Как найти ординату пересечения прямых заданных уравнениями

Координаты точки пересечения прямых

Две прямые на плоскости могут быть параллельными, пересекаться либо совпадать.

Чтобы найти координаты точки пересечения прямых, надо составить и решить систему уравнений, составленную из уравнений этих прямых.

Найти точку пересечения прямых заданных уравнениями:

2) 2x+3y+17=0; 5x-2y-43=0.

1) Составляем систему уравнений (здесь даны уравнения прямой с угловым коэффициентом):

Приравняем правые части уравнений:

Подставим x= -2 в уравнение первой прямой:

2) Составляем систему уравнений (здесь задано общее уравнение прямой):

Умножим 1-е уравнение системы на 2, а 2-е — на 3

Пересечение прямых. Точка пересечения двух прямых

Если точка M, является точкой пересечения двух прямых, то она должна принадлежать этим прямым, а ее координаты удовлетворять уравнения этих прямых.

Точка пересечения двух прямых на плоскости

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны между собой)

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2 x — 1 y = -3 x + 1

Вычтем из первого уравнения второе

y — y = 2 x — 1 — (-3 x + 1) y = -3 x + 1 => 0 = 5 x — 2 y = -3 x + 1

Из первого уравнения найдем значение x

5 x = 2 y = -3 x + 1 => x = 2 5 = 0.4 y = -3 x + 1

Подставим значение x во второе уравнение и найдем значение y

x = 0.4 y = -3·(0.4) + 1 = -1.2 + 1 = -0.2

Ответ. Точка пересечения двух прямых имеет координаты (0.4, -0.2)

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2 x — 1 x = 2 t + 1 y = t

В первое уравнение подставим значения x и y из второго и третьего уравнений.

t = 2·(2 t + 1) — 1 x = 2 t + 1 y = t => t = 4 t + 1 x = 2 t + 1 y = t =>

-3 t = 1 x = 2 t + 1 y = t => t = — 1 3 x = 2 t + 1 y = t

Подставим значение t во второе и третье уравнение

t = — 1 3 x = 2·(- 1 3 ) + 1 = — 2 3 + 1 = 1 3 y = — 1 3

Ответ. Точка пересечения двух прямых имеет координаты ( 1 3 , — 1 3 )

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

2 x + 3 y = 0 x — 2 3 = y 4

Из второго уравнения выразим y через x

2 x + 3 y = 0 y = 4· x — 2 3

Подставим y в первое уравнение

2 x + 3·4· x — 2 3 = 0 y = 4· x — 2 3 => 2 x + 4·( x — 2) = 0 y = 4· x — 2 3 =>

2 x + 4 x — 8 = 0 y = 4· x — 2 3 => 6 x = 8 y = 4· x — 2 3 =>

x = 8 6 = 4 3 y = 4· x — 2 3 => x = 8 6 = 4 3 y = 4· 4/3 — 2 3 = 4· -2/3 3 = — 8 9

Ответ. Точка пересечения двух прямых имеет координаты ( 4 3 , — 8 9 )

Решение: Обе прямые заданы уравнениями с угловым коэффициентом. Так как k 1 = k 2 = 2, то прямые параллельны. Так как эти прямые не совпадают то точек пересечения нет.

Решим также эту задачу используя систему уравнений:

y = 2 x — 1 y = 2 x + 1

Вычтем из первого уравнения второе

y — y = 2 x — 1 — (2 x + 1) y = -3 x + 1 => 0 = -2 y = -3 x + 1

В первом уравнении получили противоречие (0 ≠ -2), значит система не имеет решений — отсутствуют точки пересечения прямых (прямые параллельны).

Ответ. Прямые не пересекаются (прямые параллельны).

Решение: Подставим координаты точки N в уравнения прямых.

Ответ. Так как оба уравнения превратились в тождества, то точка N — точка пересечения этих прямых.

Точка пересечения двух прямых в пространстве

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны или скрещиваются между собой)

Решение: Составим систему уравнений

x — 1 = a y — 1 = a z — 1 = a x — 3 -2 = b 2 — y = b z = b => x = a + 1 y = a + 1 z = a + 1 x — 3 -2 = b 2 — y = b z = b =>

Подставим значения x , y , z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = a + 1 y = a + 1 z = a + 1 a + 1 — 3 -2 = b 2 — ( a + 1) = b a + 1 = b => x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b a + 1 = b

К шестому уравнению добавим пятое уравнение

x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b a + 1 + (1 — a ) = b + b => x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b b = 1

Подставим значение b в четвертое и пятое уравнения

x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = 1 1 — a = 1 b = 1 => x = a + 1 y = a + 1 z = a + 1 a — 2 = -2 a = 0 b = 1 =>

x = a + 1 y = a + 1 z = a + 1 a = 0 a = 0 b = 1 => x = 0 + 1 = 1 y = 0 + 1 = 1 z = 0 + 1 = 1 a = 0 a = 0 b = 1

Ответ. Прямые пересекаются в точке с координатами (1, 1, 1).

Решение: Составим систему уравнений заменив во втором уравнении параметр t на a

x = 2 t — 3 y = t z = — t + 2 x = a + 1 y = 3 a — 2 z = 3

Подставим значения x , y , z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = 2 t — 3 y = t z = — t + 2 2 t — 3 = a + 1 t = 3 a — 2 — t + 2 = 3 => x = 2 t — 3 y = t z = — t + 2 2 t = a + 4 t = 3 a — 2 t = -1 =>

Подставим значение t из шестого уравнения в остальные уравнения

x = 2·(-1) — 3 y = (-1) z = -(-1) + 2 2·(-1) = a + 4 -1 = 3 a — 2 t = -1 => x = -5 y = -1 z = 3 a = -6 a = 1 3 t = -1

Ответ. Так как -6 ≠ 1 3 , то прямые не пересекаются.

Координаты точки пересечения двух прямых — примеры нахождения

Для того, чтобы решить геометрическую задачу методом координат, необходима точка пересечения, координаты которой используются при решении. Возникает ситуация, когда требуется искать координаты пересечения двух прямых на плоскости или определить координаты тех же прямых в пространстве. Данная статья рассматривает случаи нахождения координат точек, где пересекаются заданные прямые.

Точка пересечения двух прямых – определение

Необходимо дать определение точкам пересечения двух прямых.

Раздел взаимного расположения прямых на плоскости показывает, что они могут совпадать , быть параллельными, пересекаться в одной общей точке или скрещивающимися. Две прямые, находящиеся в пространстве, называют пересекающимися, если они имеют одну общую точку.

Определение точки пересечения прямых звучит так:

Точка, в которой пересекаются две прямые, называют их точкой пересечения. Иначе говоря, что точка пересекающихся прямых и есть точка пересечения.

