Именно этот параметр зеркала больше всего интересует представителей косметической компании.

Поскольку

то, таким образом, получим:

Следует отметить, что если увеличение положительное, то изображение прямое, а если отрицательное, то — обратное. Итак, каким будет увеличение косметического зеркала, разработанного в предыдущем разделе? Итак, изображение появляется на расстоянии — 30 см, когда высота объекта равна 12 см, поэтому:

Итак, если лицо находится на расстоянии 12 см от зеркала, то увеличение зеркала равно 2,5.

Уменьшаем объект с помощью выпуклого зеркала

Выпуклое зеркало похоже на часть наружной поверхности зеркальной сферы (рис. 20.9). Как описать его свойства с точки зрения физики?

Никаких проблем. Опять, как и в случае вогнутого зеркала в предыдущем разделе, следует использовать три луча. Разница лишь в том, что в выпуклом зеркале изображение всегда мнимое, а фокус и центр кривизны зеркала всегда располагаются по ту сторону зеркала, где нет объекта.

На рис. 20.9 показано, что полученное изображение является мнимым (находится за зеркалом), прямым и уменьшенным. Это утверждение легко проверить с помощью любой выпуклой блестящей поверхности, например с помощью металлической салатницы. Посмотрите на свое отражение в салатнице (с ее наружной стороны), и вы увидите свое уменьшенное (и немного искаженное) изображение.

Для выпуклых зеркал можно использовать ту же формулу зеркала, которая была получена ранее для вогнутых зеркал. Не забывайте только вот о чем: поскольку фокус располагается за зеркалом, то величина ​( f )​ является отрицательной. Допустим, что имеется выпуклое зеркало с фокусным расстоянием -20 см, а объект находится перед зеркалом на расстоянии 35 см. Где появится изображение? Достаточно в формулу зеркала:

подставить значения:

Решением полученного уравнения будет:

Изображение появится по другую сторону зеркала на расстоянии 12,7 см. А увеличение? Из предыдущего раздела известно, что:

Таким образом, получим:

Мнимое изображение будет прямым, уменьшенным с коэффициентом 0,36 и расположенным по другую сторону от зеркала на расстоянии 12,7 см. Итак, мы овладели некоторыми секретами зеркал, но чтобы постичь оптику и стать настоящим “хозяином” ее законов, нужно познакомиться еще со многими другими явлениями.

Смотрим сквозь линзы

Кроме зеркал, другими оптическими элементами, с которыми вы сталкиваетесь каждый день, являются линзы. Линзы специально делаются для того, чтобы искривлять проходящий через них свет, фокусируя его и создавая изображения. И подобно зеркалам, линзы могут создавать действительные и мнимые изображения. Здесь мы рассмотрим линзы двух видов: собирающие и рассеивающие.

Увеличиваем объект с помощью собирающих линз

Собирающая линза отклоняет лучи света по направлению к горизонтальной оси. Луч света от объекта, расположенного по одну сторону линзы, фокусируется в действительное изображение, расположенное по другую ее сторону. Наверняка вам приходилось рассматривать мелкие объекты, например насекомых, используя увеличительное стекло? Это увеличительное стекло и является собирающей линзой.

Строим схему хода лучей в линзе

Схемы лучей применяются к линзам во многом так же, как и к зеркалам. На рис. 20.10 показана типичная схема хода лучей в собирающей линзе.

Чтобы найти изображение объекта, размещенного дальше радиуса кривизны, снова используем три луча света, которые пронумерованы на рис. 20.10 цифрами 1, 2 и 3. Эти три луча света выходят из объекта, проходят сквозь линзу и пересекаются на изображении объекта. Вот как проходят эти лучи от объекта до его изображения в линзе:

  • луч 1 выходит из объекта и проходит через центр линзы;
  • луч 2 выходит из объекта горизонтально по направлению к линзе, а затем проходит через фокус;
  • луч 3 идет из объекта через фокус, затем проходит через линзу и идет параллельно горизонтальной оси.

Пользуясь этими сведениями, теперь можно создать схему хода лучей для случая, показанного на рис. 20.10, когда объект находится дальше радиуса кривизны. Как известно, радиус кривизны ​( R=2f )​, где ​( f )​ — это фокусное расстояние. В этом случае получается уменьшенное действительное обратное изображение. Поскольку в реальных линзах часто используется несферическая поверхность, то радиус кривизны в них лишь приблизительно равен ( 2f ), но для малых линз эти два значения достаточно близки.

Допустим, что объект находится между центром кривизны ​( C )​ и фокусом ​( F )​, как показано на рис. 20.11. Каким будет изображение объекта? Чтобы найти его, снова используем три луча света: в результате получится увеличенное действительное обратное изображение.

Рассмотрим последний случай, когда объект находится к линзе ближе, чем фокусное расстояние, как показано на рис. 20.12. В таком случае с помощью лучей 1 и 2, показанных на том же рисунке, можно определить, что получится мнимое прямое и увеличенное изображение (именно так и работают увеличительные стекла). На всех схемах хода лучей видно, что все три луча сходятся вместе, создавая изображение.

Мнимые изображения отличаются тем, что в том месте, где находится такое изображение, на самом деле никакие лучи света не сходятся. Если поместить там экран, то на нем нельзя будет увидеть никакого изображения. Изображение является мнимым, т.е. чтобы его увидеть, надо смотреть сквозь линзу — в ней-то и будет видно это изображение.

Выводим формулу линзы

Как рассчитать, где все-таки находится изображение объекта, рассматриваемого через линзу? Для этого используется формула тонкой линзы. Она похожа на формулу зеркала и может быть выведена тем же способом:

где ​( d_о )​ и ( d_и ) — соответственно расстояния от линзы до объекта и изображения, а ( f ) — фокусное расстояние.

Это равенство соблюдается для тонких линз (в противном случае форма линз, которая для этой формулы предполагается сферической, приводит к так называемой сферической аберрации). Обратите внимание, что если изображение мнимое, то значение ( d_и ) будет отрицательным.

Допустим, что нужно рассмотреть почтовую марку с помощью увеличительного стекла с собирающей линзой с фокусным расстоянием 5 см, которую удобно держать на расстоянии 3 см от марки. Где появится мнимое изображение? Все, что надо сделать: это в предыдущую формулу

подставить значения

Решением полученного уравнения будет ( d_и ) = -7,5 см. Отрицательное расстояние до изображения означает, что изображение мнимое. Как показано на рис. 20.12, оно будет увеличенным и прямым.

Раз уж мы работаем с увеличительным стеклом, то попробуем найти его увеличение.

Вычисляем увеличение линзы

Найти увеличение собирающей линзы нетрудно. Как и для зеркал, его можно вычислить по следующей формуле:

Если увеличение отрицательное, то действительное изображение по отношению к объекту будет обратным, а если увеличение положительное, то действительное изображение будет прямым. Для мнимых изображений все наоборот, поскольку нужно учитывать отрицательный знак координаты мнимого изображения.

Чему же равно увеличение линзы из примера в предыдущем разделе? Как известно, ​( d_о )​ = 3 см и ( d_и ) = -7,5 см, поэтому:

Увеличение для почтовой марки, расположенной в 3 см от увеличительного стекла, будет равно -2,5.

Вот еще один пример. Допустим, что надо получить действительное увеличенное изображение, чтобы спроецировать его на экран. Для этого можно использовать проектор с подсветкой слайдов, которые проецируются на экран, расположенный в 1 м от линзы проектора. В данном случае нужно использовать схему на рис. 20.11, когда объект находится в пределах радиуса кривизны (равного ​( 2f )​), но дальше фокусного расстояния (равного ​( f )​).

Предположим, что слайд находится в 10 см от линзы. Каким должно быть ее фокусное расстояние? Воспользуемся известной формулой тонкой линзы:

Подставив в эту формулу значения, получим:

Иначе говоря, получим:

или

Таким образом, фокусное расстояние нужной вам линзы примерно равно 9 см.

Уменьшаем объект с помощью рассеивающей линзы

Собирающие линзы фокусируют световые лучи по направлению к горизонтальной оси, а рассеивающие линзы, наоборот, “расфокусируют” их от этой оси. На рис. 20.13 показана схема хода лучей в рассеивающей линзе, согласно которой образуется мнимое прямое уменьшенное изображение.

Рассеивающая линза всегда создает мнимое прямое уменьшенное изображение объекта.

Можно ли здесь применить известную нам формулу тонкой линзы, как для собирающих линз? Конечно можно, надо только помнить, что фокусное расстояние рассеивающей линзы отрицательно, как у выпуклого зеркала.

Допустим, что объект находится на расстоянии 4 см от рассеивающей линзы с фокусным расстоянием -10 см. Где появится изображение? Возьмем формулу тонкой линзы:

и подставим в нее имеющиеся данные:

После несложных преобразований получим:

Обратите внимание, что изображение находится к линзе ближе, чем фокус, и на отрицательном расстоянии, следовательно, изображение мнимое (рис. 20.13). Чему равно увеличение этой линзы? Воспользуемся той же формулой увеличения, которая применялась для собирающих линз (см. предыдущий раздел):

Подставив в нее числа, получим:

Отрицательное увеличение означает, что данное мнимое изображение по отношению к объекту является прямым. Кроме того, увеличение меньше 1, т.е. по своим размерам мнимое изображение меньше объекта.

Глава 20. Немного света на зеркала и линзы

2.8 (55.86%) 29 votes

Вогнутое зеркало — это часть внутренней гладко отполированной поверхности сферы, эллипсоида или другого вращающегося тела, обычно сделанная из металла или стекла, покрытая тонким слоем металла.

Вы знаете, как выглядит ваше отражение в зеркале, но как бы оно выглядело, если бы вы стояли перед большим зеркалом, отражающая поверхность которого является внутренней частью сферы? Сможете ли вы геометрически построить полученное изображение, как мы это делали с плоским зеркалом?

Вогнутое зеркало представляет особый тип зеркала, которое отражает свет особым образом. Он имеет очень широкий спектр применения и является ключевым компонентом многих различных устройств. Они используются, например, в автомобильных фарах (определенной формы) для получения сфокусированного пучка света.

Если внимательно рассмотреть внутреннюю поверхность металлической ложки или ковша или стеклянный отражатель фонаря, то можно увидеть, что они вогнуты и хорошо отражают падающие лучи света. Они являются примерами вогнутых зеркал.

Примеры вогнутых зеркал

Рис. 1. Примеры вогнутых зеркал

Поверхность вогнутых зеркал является частью внутренней поверхности сферы или другого вращающегося твердого тела. Зеркала фонарей и автомобильных фар обычно имеют форму параболических поверхностей.

Когда вы начинаете вращать круг вокруг его диаметра, вы получаете сферу (поверхность шара). Если отрезать его часть и заставить внутреннюю часть очень хорошо отражать свет, то получится вогнутое сферическое зеркало (см. рисунок 2).

Сферическое зеркало

Рис. 2. Вогнутое сферическое зеркало и ход лучей света

Чтобы обсудить характеристики вогнутых зеркал, ход лучей и научиться строить изображения в вогнутых зеркалах, мы будем использовать параболическое зеркало, поскольку в таком зеркале лучи, отраженные от зеркала, концентрируются в фокусной точке F (фокусе).

Характеристики, описывающие вогнутое сферическое зеркало

Вогнутое сферическое зеркало — это зеркало, отражающая поверхность которого является внутренней поверхностью части сферы.

