Как найти ординату точек пересечения прямых

Координаты точки пересечения прямых

Две прямые на плоскости могут быть параллельными, пересекаться либо совпадать.

Чтобы найти координаты точки пересечения прямых, надо составить и решить систему уравнений, составленную из уравнений этих прямых.

Найти точку пересечения прямых заданных уравнениями:

2) 2x+3y+17=0; 5x-2y-43=0.

1) Составляем систему уравнений (здесь даны уравнения прямой с угловым коэффициентом):

Приравняем правые части уравнений:

Подставим x= -2 в уравнение первой прямой:

2) Составляем систему уравнений (здесь задано общее уравнение прямой):

Умножим 1-е уравнение системы на 2, а 2-е — на 3

Пересечение прямых. Точка пересечения двух прямых

Если точка M, является точкой пересечения двух прямых, то она должна принадлежать этим прямым, а ее координаты удовлетворять уравнения этих прямых.

Точка пересечения двух прямых на плоскости

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны между собой)

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2 x — 1 y = -3 x + 1

Вычтем из первого уравнения второе

y — y = 2 x — 1 — (-3 x + 1) y = -3 x + 1 => 0 = 5 x — 2 y = -3 x + 1

Из первого уравнения найдем значение x

5 x = 2 y = -3 x + 1 => x = 2 5 = 0.4 y = -3 x + 1

Подставим значение x во второе уравнение и найдем значение y

x = 0.4 y = -3·(0.4) + 1 = -1.2 + 1 = -0.2

Ответ. Точка пересечения двух прямых имеет координаты (0.4, -0.2)

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

y = 2 x — 1 x = 2 t + 1 y = t

В первое уравнение подставим значения x и y из второго и третьего уравнений.

t = 2·(2 t + 1) — 1 x = 2 t + 1 y = t => t = 4 t + 1 x = 2 t + 1 y = t =>

-3 t = 1 x = 2 t + 1 y = t => t = — 1 3 x = 2 t + 1 y = t

Подставим значение t во второе и третье уравнение

t = — 1 3 x = 2·(- 1 3 ) + 1 = — 2 3 + 1 = 1 3 y = — 1 3

Ответ. Точка пересечения двух прямых имеет координаты ( 1 3 , — 1 3 )

Решение: Для вычисления координат точки пересечения прямых, решим систему уравнений:

2 x + 3 y = 0 x — 2 3 = y 4

Из второго уравнения выразим y через x

2 x + 3 y = 0 y = 4· x — 2 3

Подставим y в первое уравнение

2 x + 3·4· x — 2 3 = 0 y = 4· x — 2 3 => 2 x + 4·( x — 2) = 0 y = 4· x — 2 3 =>

2 x + 4 x — 8 = 0 y = 4· x — 2 3 => 6 x = 8 y = 4· x — 2 3 =>

x = 8 6 = 4 3 y = 4· x — 2 3 => x = 8 6 = 4 3 y = 4· 4/3 — 2 3 = 4· -2/3 3 = — 8 9

Ответ. Точка пересечения двух прямых имеет координаты ( 4 3 , — 8 9 )

Решение: Обе прямые заданы уравнениями с угловым коэффициентом. Так как k 1 = k 2 = 2, то прямые параллельны. Так как эти прямые не совпадают то точек пересечения нет.

Решим также эту задачу используя систему уравнений:

y = 2 x — 1 y = 2 x + 1

Вычтем из первого уравнения второе

y — y = 2 x — 1 — (2 x + 1) y = -3 x + 1 => 0 = -2 y = -3 x + 1

В первом уравнении получили противоречие (0 ≠ -2), значит система не имеет решений — отсутствуют точки пересечения прямых (прямые параллельны).

Ответ. Прямые не пересекаются (прямые параллельны).

Решение: Подставим координаты точки N в уравнения прямых.

Ответ. Так как оба уравнения превратились в тождества, то точка N — точка пересечения этих прямых.

Точка пересечения двух прямых в пространстве

Если система уравнений:

  • имеет единственное решение, то прямые пересекаются;
  • имеет бесконечное множество решений, то прямые совпадают;
  • не имеет решений, то прямые не пересекаются (прямые параллельны или скрещиваются между собой)

Решение: Составим систему уравнений

x — 1 = a y — 1 = a z — 1 = a x — 3 -2 = b 2 — y = b z = b => x = a + 1 y = a + 1 z = a + 1 x — 3 -2 = b 2 — y = b z = b =>

Подставим значения x , y , z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = a + 1 y = a + 1 z = a + 1 a + 1 — 3 -2 = b 2 — ( a + 1) = b a + 1 = b => x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b a + 1 = b

К шестому уравнению добавим пятое уравнение

x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b a + 1 + (1 — a ) = b + b => x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = b 1 — a = b b = 1

Подставим значение b в четвертое и пятое уравнения

x = a + 1 y = a + 1 z = a + 1 a — 2 -2 = 1 1 — a = 1 b = 1 => x = a + 1 y = a + 1 z = a + 1 a — 2 = -2 a = 0 b = 1 =>

x = a + 1 y = a + 1 z = a + 1 a = 0 a = 0 b = 1 => x = 0 + 1 = 1 y = 0 + 1 = 1 z = 0 + 1 = 1 a = 0 a = 0 b = 1

Ответ. Прямые пересекаются в точке с координатами (1, 1, 1).

Решение: Составим систему уравнений заменив во втором уравнении параметр t на a

x = 2 t — 3 y = t z = — t + 2 x = a + 1 y = 3 a — 2 z = 3

Подставим значения x , y , z из 1, 2, 3 уравнений в 4, 5, 6 уравнения

x = 2 t — 3 y = t z = — t + 2 2 t — 3 = a + 1 t = 3 a — 2 — t + 2 = 3 => x = 2 t — 3 y = t z = — t + 2 2 t = a + 4 t = 3 a — 2 t = -1 =>

Подставим значение t из шестого уравнения в остальные уравнения

x = 2·(-1) — 3 y = (-1) z = -(-1) + 2 2·(-1) = a + 4 -1 = 3 a — 2 t = -1 => x = -5 y = -1 z = 3 a = -6 a = 1 3 t = -1

Ответ. Так как -6 ≠ 1 3 , то прямые не пересекаются.