Рассмотрим на рисунке, приведенном ниже.

Нахождение координат точки пересечения двух прямых на плоскости

Перед нахождением координат точки пересечения двух прямых, необходимо рассмотреть предлагаемый ниже пример.

Если на плоскости имеется система координат О х у , то задаются две прямые a и b . Прямой a соответствует общее уравнение вида A 1 x + B 1 y + C 1 = 0 , для прямой b — A 2 x + B 2 y + C 2 = 0 . Тогда M 0 ( x 0 , y 0 ) является некоторой точкой плоскости необходимо выявить , будет ли точка М 0 являться точкой пересечения этих прямых.

Чтобы решить поставленную задачу, необходимо придерживаться определения. Тогда прямые должны пересекаться в точке, координаты которой являются решением заданных уравнений A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 . Значит, координаты точки пересечения подставляются во все заданные уравнения. Если они при подстановке дают верное тождество, тогда M 0 ( x 0 , y 0 ) считается их точкой пересечения.

Даны две пересекающиеся прямые 5 x — 2 y — 16 = 0 и 2 x — 5 y — 19 = 0 . Будет ли точка М 0 с координатами ( 2 , — 3 ) являться точкой пересечения.

Чтобы пересечение прямых было действительным, необходимо, чтобы координаты точки М 0 удовлетворяли уравнениям прямых. Это проверяется при помощи их подстановки. Получаем, что

5 · 2 — 2 · ( — 3 ) — 16 = 0 ⇔ 0 = 0 2 · 2 — 5 · ( — 3 ) — 19 = 0 ⇔ 0 = 0

Оба равенства верные, значит М 0 ( 2 , — 3 ) является точкой пересечения заданных прямых.

Изобразим данное решение на координатной прямой рисунка, приведенного ниже.

Ответ: заданная точка с координатами ( 2 , — 3 ) будет являться точкой пересечения заданных прямых.

Пересекутся ли прямые 5 x + 3 y — 1 = 0 и 7 x — 2 y + 11 = 0 в точке M 0 ( 2 , — 3 ) ?

Для решения задачи необходимо подставить координаты точки во все уравнения. Получим, что

5 · 2 + 3 · ( — 3 ) — 1 = 0 ⇔ 0 = 0 7 · 2 — 2 · ( — 3 ) + 11 = 0 ⇔ 31 = 0

Второе равенство не является верным, значит, что заданная точка не принадлежит прямой 7 x — 2 y + 11 = 0 . Отсюда имеем, что точка М 0 не точка пересечения прямых.

Чертеж наглядно показывает, что М 0 — это не точка пересечения прямых. Они имеют общую точку с координатами ( — 1 , 2 ) .

Ответ: точка с координатами ( 2 , — 3 ) не является точкой пересечения заданных прямых.

Переходим к нахождению координат точек пересечения двух прямых при помощи заданных уравнений на плоскости.

Задаются две пересекающиеся прямые a и b уравнениями вида A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 , расположенных в О х у . При обозначении точки пересечения М 0 получим, что следует продолжить поиск координат по уравнениям A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 .

Из определения очевидно, что М 0 является общей точкой пересечения прямых. В этом случае ее координаты должны удовлетворять уравнениям A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 . Иными словами это и есть решение полученной системы A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0 .

Значит, для нахождения координат точки пересечения , необходимо все уравнения добавить в систему и решить ее.

Заданы две прямые x — 9 y + 14 = 0 и 5 x — 2 y — 16 = 0 на плоскости. необходимо найти их пересечение.

Данные по условию уравнения необходимо собрать в систему, после чего получим x — 9 y + 14 = 0 5 x — 2 y — 16 = 0 . Чтобы решить его, разрешается первое уравнение относительно x , подставляется выражение во второе:

x — 9 y + 14 = 0 5 x — 2 y — 16 = 0 ⇔ x = 9 y — 14 5 x — 2 y — 16 = 0 ⇔ ⇔ x = 9 y — 14 5 · 9 y — 14 — 2 y — 16 = 0 ⇔ x = 9 y — 14 43 y — 86 = 0 ⇔ ⇔ x = 9 y — 14 y = 2 ⇔ x = 9 · 2 — 14 y = 2 ⇔ x = 4 y = 2

Получившиеся числа являются координатами, которые необходимо было найти.

Ответ: M 0 ( 4 , 2 ) является точкой пересечения прямых x — 9 y + 14 = 0 и 5 x — 2 y — 16 = 0 .

Поиск координат сводится к решению системы линейных уравнений. Если по условию дан другой вид уравнения, тогда следует привести его к нормальному виду.

Определить координаты точек пересечения прямых x — 5 = y — 4 — 3 и x = 4 + 9 · λ y = 2 + λ , λ ∈ R .

Для начала необходимо привести уравнения к общему виду. Тогда получаем, что x = 4 + 9 · λ y = 2 + λ , λ ∈ R преобразуется таким образом:

x = 4 + 9 · λ y = 2 + λ ⇔ λ = x — 4 9 λ = y — 2 1 ⇔ x — 4 9 = y — 2 1 ⇔ ⇔ 1 · ( x — 4 ) = 9 · ( y — 2 ) ⇔ x — 9 y + 14 = 0

После чего беремся за уравнение канонического вида x — 5 = y — 4 — 3 и преобразуем. Получаем, что

x — 5 = y — 4 — 3 ⇔ — 3 · x = — 5 · y — 4 ⇔ 3 x — 5 y + 20 = 0

Отсюда имеем, что координаты – это точка пересечения

x — 9 y + 14 = 0 3 x — 5 y + 20 = 0 ⇔ x — 9 y = — 14 3 x — 5 y = — 20

Применим метод Крамера для нахождения координат:

∆ = 1 — 9 3 — 5 = 1 · ( — 5 ) — ( — 9 ) · 3 = 22 ∆ x = — 14 — 9 — 20 — 5 = — 14 · ( — 5 ) — ( — 9 ) · ( — 20 ) = — 110 ⇒ x = ∆ x ∆ = — 110 22 = — 5 ∆ y = 1 — 14 3 — 20 = 1 · ( — 20 ) — ( — 14 ) · 3 = 22 ⇒ y = ∆ y ∆ = 22 22 = 1

Ответ: M 0 ( — 5 , 1 ) .

Имеется еще способ для нахождения координат точки пересечения прямых, находящихся на плоскости. Он применим, когда одна из прямых задается параметрическими уравнениями, имеющими вид x = x 1 + a x · λ y = y 1 + a y · λ , λ ∈ R . Тогда вместо значения x подставляется x = x 1 + a x · λ и y = y 1 + a y · λ , где получим λ = λ 0 , соответствующее точке пересечения, имеющей координаты x 1 + a x · λ 0 , y 1 + a y · λ 0 .