Чтобы описать и объяснить формирование изображения с помощью вогнутого сферического зеркала, нам потребуется понимание и знание определенных понятий, которые описывают её оптическую систему. Их иллюстрацию можно увидеть на рисунке 3 ниже:

Сферическое вогнутое зеркало

Рис. 3. Сферическое вогнутое зеркало и его характеристики

Оптическая ось — это прямая линия, проходящая через центр кривизны зеркала (O) и совпадающая с его осью симметрии.

Радиус кривизны зеркала r — это также отрезок между центром кривизны зеркала O и точкой, где оптическая ось пересекает поверхность зеркала (которую иногда называют вершиной зеркала).

Фокусная точка зеркала (F) — это геометрическая точка, в которой пересекаются все лучи света, идущие параллельно оптической оси зеркала до отражения от поверхности вогнутого зеркала. Фокусная точка находится точно посередине радиуса кривизны зеркала r (см. рисунок 4).

Фокус вогнутого зеркала и ход лучей света

Рис. 4. Фокус вогнутого зеркала и ход лучей света

Поскольку точка F называется фокусом зеркала, длина отрезка, соединяющего эту точку с поверхностью зеркала (W) вдоль оптической оси, называется фокусным расстоянием зеркала f.

Между фокусным расстоянием (f) и радиусом кривизны (r) вогнутого сферического зеркала существует следующая зависимость: f = r / 2. Единицей СИ фокусного расстояния f является метр.

Формирование изображения в вогнутых зеркалах

Как формируется изображение в вогнутом сферическом зеркале? Изменяя расстояние между зеркалом и предметами, вы получаете различные изображения — перевернутые, прямые, уменьшенные, увеличенные… или иногда вообще не удается получить никакого изображения.

Помните! Луч света — это линия, вдоль которой распространяется свет. Для геометрического построения изображения, помимо прочего в зеркалах, используются так называемые характерные лучи.

В случае вогнутого сферического зеркала это будут:

  1. луч, параллельный оптической оси, который после отражения проходит через фокус зеркала F. Ход этого луча следует из определения фокуса;
  2. луч, соответствующий радиусу кривизны зеркала r и проходящий через центр кривизны зеркала O, проходит тот же путь после отражения. Это связано с тем, что угол падения на поверхность зеркала равен нулю;
  3. луч, проходящий через фокус зеркала F после отражения, идет параллельно оптической оси. Как и в 1), это следует из определения фокуса.

На рисунках 5-7 ниже вы можете наблюдать некоторые примеры построения изображений в вогнутых зеркалах.

Формирование изображения в вогнутых зеркалах

Рис. 5. Расстояние до объекта, превышающее двойное фокусное расстояние, x > 2f или x > r
Пример формирования изображения с помощью вогнутого зеркала
Рис. 6. Расстояние до объекта меньше фокусного расстояния, x < f

Расстояние до объекта больше фокусного расстояния

Рис. 7. Расстояние до объекта больше фокусного расстояния и меньше двойного фокусного расстояния, f < x < 2f или f < x < r
Положение объекта (x) Положение изображения (y) Характеристики изображения, получаемого в вогнутом зеркале
Расстояние до объекта меньше фокусного расстояния, x < f Изображение за зеркалом Мнимое, прямое, увеличенное
Расстояние до объекта равно фокусному расстоянию, x = f При отражении лучи света идут параллельно друг другу Без изображения
Расстояние до объекта больше фокусного расстояния и меньше двойного фокусного расстояния, f < x < 2f или f < x < r y > r Действительное, перевернутое, увеличенное
Расстояние до объекта равно удвоенному фокусному расстоянию, x = 2f или x = r y = r Действительное, перевернутое, имеет те же размеры, что и объект
Расстояние до объекта, превышающее двойное фокусное расстояние, x > 2f или x > r f < y < r Действительное, перевернутое, уменьшенное
Особенности изображения в вогнутых сферических зеркалах

Оптическое увеличение.

Изображение, полученное с помощью вогнутого зеркала, может быть меньше объекта, больше его или быть одинакового размера. Мы говорим, что изображение может иметь разное увеличение.

Мы определяем оптическое увеличение p как отношение высоты полученного изображения h2 на высоту объекта h1, то есть p = h2 / h1 . Оно называется линейным увеличением и является безразмерной величиной.

Увеличенное изображение имеет оптическое увеличение p > 1, уменьшенное изображение имеет оптическое увеличение p < 1.

Пример задачи. Рассчитайте высоту объекта, если его изображение, сформированное в вогнутом сферическом зеркале, имеет высоту 5 см и увеличение 0,5?

Решение задачи. Мы знаем формулу для увеличения p = h2 / h1 . У нас p = 0,5 и h2 = 5 cм. Тогда h1 = 5 / 0,5 = 10 см. Итак, высота объекта h1 = 10 см.

Подведем итог.

Как видите, в зависимости от положения объекта, существуют различные его изображения, наблюдаемые в вогнутом сферическом зеркале. Это может быть видимое изображение (сформированное за зеркальной поверхностью) или реальное изображение (сформированное перед зеркальной поверхностью), уменьшенное или увеличенное, прямое или перевернутое.

Изображение точки формируется там, где пересекаются лучи после отражения от зеркала (реальное изображение) или где пересекаются продолжения отраженных лучей (мнимое изображение — как в плоском зеркале).

Примеры применения вогнутых зеркал

Вогнутые зеркала используются в качестве отражателей в автомобильных лампах, фонариках, антеннах, станциях метро, на перекрестках улиц для обзора окрестности и астрономических телескопах.

Интересный факт! В странах, где нет электричества или доступ к нему затруднен, а доступ к солнечной энергии практически неограничен, для приготовления пищи используются вогнутые зеркала.

Приготовление пищи с помощью вогнутых зеркал

Рис. 8. «Солнечная кухня» на основе вогнутого зеркала, — способ поесть почти бесплатно

Пользуясь тем, что солнечные лучи, идущие параллельно оптической оси, пересекаются после отражения от зеркала в одной точке — его фокусе, мы можем использовать их энергию для приготовления пищи. Достаточно поместить в фокус зеркала кастрюлю, покрытую темной эмалью, и она будет поглощать энергию светового излучения и нагревать пищу. Такой плиты достаточно, чтобы вскипятить воду и приготовить любую пищу. Вблизи экватора энергия солнечных лучей достаточно высока, и мы, конечно, можем даже испечь что-нибудь.

Без вогнутых зеркал мы не смогли бы вести наблюдения за небом и изучать небесные тела, удаленные на миллионы световых лет.

Вогнутые зеркала используются там, где необходимо сконцентрировать световую энергию, например в зеркальном телескопе. С его помощью можно наблюдать даже неяркие далекие звезды.

Задачами телескопов являются:

  • собирает больше света — площадь поверхности хрусталика во много раз больше площади зрачка глаза, что позволяет видеть очень далекие тела, от которых исходит очень мало света;
  • увеличение углового расстояния между объектами или частями объектов, что позволяет увидеть их структуру.

Зеркальный телескоп — инструмент, разработанный Исааком Ньютоном и используемый до сих пор, — состоит из вогнутого зеркала, которое фокусирует попадающие на него лучи света. Затем они попадают на другое (плоское) зеркало, которое изменяет направление световых лучей к окуляру и затем к глазу. Телескопы этого типа используются как астрономами-любителями, так и в крупнейших астрономических обсерваториях мира.

Самые большие однозеркальные телескопы в мире имеют диаметр чуть более 8 метров. Более крупные телескопы имеют диаметр более 10 метров, но состоят из множества сегментов. Чрезвычайно большой телескоп, строительство которого ведется в настоящее время, будет иметь диаметр 39 метров и состоять почти из 800 зеркал.

Содержание:

Геометрическая оптика – это раздел оптики, в котором изучаются законы распространения световой энергии в прозрачных средах на основе представления о световом луче. Световой луч – это линия, имеющая направление, вдоль которого распространяется энергия световых волн.

Закон отражения света с точки зрения корпускулярной и волновой теории

Если луч света состоит из частиц, как утверждал И. Ньютон, то можно полагать, что они отражаются от поверхности, как упругие мячи (рис. 149) в соответствии с законом отражения, изученным в геометрической оптике.

К такому же выводу приводит и волновая теория, основанная на принципе Х. Гюйгенса: каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Огибающая фронты вторичных волн является фронтом результирующей волны (§ 11).

Рассмотрим отражение плоской волны от поверхности MN (рис. 150). Лучи Геометрическая оптика в физике - формулы и определение с примерами

Поскольку рассматриваемые треугольники равны, то углы Геометрическая оптика в физике - формулы и определение с примерами равны, лучи лежат в одной плоскости, выполняется закон отражения света.

Запомните! Закон отражения: Угол падения равен углу отражения Геометрическая оптика в физике - формулы и определение с примерами Луч падающий, луч отраженный и перпендикуляр, восстановленный в точку падения луча к границе раздела двух сред, лежат в одной плоскости.

Геометрическая оптика в физике - формулы и определение с примерами

На основе волновой теории можно объяснить, почему свет почти не отражается от поверхности толстого стекла и практически полностью отражается от тончайшей металлической фольги. Стекло – диэлектрик, в нем нет свободных заряженных частиц, он прозрачен для электромагнитных волн. В металлах свободные электроны под действием световой волны совершают колебательные движения, созданное ими поле отражает световую волну.

Применение закона отражения

Закон отражения получил применение в различных устройствах и аттракционах.

На транспорте применяется угловой отражатель – катафот, изготовленный из стекла или пластмассы. Сзади велосипеда укрепляют красный, впереди – белый, на спицах колес – оранжевый. Светоотражатель направляет луч света обратно к освещающему его источнику независимо от угла падения света на поверхность. Ими оборудуются все транспортные средства и опасные участки дорог. Светосигнальные приборы европейского образца появились на автодорогах республиканского значения, их установили на участках «Алматы – Ташкент – Термез», «Новый обход перевала Куюк» в Жамбылской области (рис. 151). Приборы заряжаются солнечными лучами, и они освещают осевую линию дороги в темное время суток. Установлены сигнальные столбики с надписью «Kazautozhol» на автомобильных дорогах, где нет искусственного освещения.Геометрическая оптика в физике - формулы и определение с примерами

Светоотражающие материалы используются для пошива спецодежды – костюмов для работников пожарных, медицинских, военных и других видов служб. Существует два вида светоотражателей: на текстильной и основе ПВХ. Светоотражатели на текстильной основе производят с использованием стеклянных микрошариков с алюминиевым слоем отражателя, которые наносятся на рабочую поверхность материал полимерным клеем. Светоотражатели на основе ПВХ производят с использованием микропирамидок. Они превосходят светоотражатели на текстильной основе в износостойкости, поскольку микропирамидки находятся изнутри пленки.

Формула плоского зеркала

Запишем формулу плоского зеркала в соответствии с изображением, полученным на рисунке 158:

Геометрическая оптика в физике - формулы и определение с примерами

Геометрическая оптика в физике - формулы и определение с примерами

где d − расстояние от предмета до зеркала; Геометрическая оптика в физике - формулы и определение с примерами − расстояние от зеркала до изображения. Знак минус свидетельствует о том, что изображение мнимое.