Координаты точки пересечения двух прямых — примеры нахождения

Для того, чтобы решить геометрическую задачу методом координат, необходима точка пересечения, координаты которой используются при решении. Возникает ситуация, когда требуется искать координаты пересечения двух прямых на плоскости или определить координаты тех же прямых в пространстве. Данная статья рассматривает случаи нахождения координат точек, где пересекаются заданные прямые.

Точка пересечения двух прямых – определение

Необходимо дать определение точкам пересечения двух прямых.

Раздел взаимного расположения прямых на плоскости показывает, что они могут совпадать , быть параллельными, пересекаться в одной общей точке или скрещивающимися. Две прямые, находящиеся в пространстве, называют пересекающимися, если они имеют одну общую точку.

Определение точки пересечения прямых звучит так:

Точка, в которой пересекаются две прямые, называют их точкой пересечения. Иначе говоря, что точка пересекающихся прямых и есть точка пересечения.

Рассмотрим на рисунке, приведенном ниже.

Нахождение координат точки пересечения двух прямых на плоскости

Перед нахождением координат точки пересечения двух прямых, необходимо рассмотреть предлагаемый ниже пример.

Если на плоскости имеется система координат О х у , то задаются две прямые a и b . Прямой a соответствует общее уравнение вида A 1 x + B 1 y + C 1 = 0 , для прямой b — A 2 x + B 2 y + C 2 = 0 . Тогда M 0 ( x 0 , y 0 ) является некоторой точкой плоскости необходимо выявить , будет ли точка М 0 являться точкой пересечения этих прямых.

Чтобы решить поставленную задачу, необходимо придерживаться определения. Тогда прямые должны пересекаться в точке, координаты которой являются решением заданных уравнений A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 . Значит, координаты точки пересечения подставляются во все заданные уравнения. Если они при подстановке дают верное тождество, тогда M 0 ( x 0 , y 0 ) считается их точкой пересечения.

Даны две пересекающиеся прямые 5 x — 2 y — 16 = 0 и 2 x — 5 y — 19 = 0 . Будет ли точка М 0 с координатами ( 2 , — 3 ) являться точкой пересечения.

Чтобы пересечение прямых было действительным, необходимо, чтобы координаты точки М 0 удовлетворяли уравнениям прямых. Это проверяется при помощи их подстановки. Получаем, что

5 · 2 — 2 · ( — 3 ) — 16 = 0 ⇔ 0 = 0 2 · 2 — 5 · ( — 3 ) — 19 = 0 ⇔ 0 = 0

Оба равенства верные, значит М 0 ( 2 , — 3 ) является точкой пересечения заданных прямых.

Изобразим данное решение на координатной прямой рисунка, приведенного ниже.

Ответ: заданная точка с координатами ( 2 , — 3 ) будет являться точкой пересечения заданных прямых.

Пересекутся ли прямые 5 x + 3 y — 1 = 0 и 7 x — 2 y + 11 = 0 в точке M 0 ( 2 , — 3 ) ?

Для решения задачи необходимо подставить координаты точки во все уравнения. Получим, что

5 · 2 + 3 · ( — 3 ) — 1 = 0 ⇔ 0 = 0 7 · 2 — 2 · ( — 3 ) + 11 = 0 ⇔ 31 = 0

Второе равенство не является верным, значит, что заданная точка не принадлежит прямой 7 x — 2 y + 11 = 0 . Отсюда имеем, что точка М 0 не точка пересечения прямых.

Чертеж наглядно показывает, что М 0 — это не точка пересечения прямых. Они имеют общую точку с координатами ( — 1 , 2 ) .

Ответ: точка с координатами ( 2 , — 3 ) не является точкой пересечения заданных прямых.

Переходим к нахождению координат точек пересечения двух прямых при помощи заданных уравнений на плоскости.

Задаются две пересекающиеся прямые a и b уравнениями вида A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 , расположенных в О х у . При обозначении точки пересечения М 0 получим, что следует продолжить поиск координат по уравнениям A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 .

Из определения очевидно, что М 0 является общей точкой пересечения прямых. В этом случае ее координаты должны удовлетворять уравнениям A 1 x + B 1 y + C 1 = 0 и A 2 x + B 2 y + C 2 = 0 . Иными словами это и есть решение полученной системы A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0 .

Значит, для нахождения координат точки пересечения , необходимо все уравнения добавить в систему и решить ее.

Заданы две прямые x — 9 y + 14 = 0 и 5 x — 2 y — 16 = 0 на плоскости. необходимо найти их пересечение.

Данные по условию уравнения необходимо собрать в систему, после чего получим x — 9 y + 14 = 0 5 x — 2 y — 16 = 0 . Чтобы решить его, разрешается первое уравнение относительно x , подставляется выражение во второе:

x — 9 y + 14 = 0 5 x — 2 y — 16 = 0 ⇔ x = 9 y — 14 5 x — 2 y — 16 = 0 ⇔ ⇔ x = 9 y — 14 5 · 9 y — 14 — 2 y — 16 = 0 ⇔ x = 9 y — 14 43 y — 86 = 0 ⇔ ⇔ x = 9 y — 14 y = 2 ⇔ x = 9 · 2 — 14 y = 2 ⇔ x = 4 y = 2

Получившиеся числа являются координатами, которые необходимо было найти.

Ответ: M 0 ( 4 , 2 ) является точкой пересечения прямых x — 9 y + 14 = 0 и 5 x — 2 y — 16 = 0 .