Определить координаты точки пересечения прямой x = 4 + 9 · λ y = 2 + λ , λ ∈ R и x — 5 = y — 4 — 3 .

Необходимо выполнить подстановку в x — 5 = y — 4 — 3 выражением x = 4 + 9 · λ , y = 2 + λ , тогда получим:

4 + 9 · λ — 5 = 2 + λ — 4 — 3

При решении получаем, что λ = — 1 . Отсюда следует, что имеется точка пересечения между прямыми x = 4 + 9 · λ y = 2 + λ , λ ∈ R и x — 5 = y — 4 — 3 . Для вычисления координат необходимо подставить выражение λ = — 1 в параметрическое уравнение. Тогда получаем, что x = 4 + 9 · ( — 1 ) y = 2 + ( — 1 ) ⇔ x = — 5 y = 1 .

Ответ: M 0 ( — 5 , 1 ) .

Для полного понимания темы, необходимо знать некоторые нюансы.

Предварительно необходимо понять расположение прямых. При их пересечении мы найдем координаты, в других случаях решения существовать не будет. Чтобы не делать эту проверку, можно составлять систему вида A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 + C 2 = 0 При наличии решения делаем вывод о том, что прямые пересекаются. Если решение отсутствует, то они параллельны. Когда система имеет бесконечное множество решений, тогда говорят, что они совпадают.

Даны прямые x 3 + y — 4 = 1 и y = 4 3 x — 4 . Определить, имеют ли они общую точку.

Упрощая заданные уравнения, получаем 1 3 x — 1 4 y — 1 = 0 и 4 3 x — y — 4 = 0 .

Следует собрать уравнения в систему для последующего решения:

1 3 x — 1 4 y — 1 = 0 1 3 x — y — 4 = 0 ⇔ 1 3 x — 1 4 y = 1 4 3 x — y = 4

Отсюда видно, что уравнения выражаются друг через друга, тогда получим бесконечное множество решений. Тогда уравнения x 3 + y — 4 = 1 и y = 4 3 x — 4 определяют одну и ту же прямую. Поэтому нет точек пересечения.

Ответ: заданные уравнения определяют одну и ту же прямую.

Найти координаты точки пересекающихся прямых 2 x + ( 2 — 3 ) y + 7 = 0 и 2 3 + 2 x — 7 y — 1 = 0 .

По условию возможно такое, прямые не будут пересекаться. Необходимо составить систему уравнений и решать. Для решения необходимо использовать метод Гаусса, так как с его помощью есть возможность проверить уравнение на совместимость. Получаем систему вида:

2 x + ( 2 — 3 ) y + 7 = 0 2 ( 3 + 2 ) x — 7 y — 1 = 0 ⇔ 2 x + ( 2 — 3 ) y = — 7 2 ( 3 + 2 ) x — 7 y = 1 ⇔ ⇔ 2 x + 2 — 3 y = — 7 2 ( 3 + 2 ) x — 7 y + ( 2 x + ( 2 — 3 ) y ) · ( — ( 3 + 2 ) ) = 1 + — 7 · ( — ( 3 + 2 ) ) ⇔ ⇔ 2 x + ( 2 — 3 ) y = — 7 0 = 22 — 7 2

Получили неверное равенство, значит система не имеет решений. Делаем вывод, что прямые являются параллельными. Точек пересечения нет.

Второй способ решения.

Для начала нужно определить наличие пересечения прямых.

n 1 → = ( 2 , 2 — 3 ) является нормальным вектором прямой 2 x + ( 2 — 3 ) y + 7 = 0 , тогда вектор n 2 → = ( 2 ( 3 + 2 ) , — 7 — нормальный вектор для прямой 2 3 + 2 x — 7 y — 1 = 0 .

Необходимо выполнить проверку коллинеарности векторов n 1 → = ( 2 , 2 — 3 ) и n 2 → = ( 2 ( 3 + 2 ) , — 7 ) . Получим равенство вида 2 2 ( 3 + 2 ) = 2 — 3 — 7 . Оно верное, потому как 2 2 3 + 2 — 2 — 3 — 7 = 7 + 2 — 3 ( 3 + 2 ) 7 ( 3 + 2 ) = 7 — 7 7 ( 3 + 2 ) = 0 . Отсюда следует, что векторы коллинеарны. Значит, прямые являются параллельными и не имеют точек пересечения.

Ответ: точек пересечения нет, прямые параллельны.

Найти координаты пересечения заданных прямых 2 x — 1 = 0 и y = 5 4 x — 2 .

Для решения составляем систему уравнений. Получаем

2 x — 1 = 0 5 4 x — y — 2 = 0 ⇔ 2 x = 1 5 4 x — y = 2

Найдем определитель основной матрицы. Для этого 2 0 5 4 — 1 = 2 · ( — 1 ) — 0 · 5 4 = — 2 . Так как он не равен нулю, система имеет 1 решение. Отсюда следует, что прямые пересекаются. Решим систему для нахождения координат точек пересечения:

2 x = 1 5 4 x — y = 2 ⇔ x = 1 2 4 5 x — y = 2 ⇔ x = 1 2 5 4 · 1 2 — y = 2 ⇔ x = 1 2 y = — 11 8

Получили, что точка пересечения заданных прямых имеет координаты M 0 ( 1 2 , — 11 8 ) .

Ответ: M 0 ( 1 2 , — 11 8 ) .

Нахождения координат точки пересечения двух прямых в пространстве

Таким же образом находятся точки пересечения прямых пространства.

Когда заданы прямые a и b в координатной плоскости О х у z уравнениями пересекающихся плоскостей, то имеется прямая a , которая может быть определена при помощи заданной системы A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 1 = 0 а прямая b — A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 .

Когда точка М 0 является точкой пересечения прямых, тогда ее координаты должны быть решениями обоих уравнений. Получим линейные уравнения в системе:

A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0

Рассмотрим подобные задания на примерах.

Найти координаты точки пересечения заданных прямых x — 1 = 0 y + 2 z + 3 = 0 и 3 x + 2 y + 3 = 0 4 x — 2 z — 4 = 0

Составляем систему x — 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x — 2 z — 4 = 0 и решим ее. Чтобы найти координаты, необходимо решать через матрицу. Тогда получим основную матрицу вида A = 1 0 0 0 1 2 3 2 0 4 0 — 2 и расширенную T = 1 0 0 1 0 1 2 — 3 4 0 — 2 4 . Определяем ранг матрицы по Гауссу.