Изображение в двух плоских зеркалах

С помощью двух плоских зеркал можно получить несколько изображений, число которых определяется углом между отражающими поверхностями зеркал Геометрическая оптика в физике - формулы и определение с примерами При построении необходимо помнить, что изображение первого зеркала становится предметом для второго зеркала, и наоборот, изображение второго зеркала – предметом первого. Последнее полученное изображение находится за отражающей поверхностью двух зеркал (рис. 159). Для определения числа изображений необходимо от числа секторов, на которые угол a делит полный угол, равный 360°, отнять один, в котором находится сам предмет:

Геометрическая оптика в физике - формулы и определение с примерами

Например, при Геометрическая оптика в физике - формулы и определение с примерами число изображений в зеркалах равно: Геометрическая оптика в физике - формулы и определение с примерами

Геометрическая оптика в физике - формулы и определение с примерами

Сферические зеркала. Основные точки и линии зеркал

Зеркала, отражающая поверхность которых представляет собой часть сферы, называют сферическими.

Основные точки и линии зеркал: вершина зеркала – точка O; центр кривизны – точка C; главная оптическая ось (ГОО) − прямая, проходящая через вершину и центр зеркала; фокус зеркала – точка F, в которой фокусируются все лучи, падающие на плоскость зеркала параллельно ГОО (рис. 160). Фокус выпуклого зеркала мнимый, он находится за плоскостью зеркала.

Введем еще несколько основных точек и линий для сферических зеркал. Побочная оптическая ось (ПОО) – прямая, проходящая через центр кривизны зеркала С. Фокус побочной оптической оси F1 находится в точке пересечения ПОО с фокальной плоскостью (ФП). Через эту точку проходят лучи, параллельные ПОО. Фокальная плоскость – это плоскость, перпендикулярная главной оптической оси и проходящая через ее фокус. МК – главная плоскость сферического зеркала – это плоскость, перпендикулярная ГОО и проходящая через вершину зеркала.

Геометрическая оптика в физике - формулы и определение с примерами

Формула вогнутого сферического зеркала

Формула вогнутого сферического зеркала справедлива для параксиальных лучей, которые составляют с главной оптической осью малые углы. При таком условии фокальная плоскость перпендикулярна главной оптической оси. На рисунке 161 изображен луч источника света S, он отражается от точки A поверхности вогнутого зеркала.

Геометрическая оптика в физике - формулы и определение с примерами

KM − касательная в точке А, перпендикулярная радиусу AC или побочной оптической оси. Для параксиальных лучей можно считать, что: Геометрическая оптика в физике - формулы и определение с примерами следовательно, расстояние от зеркала до предмета Геометрическая оптика в физике - формулы и определение с примерами расстояние от зеркала до изображения Геометрическая оптика в физике - формулы и определение с примерами радиус кривизны Геометрическая оптика в физике - формулы и определение с примерами Выразим Геометрическая оптика в физике - формулы и определение с примерами через катет AB треугольников Геометрическая оптика в физике - формулы и определение с примерами полученных в результате построения:

Геометрическая оптика в физике - формулы и определение с примерами

Установим связь между углами треугольников. Угол Геометрическая оптика в физике - формулы и определение с примерами является внешним для треугольника Геометрическая оптика в физике - формулы и определение с примерами угол Геометрическая оптика в физике - формулы и определение с примерами − внешним для треугольника Геометрическая оптика в физике - формулы и определение с примерами следовательно:

Геометрическая оптика в физике - формулы и определение с примерами

Из (5) выразим Геометрическая оптика в физике - формулы и определение с примерами и, подставив в (4), получим:

Геометрическая оптика в физике - формулы и определение с примерами

Тангенсы малых углов равны значениям углов в радианной мере. Выразим тангенсы из уравнений (3) и, подставив в уравнение (6), получим формулу сферического зеркала: Геометрическая оптика в физике - формулы и определение с примерами

Построение изображения предмета в сферическом зеркале

Для построения изображения в сферическом зеркале достаточно использовать два луча из тех, ход которых известен (рис. 162):

  1. луч, параллельный оптической оси, после отражения проходит через ее фокус;
  2. луч, прошедший через фокус зеркала, отражается параллельно оптической оси;
  3. луч, падающий в точку вершины зеркала, отражается под тем же углом;
  4. луч, прошедший через центр кривизны зеркала, отражается вдоль линии падения в обратном направлении.

Геометрическая оптика в физике - формулы и определение с примерами

Алгоритм построения изображения точечного источника света

1. Провести ПОО, указать в точке пересечения с ФП фокус проведенной оси (рис. 163).

2. От источника света S построить луч, параллельный ПОО, до главной плоскости зеркала. Провести отраженный луч через фокус побочной оси.

3. Указать в точке пересечения с лучом, направленным вдоль ГОО, полученное изображение Геометрическая оптика в физике - формулы и определение с примерами

Геометрическая оптика в физике - формулы и определение с примерами

Вспомните! Изображение мнимое, если пересекаются не сами отраженные лучи, а их продолжения. Изображение предмета действительное, если пересекаются лучи.

Линейное увеличение

Рассчитать изменение линейных размеров тела можно из подобия треугольниковГеометрическая оптика в физике - формулы и определение с примерами (рис. 162):

Геометрическая оптика в физике - формулы и определение с примерами

где H − высота изображения; h − высота предмета; Геометрическая оптика в физике - формулы и определение с примерами − расстояние от изображения до вершины зеркала; d − расстояние от предмета до вершины зеркала; Г − увеличение.

Физическую величину, равную отношению высоты изображения к высоте предмета, называют линейным увеличением зеркала.

Если Геометрическая оптика в физике - формулы и определение с примерами то размеры изображения тела увеличиваются; если Геометрическая оптика в физике - формулы и определение с примерами − уменьшаются. Лучи обратимы, следовательно, если считать, что на рисунке 162 предметом является отрезок Геометрическая оптика в физике - формулы и определение с примерами то его изображением станет отрезок AB.

Закон преломления света с точки зрения волновой теории

Закон преломления света открыт экспериментально голландским математиком В. Снеллиусом в начале XVII в.

Произведение абсолютного показателя преломления на синус угла падения остается постоянной величиной, являясь «оптическим инвариантом» при переходе света из одной среды в другую.

Геометрическая оптика в физике - формулы и определение с примерами

где Геометрическая оптика в физике - формулы и определение с примерами — абсолютные показатели сред, Геометрическая оптика в физике - формулы и определение с примерами – угол падения, Геометрическая оптика в физике - формулы и определение с примерами – угол преломления.

Рассмотрим преломление двух лучей Геометрическая оптика в физике - формулы и определение с примерами плоской волны на границе двух сред MN на основе принципа Гюйгенса (рис. 165). Фронт падающей волны в момент, когда луч Геометрическая оптика в физике - формулы и определение с примерами достигает границы сред MN, обозначен на рисунке отрезком AC. Показатель преломления второй среды больше, чем первой среды Геометрическая оптика в физике - формулы и определение с примерами Фронт вторичной волны, созданной во второй среде в момент падения луча Геометрическая оптика в физике - формулы и определение с примерами на границу MN, обозначен отрезком DB. В результате построения получены прямоугольные треугольники Геометрическая оптика в физике - формулы и определение с примерами с общей стороной AB. В треугольниках угол Геометрическая оптика в физике - формулы и определение с примерами равен углу падения Геометрическая оптика в физике - формулы и определение с примерами угол Геометрическая оптика в физике - формулы и определение с примерами равен углу преломления Геометрическая оптика в физике - формулы и определение с примерами Выразим сторону AB через отрезки AD и CB, пройденные лучами за один и тот же промежуток времени, получим:

Геометрическая оптика в физике - формулы и определение с примерами

Из формул (3) и (4) следует, что: Геометрическая оптика в физике - формулы и определение с примерами Геометрическая оптика в физике - формулы и определение с примерами

Выразим скорость света в средах через абсолютный показатель преломления: Геометрическая оптика в физике - формулы и определение с примерами

Геометрическая оптика в физике - формулы и определение с примерами

Вспомните! Абсолютный показатель преломления – это физическая величина, показывающая, во сколько раз скорость распространения света в вакууме больше скорости распространения света в данной среде: Геометрическая оптика в физике - формулы и определение с примерами где n − абсолютный показатель преломления среды, с − скорость света в вакууме, Геометрическая оптика в физике - формулы и определение с примерами − скорость света в среде. Оптически менее плотная среда обладает меньшим абсолютным показателем преломления.

Подставив формулы (6) в (5), получим:

Геометрическая оптика в физике - формулы и определение с примерами

На основе волновой теории Гюйгенса получен закон преломления Снеллиуса.

Вспомните! Относительный показатель преломления – это физическая величина, которая показывает во сколько раз скорость распространения света в первой среде больше скорости распространения света во второй среде. Геометрическая оптика в физике - формулы и определение с примерами

Заменим в уравнении (7) отношение абсолютных показателей преломления относительным показателем, получим: Геометрическая оптика в физике - формулы и определение с примерами

Полное внутреннее отражение света

Если направить луч света из оптически более плотной среды в менее плотную среду, то угол преломления больше угла падения. Наибольшему значению угла преломления, равному 90º, соответствует угол падения Геометрическая оптика в физике - формулы и определение с примерами он назван предельным углом полного внутреннего отражения.

При падении луча на границу сред под углом, превышающим предельный угол полного внутреннего отражения Геометрическая оптика в физике - формулы и определение с примерами преломленный луч исчезает, происходит полное отражение света (рис. 166).

Закон преломления для предельного угла примет вид:

Геометрическая оптика в физике - формулы и определение с примерами

Из полученного равенства следует, что предельный угол полного отражения определяется показателем преломления среды в том случае, если второй средой является вакуум или воздух: Геометрическая оптика в физике - формулы и определение с примерами

Геометрическая оптика в физике - формулы и определение с примерами

Запомните! Закон преломления света:

Отношение синуса угла падения к синусу угла преломления для двух сред есть величина постоянная. Она равна относительному показателю преломления второй среды относительно первой.

Луч падающий, луч преломленный и перпендикуляр восстановленный в точку падения луча к границе раздела двух сред, лежат в одной плоскости.

Преимущества оптоволоконной технологии при передаче световых сигналов

Простейшая оптоволоконная система передачи информации между двумя точками состоит из трех основных элементов: оптического передатчика, оптоволоконного кабеля и оптического приемника.

Оптический передатчик преобразует электрический сигнал в модулированный световой поток, предназначенный для передачи по оптоволокну. В качестве источника света используются светодиоды и полупроводниковые лазеры. Длина волны излучения выбрана с учетом максимальной прозрачности материала волокна и наивысшей чувствительности фотодиодов. Оптические передатчики работают в диапазоне инфракрасных лучей с длиной волны 850, 1300 и 1550 нм.

Оптический приемник преобразует световой сигнал в копию исходного электрического сигнала. В качестве чувствительного элемента оптического приемника используется фотодиод.

Световод (оптоволоконный кабель) − закрытое устройство для направленной передачи света.

Оптоволоконный кабель состоит из одного или нескольких стеклянных волокон со ступенчатым или плавным изменением показателя преломления вдоль радиуса (рис. 167 а). Волокно со ступенчатым профилем показателя преломления состоит из сердцевины, изготовленной из стекла с малыми оптическими потерями, окруженной стеклянной оболочкой с более низким показателем преломления (рис. 167 б). Оптоволокно с плавным профилем состоит из стекла только одного сорта, но оно обработано так, что его показатель преломления плавно уменьшается от центра к поверхности волокна. Такой световод постоянно отклоняет распространяющийся по нему свет к центру (рис. 167 в).