Поиск координат сводится к решению системы линейных уравнений. Если по условию дан другой вид уравнения, тогда следует привести его к нормальному виду.

Определить координаты точек пересечения прямых x — 5 = y — 4 — 3 и x = 4 + 9 · λ y = 2 + λ , λ ∈ R .

Для начала необходимо привести уравнения к общему виду. Тогда получаем, что x = 4 + 9 · λ y = 2 + λ , λ ∈ R преобразуется таким образом:

x = 4 + 9 · λ y = 2 + λ ⇔ λ = x — 4 9 λ = y — 2 1 ⇔ x — 4 9 = y — 2 1 ⇔ ⇔ 1 · ( x — 4 ) = 9 · ( y — 2 ) ⇔ x — 9 y + 14 = 0

После чего беремся за уравнение канонического вида x — 5 = y — 4 — 3 и преобразуем. Получаем, что

x — 5 = y — 4 — 3 ⇔ — 3 · x = — 5 · y — 4 ⇔ 3 x — 5 y + 20 = 0

Отсюда имеем, что координаты – это точка пересечения

x — 9 y + 14 = 0 3 x — 5 y + 20 = 0 ⇔ x — 9 y = — 14 3 x — 5 y = — 20

Применим метод Крамера для нахождения координат:

∆ = 1 — 9 3 — 5 = 1 · ( — 5 ) — ( — 9 ) · 3 = 22 ∆ x = — 14 — 9 — 20 — 5 = — 14 · ( — 5 ) — ( — 9 ) · ( — 20 ) = — 110 ⇒ x = ∆ x ∆ = — 110 22 = — 5 ∆ y = 1 — 14 3 — 20 = 1 · ( — 20 ) — ( — 14 ) · 3 = 22 ⇒ y = ∆ y ∆ = 22 22 = 1

Ответ: M 0 ( — 5 , 1 ) .

Имеется еще способ для нахождения координат точки пересечения прямых, находящихся на плоскости. Он применим, когда одна из прямых задается параметрическими уравнениями, имеющими вид x = x 1 + a x · λ y = y 1 + a y · λ , λ ∈ R . Тогда вместо значения x подставляется x = x 1 + a x · λ и y = y 1 + a y · λ , где получим λ = λ 0 , соответствующее точке пересечения, имеющей координаты x 1 + a x · λ 0 , y 1 + a y · λ 0 .

Определить координаты точки пересечения прямой x = 4 + 9 · λ y = 2 + λ , λ ∈ R и x — 5 = y — 4 — 3 .

Необходимо выполнить подстановку в x — 5 = y — 4 — 3 выражением x = 4 + 9 · λ , y = 2 + λ , тогда получим:

4 + 9 · λ — 5 = 2 + λ — 4 — 3

При решении получаем, что λ = — 1 . Отсюда следует, что имеется точка пересечения между прямыми x = 4 + 9 · λ y = 2 + λ , λ ∈ R и x — 5 = y — 4 — 3 . Для вычисления координат необходимо подставить выражение λ = — 1 в параметрическое уравнение. Тогда получаем, что x = 4 + 9 · ( — 1 ) y = 2 + ( — 1 ) ⇔ x = — 5 y = 1 .

Ответ: M 0 ( — 5 , 1 ) .

Для полного понимания темы, необходимо знать некоторые нюансы.

Предварительно необходимо понять расположение прямых. При их пересечении мы найдем координаты, в других случаях решения существовать не будет. Чтобы не делать эту проверку, можно составлять систему вида A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 + C 2 = 0 При наличии решения делаем вывод о том, что прямые пересекаются. Если решение отсутствует, то они параллельны. Когда система имеет бесконечное множество решений, тогда говорят, что они совпадают.

Даны прямые x 3 + y — 4 = 1 и y = 4 3 x — 4 . Определить, имеют ли они общую точку.

Упрощая заданные уравнения, получаем 1 3 x — 1 4 y — 1 = 0 и 4 3 x — y — 4 = 0 .

Следует собрать уравнения в систему для последующего решения:

1 3 x — 1 4 y — 1 = 0 1 3 x — y — 4 = 0 ⇔ 1 3 x — 1 4 y = 1 4 3 x — y = 4

Отсюда видно, что уравнения выражаются друг через друга, тогда получим бесконечное множество решений. Тогда уравнения x 3 + y — 4 = 1 и y = 4 3 x — 4 определяют одну и ту же прямую. Поэтому нет точек пересечения.

Ответ: заданные уравнения определяют одну и ту же прямую.

Найти координаты точки пересекающихся прямых 2 x + ( 2 — 3 ) y + 7 = 0 и 2 3 + 2 x — 7 y — 1 = 0 .

По условию возможно такое, прямые не будут пересекаться. Необходимо составить систему уравнений и решать. Для решения необходимо использовать метод Гаусса, так как с его помощью есть возможность проверить уравнение на совместимость. Получаем систему вида:

2 x + ( 2 — 3 ) y + 7 = 0 2 ( 3 + 2 ) x — 7 y — 1 = 0 ⇔ 2 x + ( 2 — 3 ) y = — 7 2 ( 3 + 2 ) x — 7 y = 1 ⇔ ⇔ 2 x + 2 — 3 y = — 7 2 ( 3 + 2 ) x — 7 y + ( 2 x + ( 2 — 3 ) y ) · ( — ( 3 + 2 ) ) = 1 + — 7 · ( — ( 3 + 2 ) ) ⇔ ⇔ 2 x + ( 2 — 3 ) y = — 7 0 = 22 — 7 2

Получили неверное равенство, значит система не имеет решений. Делаем вывод, что прямые являются параллельными. Точек пересечения нет.

Второй способ решения.

Для начала нужно определить наличие пересечения прямых.

n 1 → = ( 2 , 2 — 3 ) является нормальным вектором прямой 2 x + ( 2 — 3 ) y + 7 = 0 , тогда вектор n 2 → = ( 2 ( 3 + 2 ) , — 7 — нормальный вектор для прямой 2 3 + 2 x — 7 y — 1 = 0 .