1 = 1 ≠ 0 , 1 0 0 1 = 1 ≠ 0 , 1 0 0 0 1 2 3 2 0 = — 4 ≠ 0 , 1 0 0 1 0 1 2 — 3 3 2 0 — 3 4 0 — 2 4 = 0

Отсюда следует, что ранг расширенной матрицы имеет значение 3 . Тогда система уравнений x — 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x — 27 — 4 = 0 в результате дает только одно решение.

Базисный минор имеет определитель 1 0 0 0 1 2 3 2 0 = — 4 ≠ 0 , тогда последнее уравнение не подходит. Получим, что x — 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x — 2 z — 4 = 0 ⇔ x = 1 y + 2 z = — 3 3 x + 2 y — 3 . Решение системы x = 1 y + 2 z = — 3 3 x + 2 y = — 3 ⇔ x = 1 y + 2 z = — 3 3 · 1 + 2 y = — 3 ⇔ x = 1 y + 2 z = — 3 y = — 3 ⇔ ⇔ x = 1 — 3 + 2 z = — 3 y = — 3 ⇔ x = 1 z = 0 y = — 3 .

Значит, имеем, что точка пересечения x — 1 = 0 y + 2 z + 3 = 0 и 3 x + 2 y + 3 = 0 4 x — 2 z — 4 = 0 имеет координаты ( 1 , — 3 , 0 ) .

Ответ: ( 1 , — 3 , 0 ) .

Система вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 имеет только одно решение. Значит, прямые a и b пересекаются.

В остальных случаях уравнение не имеет решения, то есть и общих точек тоже. То есть невозможно найти точку с координатами, так как ее нет.

Поэтому система вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 решается методом Гаусса. При ее несовместимости прямые не являются пересекающимися. Если решений бесконечное множество, то они совпадают.

Можно произвести решение при помощи вычисления основного и расширенного ранга матрицы, после чего применить теорему Кронекера-Капелли. Получим одно, множество или полное отсутствие решений.

Заданы уравнения прямых x + 2 y — 3 z — 4 = 0 2 x — y + 5 = 0 и x — 3 z = 0 3 x — 2 y + 2 z — 1 = 0 . Найти точку пересечения.

Для начала составим систему уравнений. Получим, что x + 2 y — 3 z — 4 = 0 2 x — y + 5 = 0 x — 3 z = 0 3 x — 2 y + 2 z — 1 = 0 . решаем ее методом Гаусса:

1 2 — 3 4 2 — 1 0 — 5 1 0 — 3 0 3 — 2 2 1

1 2 — 3 4 0 — 5 6 — 13 0 — 2 0 — 4 0 — 8 11 — 11

1 2 — 3 4 0 — 5 6 — 13 0 0 — 12 5 6 5 0 0 7 5 — 159 5

1 2 — 3 4 0 — 5 6 — 13 0 0 — 12 5 6 5 0 0 0 311 10

Очевидно, что система не имеет решений, значит прямые не пересекаются. Точки пересечения нет.

Ответ: нет точки пересечения.

Если прямые заданы при помощи кононических или параметрических уравнений, нужно привести к виду уравнений пересекающихся плоскостей, после чего найти координаты.

Заданы две прямые x = — 3 — λ y = — 3 · λ z = — 2 + 3 · λ , λ ∈ R и x 2 = y — 3 0 = z 5 в О х у z . Найти точку пересечения.

Задаем прямые уравнениями двух пересекающихся плоскостей. Получаем, что

x = — 3 — λ y = — 3 · λ z = — 2 + 3 · λ ⇔ λ = x + 3 — 1 λ = y — 3 λ = z + 2 3 ⇔ x + 3 — 1 = y — 3 = z + 2 3 ⇔ ⇔ x + 3 — 1 = y — 3 x + 3 — 1 = z + 2 3 ⇔ 3 x — y + 9 = 0 3 x + z + 11 = 0 x 2 = y — 3 0 = z 5 ⇔ y — 3 = 0 x 2 = z 5 ⇔ y — 3 = 0 5 x — 2 z = 0

Находим координаты 3 x — y + 9 = 0 3 x + z + 11 = 0 y — 3 = 0 5 x — 2 z = 0 , для этого посчитаем ранги матрицы. Ранг матрицы равен 3 , а базисный минор 3 — 1 0 3 0 1 0 1 0 = — 3 ≠ 0 , значит, что из системы необходимо исключить последнее уравнение. Получаем, что

3 x — y + 9 = 0 3 x + z + 11 = 0 y — 3 = 0 5 x — 2 z = 0 ⇔ 3 x — y + 9 = 0 3 x + z + 11 = 0 y — 3 = 0

Решим систему методом Крамер. Получаем, что x = — 2 y = 3 z = — 5 . Отсюда получаем, что пересечение заданных прямых дает точку с координатами ( — 2 , 3 , — 5 ) .

источники:

http://ru.onlinemschool.com/math/library/analytic_geometry/lines_intersection/

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/koordinaty-tochki-peresechenija-dvuh-prjamyh-prime/

Две прямые на плоскости могут быть параллельными, пересекаться либо совпадать.

Чтобы найти координаты точки пересечения прямых, надо составить и решить систему уравнений, составленную из уравнений этих прямых.

Примеры.

Найти точку пересечения прямых заданных уравнениями:

1) y=6x+15; y= -5x-7;

2) 2x+3y+17=0; 5x-2y-43=0.

Решение:

1) Составляем систему уравнений (здесь даны уравнения прямой с угловым коэффициентом):

    [left{ begin{array}{l} y = 6x + 15; \ y = - 5x - 7. \ end{array} right.]

Приравняем правые части уравнений:

    [6x + 15 = - 5x - 7]

откуда

    [11x = - 22]

    [x = - 2]

Подставим x= -2 в уравнение первой прямой:

    [y = 6 cdot ( - 2) + 15 = 3.]

Ответ: (-2;3).

2) Составляем систему уравнений (здесь задано общее уравнение прямой):

    [left{ begin{array}{l} 2x + 3y + 17 = 0; \ 5x - 2y - 43 = 0. \ end{array} right.]

Умножим 1-е уравнение системы на 2, а 2-е — на 3

    [left{ begin{array}{l} 2x + 3y + 17 = 0___left| { cdot 2} right. \ 5x - 2y - 43 = 0___left| { cdot 3} right. \ end{array} right. Rightarrow left{ begin{array}{l} 4x + 6y + 34 = 0, \ 15x - 6y - 129 = 0 \ end{array} right.]

и сложим их почленно. Получим

    [19x - 95 = 0,]

откуда

    [x = 5.]