Геометрическая оптика в физике - формулы и определение с примерами

В зависимости от числа волокон различают кабели одножильные, многожильные и многомодовые, которые позволяют распространяться световым волнам по нескольким различным путям, которые называют модами.

В многомодовых волокнах каждая световая волна распространяются под своим углом. Волны по-разному отражаются от оболочки и поступают в приемник в разное время. В одном многомодовом кабеле может быть порядка 80–100 мод. В многожильных кабелях возможно использование нескольких отдельных волокон, диаметр которых колеблется от 8 мкм до 10 мкм, соответствует диаметру одножильных кабелей. Многомодовые и многожильные кабели в сравнении с одножильными кабелями обеспечивают большую пропускную способность на малые расстояния, около 2 метров, на больших дистанциях возникают помехи. Одножильное оптоволокно чаще всего применяется в телекоммуникационных системах большой протяженности.

Оптические кабели имеют ряд преимуществ над обычными проводами и кабелями:

  • могут с высокой скоростью передать значительно большее количество информации;
  • тоньше и легче медных кабелей с такой же пропускной способностью;
  • не подвержены внешним помехам, включая грозовые разряды;
  • практически не взаимодействуют с агрессивными химическими веществами, вызывающими коррозию;
  • не проводят электричество, могут находиться в прямом контакте с высоковольтным электрооборудованием, не несут опасности поражения электрическим током при ремонте;
  • не создают вокруг себя электромагнитного излучения;
  • обеспечивают защиту передаваемой информации, несанкционированное подключение к кабелю легко обнаруживается.

Геометрическая оптика в физике - формулы и определение с примерами

Интересно знать! В настоящее время используются оптоволоконные кабели, позволяющие передавать данные на большие расстояния с пропускной способностью до 100 Гбит/с. Максимальная пропускная способность оптоволоконного кабеля со спектральным уплотнением каналов WDM достигает 9,6 Тбит/с, так как он способен передать данные одновременно по 96 каналам.

Построение изображения в системе линз. Формула тонкой линзы

I. Собирающая и рассеивающая линзы

Линза представляет собой прозрачное тело, ограниченное с двух сторон сферическими поверхностями: Геометрическая оптика в физике - формулы и определение с примерами (рис. 170 а). Одна из поверхностей может быть плоской, ее можно рассматривать как сферическую поверхность большого радиуса.

Геометрическая оптика в физике - формулы и определение с примерами

Обратите внимание! Если показатель преломления линзы больше показателя преломления среды, то выпуклые линзы фокусируют падающие на них лучи, вогнутые линзы – рассеивают.

II. Ход лучей в собирающей и рассеивающей линзах

Луч 1, параллельный главной оптической оси, проходит через задний фокус линзы (рис. 171);

Луч 2, прошедший через центр линзы, не преломляется (рис. 171);

Луч 3, прошедший через передний фокус линзы, становится параллельным главной оптической оси (рис. 171);

Луч 4, прошедший через центр кривизны одной из сферической поверхностей, проходит через центр кривизны другой поверхности (рис. 171).

Геометрическая оптика в физике - формулы и определение с примерами

Обратите внимание! Зеркала дают изображение в отраженных лучах, а линзы – в проходящих.

III. Побочные оси. Построение лучей с использование побочных осей

Фокусы побочных оптических осей F1 также принадлежат фокальной плоскости и находятся в точках пересечения ПОО с ФП (рис. 175 а). Лучи, падающие на собирающую линзу параллельно побочной оси, проходят через фокус ПОО (рис. 175 б). В рассеивающей линзе в фокусе побочной оси пересекаются продолжения лучей (рис. 175 в).

Геометрическая оптика в физике - формулы и определение с примерами

В том случае, когда предмет представляет собой точечный источник света, находящийся на главной оптической оси, для построения изображения используют побочную ось. На рисунке 176 изображен ход лучей при условии Геометрическая оптика в физике - формулы и определение с примерами использован луч, параллельный ПОО, и луч, проходящий через центр линзы О. Полученное изображение действительное, находится по другую сторону линзы за двойным фокусом.

Запомните! Побочную ось необходимо ввести для лучей, падающих на линзу под произвольным углом. Она проводится параллельно падающему лучу. В этом случае преломленный луч пройдет через задний фокус побочной оси собирающей линзы (рис. 176). Для рассеивающей линзы необходимо провести преломленный луч таким образом, чтобы его продолжение прошло через передний фокус побочной оси.

Геометрическая оптика в физике - формулы и определение с примерами

IV. Формула тонкой линзы. Оптическая сила линзы. Увеличение линзы

Формула тонкой линзы вам известна из курса физики 8 класса: 

Геометрическая оптика в физике - формулы и определение с примерами

где D – оптическая сила линзы. Для собирающей линзы фокус линзы положительный F > 0, для рассеивающей линзы – отрицательный F < 0.

Физическую величину, равную отношению высоты изображения к высоте предмета, называют увеличением линзы.

Геометрическая оптика в физике - формулы и определение с примерами

Если изображение предмета увеличенное, то увеличение больше единицы Г > 1, если изображение уменьшенное, то Г < 1.

Оптическая сила линзы – это физическая величина, равная обратной величине фокусного расстояния линзы.

Геометрическая оптика в физике - формулы и определение с примерами

Оптическую силу измеряют в диоптриях: Геометрическая оптика в физике - формулы и определение с примерами

V. Зависимость преломляющих свойств линзы от показателя преломления и радиусов кривизны линзы

Рассмотрим ход луча от точечного источника, находящегося на главной оптической оси (рис. 179). Угол отклонения луча Геометрическая оптика в физике - формулы и определение с примерами является внешним углом треугольника Геометрическая оптика в физике - формулы и определение с примерами он равен сумме внутренних углов не смежных с ним:

Геометрическая оптика в физике - формулы и определение с примерами

Для параксиальных лучей углы имеют малые значения, в радианной мере они равны тангенсам углов:

Геометрическая оптика в физике - формулы и определение с примерами

Запомните! Для действительного предмета d > 0, для мнимого предмета d < 0. Если в расчетах получено Геометрическая оптика в физике - формулы и определение с примерами то изображение действительное. Если Геометрическая оптика в физике - формулы и определение с примерами то изображение мнимое.

Геометрическая оптика в физике - формулы и определение с примерами

Переместим источник в точку 2F, которая является центром кривизны линзы, тогда в точке преломления луч станет перпендикулярным касательной к сферической поверхности (рис. 180). Угол, образовавшийся в результате пересечения касательных, обозначим Геометрическая оптика в физике - формулы и определение с примерами и рассмотрим линзу как тонкую призму. Угол отклонения луча равен преломляющему углу призмы, поскольку стороны углов взаимно перпендикулярны. Расстояние от предмета и изображения до линзы равны радиусам кривизны поверхности.

Соотношение углов (6) примет вид:

Геометрическая оптика в физике - формулы и определение с примерами

Подставив (7) и (8) в формулу тонкой призмы (9), получим:

Геометрическая оптика в физике - формулы и определение с примерами

Сократим на АО, получим

Геометрическая оптика в физике - формулы и определение с примерами

Полученные выражения (10), (11) являются формулами тонкой линзы.

Чем больше относительный показатель преломления вещества линзы и меньше радиус кривизны сферических поверхностей, тем больше оптическая сила линзы.

В случае Геометрическая оптика в физике - формулы и определение с примерами двояковыпуклая линза рассеивает лучи, ее оптическая сила при этом условии имеет отрицательное значение.

Кусочки науки:

Луч света, падающий на призму, дважды преломляется при прохождении на гранях ОА и ОВ. Если призма сделана из материала оптически более плотного, чем окружающая среда, то луч света отклоняется на угол Геометрическая оптика в физике - формулы и определение с примерами к основанию призмы: Геометрическая оптика в физике - формулы и определение с примерами

где Геометрическая оптика в физике - формулы и определение с примерами — преломляющий угол призмы (рис. 181).

Геометрическая оптика в физике - формулы и определение с примерами

Оптические приборы

I. Угловое увеличение оптического прибора

Основное назначение лупы, микроскопа и телескопа − увеличение угла зрения на рассматриваемые объекты.

Угловое увеличение оптического прибора – это отношение тангенса угла зрения при рассмотрении предмета через оптический прибор к тангенсу угла зрения при рассмотрении предмета невооруженным глазом на расстоянии наилучшего зрения.

Геометрическая оптика в физике - формулы и определение с примерами

Разрешающей способностью оптической системы называют наименьшее расстояние между элементами наблюдаемого объекта, при котором эти элементы еще могут быть отличены один от другого.

Оптический прибор и глаз наблюдателя составляют единую оптическую систему. Оптическая сила системы определяется суммой оптических сил приборов, входящих в систему.

II. Глаз, как оптический прибор

Нормальный глаз в спокойном состоянии дает изображение удаленных предметов. При приближении предметов к глазу наблюдателя кривизна хрусталика увеличивается, фокусное расстояние уменьшается, возрастает угол зрения – угол Геометрическая оптика в физике - формулы и определение с примерами под которым виден предмет. Для нормального глаза благоприятным расстоянием является Геометрическая оптика в физике - формулы и определение с примерами см.  Угол зрения невооруженного глаза определяется расстоянием наилучшего зрения (рис. 182 а):

Геометрическая оптика в физике - формулы и определение с примерами

Способность глаза к аккомодации ограничена, поэтому приблизить предмет непосредственно к глазу невозможно, в таком случае используют оптические приборы.

Геометрическая оптика в физике - формулы и определение с примерами

Вспомните! Изображение, полученное на сетчатке глаза, всегда действительное, уменьшенное, перевернутое. Роль собирающей линзы выполняет хрусталик. Резкость изображения обеспечивается способностью глаза к аккомодации – изменению кривизны поверхностей хрусталика.

III. Лупа

Если предмет расположить в фокусе линзы Геометрическая оптика в физике - формулы и определение с примерами то после прохождения через нее лучи попадают в глаз человека параллельным пучком. При таком условии нормальный глаз сводит пучок в точку на сетчатке без аккомодации, глаз не утомляется. При этом изображение на сетчатке и угол зрения Геометрическая оптика в физике - формулы и определение с примерами увеличатся, угол зрения станет равным (рис. 182 б):

Геометрическая оптика в физике - формулы и определение с примерами

Подставим (2) и (3) в формулу (1). Тогда формула углового увеличения лупы примет вид:

Геометрическая оптика в физике - формулы и определение с примерами

Угловое увеличение лупы определяется отношением расстояния наилучшего зрения к фокусу линзы.

IV. Микроскоп

Оптическая система микроскопа состоит из объектива Геометрическая оптика в физике - формулы и определение с примерами и окуляра Геометрическая оптика в физике - формулы и определение с примерами (рис. 183). Наиболее благоприятное условие для нормального глаза осуществляется в том случае, когда промежуточное изображение Геометрическая оптика в физике - формулы и определение с примерами находится в передней фокальной плоскости окуляра Геометрическая оптика в физике - формулы и определение с примерами В этом случае изображение предмета удаляется в бесконечность, глаз фокусирует лучи на сетчатке без аккомодации.