Необходимо выполнить проверку коллинеарности векторов n 1 → = ( 2 , 2 — 3 ) и n 2 → = ( 2 ( 3 + 2 ) , — 7 ) . Получим равенство вида 2 2 ( 3 + 2 ) = 2 — 3 — 7 . Оно верное, потому как 2 2 3 + 2 — 2 — 3 — 7 = 7 + 2 — 3 ( 3 + 2 ) 7 ( 3 + 2 ) = 7 — 7 7 ( 3 + 2 ) = 0 . Отсюда следует, что векторы коллинеарны. Значит, прямые являются параллельными и не имеют точек пересечения.

Ответ: точек пересечения нет, прямые параллельны.

Найти координаты пересечения заданных прямых 2 x — 1 = 0 и y = 5 4 x — 2 .

Для решения составляем систему уравнений. Получаем

2 x — 1 = 0 5 4 x — y — 2 = 0 ⇔ 2 x = 1 5 4 x — y = 2

Найдем определитель основной матрицы. Для этого 2 0 5 4 — 1 = 2 · ( — 1 ) — 0 · 5 4 = — 2 . Так как он не равен нулю, система имеет 1 решение. Отсюда следует, что прямые пересекаются. Решим систему для нахождения координат точек пересечения:

2 x = 1 5 4 x — y = 2 ⇔ x = 1 2 4 5 x — y = 2 ⇔ x = 1 2 5 4 · 1 2 — y = 2 ⇔ x = 1 2 y = — 11 8

Получили, что точка пересечения заданных прямых имеет координаты M 0 ( 1 2 , — 11 8 ) .

Ответ: M 0 ( 1 2 , — 11 8 ) .

Нахождения координат точки пересечения двух прямых в пространстве

Таким же образом находятся точки пересечения прямых пространства.

Когда заданы прямые a и b в координатной плоскости О х у z уравнениями пересекающихся плоскостей, то имеется прямая a , которая может быть определена при помощи заданной системы A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 1 = 0 а прямая b — A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 .

Когда точка М 0 является точкой пересечения прямых, тогда ее координаты должны быть решениями обоих уравнений. Получим линейные уравнения в системе:

A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0

Рассмотрим подобные задания на примерах.

Найти координаты точки пересечения заданных прямых x — 1 = 0 y + 2 z + 3 = 0 и 3 x + 2 y + 3 = 0 4 x — 2 z — 4 = 0

Составляем систему x — 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x — 2 z — 4 = 0 и решим ее. Чтобы найти координаты, необходимо решать через матрицу. Тогда получим основную матрицу вида A = 1 0 0 0 1 2 3 2 0 4 0 — 2 и расширенную T = 1 0 0 1 0 1 2 — 3 4 0 — 2 4 . Определяем ранг матрицы по Гауссу.

1 = 1 ≠ 0 , 1 0 0 1 = 1 ≠ 0 , 1 0 0 0 1 2 3 2 0 = — 4 ≠ 0 , 1 0 0 1 0 1 2 — 3 3 2 0 — 3 4 0 — 2 4 = 0

Отсюда следует, что ранг расширенной матрицы имеет значение 3 . Тогда система уравнений x — 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x — 27 — 4 = 0 в результате дает только одно решение.

Базисный минор имеет определитель 1 0 0 0 1 2 3 2 0 = — 4 ≠ 0 , тогда последнее уравнение не подходит. Получим, что x — 1 = 0 y + 2 z + 3 = 0 3 x + 2 y + 3 = 0 4 x — 2 z — 4 = 0 ⇔ x = 1 y + 2 z = — 3 3 x + 2 y — 3 . Решение системы x = 1 y + 2 z = — 3 3 x + 2 y = — 3 ⇔ x = 1 y + 2 z = — 3 3 · 1 + 2 y = — 3 ⇔ x = 1 y + 2 z = — 3 y = — 3 ⇔ ⇔ x = 1 — 3 + 2 z = — 3 y = — 3 ⇔ x = 1 z = 0 y = — 3 .

Значит, имеем, что точка пересечения x — 1 = 0 y + 2 z + 3 = 0 и 3 x + 2 y + 3 = 0 4 x — 2 z — 4 = 0 имеет координаты ( 1 , — 3 , 0 ) .

Ответ: ( 1 , — 3 , 0 ) .

Система вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 имеет только одно решение. Значит, прямые a и b пересекаются.

В остальных случаях уравнение не имеет решения, то есть и общих точек тоже. То есть невозможно найти точку с координатами, так как ее нет.

Поэтому система вида A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 A 3 x + B 3 y + C 3 z + D 3 = 0 A 4 x + B 4 y + C 4 z + D 4 = 0 решается методом Гаусса. При ее несовместимости прямые не являются пересекающимися. Если решений бесконечное множество, то они совпадают.

Можно произвести решение при помощи вычисления основного и расширенного ранга матрицы, после чего применить теорему Кронекера-Капелли. Получим одно, множество или полное отсутствие решений.

Заданы уравнения прямых x + 2 y — 3 z — 4 = 0 2 x — y + 5 = 0 и x — 3 z = 0 3 x — 2 y + 2 z — 1 = 0 . Найти точку пересечения.

Для начала составим систему уравнений. Получим, что x + 2 y — 3 z — 4 = 0 2 x — y + 5 = 0 x — 3 z = 0 3 x — 2 y + 2 z — 1 = 0 . решаем ее методом Гаусса:

1 2 — 3 4 2 — 1 0 — 5 1 0 — 3 0 3 — 2 2 1

1 2 — 3 4 0 — 5 6 — 13 0 — 2 0 — 4 0 — 8 11 — 11

1 2 — 3 4 0 — 5 6 — 13 0 0 — 12 5 6 5 0 0 7 5 — 159 5

1 2 — 3 4 0 — 5 6 — 13 0 0 — 12 5 6 5 0 0 0 311 10

Очевидно, что система не имеет решений, значит прямые не пересекаются. Точки пересечения нет.