Подставим x=5 в 1-е уравнение системы:

    [2 cdot 5 + 3y + 17 = 0,]

откуда

    [y = - 9.]

Ответ: (5; -9).

Не такая тривиальная задача, скажу я вам. Всякий раз, когда возникает необходимость посчитать координату пересечения пары прямых, каждая из которых задана парой точек, снова беру блокнот и вывожу пару формул. И всякий раз – блин, ну это уже когда-то было, опять надо что-то делать с параллельными прямыми, опять появляется пакостная строго вертикальна линия, когда на (x1-x2) никак не разделить и т.д.

Поэтому – в подборку теории и практики, пригодится, сэкономим блокнот, спасем дерево.

Коэффициенты А, B, C

Все помним со школы формулу:

Latex formula

Тоже самое, но с претензией на образование (некоторые индивидуумы утверждают, что существует такая, и только такая, и никакая другая, формулировка):

Latex formula

Те же фаберже, только сбоку.

В теории надо составить и решить систему уравнений для первой и второй линии, где переменными будут X и Y точки пересечения.

Latex formula

Загвоздка в том, что мы не знаем коэффициенты для обеих линий.

В нашем случае известны координаты двух точек, по которым проходит линия. Поэтому мне, как последователю геометрического агностицизма, более привлекательная следующая формула:

Latex formula

Путем несложных операций приходим к следующей записи:

Latex formula

Глядя на вариант в исполнении высшего образования, получаем следующие формулы для нахождения коэффициентов:

Latex formula

Пока все идет отлично, нигде вероятного деления на ноль не встретилось.

Итак, мы можем легко найти два набора коэффициентов для первой и второй прямых. Переходим к системе уравнений.

Система уравнений

Как правило, подобная система уравнений решается путем выражения одной переменной через другую, подстановкой во второе уравнение, получая таким образом уравнение одной переменной. Далее переменная находится, подставляется, решается. Или определяется, что система решения не имеет.

Но нас интересует метод Крамера. Потому что с помощью этого метода можно получить сразу значения для обеих переменных, без дополнительных телодвижений.

Сразу же запишем метод под нашу систему.

Имеем следующую систему:

Latex formula

Определители будут такими:

Latex formula

Latex formula

Latex formula

Исходя из метода, решение выглядит так:

Latex formula

Latex formula

Ага! Вот и возможное деление на ноль, скажете вы. И правильно! В этой, в высшей степени непозволительной ситуации, когда знаменатель равен нулю, решения нет, прямые либо параллельны, либо совпадают (что, впрочем, частный случай параллельности).  В коде, естественно, этот момент надо учитывать.

Практика 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

//*******************************************************

//  Нахождение точки пересечения прямых (p1,p2) и (p3,p4)

//  Результат — факт пересечения

//*******************************************************

function CrossLines(const p1,p2,p3,p4: TxPoint;

  var res: TxPoint): Boolean;

const

  Prec = 0.0001;

var

  a1, a2: Extended;

  b1, b2: Extended;

  c1, c2: Extended;

  v: Extended;

begin

  a1 := p2.y p1.y;

  a2 := p4.y p3.y;

  b1 := p1.x p2.x;

  b2 := p3.x p4.x;

  v := a1*b2 a2*b1;

  Result := (abs(v) > Prec);

  if Result then

  begin

    c1 := p2.x*p1.y p1.x*p2.y;

    c2 := p4.x*p3.y p3.x*p4.y;

    res.X := (c1*b2 c2*b1)/v;

    res.Y := (a1*c2 a2*c1)/v;

  end;

end;

Пересечение прямых, построенных по двум точкам. Точка пересечения принадлежеит обоим отрезкам.

Рис.1. Пересечение прямых

Частные случаи

  • Прямые параллельны: ∆ab = 0
    • (A1B2 – B1A2 = 0);
  • Прямые совпадают:  ∆ab = ∆X = ∆Y = 0 
    • (A1B2 – B1A2 = 0) И (A1C2 — A2C1 = 0) И (C1B2 -B1C2 = 0);
  • Прямые перпендикулярны:
    • (A1 A2 + B1 B2 = 0).

Пересечение перпендикулярных прямых

Рис.2. Пересечение перпендикулярных прямых
Параллельные прямые
Рис.3. Параллельные прямые не пересекаются

Принадлежность точки отрезку

В общем случае, чтобы определить принадлежность точки отрезку, надо установить две вещи:

  1. Точка принадлежит прямой, проходящей через конечные точки отрезка. Для этого достаточно подставить значение X и Y в уравнение прямой и проверить получившееся равенство. В нашем случае, этот пункт уже выполнен, т.к. точка пересечения априори принадлежит обеим прямым.
  2. Проверить факт нахождения точки между концами отрезка.

Займемся пунктом 2. Данный факт можно установить двумя способами:

  • Логически, т.е. (x1 <= x <= x2) ИЛИ (x1 >= x >= x2). На случай «вертикальности» линии добавить проверку на Y:
    • (y1 <= y <= y2) ИЛИ (y1 >= y >= y2).
  • Арифметически. Сумма отрезков |x-x1| + |x-x2| должна быть равна длине отрезка |x1-x2|. Аналогично, на случай «вертикальности» , добавить проверку:
    • |y-y1| + |y-y2| = |y1-y2|

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

//*****************************************************

//  Проверка факта нахождения точки res между

//  концами отрезка (p1,p2).

//  Решение с помощью условных операторов и

//  коэффициентов A=(y2-y1) B=(x1-x2).

//  Выступают в качестве параметров, чтобы не тратить

//  время на их подсчет, т.к. в вызывающей стороне

//  они уже посчитаны

//*****************************************************

function CheckCrossPoint(const p1, p2, res: TxPoint;

  const A,B: Extended): Boolean;

begin

  Result :=

    (((B<0) and (p1.X < res.X) and (p2.X > res.X)) or

     ((B>0) and (p1.X > res.X) and (p2.X < res.X)) or

     ((A<0) and (p1.y > res.Y) and (p2.Y < res.Y)) or

     ((A>0) and (p1.y < res.Y) and (p2.Y > res.Y)));

end;

//*****************************************************

//  Проверить факт нахождения точки res между

//  концами отрезка (p1,p2)

//  Арифметическое решение без коэффициентов

//*****************************************************

function CheckCrossPoint(const p1, p2, res: TxPoint): Boolean;

begin

  Result :=

    (abs(p2.xp1.x)>= abs(p2.xres.x) + abs(p1.xres.x)) and

    (abs(p2.yp1.y)>= abs(p2.yres.y) + abs(p1.yres.y));

end;

Практика показывает, что арифметический способ быстрее примерно в 3 раза. Когда-то я считал, что операции сравнения самые быстрые. Это давно уже не так.