Геометрическая оптика в физике - формулы и определение с примерами

Определим угловое увеличение по известной формуле:

Геометрическая оптика в физике - формулы и определение с примерами

где Геометрическая оптика в физике - формулы и определение с примерами – угол зрения для невооруженного глаза, Геометрическая оптика в физике - формулы и определение с примерами – угол зрения через микроскоп при условии, что изображение объектива лежит в фокальной плоскости окуляра. Подставим (6) и (7) в (5), получим:

Геометрическая оптика в физике - формулы и определение с примерами

Интересно знать! Оптический микроскоп дает возможность различать структуры с расстоянием между элементами до 0,20 мкм, т.е. разрешающая способность такого микроскопа составляет около 0,20 мкм или 200 нм. Предельная разрешающая способность микроскопа имеет предел, обусловленный волновыми свойствами света, она достигается при тысячекратном линейном увеличении.

В формуле (8) отношение является линейным увеличением объектива, представим его как отношение расстояний от линзы до изображения и предмета:

Геометрическая оптика в физике - формулы и определение с примерами

где L − расстояние между фокусами объектива и окуляра.

Поскольку в микроскопах объектив короткофокусный, то Геометрическая оптика в физике - формулы и определение с примерами формула (9) примет вид:

Геометрическая оптика в физике - формулы и определение с примерами

Подставив (10) в (8), получим:

Геометрическая оптика в физике - формулы и определение с примерами

где Геометрическая оптика в физике - формулы и определение с примерами − расстояние наилучшего видения;

Геометрическая оптика в физике - формулы и определение с примерами − фокусные расстояния объектива и окуляра;

L − расстояние между фокусами объектива и окуляра – оптическая длина тубуса микроскопа.

Из формулы (11) с учетом (10) и (4) получим: Геометрическая оптика в физике - формулы и определение с примерами

Угловое увеличение оптического микроскопа определяется произведением линейных увеличений объектива и окуляра.

Несложно доказать, что линейное увеличение микроскопа также равно произведению линейных увеличений окуляра и объектива:

Геометрическая оптика в физике - формулы и определение с примерами

V. Телескоп

Телескоп – это зрительная труба, предназначенная для наблюдения небесных тел. Телескоп, изготовленный из линз, называют рефрактором. Телескоп, в котором объектив заменен на вогнутое зеркало, называют рефлектором.

Зрительная труба – это оптический прибор, предназначенный для рассмотрения удаленных предметов.

Объектив и окуляр прибора располагаются в тубусе таким образом, чтобы задний фокус объектива Геометрическая оптика в физике - формулы и определение с примерами совпадал с передним фокусом окуляра Геометрическая оптика в физике - формулы и определение с примерами При совмещении фокусов лучи из окуляра выходят параллельным пучком, что позволяет наблюдать за объектом без аккомодации, т.е. без напряжения глазных мышц (рис. 184). Объектив дает уменьшенное изображение удаленного предмета Геометрическая оптика в физике - формулы и определение с примерами который рассматривают через окуляр, как в лупу.

Геометрическая оптика в физике - формулы и определение с примерами

Интересно знать! Все звезды в телескоп видны как светящиеся точки, но благодаря угловому увеличению они отдаляются друг от друга, что позволяет обнаружить двойные, тройные звезды или скопление звезд. Телескоп с диаметром объектива 12,5 см может различить две звезды, находящиеся на угловом расстоянии 1″, полуметровый объектив телескопа позволяет различать две звезды, отстоящие на угловом расстоянии 0,25″.

Угол Геометрическая оптика в физике - формулы и определение с примерами можно считать равным углу зрения невооруженного глаза ввиду значительной удаленности предмета. Выразим углы зрения Геометрическая оптика в физике - формулы и определение с примерами через высоту изображения объектива Геометрическая оптика в физике - формулы и определение с примерами

Геометрическая оптика в физике - формулы и определение с примерами

Угловое увеличение оптического прибора определяется отношением тангенса угла зрения через оптический прибор к тангенсу угла зрения невооруженного глаза:

Геометрическая оптика в физике - формулы и определение с примерами

Угловое увеличение зрительной трубы равно отношению фокусных расстояний объектива и окуляра.

Пример решения задачи:

Мальчик, сняв очки, читает книгу, держа ее на расстоянии d = 16 см от глаз. Какова оптическая сила его очков?

Дано:

d = 16 см

Геометрическая оптика в физике - формулы и определение с примерами

СИ 0,16 м

Решение: Для невооруженного глаза

Геометрическая оптика в физике - формулы и определение с примерами

где ƒ − расстояние от хрусталика глаза до сетчатки.

Если надеть очки, то Геометрическая оптика в физике - формулы и определение с примерами

где d0 = 25 см − расстояние наилучшего зрения.

Решая совместно уравнения (1) и (2) для оптической силы очков получим: Геометрическая оптика в физике - формулы и определение с примерами Геометрическая оптика в физике - формулы и определение с примерами 

Ответ: Dочк  = — 2,25 дптр.

Итоги

Геометрическая оптика в физике - формулы и определение с примерами

Закон отражения:

Угол падения равен углу отражения Геометрическая оптика в физике - формулы и определение с примерами Луч падающий, луч отраженный и перпендикуляр, восстановленный в точку падения луча к границе раздела двух сред, лежат в одной плоскости.

Закон преломления:

Отношение синуса угла падения к синусу угла преломления для двух сред есть величина постоянная. Она равна относительному показателю преломления второй среды относительно первой. Луч падающий, луч преломленный и перпендикуляр, восстановленный в точку падения луча к границе раздела двух сред, лежат в одной плоскости.

Глоссарий

Абсолютный показатель преломления – физическая величина, равная отношению скорости распространения света в вакууме к скорости распространения света в данной среде.

Главная оптическая ось линзы – прямая, проходящая через центры кривизны поверхностей линзы.

Оптический центр линзы – точка пересечения главной оптической оси с плоскостью линзы.

Оптическая длина тубуса микроскопа – расстояние между фокусами объектива и окуляра.

Относительный показатель преломления – физическая величина, равная отношению скорости распространения света в первой среде к скорости распространения света во второй среде.

Побочная оптическая ось линзы – любая прямая, проведенная через оптический центр линзы.

Телескоп – прибор, предназначенный для наблюдения небесных тел.

Увеличение линейное – физическая величина, равная отношению высоты изображения к высоте предмета.

Угловое увеличение оптического прибора – отношение тангенса угла зрения при рассмотрении предмета через оптический прибор к тангенсу угла зрения, при рассмотрении предмета невооруженным глазом на расстоянии наилучшего зрения.

Прямолинейное распространение света

Геометрической оптикой называют раздел оптики, в котором изучаются за-
коны распространения света в прозрачных средах на основе представления о нем как о совокупности световых лучей. Под лучом понимают линию, вдоль которой переносится энергия электромагнитной волны. Условимся изображать оптические лучи графически с помощью геометрических лучей со стрелками. В геометрической оптике волновая природа света не учитывается.

Уже в начальные периоды оптических исследований были экспериментально
установлены четыре основных закона геометрической оптики:

  • закон прямолинейного распространения света;
  • закон независимости световых лучей;
  • закон отражения световых лучей;
  • закон преломления световых лучей.

Впервые закон прямолинейного распространения света, составляющий основу геометрической оптики, был сформулирован в III в. до н. э. в труде Евклида «Оптика и катооптика». Закон утверждает, что:

  • свет в прозрачной однородной среде распространяется прямолинейно.

Доказательством закона служит образование полной тени и полутени, геометрически подобных препятствиям. Источник дает полную тень (рис. 265), если его размеры значительно меньше расстояния до препятствия, отбрасывающего тень.

Геометрическая оптика в физике - формулы и определение с примерами

Такой источник принято называть точечным. Подчеркнем, что точечный источник света является идеализацией, подобно материальной точке в механике.

Несколько источников света, или неточечный (протяженный) источник помимо области полной тени, создают также и область полутени (рис. 266).

Геометрическая оптика в физике - формулы и определение с примерами

В этих законах использовались понятия световой пучок или световой луч, т. е. предполагалось, что пучок и луч бесконечно тонкие.

Световые пучки получают при пропускании излучения, идущего от удаленного источника, через отверстие (диафрагму) в экране 1 (рис. 267).

Геометрическая оптика в физике - формулы и определение с примерами

Эксперименты показывают, что если диаметр отверстия D гораздо больше длины световой волны Геометрическая оптика в физике - формулы и определение с примерами и расстояние l от отверстия до экрана 2 не очень велико, то выходящий из диафрагмы пучок можно считать параллельным.

Если же диаметр диафрагмы оказывается справедливо сравним с длиной световой волны, то выходящий световой пучок становится расходящимся, свет проникает в область геометрической тени, происходит дифракция света (d > D), т. е. проявляется волновой характер светового излучения. Следует отметить, что дифракция будет наблюдаться на очень больших расстояниях от экрана Геометрическая оптика в физике - формулы и определение с примерами даже при диаметре диафрагмы Геометрическая оптика в физике - формулы и определение с примерами

Таким образом, луч — чисто геометрическое понятие. Луч указывает направление, перпендикулярное фронту волны, в котором опа переносит энергию. 

Лучи, выходящие из одной точки, называют расходящимися, а собирающиеся в одной точке — сходящимися. Примером расходящихся лучей может служить любой точечный источник света, а примером сходящихся — совокупность лучей, попадающих в зрачок нашего глаза от различных предметов.
Пересекающиеся световые лучи не взаимодействуют друг с другом в рамках геометрической оптики, т. е. «исказить» изображение с помощью других лучей невозможно. Факт независимости распространения световых лучей от наличия (или отсутствия) других лучей устанавливается в следующем законе геометрической оптики.

Закон независимости световых лучей:

  • световые лучи распространяются независимо друг от друга.

Геометрическая оптика в физике - формулы и определение с примерами

Целый ряд оптических явлений (отражение облаков в воде, отражение предметов в зеркальной или любой полированной поверхности и т. д.) способствовали открытию следующего закона геометрической оптики — закона отражения света (рис. 268):

  • угол отражения равен углу падения Геометрическая оптика в физике - формулы и определение с примерами
  • луч падающий, луч отраженный и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.

Эксперименты показывают, что существуют два вида отражения света: зеркальное и рассеянное. Поверхность, размеры неровностей которой меньше длины световой волны, называют зеркальной. Лучи света, падающие на такую плоскую поверхность параллельным пучком, после отражения остаются параллельными. Такое отражение называют зеркальным (рис. 269).

Геометрическая оптика в физике - формулы и определение с примерами

Поверхность, размеры неровностей которой больше длины световой волны, отражает лучи света по всевозможным направлениям и называется шероховатой, а отраженный свет — рассеянным или диффузным (рис. 270).

Геометрическая оптика в физике - формулы и определение с примерами

Используя закон отражения света, можно построить изображение предмета АВ в плоском зеркале (рис. 271), представляющем собой плоскую отражающую поверхность. Построив ход лучей 1 и 2 от точки А после отражения от зеркала KL, продолжим их до пересечения в точке А’. Аналогичные построения
сделаем для точки В, найдем ее изображение — точку В’. Глазу наблюдателя будет казаться, что лучи вышли из точек А’ и В’, т. е. оттуда, где будет находиться мнимое изображение А’В’ предмета АВ.