Ответ: нет точки пересечения.

Если прямые заданы при помощи кононических или параметрических уравнений, нужно привести к виду уравнений пересекающихся плоскостей, после чего найти координаты.

Заданы две прямые x = — 3 — λ y = — 3 · λ z = — 2 + 3 · λ , λ ∈ R и x 2 = y — 3 0 = z 5 в О х у z . Найти точку пересечения.

Задаем прямые уравнениями двух пересекающихся плоскостей. Получаем, что

x = — 3 — λ y = — 3 · λ z = — 2 + 3 · λ ⇔ λ = x + 3 — 1 λ = y — 3 λ = z + 2 3 ⇔ x + 3 — 1 = y — 3 = z + 2 3 ⇔ ⇔ x + 3 — 1 = y — 3 x + 3 — 1 = z + 2 3 ⇔ 3 x — y + 9 = 0 3 x + z + 11 = 0 x 2 = y — 3 0 = z 5 ⇔ y — 3 = 0 x 2 = z 5 ⇔ y — 3 = 0 5 x — 2 z = 0

Находим координаты 3 x — y + 9 = 0 3 x + z + 11 = 0 y — 3 = 0 5 x — 2 z = 0 , для этого посчитаем ранги матрицы. Ранг матрицы равен 3 , а базисный минор 3 — 1 0 3 0 1 0 1 0 = — 3 ≠ 0 , значит, что из системы необходимо исключить последнее уравнение. Получаем, что

3 x — y + 9 = 0 3 x + z + 11 = 0 y — 3 = 0 5 x — 2 z = 0 ⇔ 3 x — y + 9 = 0 3 x + z + 11 = 0 y — 3 = 0

Решим систему методом Крамер. Получаем, что x = — 2 y = 3 z = — 5 . Отсюда получаем, что пересечение заданных прямых дает точку с координатами ( — 2 , 3 , — 5 ) .

источники:

http://ru.onlinemschool.com/math/library/analytic_geometry/lines_intersection/

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/koordinaty-tochki-peresechenija-dvuh-prjamyh-prime/

Решение:

На рисунке изображён графики двух линейных функций. Найдите ординату точки пересечения графиков.

    На рисунке изображены прямые, линейных функции их вид имеет вид:

y = kx + b

    Найдём k и b функции справа
    kтангенс угла наклона прямой, по отношению к оси х. Тангенс это отношение противолежащего катета, к прилежащему катету:

k=tg{color{Red}alpha}=frac{color{Blue} 3}{color{Blue} 2}=1,5

    Подставим в общий вид функции значение k и координаты точки (3; 1) найдём b:

y = kx + b
1 = 1,5·3 + b
1 = 4,5 + b
1 – 4,5 = b
–3,5 = b

    Функции справа имеет вид:

y = 1,5x – 3,5

    Найдём k и b функции слева

k=tg{color{Red}alpha}=frac{color{Blue} 4}{color{Blue} 1}=4

    Подставим в общий вид функции значение k и координаты точки (–2; 1) найдём b:

y = kx + b
1 = 4·(–2) + b
1 = –8 + b
1 + 8 = b
9 = b

    Функции слева имеет вид:

y = 4x + 9 

    В точке пересечения прямых значения функций (y) равны, найдём абсциссу (х) точки пересечения:

1,5x – 3,5 = 4x + 9 
1,5x – 4x = 9 + 3,5
–2,5x = 12,5
x=frac{12,5}{–2,5}=-5

    Подставим значение х = –5, в любое уравнение и найдём ординату (y) точки пересечения прямых:

y = 4·(–5) + 9 = –20 + 9 = –11

Ответ: –11.

Тема 10.

Задачи на свойства графиков функций

10

.

09

Комбинации нескольких графиков

Вспоминай формулы по каждой теме

Решай новые задачи каждый день

Вдумчиво разбирай решения

ШКОЛКОВО.

Готовиться с нами — ЛЕГКО!

Подтемы раздела

задачи на свойства графиков функций

Решаем задачи

На рисунке изображены графики двух линейных функций, пересекающиеся в точке A.  Найдите абсциссу точки A.

PIC

Показать ответ и решение

Найдем уравнения прямых.

Определим коэффициенты k  и b  для нижней прямой. Найдём k  как тангенс угла наклона прямой:

    Δy   0− (−2)  2
k = Δx-= 0−-(−1) = 1 = 2

Чтобы найти b,  подставим одну из точек на прямой в уравнение с уже рассчитанным коэффициентом k.  Подставим точку
(−1;−2):

−2= 2 ⋅(− 1) +b  ⇔   − 2= −2 +b  ⇔   b =0

Значит, первая функция имеет вид f1(x) =2x.

Теперь определим коэффициенты k  и b  для верхней прямой. Найдём k  как тангенс угла наклона прямой:

    Δy    4 − 0   4
k = Δx-= 0−-(−4) = 4 = 1

Чтобы найти b,  подставим одну из точек на прямой в уравнение с уже рассчитанным коэффициентом k.  Подставим точку
(−4;0):

0 = 1⋅(− 4)+ b  ⇔   0= (−4)+ b  ⇔   b= 4

Значит, вторая функция имеет вид

f2(x)= x+ 4

Теперь найдем абсциссу точки пересечения двух прямых.

f1(x)= f2(x) ⇔   2x = x+ 4  ⇔   x= 4

На рисунке изображены графики двух линейных функций, пересекающиеся в точке A.  Найдите абсциссу точки A.

PIC

Показать ответ и решение

Найдем уравнения прямых.