Задача нахождения принадлежности точки P(x,y) отрезку, заданного двумя точками с координатами P1(x1, y1) и P2(x2, y2) подробно рассмотрена в отдельной статье.

Угол пересечения прямых

Угол пересечения прямых — это угол пересечения направляющих векторов. Т.е., взяв уже знакомые ранее точки p1 и p2, получим направляющий вектор V(p1,p2), и аналогично второй вектор M(p3,p4). В теории мы должны вычислить достаточно «затратную» функцию, с корнями, квадратами, дробями и арккосинусом.

Давайте не будем останавливаться на ней, она долгая, нудная и в нашем случае ненужная. Рассмотрим вектор:

Вектор из точки p1 в точку p2 с указанием расстояний по Y и X

Рис.4. Вектор V(p1,p2)

α — угол наклона вектора к оси X, который можно найти, как:

α = arctan (A1 / B1)

Где расстояния:

A1 = (y1 — y2)

B1 = (x2 — x1)

Что-то знакомое? Да это ни что иное, как коэффициенты в уравнении прямой от образованных фанатов. Может они и правы в своем испепеляющем фанатизме…

Одним словом, коэффициенты (расстояния) у нас уже есть по обеим прямым.

Пересекающиеся векторы

Рис.5. Пересекающиеся вектор V(p1,p2) и вектор M(p3,p4)

Судя по рисунку, угол между векторами, это сумма углов наклона векторов к оси X. Ммм… не совсем так, на самом деле это разность.

Пересекающиеся векторы

Рис.6. Пересекающиеся векторы в положительной Y

По рисунку явно видно, что угол между векторам это γ = (βα).

В предыдущем примере все правильно, просто знаки углов разные, т.к. находятся по разные стороны от оси X, а формула работает та же.

От теории к практике

Теперь в плане практического применения. Мне нужно точно знать, откуда, куда и в каком направлении этот угол. В теории, углом между прямыми считается наименьший из пары γ и (180-γ). Так вот, нам это не надо. Какой угол получится – такой нам и нужен.

Поэтому, под углом между векторами понимаем угол от вектора V(p1,p2) к вектору M(p3,p4). Если знак угла – отрицательный, понимаем, что он против часовой стрелки, иначе – по часовой стрелке.

Следует заметить, что, зная коэффициенты, для нахождения угла пересечения, координаты уже не нужны. Листинг таков:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

//**********************************************************

// Посчитать угол пересечения векторов по коэфф-ам А и B

//**********************************************************

function CalcCrossAngle(const a1,b1: Extended;

  const a2,b2: Extended): Extended;

var

  c1, c2: Extended;

begin

  c1 := ArcTan2(a1,b1);

  c2 := ArcTan2(a2,b2);

  Result := c2c1;

  if Result < pi then

    Result := 2*pi + Result;

  if Result > pi then

    Result := Result 2*pi;

end;

Тут ситуация с вертикальной прямой, т.е. когда теоретически происходит деление на ноль, явно не обрабатывается. Она корректно обрабатывается функцией ArcTan2, которая вернет в этом случае и знак, и 90 градусов.  

Пересечение перпендикулярных векторов с верным подсчетом особого "вертикального" случая.

Рис.7. Пересечение перпендикулярных векторов

Практика 2

В дополнение к функции нахождения точки пересечения, напишем «продвинутую» функцию, которая находит эту точку, определяет нахождение на каждом из отрезков, и определяет угол между направляющими векторами. Или же определяет, что прямые параллельны/совпадают.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

//**********************************************************

//  Тип пересечения прямых (p1,p2) и (p3,p4)

//**********************************************************

type

  TxCrossLineResult = (

    xclrEqual    = 32// эквивалентны

   ,xclrParallel = 16// параллельны

   ,xclrOk       = 0  // как минимум пересечение есть

   ,xclrFirst    = 1  // попадает в первый отрезок

   ,xclrSecond   = 2  // попадает во второй отрезок

   ,xclrBoth     = 3  // попадает в оба

   ,xclrPerpend  = 4  // перпендикулярны

   // можно найти по маске через AND, но для полноты картины

   ,xclrFirstP   = 5  // перпендикулярны и попадает в первый

   ,xclrSecondP  = 6  // перпендикулярны и попадает в второй

   ,xclrBothP    = 7  // перпендикулярны и попадает в оба

   );

//**********************************************************

//  Нахождение точки пересечения прямых (p1,p2) и (p3,p4)

//  Определяет параллельность, совпадение,

//  перпендикулярность, пересечение.

//  Определяет, каким отрезкам принадлежит.

//  Находит угол(рад.) от (p1,p2) к (p3,p4):

//    отрицательное значение — против часовой

//    положительное — по часовой

//**********************************************************

function CrossLines(const p1,p2,p3,p4: TxPoint;

  var res: TxPoint; var Angle: Extended): TxCrossLineResult;

const

  Prec = 0.0001;

var

  a1, a2: Extended;

  b1, b2: Extended;

  c1, c2: Extended;

  v: Extended;

begin

  Angle := 0;

  a1 := p2.y p1.y;

  a2 := p4.y p3.y;

  b1 := p1.x p2.x;

  b2 := p3.x p4.x;

  c1 := p2.x*p1.y p1.x*p2.y;

  c2 := p4.x*p3.y p3.x*p4.y;

  v := a1*b2 a2*b1;

  if abs(v) > Prec then

  begin

    Result := xclrOk;

    res.X := (c1*b2 c2*b1)/v;

    res.Y := (a1*c2 a2*c1)/v;

    if CheckCrossPoint(p1,p2,res) then

      Result := TxCrossLineResult(Integer(Result) +

        Integer(xclrFirst));

    if CheckCrossPoint(p3,p4,res) then

      Result := TxCrossLineResult(Integer(Result) +

        Integer(xclrSecond));

    if (abs(a1*a2 + b1*b2) < Prec) then

      Result := TxCrossLineResult(Integer(Result) +

        Integer(xclrPerpend));

    Angle := CalcCrossAngle(a1,b1,a2,b2);

  end else

  begin

    Result := xclrParallel;

    if ((abs(c1*b2 c2*b1) < Prec) and

       (abs(a1*c2 a2*c1) < Prec))

    then

      Result := xclrEqual;

  end;

end;

Исходники

Небольшие комментарии по интерфейсу.

Интерфейс программы

Рис.8. Интерфейс программы

Скачать (219 Кб): Исходники (Delphi XE 7-10)

Скачать (1.14 Мб): Исполняемый файл

При запуске генерируется случайным образом 4 точки, по две на прямую. Точки и отрезки можно перетаскивать мышкой. Также, слева присутствует панель, на которой можно ввести координаты точек или коэффициенты уравнения прямой. При нажатии «Enter» или когда элемент ввода теряет фокус, происходит перерасчет и перерисовка.