  • Заказать решение задач по физике

Геометрическая оптика в физике - формулы и определение с примерами

В оптике изображение называется действительным, если оно образовано самими лучами (т. е. в данную точку поступает световая энергия), если же изображение образовано не самими лучами, а их продолжениями, то говорят, что изображение мнимое (световая энергия не поступает в данную точку).

Изображение называется прямым, если верх и низ изображения ориентированы аналогично самому предмету. Если же изображение перевернуто, то его называют обратным или перевернутым.

Таким образом, изображение предмета в плоском зеркале — мнимое прямое, в натуральную величину. Оно симметрично предмету относительно плоскости зеркала и находится на таком же расстоянии за плоскостью зеркала, как и сам предмет (см. рис. 271).

Преломление света

Изменение направления распространения луча света при прохождении через границу раздела двух сред называется преломлением света.
Для наблюдения данного явления достаточно поместить карандаш в стакан с водой и посмотреть на него со стороны — карандаш будет казаться «надломленным» (преломленным) (рис. 273), оставаясь при этом совершенно целым.

Геометрическая оптика в физике - формулы и определение с примерами

Первые упоминания о преломлении света в воде и стекле встречаются в труде Клавдия Птолемея «Оптика», вышедшего в свет во II в. нашей эры.
Закон преломления света был экспериментально установлен в 1621 г. голландским ученым Виллебродом Снеллиусом и независимо от него теоретически обоснован в 1637 г. Рене Декартом.
 

Закон преломления световых лучей:

Геометрическая оптика в физике - формулы и определение с примерами

Здесь Геометрическая оптика в физике - формулы и определение с примерами — абсолютные показатели преломления сред.
Рассмотрим луч, падающий на плоскую границу раздела двух прозрачных сред под некоторым углом Геометрическая оптика в физике - формулы и определение с примерами (рис. 274).

Геометрическая оптика в физике - формулы и определение с примерами

При этом наряду с отраженным лучом будет существовать и преломленный луч. Он распространяется во второй среде под некоторым углом у в соответствии с законом преломления.

Принцип Ферма

Хотя законы геометрической оптики были открыты экспериментально, однако все они (за исключением закона независимости световых лучей) являются следствием принципа «кратчайшего пути» или «минимального времени», сформулированного в 1679 г. французским математиком Пьером Ферма:
распространение света из одной точки среды в другую происходит по траектории,  которой соответствует минимальное время по сравнению с другими возможными траекториями.

При помощи этого принципа Ферма вывел закон преломления света. Из этого принципа также следуют законы прямолинейного распространения и отражения света, т. е. принцип Ферма является наиболее общим принципом геометрической оптики.

Действительно, в однородной прозрачной среде, где скорость света постоянна Геометрическая оптика в физике - формулы и определение с примерами минимальному времени распространения света между двумя точками соответствует движение по прямой, т. е. приходим к закону прямолинейного распространения света.

Геометрическая оптика в физике - формулы и определение с примерами

При отражении от плоского зеркала в силу симметрии можем сказать, что сумма |АВ| + |ВС| (рис. 275) будет минимальна в случае, когда Геометрическая оптика в физике - формулы и определение с примерами Это как раз и соответствует закону отражения света.

Впервые данный факт геометрически доказал Герон Александрийский (II в. н. э.) задолго до появления принципа Ферма.

Анализируя время распространения луча между двумя точками при преломлении света, можно показать, что принцип Ферма выполняется и в этом случае, т. е. при движении по «траектории» преломления свету потребуется наименьшее время но сравнению с любой другой возможной «траекторией».

Для законов отражения и преломления выполняется принцип обратимости световых лучей:

  • луч света, распространяющийся по пути отраженного (преломленного) луча, отразившись в точке О от границы раздела сред, распространяется дальше по пути падающего луча. Иными словами можно менять падающий и отраженный (преломленный) лучи местами, т. е., не изменяя хода луча, поменять направление его распространения.

На границе раздела двух прозрачных сред обычно одновременно с преломлением наблюдается отражение волн.

Согласно закону сохранения энергии сумма энергий отраженной Геометрическая оптика в физике - формулы и определение с примерами и преломленной Геометрическая оптика в физике - формулы и определение с примерами волн равна энергии падающей волны Геометрическая оптика в физике - формулы и определение с примерами
Геометрическая оптика в физике - формулы и определение с примерами

Примерный баланс энергий между отраженной и преломленной волнами приведен на рисунке 276.

Геометрическая оптика в физике - формулы и определение с примерами

Как следует из закона преломления, при переходе света из оптически более плотной среды I (с большим абсолютным показателем преломления Геометрическая оптика в физике - формулы и определение с примерами) в оптически менее плотную среду II (с меньшим показателем преломления Геометрическая оптика в физике - формулы и определение с примерамиугол преломления Геометрическая оптика в физике - формулы и определение с примерами становится больше угла падения Геометрическая оптика в физике - формулы и определение с примерами (рис. 277).

Геометрическая оптика в физике - формулы и определение с примерами

По мере увеличения угла падения, при некотором его значении Геометрическая оптика в физике - формулы и определение с примерами угол преломления станет Геометрическая оптика в физике - формулы и определение с примерами т. е. свет не будет попадать во вторую среду.
Энергия преломленной волны при этом станет равной нулю, а энергия отраженной волны будет равна энергии падающей. Следовательно, начиная с этого угла падения вся световая энергия отражается от границы раздела этих сред в среду I.

Это явление называется полным отражением (см. рис. 277). Угол Геометрическая оптика в физике - формулы и определение с примерами при котором начинается полное отражение, называется предельным углом полного отражения. Он определяется из закона преломления при условии, что угол преломления Геометрическая оптика в физике - формулы и определение с примерами
Геометрическая оптика в физике - формулы и определение с примерами

Таким образом, при углах падения, больших Геометрическая оптика в физике - формулы и определение с примерами преломленный луч отсутствует.

Закон преломления света позволяет определять ход лучей в различных оптических системах.

Геометрическая оптика в физике - формулы и определение с примерами
 

На рисунке 278 показан ход светового луча в плоскопараллельной пластинке толщиной d, находящейся в воздухе. Согласно закону преломления на первой и второй границах раздела для луча, падающего под углом Геометрическая оптика в физике - формулы и определение с примерами на первую границу, Геометрическая оптика в физике - формулы и определение с примерами

Здесь Геометрическая оптика в физике - формулы и определение с примерами — угол преломления на первой границе, Геометрическая оптика в физике - формулы и определение с примерами — угол падения луча на вторую границу, Геометрическая оптика в физике - формулы и определение с примерами — угол преломления на второй границе, n — показатель преломления вещества пластинки.

Накрест лежащие углы Геометрическая оптика в физике - формулы и определение с примерами при параллельных прямых AD и ВК — перпендикулярах к первой и второй параллельным границам — равны, т. е. Геометрическая оптика в физике - формулы и определение с примерамиСледовательно, Геометрическая оптика в физике - формулы и определение с примерами Откуда следует, что Геометрическая оптика в физике - формулы и определение с примерами

Таким образом, луч света, проходя через плоскопараллельную пластинку, с обеих сторон которой находится одна и та же среда, смещается параллельно своему начальному направлению. Поэтому все предметы, если смотреть на них сквозь прозрачную плоскопараллельную пластинку под углом, не равным нулю, будут казаться смещенными на некоторое расстояние h. Найдем, от каких параметров пластинки зависит это смещение.

Из треугольника АВС следует, что
Геометрическая оптика в физике - формулы и определение с примерами

Из треугольника ABD находим
Геометрическая оптика в физике - формулы и определение с примерами

Из этих двух соотношений получаем
Геометрическая оптика в физике - формулы и определение с примерами

С учетом закона преломления Геометрическая оптика в физике - формулы и определение с примерами и тригонометрического тождества Геометрическая оптика в физике - формулы и определение с примерами находим Геометрическая оптика в физике - формулы и определение с примерами

Окончательно, смещение h между направлениями входящего и выходящего лучей можно определить из соотношения
Геометрическая оптика в физике - формулы и определение с примерами

Откуда видно, что h при данном угле падения Геометрическая оптика в физике - формулы и определение с примерами зависит от толщины d пластинки и ее показателя преломления n.

Геометрическая оптика в физике - формулы и определение с примерами

На рисунке 279 показан ход луча через стеклянную призму, находящуюся в воздухе. Грани, через которые проходит луч, называются преломляющими гранями; их ребро — преломляющим ребром, а угол Геометрическая оптика в физике - формулы и определение с примерами между ними — преломляющим углом призмы. Угол Геометрическая оптика в физике - формулы и определение с примерами между направлениями входящего и выходящего лучей называется углом отклонения:
Геометрическая оптика в физике - формулы и определение с примерами

Если угол падения Геометрическая оптика в физике - формулы и определение с примерами на грань призмы и преломляющий угол призмы Геометрическая оптика в физике - формулы и определение с примерами малы, то малыми будут и углы Геометрическая оптика в физике - формулы и определение с примерами Поэтому в законах преломления отношение синусов можно заменить отношением углов, выраженных в радианах, т. е. Геометрическая оптика в физике - формулы и определение с примерами Из геометрических соотношений следует равенство Геометрическая оптика в физике - формулы и определение с примерами Используя эти соотношения для угла отклонения, находим
Геометрическая оптика в физике - формулы и определение с примерами

Из последнего равенства следует, что, во-первых, чем больше преломляющий угол Геометрическая оптика в физике - формулы и определение с примерами тем больше угол отклонения Геометрическая оптика в физике - формулы и определение с примерами лучей призмой; во-вторых, угол отклонения лучей зависит от показателя преломления вещества призмы. А так как показатель преломления зависит от частоты волны n(v), то при падении на призму белого света он будет разлагаться в спектр.

Знание наименьшего угла отклонения лучей призмой Геометрическая оптика в физике - формулы и определение с примерами позволяет определить показатель преломления вещества, из которого она изготовлена:

Геометрическая оптика в физике - формулы и определение с примерами

Направив пучок лучей белого света на призму, мы обнаружим его сложную структуру: на экране за призмой появится радужная полоска — спектр (рис. 280).

 Геометрическая оптика в физике - формулы и определение с примерами

Образование спектра обусловлено тем, что призма, вследствие дисперсии, по-разному преломляет лучи, соответствующие различным длинам волн. Порядок следования лучей в спектре легко запомнить с помощью известной фразы:

  • красный — 770—630 нм    каждый
  • oранжевый — 630—590 нм    охотник
  • желтый — 590—570 нм    желает
  • зеленый — 570—495 нм    знать.
  • голубой, синий — 495—435 нм    где сидят
  • фиолетовый — 435—390 нм    фазаны

Явление дисперсии совместно с  полным отражением приводит к образованию радуги, вследствие преломления солнечных лучей на мельчайших водяных капельках во время дождя, к нежелательному «окрашиванию» изображений в оптических системах (хроматическая аберрация) и т. д.

Линза. Построение изображения в линзах

Линза называется собирающей, если после преломления в ней параллель-ный пучок становится сходящимся. Если же после преломления в линзе параллельный пучок становится расходящимся, то линза называется рассеивающей.

Как известно, плоское зеркало даст мнимое изображение предмета в натуральную величину. Однако для практических нужд чаще необходимы изображения увеличенные или уменьшенные. Эта задача решается с помощью линз (или криволинейных зеркал).
 