Определим коэффициенты k  и b  для нижней прямой. Найдём k  как тангенс угла наклона прямой:

   Δy   2 − 0  2
k = Δx-= 1-− 0 = 1 = 2

Чтобы найти b,  подставим одну из точек на прямой в уравнение с уже рассчитанным коэффициентом k.  Подставим точку
(1;2) :

2 =2 ⋅1+ b  ⇔   2= 2+ b  ⇔   b= 0

Значит, первая функция имеет вид f1(x) =2x.

Теперь определим коэффициенты k  и b  для верхней прямой. Найдём k  как тангенс угла наклона прямой:

    Δy-  -3-− 0-  3
k = Δx = 0− (−3) = 3 = 1

Чтобы найти b,  подставим одну из точек на прямой в уравнение с уже расcчитанным коэффициентом k.  Подставим точку
(−3;0):

0 = 1⋅(− 3)+ b  ⇔   0= (−3)+ b  ⇔   b= 3

Значит, вторая функция имеет вид

f2(x)= x+ 3

Теперь найдем абсциссу точки пересечения двух прямых.

f1(x)= f2(x) ⇔   2x = x+ 3  ⇔   x= 3

На рисунке изображены графики двух линейных функций. Найдите ординату
точки пересечения графиков.

xy110

Показать ответ и решение

Способ 1

Найдём уравнение функции y(x)= kx+ b,  график которой из себя представляет убывающую прямую, на которой отмечены
точки (1;4),  (5;−2).  Найдём угловой коэффициент:

k = Δy-= −2-− 4-= −1,5
    Δx    5− 1

Получим уравнение функции

y(x) =− 1,5x +b

Найдём значение b,  подставив в уравнение точку (1;4):

4 = −1,5⋅1+ b  ⇔   b= 5,5

Получится уравнение

y(x) = −1,5x + 5,5

Найдём уравнение функции g(x)= kx+ b,  график которой из себя представляет возрастающую прямую, на которой
отмечены точки (−1;−5),  (1;2).  Найдём угловой коэффициент:

    Δg   2− (−5)
k = Δx-= 1−-(−1) = 3,5

Получим уравнение функции

g(x)= 3,5x+ b

Найдём значение b,  подставив в уравнение точку (1;2):

2 = 3,5 ⋅1+ b  ⇔   b= −1,5

Получится уравнение

g(x)= 3,5x− 1,5

Теперь решим уравнение y(x) = g(x):

− 1,5x +5,5= 3,5x− 1,5  ⇔   x= 1,4

Тогда ордината точки пересечения прямых равна

y(1,4) =− 1,5 ⋅1,4 +5,5= 3,4

Способ 2

По картинке видим, что целые точки (1;4)  и (5;− 2)  принадлежат графику первой прямой y(x)= kx+ b,  поэтому можем
составить систему из двух уравнений:

(                  (
{ 4= f1(1)          {4 =k1+ b1
(              ⇔   (               ⇔
  −2(=f1(5)         − 2= 5k1+b(1
    { k1 = 4− b1             { b1 = 5,5
⇔   (                    ⇔   (
      −2 =5(4− b1)+b1          k1 = −1,5

Также целые точки (1;2)  и (− 1;− 5)  принадлежат графику второй прямой g(x)= kx +b,  поэтому можем составить
систему из двух уравнений:

(                   (
{ 2= f2(1)           { 2= k2+ b2
( −5 =f2(−1)    ⇔   ( −5= − k2 +b2    ⇔
     (                         (
     { k2 = 2− b2              {b2 = −1,5
 ⇔   (                     ⇔   (
       −5= − (2 − b2)+ b2        k2 = 3,5

Значит, функции имеют вид y(x)= − 1,5x+ 5,5  и g(x)= 3,5x − 1,5.  Аналогично первому способу решаем уравнение
y(x)= g(x)  и получаем ответ.

На рисунке изображены графики двух функций вида y = kx+ b,  которые
пересекаются в точке A (x0;y0).  Найдите x0.

xy110

Показать ответ и решение

Первый способ.

Пусть y = k1x +b1  — уравнение первой прямой, y = k2x+ b2  — уравнение второй прямой.

Заметим, что первая прямая проходит через точки (−1;4)  и (− 3;3).  Если прямая проходит через точку на плоскости, то
координаты этой точки обращают уравнение этой прямой в верное равенство. Тогда мы получаем систему из двух
уравнений:

(                       (                  (                  (
{ 4= k1⋅(−1)+ b1        {4 =− k1+ b1        { b1 = 4+ k1       { b1 = 9
                    ⇔                  ⇔                  ⇔         2
( 3= k1⋅(−3)+ b1        (1 =2k1            ( k1 = 12           ( k1 = 12

Значит, y = x+29  — уравнение первой прямой. Вторая прямая проходит через точки (2;−1)  и (−1;−4).  Следовательно, мы
можем получить следующую систему:

(                        (                   (                     (
{− 1= k2⋅2+ b2           {− 1= 2k2+ b2        { b2 = −(2k2+ 1)       { b2 = −3
(                    ⇔   (               ⇔   (                 ⇔   (
 − 4= k2⋅(−1)+ b2         3 =3k2               k2 = 1                k2 = 1

Значит, y = x− 3  — уравнение второй прямой. Обе прямые проходят через точку A(x0;y0)  по условию, тогда мы имеем
систему:

(
{ y0 = x02+9    ⇒   x − 3= x0-+9   ⇔   2x − 6= x + 9  ⇔   x = 15
( y0 = x0− 3        0       2           0      0          0

Второй способ.