Внизу есть 4 кнопки переключения режимов отображения. Начиная со второй, помимо координат точки пересечений в верхнем левом углу будет отображаться текущий угол пересечения между направляющими векторами.

Если точка пересечений попадает в какой-либо из отрезков, соответствующий заголовок линии отрезка станет жирным. На рисунке это зеленая линия 2.

По умолчанию, рабочее поле системы координат имеет размерность [-10..10], которую можно изменить ползунком в нижнем правом углу.

Точка пересечения двух прямых на плоскости

Методы решения. Существует два метода решения плоских задач на определение координат точки пересечения прямых:

  • графический
  • аналитический

Графический метод решения. Используя уравнения, начертить графики прямых и с помощью линейки найти координаты точки пересечения.

Аналитический метод решения. Необходимо объединить уравнения прямых в систему, решение которой, позволит определить точные координаты точки пересечения прямых.

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны между собой)

Точка пересечения прямых

Пример 1. Найти точку пересечения прямых y = 2x — 1 и y = -3x + 1.

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2x — 1
y = -3x + 1

Вычтем из первого уравнения второе

yy = 2x — 1 — (-3x + 1)
y = -3x + 1
    =>    

0 = 5x — 2
y = -3x + 1

Из первого уравнения найдем значение x

5x = 2
y = -3x + 1
    =>    

x = 25 = 0.4
y = -3x + 1

Подставим значение x во второе уравнение и найдем значение y

x = 0.4
y = -3·(0.4) + 1 = -1.2 + 1 = -0.2

Ответ. Точка пересечения двух прямых имеет координаты (0.4, -0.2)

Точка пересечения прямых

Пример 2. Найти точку пересечения прямых y = 2x — 1 и x = 2t + 1y = t.

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2x — 1
x = 2t + 1
y = t

В первое уравнение подставим значения x и y из второго и третьего уравнений.

t = 2·(2t + 1) — 1
x = 2t + 1
y = t
    =>    

t = 4t + 1
x = 2t + 1
y = t
    =>    

-3t = 1
x = 2t + 1
y = t
    =>    

t = -13
x = 2t + 1
y = t

Подставим значение t во второе и третье уравнение

t = -13
x = 2·(-13) + 1 = -23 + 1 = 13
y = -13

Ответ. Точка пересечения двух прямых имеет координаты (13, -13)

Точка пересечения прямых

Пример 3 Найти точку пересечения прямых 2x + 3y = 0 и x — 23 = y4.

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

2x + 3y = 0
x — 23 = y4

Из второго уравнения выразим y через x

2x + 3y = 0
y = 4·x — 23

Подставим y в первое уравнение

2x + 3·4·x — 23 = 0
y = 4·x — 23
    =>    

2x + 4·(x — 2) = 0
y = 4·x — 23
    =>    

2x + 4x — 8 = 0
y = 4·x — 23
    =>    

6x = 8
y = 4·x — 23
    =>    

x = 86 = 43
y = 4·x — 23
    =>    

x = 86 = 43
y = 4·4/3 — 23 = 4·-2/3 3 = -89

Ответ. Точка пересечения двух прямых имеет координаты (43, -89)

Точка пересечения прямых

Пример 4. Найти точку пересечения прямых y = 2x — 1 и y = 2x + 1.

Решение: Обе прямые заданы уравнениями с угловым коэффициентом. Так как k1 = k2 = 2, то прямые параллельны. Так как эти прямые не совпадают то точек пересечения нет.

Решим также эту задачу используя систему уравнений:

y = 2x — 1
y = 2x + 1

Вычтем из первого уравнения второе

yy = 2x — 1 — (2x + 1)
y = -3x + 1
    =>    

0 = -2
y = -3x + 1

В первом уравнении получили противоречие (0 ≠ -2), значит система не имеет решений — отсутствуют точки пересечения прямых (прямые параллельны).

Ответ. Прямые не пересекаются (прямые параллельны).

Точка пересечения прямых

Пример 5. Проверить является ли точка N(1, 1) точкой пересечения прямых y = x и y = 3x — 2.

Решение: Подставим координаты точки N в уравнения прямых.

1 = 1

1 = 3·1 — 2 = 1

Ответ. Так как оба уравнения превратились в тождества, то точка N — точка пересечения этих прямых.

Точка пересечения двух прямых в пространстве

Метод решения. Для определение координат точки пересечения прямых в пространстве, необходимо объединить уравнения прямых в систему, решение которой, позволит определить точные координаты точки пересечения прямых.

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны или скрещиваются между собой)

Пример 6. Найти точку пересечения прямых x — 1 = y — 1 = z — 1 и x — 3-2 = 2 — y = z.

Решение: Составим систему уравнений

x — 1 = a
y — 1 = a
z — 1 = a
x — 3-2 = b
2 — y = b
z = b

  =>  

x = a + 1
y = a + 1
z = a + 1
x — 3-2 = b
2 — y = b
z = b

  =>  

Подставим значения x, y, z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = a + 1
y = a + 1
z = a + 1
a + 1 — 3-2 = b
2 — (a + 1) = b
a + 1 = b

  =>  

x = a + 1
y = a + 1
z = a + 1
a — 2-2 = b
1 — a = b
a + 1 = b

К шестому уравнению добавим пятое уравнение

x = a + 1
y = a + 1
z = a + 1
a — 2-2 = b
1 — a = b
a + 1 + (1 — a) = b + b

  =>  

x = a + 1
y = a + 1
z = a + 1
a — 2-2 = b
1 — a = b
b = 1

Подставим значение b в четвертое и пятое уравнения

x = a + 1
y = a + 1
z = a + 1
a — 2-2 = 1
1 — a = 1
b = 1

  =>  

x = a + 1
y = a + 1
z = a + 1
a — 2 = -2
a = 0
b = 1

  =>  

x = a + 1
y = a + 1
z = a + 1
a = 0
a = 0
b = 1

  =>  

x = 0 + 1 = 1
y = 0 + 1 = 1
z = 0 + 1 = 1
a = 0
a = 0
b = 1

Ответ. Прямые пересекаются в точке с координатами (1, 1, 1).

Замечание. Если уравнения прямых заданы параметрически, и в обоих уравнениях параметр задан одной и той же буквой, то при составлении системы в одном из уравнений необходимо заменить букву отвечающую за параметр.

Пример 7. Найти точку пересечения прямых
x = 2t — 3
y = t
z = —t + 2
и
x = t + 1
y = 3t — 2
z = 3
.