Линза представляет собой прозрачное тело, ограниченное с двух сторон криволинейными поверхностями. Чаще всего применяются линзы с поверхностями, имеющими сферическую форму (сферические сегменты).
По форме ограничивающих поверхностей различают шесть типов линз. На рисунке 281, а. б показаны условные обозначения линз и типы линз.

Отметим условия, при одновременном выполнении которых линза является собирающей:

  • толщина в центре больше толщины у краев;

Геометрическая оптика в физике - формулы и определение с примерами

  • ее показатель преломления больше показателя преломления окружающей среды.

При невыполнении (или выполнении) только одного из этих условий линза является рассеивающей.

Линза считается тонкой, если ее толщина в центре намного меньше радиусов ограничивающих ее поверхностей. Тонкая линза дает неискаженное изображение только в том случае, если свет монохроматический и предмет достаточно мал, следовательно, лучи распространяются вблизи главной оптической оси. Такие лучи получили название параксиальных.

Геометрическая оптика в физике - формулы и определение с примерами

Рассмотрим основные характеристики линзы (рис. 282, а, б).

Прямая линия, на которой лежат центры Геометрическая оптика в физике - формулы и определение с примерами обеих сферических поверхностей линзы, называется главной оптической осью.

Точка О линзы, проходя через которую луч не преломляется, называется оптическим центром.

Прямая линия, проходящая через оптический центр линзы, не совпадающая с главной оптической осью, называется побочной оптической осью. Каждая линза имеет только одну главную оптическую ось и бесконечно много побочных осей.

Плоскость, проходящая через оптический центр тонкой линзы перпендикулярно главной оптической оси, называют главной плоскостью линзы.

Точка, в которую собирается параксиальный пучок света после преломления в линзе, распространяющийся параллельно главной оптической оси, называется главным фокусом F линзы. Расстояние OF от оптического центра линзы до се главного фокуса называется фокусным расстоянием линзы.

Плоскость, проходящая через главный фокус перпендикулярно главной оптической оси, называется фокальной плоскостью. Фокальная плоскость собирающей линзы является геометрическим местом точек, в которых пересекаются параллельные лучи, падающие на линзу под любым углом к главной оптической оси.

Пучок света, направленный на собирающую линзу параллельно побочной оптической оси, собирается в побочном фокусе, лежащем в фокальной плоскости.

Обычно для построений в линзах используют три характерных (стандартных) луча (рис. 283, а, б):

  • луч, идущий через оптический центр О линзы, не испытывает преломления;
  • луч, параллельный главной оптической оси линзы, после преломления проходит через ее главный фокус;
  • луч, проходящий через главный фокус линзы, после преломления идет параллельно главной оптической оси.

Геометрическая оптика в физике - формулы и определение с примерами

Для построения изображения в линзе достаточно построить ход двух лучей от каждой точки предмета. Изображение находится в месте пересечения лучей после преломления на поверхностях линзы (действительное изображение) или в месте пересечения продолжений лучей (мнимое изображение).
В зависимости от типа линзы и расстояния до нее можно получать изображения: увеличенные и уменьшенные, прямые и обратные (перевернутые), действительные и мнимые (рис. 284).

Геометрическая оптика в физике - формулы и определение с примерами

Все приведенные примеры построений относились к предметам, которые имели определенные размеры. А как найти построением положение изображения точечного источника света, находящегося на главной оптической оси?

Для этого необходимы два любых луча, один из которых — самый простой, — проходящий не преломляясь через оптический центр линзы. Для построения хода другого пользуются побочной оптической осью. Рассмотрим точечный источник, находящийся на главной оптической оси собирающей линзы (рис. 285). Проведем из точки S произвольный луч SA. Для того чтобы найти ход луча после преломления в линзе, проведем побочную оптическую ось Геометрическая оптика в физике - формулы и определение с примерами параллельную лучу SA. Нарисуем сечение KL фокальной плоскости линзы.

Точка пересечения побочной оптической оси Геометрическая оптика в физике - формулы и определение с примерами с фокальной плоскостью KL является побочным фокусом Геометрическая оптика в физике - формулы и определение с примерами Следовательно, луч SA, преломившись в линзе, должен пройти через побочный фокус Геометрическая оптика в физике - формулы и определение с примерами Продлевая прямую Геометрическая оптика в физике - формулы и определение с примерами до пересечения с главной оптической осью, находим точку Геометрическая оптика в физике - формулы и определение с примерами которая является изображением точечного источника S.

Положение изображения точечного источника, находящегося на главной оптической оси рассеивающей линзы, найдите построением самостоятельно.

Формула тонкой линзы

Между расстояниями от предмета до линзы и от линзы до изображения существует определенная зависимость от фокусного расстояния линзы, называемая формулой линзы.

Выведем формулу тонкой линзы из геометрических соображений, рассматривая ход характерных лучей (рис. 289).

Геометрическая оптика в физике - формулы и определение с примерами

Пусть расстояние от предмета АВ до линзы d, расстояние от линзы до изображения АВ f, фокусное расстояние линзы F, расстояние от предмета до левого фокуса а, расстояние от изображения до правого фокуса а’.
Из рисунка видно, что Геометрическая оптика в физике - формулы и определение с примерами следовательно,

Геометрическая оптика в физике - формулы и определение с примерами
 

Поперечным увеличением Г называется отношение линейного размера изображения h’ к линейному размеру предмета h:

Геометрическая оптика в физике - формулы и определение с примерами
Из соотношения (I) следует формула Ньютона: Геометрическая оптика в физике - формулы и определение с примерами
С учетом того, что Геометрическая оптика в физике - формулы и определение с примерами получаем формулу линзы:
Геометрическая оптика в физике - формулы и определение с примерами

В 1604 г. в исследовании «Дополнения к Вителло» Кеплер изучал прелом-ление света в линзах различной конфигурации и для малых углов падения пришел к формуле линзы.

Для практического использования формулы линзы следует твердо запомнить правило знаков:

в случае собирающей линзы действительных источника и изображения величины F, d, f считают положительными; в случае рассеивающей линзы мнимых источника и изображения величины F, d, f считают отрицательными.
Заметим, что предмет или источник является мнимым только в том случае, если на линзу падает пучок сходящихся лучей.

Таким образом, линза с F>0 является собирающей (положительной), а с F<0 — рассеивающей (отрицательной).

Величина, обратная фокусному расстоянию линзы, выраженному в метрах, называется ее оптической силой:
Геометрическая оптика в физике - формулы и определение с примерами

Единица оптической силы — диоптрия (1 дптр).

Одна диоптрия соответствует оптической силе линзы с фокусным расстоянием один метр: 1 дптр= Геометрическая оптика в физике - формулы и определение с примерами

Оптическая сила линзы зависит от свойств окружающей среды (вспомните, как плохо мы видим под водой без плавательных очков).
Современные оптические приборы для улучшения качества изображений используют системы линз. Оптическая сила D системы тонких линз, сложенных вплотную, равна сумме их оптических сил Геометрическая оптика в физике - формулы и определение с примерами
Геометрическая оптика в физике - формулы и определение с примерами

Оптические приборы: лупа, мультимедийный проектор, фотоаппарат

Познакомимся с простейшими оптическими приборами, широко используемыми человеком.

Лупа — оптический прибор (собирающая линза), позволяющий увеличить угол зрения (т. е. увеличить мелкие детали предметов).
Лупа представляет собой короткофокусную линзу (F от 10 мм до 100 мм), которая располагается между глазом и предметом (рис. 290).

Геометрическая оптика в физике - формулы и определение с примерами

Мнимое увеличенное изображение предмета получается на расстоянии наилучшего зрения — 25 см для нормального глаза (или на бесконечности). Таким образом, изображение предмета рассматривается глазом практически без напряжения.

Видимое увеличение, даваемое лупой:

Геометрическая оптика в физике - формулы и определение с примерами где Геометрическая оптика в физике - формулы и определение с примерами — расстояние наилучшего зрения, F — фокусное расстояние лупы.

Вследствие того, что Геометрическая оптика в физике - формулы и определение с примерами м, лупы имеют увеличение от 2,5 до 25 раз (рис. 291).

Геометрическая оптика в физике - формулы и определение с примерами

Лупы с увеличением Г > 40 не применяются из-за сильных искажений изображения или малости обзора.

Геометрическая оптика в физике - формулы и определение с примерами
 

Мультимедийный (лазерный) проектор (рис. 292) — оптическое устройство, с помощью которого на экране получают действительное (прямое или обратное) увеличенное изображение, «снятое» с экрана компьютера, телевизора или других источников видеосигнала.

Для формирования изображения в мультимедиа-проекторах используются различные базовые технологии: жидкокристаллическая технология, технология цифровой обработки света или технология формирования цифровых изображений методом отражения.

При формировании цифрового изображения методом отражения источник света 1 при помощи разделяющих призм 2 освещает оптическую матрицу с изображением 3 и при помощи системы проекционных линз 4 передает увеличенное изображение на экран 5 (рис. 293).

Геометрическая оптика в физике - формулы и определение с примерами

Популярность мультимедийных проекторов обусловлен их универсальностью, поскольку помимо компьютерного изображения они поддерживают практически вес существующие стандарты видеозаписей, а также полностью совместимы с форматом телевидения высокой четкости.

Мультимедиа-проекторы активно работают на научных конференциях, вы-
семинарах и т. д., поскольку по размерам изображения и по возможностям его настройки с ними не способны конкурировать ни телевизоры, ни плазменные панели.

Так, например, мультимедиа-проекторы позволяют осуществить  обратную проекцию или проекцию изображения на просветный экран, при которой зрители и проекционное оборудование находятся по разные стороны экрана. При такой установке проектора докладчик может находиться непосредственно перед экраном, не заслоняя собой проекцию, а освещение в помещении не так сильно влияет на качество изображения.

Геометрическая оптика в физике - формулы и определение с примерами
 

Фотоаппарат (рис. 294) — прибор, предназначенный для получения действительных уменьшенных обратных изображений предметов на фотопленке. При этом предметы могут быть расположены на различном удалении от точки съемки.

Фотоаппарат состоит из закрытой светонепроницаемой камеры и системы линз, называемых объективом (О). С помощью перемещения объектива добиваются наводки на резкость, при которой изображение предмета АВ формируется на фотопленке. В противном случае изображение А’В’ получается нечетким (размытым). Количество световой энергии, поступающей на пленку, определяется размерами диафрагмы и временем открытия затвора (выдержкой).

Сегодня на смену пленочным приходят электронные (цифровые) фотокамеры, в которых изображение записывается не на фотопленку, а на специальный чувствительный элемент (матрицу), с которого информация считывается и хранится в электронном (цифровом) виде, как в памяти компьютера. К достоинствам электронных камер можно отнести возможность «мгновенного» просмотра сделанной фотографии, восстановление ресурсов памяти после переписывания информации в компьютер, высокий темп съемки (10 и более кадров в секунду).

Зрение человека не в состоянии фиксировать очень быстрые и очень медленные изменения положения объекта. Фотоаппарат благодаря возможности фотографировать с различными выдержками от тысячных долей секунды до  нескольких секунд позволяет хронометрировать события, визуально «неулавливаемые».

Глаз, очки

Основную часть информации (примерно 90 %) об окружающем мире мы получаем с помощью органов зрения.

Глаз представляет собой сложную оптическую систему, подобную фотоаппарату (рис. 295).