Если прямая a  на плоскости проходит через две точки M1 (x1;y1)  и M2 (x2;y2),  то мы можем составить ее каноническое
уравнение:

   x− x1    y− y1
a: x2−-x1 = y2−-y1

На рисунке видно, что одна из прямых проходит через точки (−1;4)  и (−3;3).  Тогда мы можем записать ее каноническое
уравнение:

x-−-(−-1)-  y−-4      x-+1-  y−-4       x+-1-               x-+9-
−3− (−1) = 3− 4  ⇔    − 2 =  −1    ⇔    2   =y − 4  ⇔   y =  2

Другая прямая проходит через точки (2;−1)  и (− 1;− 4)  . Аналогично запишем ее каноническое уравнение:

x-− 2-= y-− (−1)- ⇔   x-−-2= y-+1   ⇔   x− 2= y+ 1  ⇔   y = x− 3
−1− 2   −4− (−1)       − 3    − 3

Если прямая проходит через точку на плоскости, то координаты этой точки обращают уравнение прямой в верное равенство.
Обе прямые проходят через точку A(x0;y0)  по условию, тогда имеем систему:

({     x0+9
  y0 = 2       ⇒   x0− 3= x0-+9   ⇔   2x0− 6= x0+ 9  ⇔   x0 = 15
( y0 = x0− 3                2

Друзья, поздравляем вас с Новым годом! Этот новогодний пробный вариант ЕГЭ подготовлен специально для вас, и, прорешав все задачи правильно, вы можете получить секретный код. Числу, составленному из цифр каждого ответа, соответствует буква в русском алфавите. Тогда правильные ответы ко всем задачам помогут вам составить фразу, которую мы загадали. Введите ее в поле ответа к заданию 19 без пробелов с маленькой буквы.


На рисунке изображены графики функций f(x) =a√x-  и g(x)= kx+ b,  которые
пересекаются в точке A.  Найдите абсциссу точки A.

xy110

Показать ответ и решение

По картинке видим, что точка (4;3)  принадлежит графику функции f,
следовательно,

f(4)= 3  ⇔   a√4-= 3  ⇔
                   √-
 a= 3   ⇒   f(x)= 3 x
    2             2

Посмотрим теперь на график функции g.  Это прямая, которой принадлежат
точки (− 4;− 4)  и (4;0).  Найдем угловой коэффициент:

    0−-(−-4)  1
k = 4− (− 4) = 2

Найдем b,  подставив в уравнение g  точку (4;0)  и    1
k = 2 :

             1
g(4) = 0  ⇔   2 ⋅4 +b =0  ⇔
                   1
  b= −2  ⇒   g(x)= 2x − 2

Найдем абсциссу точки A,  приравняв f  и g :

    3√x = 1x− 2  ⇔   3√x-= x− 4  ⇔
(   2     2        (
{ 9x= (x− 4)2      {− x2+ 17x− 16= 0
(              ⇔   (                  ⇔
  x− 4≥ 0           x ≥ 4
          ({ x= 1;16
                     ⇔   x =16
          ( x≥ 4

На рисунке изображены графики функций f(x)= −2x2− 2x+ 4  и
g(x)= ax2+ bx+ c,  которые пересекаются в точках A(−1;4)  и B(x0;y0).
Найдите x0.

xy110A

Показать ответ и решение

Для начала разберемся, какой из графиков какой функции соответствует.

Координата по x  вершины параболы f  равна −-(−2) =− 1,
2⋅(−2)    2  что
соответствует правой параболе.

Любую параболу вида        2
g(x)= ax + bx+ c  можно представить в виде

g(x)= a(x − xB )2+ yB

Здесь (xB;yB)  — координаты ее вершины. По картинке несложно видеть, что
вершина левой параболы g  имеет координаты (−2;5),  значит функция имеет
вид

g(x)= a(x+ 2)2+ 5

Также по картинке видно, что в точке -4 функция g  равна 1. Это условие
можно записать следующим образом:

1= g(− 4)= a(− 4+ 2)2+ 5  ⇔

⇔   −4 = 4a   ⇔   a= −1

Теперь мы полностью восстановили функцию g,  она имеет вид

g(x)= −(x+ 2)2 +5

Найдем точки пересечения f  и g :

− (x +2)2+ 5= − 2x2 − 2x +4  ⇔

⇔   x2− 2x− 3 =0   ⇔   x= −1;3

Пересечение, соответствующее x = −1,  это точка A.  Тогда координата x0
точки B  равна 3.

На рисунке изображены графики функций f(x) = ax2 +bx +c  и g(x)= kx+ d,
которые пересекаются в точках A  и B.  Найдите абсциссу точки B.

xy110A

Показать ответ и решение

Восстановим уравнение функции f(x).  По картинке видно, что её график проходит через три целые точки: (− 2;− 2),  (0;− 4)
и (1;1).

Так как график f(x)  проходит через точку (0;−4),  то имеем уравнение:

f(0)= −4   ⇔   a⋅02+ b⋅0+ c= −4  ⇔   c =− 4

Так как график f(x)  проходит через точку (1;1),  то имеем уравнение:

f(1)= 1  ⇔   a ⋅12+ b⋅1+ c= 1  ⇔
    ⇔   a+ b− 4= 1  ⇔   a+ b= 5

Так как график f(x)  проходит через точку (−2;−2),  то имеем уравнение:

f(−2)= −2  ⇔   a ⋅(− 2)2+ b⋅(−2)+ c= −2   ⇔

       ⇔   4a− 2b− 4 = −2 ⇔   2a− b= 1

Решим систему из двух уравнений:

     (                 (
     { a+ b= 5         { b= 5− a
     ( 2a− b= 1    ⇔   ( 2a− (5 − a) =1  ⇔
    (                   (              (
    { b= 5− a           {b =5 − a      {a = 2
⇔   (               ⇔   (          ⇔   (
      2a− 5+ a= 1        3a =6          b = 3

Таким образом, мы полностью восстановили уравнение функции f(x):

       2
f(x) = 2x  +3x − 4

Восстановим уравнение функции g(x).  По картинке видно, что её график проходит через целые точки (−2;−2)  и (−1;2).
Значит, можем составить систему из двух уравнений:

      (                  (
      {g(−2)= − 2    ⇔   {− 2k + d= −2   ⇔
      (g(−1)= 2          (− k+ d= 2
    (               (                  (
    {d = 2k− 2      { k+ 2= 2k− 2      { k = 4
⇔   (d = k+ 2   ⇔   ( d= k+ 2      ⇔   ( d= 6

Таким образом, мы полностью восстановили уравнение функции g(x):

g(x)= 4x+ 6

Найдем координаты второй точки пересечения графиков этих функций:

 2                       2
2x  +3x − 4 = 4x + 6 ⇔   2x − x−⌊10= 0  ⇔
                               x = −2
     ⇔   (x+ 2)(2x− 5)= 0  ⇔   ⌈
                               x = 2,5

Значит, абсцисса точки B  равна 2,5.