Решение: Составим систему уравнений заменив во втором уравнении параметр t на a

x = 2t — 3
y = t
z = —t + 2
x = a + 1
y = 3a — 2
z = 3

Подставим значения x, y, z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = 2t — 3
y = t
z = —t + 2
2t — 3 = a + 1
t = 3a — 2
t + 2 = 3

  =>  

x = 2t — 3
y = t
z = —t + 2
2t = a + 4
t = 3a — 2
t = -1

  =>  

Подставим значение t из шестого уравнения в остальные уравнения

x = 2·(-1) — 3
y = (-1)
z = -(-1) + 2
2·(-1) = a + 4
-1 = 3a — 2
t = -1

  =>  

x = -5
y = -1
z = 3
a = -6
a = 13
t = -1

Ответ. Так как -6 ≠ 13, то прямые не пересекаются.

Точка пересечения прямых на плоскости онлайн

С помощю этого онлайн калькулятора можно найти точку пересечения прямых на плоскости. Дается подробное решение с пояснениями. Для нахождения координат точки пересечения прямых задайте вид уравнения прямых («канонический», «параметрический» или «общий»), введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Точка пересечения прямых на плоскости − теория, примеры и решения

  • Содержание
  • 1. Точка пересечения прямых, заданных в общем виде.
  • 2. Точка пересечения прямых, заданных в каноническом виде.
  • 3. Точка пересечения прямых, заданных в параметрическом виде.
  • 4. Точка пересечения прямых, заданных в разных видах.
  • 5. Примеры нахождения точки пересечения прямых на плоскости.

1. Точка пересечения прямых, заданных в общем виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:

где n1={A1, B1} и n2={A2, B2} − нормальные векторы прямых L1 и L2, соответственно.

Для нахождения точки пересечения прямых (1) и (2) нужно решить систему линейных уравнений (1) и (2) относительно переменных x,y. Для этого запишем систему (1),(2) в матричном виде:

Построим расширенную матрицу:

Приведем (4) к верхнему диагональному виду. Пусть A1≠0 . Тогда сложим строку 2 со строкой 1, умноженной на −A2/A1:

где

Если B’2=0 и С’2=0, то система линейных уравнений имеет множество решений. Следовательно прямые L1 и L2 совпадают. Если B’2=0 и С’2≠0, то система несовместна и, следовательно прямые параллельны и не имеют общей точки. Если же B’2≠0, то система линейных уравнений имеет единственное решение. Из второго уравнения находим y: y=С’2/B’2 и подставляя полученное значение в первое уравнение находим x: x=(−С1B1y)/A1. Получили точку пересечения прямых L1 и L2: M(x, y).

Подробнее о решении систем линейных уравнений посмотрите на странице метод Гаусса онлайн.

2. Точка пересечения прямых, заданных в каноническом виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:

где M1(x1, y1) и M2(x2, y2) − точки, лежащие на прямых L1 и L2, соответственно, а q1={m1, p1} и q2={m2, p2} − направляющие векторы прямых L1 и L2, соответственно.

Приведем уравнение L1 к общему виду. Сделаем перекрестное умножение в уравнении (6):

Откроем скобки и сделаем преобразования:

Обозначив A1=p1, B1=−m1, C1=−p1x1+m1y1, получим общее уравнение прямой (6):

Аналогичным методом получим общее уравнение прямой (7):

Терерь можно найти точку пересечения прямых L1 и L2 методом, описанным в параграфе 1.

3. Точка пересечения прямых, заданных в параметрическом виде.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2 в параметрическом виде:

где M1(x1, y1) и M2(x2, y2) − точки, лежащие на прямых L1 и L2, соответственно, а q1={m1, p1} и q2={m2, p2} − направляющие векторы прямых L1 и L2, соответственно.

Приведем уравнение прямой L1 к каноническому виду. Для этого из уравнений (10) найдем параметр t:

Из уравнений (12) следует:

Аналогичным образом можно найти каноническое уравнение прямой L2:

Как найти точку пересечения прямых, заданных в каноническом виде описано выше.

4. Точка пересечения прямых, заданных в разных видах.

Пусть задана декартова прямоугольная система координат Oxy и пусть в этой системе координат заданы прямые L1 и L2:

где n={A1, B1} нормальный вектор прямой L1, q={m, p} − направляющий вектор прямой L2 .

Найдем точку пересечения прямых L1 и L2. Для этого подставим x=x2+mt, y=y2+pt в (13):

Найдем t:

Если числитель и знаменатель в (16) одновременно равны нулю, то любое значение t удовлетворяет уравнению (15), следовательно прямые L1 и L2 совпадают. Если знаменатель равен нулю а числитель отличен от нуля, то прямые L1 и L2 не пересекаются, т.е. они параллельны.

Пусть знаменатель не равен нулю. Подставляя полученное значение t в (14), получим координаты точки пересечения прямых L1 и L2.

5. Примеры нахождения точки пересечения прямых на плоскости.

Пример 1. Найти точку пересечения прямых L1 и L2:

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (17) и (18). Представим уравнения в матричном виде:

Решим систему линейных уравнений отностительно x, y. Для этого воспользуемся методом Гаусса. Получим:

Ответ. Точка пересечения прямых L1 и L2 имеет следующие координаты:

Пример 2. Найти точку пересечения прямых L1 и L2:

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (20) и (21). Представим уравнения в матричном виде:

Для решения (22) воспользуемся методом Гаусса. Получим:

где λ− произвольное действительное число.

Имеем больше одного решения. Это означает, что прямые L1 и L2 совпадают.

Ответ. Прямые L1 и L2 совпадают.

Пример 3. Найти точку пересечения прямых L1 и L2:

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (23) и (24). Представим уравнения в матричном виде:

Применив метод Гаусса получим, что система (25) несовместна. Следовательно эти прямые не пересекаются, т.е. они параллельны.

Ответ. Прямые L1 и L2 не имеют общую точку, т.е. они параллельны.

Пример 4. Найти точку пересечения прямых L1 и L2:

Приведем, сначала, уравнение прямой (26) к общему виду:

Для нахождения точки пересечения прямых L1 и L2 нужно решить систему линейных уравнений (28) и (27). Представим уравнения в матричном виде:

Решим систему линейных уравнений отностительно x, y:

Ответ. Точка пересечения прямых L1 и L2 имеет следующие координаты:

Понравилась статья? Поделить с друзьями:
  • Как найти имя файла сертификата
  • Как найти фото экрана на ноутбуке
  • Как составить фотоколлаж самостоятельно бесплатно
  • Как найти удаленное письмо на электронную почту
  • Как найти ткань в зе форест