Геометрическая оптика в физике - формулы и определение с примерами

Преломляющая система глаза подобна объективу фотоаппарата, а сетчатка — фоточувствительному слою фотопленки.

У глаза имеется радужная оболочка (окрашенная часть глаза), которая играет роль диафрагмы и автоматически регулирует количество попадающего в глаз света. Зрачок — отверстие в радужной оболочке, через которое проходит свет.

Сетчатка играет роль светочувствительной пленки, находится на задней поверхности глаза. Она состоит из «палочек» (нервные волокна) и «колбочек»
(рецепторы), которые преобразуют световую энергию в электрические сигналы, распространяющиеся по нервным волокнам. Днем свет воспринимается колбочками, а ночью — палочками. Днем мы отчетливо видим мелкие предметы и различаем их цвет. Слабо освещенные предметы (например, ночью) мы видим только в черно-белых тонах (бесцветными). Недаром говорят, что «ночью все кошки серы». Желтое пятно — область диаметром около 0,25 мм — находится в центре сетчатой оболочки, в которой достигается особая острота зрения и наиболее четко различаются цвета. Слепое пятно — место входа глазного нерва — это область сетчатки, которая не участвует в формировании изображения. Роговица — служит предохранительным покрытием и является первой поверхностью, преломляющей свет. Хрусталик — это эластичное линзоподобное тело, которое осуществляет настройку нашего зрения на различные расстояния. В оптической системе глаза фокусировка изображения на сетчатку называется аккомодацией (от латинского слова commodus — удобный). У человека аккомодация происходит за счет увеличения или уменьшения выпуклости хрусталика, которое осуществляется с помощью цилиарных мышц. При этом изменяется оптическая сила глаза.
Точка, видимая глазом при расслабленной цилиарной мышце, называется дальней точкой, а точка, видимая при максимальном напряжении этой мышцы, — ближней точкой.

Геометрическая оптика в физике - формулы и определение с примерами
 

Расстояние наилучшего зрения — это расстояние от предмета до глаза, при котором глаз не устает и угол зрения достаточно велик. Размер изображения на сетчатке (рис. 296) определяется углом зрения Геометрическая оптика в физике - формулы и определение с примерами с вершиной в оптическом центре глаза и лучами, направленными на крайние точки предмета.

От бесконечно удаленного предмета в глаз попадает пучок параллельных лучей. В этом случае Геометрическая оптика в физике - формулы и определение с примерами аккомодации не требуется. Если предмет приближается, то лучи становятся расходящимися. Для того чтобы сделать их снова параллельными, необходимо изменить оптическую силу глаза так, чтобы его фокусное расстояние совпало с расстоянием до предмета, т. е. F=d. В этом случае оптическая система глаза соберет параллельные лучи на сетчатке.

Оптическую силу аккомодационной добавки или аккомодации найдем из условия
Геометрическая оптика в физике - формулы и определение с примерами

Зрение человека с нормальным зрением характеризуется понятием «нормальный глаз», т. е. расстояние наилучшего зрения около 25 см, а предел зрения (дальняя точка) находится на бесконечности.

Для нормального глаза преломляющая сила хрусталика без аккомодации D= 19,11 дптр, а при максимальной аккомодации — Геометрическая оптика в физике - формулы и определение с примерами = 33,06 дптр; оптическая сила всего глаза, соответственно, D = 58,64 дптр и Геометрическая оптика в физике - формулы и определение с примерами = 70,57 дптр. Пользуясь этими данными, можно определить минимальное расстояние, на котором нормальный глаз еще может ясно видеть предмет. Максимально возможная аккомодация обеспечивает изменение оптической силы нормального глаза на Геометрическая оптика в физике - формулы и определение с примерами = 11,93 дптр. Этому изменению оптической силы соответствует минимальное расстояние Геометрическая оптика в физике - формулы и определение с примерами = 8,4 см. Следует отметить, что такая аккомодация возможна только в молодости (до 20 лет). 

С возрастом возможность аккомодации быстро уменьшается в основном из-за уплотнения хрусталика, теряющего способность достаточно сжиматься. Пожилой человек не может отчетливо видеть близкие предметы, а также различать буквы в газетах и книгах. К пятидесяти годам расстояние наилучшего зрения увеличивается в среднем до 50 см.
С возрастом, по болезни или при несоблюдении гигиены могут появиться дефекты зрения. Два наиболее распространенных дефекта — близорукость и дальнозоркость.
 

Близорукость (миопия) — дефект зрения, при котором глаз видит удаленные предметы не резко, а расплывчато (предел зрения не равен бесконечности). Изображения предметов при этом не попадают на сетчатку глаза, а фокусируются перед ней (точка М на рис. 297, а). Для исправления этого дефекта зрения используют очки с рассеивающими линзами (рис. 297, б). Поскольку оптическая сила этих линз отрицательна, то в повседневной жизни такие очки называют отрицательными.

Геометрическая оптика в физике - формулы и определение с примерами
 

Дальнозоркость (гиперопия) — дефект зрения, при котором глаз не в состоянии видеть резко близкие объекты, хотя удаленные предметы он видит хорошо. Изображения предметов при дальнозоркости получаются за сетчаткой (точка Р на рис. 298, а), и для коррекции зрения необходимо применять собирающие линзы (рис. 298, б), оптическая сила которых положительна (положительные очки).

Геометрическая оптика в физике - формулы и определение с примерами

Оптические явления в атмосфере

Атмосфера нашей планеты представляет собой достаточно интересную оптическую систему, показатель преломления которой уменьшается с высотой вследствие уменьшения плотности воздуха. Таким образом, земную атмосферу можно рассматривать как «линзу» гигантских размеров, повторяющую форму Земли и имеющую монотонно изменяющийся показатель преломления.

Это обстоятельство приводит к появлению целого ряда оптических явлений в атмосфере, обусловленных преломлением (рефракцией) и отражением (реф-лекцией) лучей в ней.

Рассмотрим некоторые наиболее существенные оптические явления в атмосфере.
 

Атмосферная рефракция — явление искривления световых лучей при прохождении света через атмосферу.
С высотой плотность воздуха (значит, и показатель преломления) убывает. Представим себе, что атмосфера состоит из оптически однородных горизонтальных слоев, показатель преломления в которых меняется от слоя к слою (рис. 299).

Геометрическая оптика в физике - формулы и определение с примерами

При распространении светового луча в такой системе он будет в соответствии с законом преломления «прижиматься» к перпендикуляру к границе слоя. Но плотность атмосферы уменьшается не скачками, а непрерывно, что приводит к плавному искривлению и повороту луча на угол а при прохождении атмосферы.

В результате атмосферной рефракции мы видим Луну, Солнце и другие звезды несколько выше того места, где они находятся на самом деле.

По этой же причине увеличивается продолжительность дня (в наших широтах на 10—12 мин), сжимаются диски Луны и Солнца у горизонта. Интересно, что максимальный угол рефракции составляет 35′ (для объектов у линии горизонта), что превышает видимый угловой размер Солнца (32′).

Из этого факта следует: в тот момент, когда мы видим, что нижний край светила коснулся линии горизонта, на самом деле солнечный диск находится уже под горизонтом (рис. 300).

Геометрическая оптика в физике - формулы и определение с примерами
 

Мерцание звезд также связано с астрономической рефракцией света. Давно было подмечено, что мерцание наиболее заметно у звезд, находящихся вблизи линии горизонта. Воздушные потоки в атмосфере изменяют плотность воздуха с течением времени, что приводит к кажущемуся мерцанию небесного светила. Космонавты, находящиеся на орбите, никакого мерцания не наблюдают.

В жарких пустынных или степных районах и в полярных областях сильный прогрев или охлаждение воздуха у земной поверхности приводит к появлению миражей: благодаря искривлению лучей становятся видимыми и кажутся близко расположенными предметы, которые на самом деле расположены далеко за горизонтом.

Иногда подобное явление называется земной рефракцией. Возникновение миражей объясняется зависимостью показателя преломления воздуха от температуры. Различают нижние и верхние миражи.
 

Нижние миражи можно увидеть в жаркий летний день на хорошо прогретой асфальтовой дороге: нам кажется, что впереди на ней есть лужи, которых на самом деле нет. В данном случае мы принимаем за «лужи» зеркальное отражение лучей от неоднородно разогретых слоев воздуха, находящихся в непосредственной близости от «раскаленного» асфальта.

Геометрическая оптика в физике - формулы и определение с примерами
 

Верхние миражи отличаются значительным разнообразием: в одних случаях они дают прямое изображение (рис. 301, а), в других — перевернутое (рис. 301, б), могут быть двойными и даже тройными. Эти особенности связаны с различными зависимостями температуры воздуха и показателя преломления от высоты.

Атмосферные осадки приводят к появлению в атмосфере эффектных оптических явлений. Так, во время дождя удивительным и незабываемым зрелищем является образование радуги, которое объясняется явлением различного преломления (дисперсии) и отражения солнечных лучей на мельчайших капельках в атмосфере (рис. 302).

Геометрическая оптика в физике - формулы и определение с примерами

В особо удачных случаях мы можем увидеть сразу несколько радуг, порядок следования цветов в которых взаимообратен.

Световой луч, участвующий в формировании радуги, испытывает два преломления и многократные отражения в каждой дождевой капле. В данном случае, несколько упрощая механизм образования радуги, можем сказать, что сферические дождевые капельки играют роль призмы в опыте Ньютона по разложению света в спектр.

Вследствие пространственной симметрии радуга видна в виде полуокружности с углом раствора около 42°, при этом наблюдатель (рис. 303) должен находиться между Солнцем и каплями дождя, спиной к Солнцу.

Геометрическая оптика в физике - формулы и определение с примерами

Преломление света в кристалликах льда, сопровождающееся разложением в спектр, приводит к появлению сравнительно редкого и не менее красивого оптического явления гало (рис. 304).

Геометрическая оптика в физике - формулы и определение с примерами

Гало проявляется в виде кругов (иногда столбов, крестов) вокруг Солнца и Луны. Для появления яркого гало необходимо достаточное количество ледяных кристаллов правильной формы.

Разнообразие цветов в атмосфере объясняется закономерностями рассеяния света на частичках различных размеров. Вследствие того, что синий цвет рассеивается сильнее, чем красный, — днем, когда Солнце находится высоко над горизонтом, мы видим небо голубым. По этой же причине вблизи линии горизонта становится красным и не таким ярким, как в зените. Появление цветных облаков также связано с рассеянием света на частичках различных размеров в облаке.

Основные формулы в геометрической оптике

Предельный угол полного отражения:
Геометрическая оптика в физике - формулы и определение с примерами
Формула тонкой линзы:    

Геометрическая оптика в физике - формулы и определение с примерами
Оптическая сила линзы:   

Геометрическая оптика в физике - формулы и определение с примерами
Поперечное увеличение:  

Геометрическая оптика в физике - формулы и определение с примерами

  • Фотометрия и световой поток 
  • Освещенность в физике
  • Закон прямолинейного распространения света
  • Законы отражения света
  • Оптические приборы в физике
  • Оптика в физике
  • Волновая оптика в физике
  • Квантовая оптика в физике

Понравилась статья? Поделить с друзьями:
  • Как найти своих родных которые воевали
  • Tales of arise как найти корабль
  • Как по видео найти песню через шазам
  • Как найти в операциях магазин
  • Как найти жемчужину санго в геншин