На рисунке изображены графики функций f(x) =− 3x+ 13  и g(x) = ax2 +bx +c,
которые пересекаются в точках A  и B.  Найдите ординату точки B.

xy110A

Показать ответ и решение

По картинке видно, что график функции g(x)  проходит через точки (− 1;8),  (1;2)  и (3;4).  Если график функции проходит
через определенную точку, то ее координаты обращают уравнение функции в верное равенство. Значит, мы можем составить
систему из трех уравнений:

(                (                              (
|||g(−1)= 8        ||| a⋅(−1)2+ b⋅(−1)+ c= 8        |||a − b +c = 8
{g(1)= 2     ⇔   { a⋅(1)2 +b ⋅(1)+ c= 2       ⇔   {a +b +c = 2
|||                |||                              |||
(g(3)= 4         ( a⋅(3)2 +b ⋅(3)+ c= 4           (9a +3b+ c= 4

Из первого уравнения следует, что a= 8+ b− c.  Тогда, подставив этот результат во второе уравнение, получим:

a+ b+ c= 2  ⇒   (8+ b− c)+b +c =2   ⇔   8+ 2b = 2  ⇔   b= −3

Подставив a= 8 +b− c= 5 − c  и b = −3  в третье уравнение, получим:

9(5− c)+ 3⋅(− 3)+ c= 4  ⇔   45− 9c− 9+ c= 4  ⇔   36− 8c= 4  ⇔   c= 4

Тогда можем найти a:

a = 5− c= 5− 4= 1

Значит, мы нашли уравнение функции g(x):

g(x)= x2− 3x+ 4

По условию функции f(x)  и g(x)  пересекаются в точках A(3;4)  и B (x0;y0).  Тогда координаты точки B  обращают
уравнения функций f(x)  и g(x)  в верные равенства:

      (
      { f(x0) =y0
      ( g(x0)= y0    ⇒   f(x0)= g(x0)  ⇔

⇔   − 3x0+ 13= x20− 3x0+ 4  ⇔   9= x20 x⇒⁄=3 x0 = −3
                                      0

Тогда ордината y0  точки B  равна

y = f(x )= f(−3)= − 3⋅(− 3)+13 = 9+ 13 = 22
0     0

На рисунке изображены графики функций

        2
f(x)= ax + bx+ c и  g(x)= kx+ d

которые пересекаются в точках A (− 1;0)  и B (x0;y0).  Найдите y0.

xy110A

Показать ответ и решение

Заметим, что любую квадратичную функцию можно представить в виде

             2
f (x)= a(x− x0) +y0,

где (x0;y0)  — координаты вершины параболы. По графику видно, что x0 = −2,  y0 =1.

Найдём a,  подставив точку (− 1;0)  в уравнение параболы:

0 = a(− 1+ 2)2+ 1  ⇔   a =− 1

Получим уравнение параболы

f(x)= −(x +2)2+ 1

Найдём уравнение линейной функции

g(x)= kx+ d,

график которой проходит через точки (− 1;0)  и (0;3).  Найдём значение углового коэффициента

    Δg    3 − 0
k = Δx-= 0−-(−1) = 3

Значение коэффициента d  равно 3, поскольку прямая пересекает ось ординат в точке (0;3).

Получим уравнение функции

g(x)= 3x+ 3

Чтобы найти координаты точки B,  надо решить уравнение f(x)= g(x).

  −(x+ 2)2 +1 = 3x + 3
   2
− x − 4x − 4+ 1= 3x+ 3
    x2 +7x +6 = 0
       ⌊
       ⌈x =− 1
        x =− 6

Первое значение x  соответствует абсциссе точки A,  тогда второе — абсциссе точки B.  Найдём её ординату, подставив
x = −6  в уравнение любой из функций. Подставим в g(x)= 3x + 3:

g(−6)= 3⋅(−6)+ 3= −15

На рисунке изображены графики функций f(x) =2x2− 5x+ 4  и g(x)= ax2+ bx+ c,
которые пересекаются в точках A  и B.  Найдите ординату точки B.

xy110

Показать ответ и решение

Определим какой из графиков («верхний» или «нижний») принадлежит функции f(x).  Заметим, что f(0)= 4,
значит, график функции f(x)  проходит через точку (0;4),  то есть функции f(x)  соответствует «верхний»
график.

Восстановим уравнение функции g(x).  Заметим, что «нижний» график проходит через точку (0;− 3),  следовательно
справедливо равенство

                  2
g(0)= −3  ⇔   a ⋅0 + b⋅0+ c= −3  ⇔   c= − 3

Также график функции g(x)  проходит через целые точки (−2;−5)  и (1;1)  , значит, можем составить систему
уравнений:

({                  ({       2
  g(−2)= −5    ⇔     a⋅(−2) + b⋅(− 2)+c = −5    ⇔
( g(1) =1           ( a⋅12+ b⋅1+ c= 1
        (                      (
    ⇔   {4a− 2b− 3= −5     ⇔   {2a− b= − 1    ⇔
        (a+ b− 3= 1            (a+ b =4
     (                 (                    (
     { b= 2a+ 1        { 2a +1 = 4− a        {a = 1
 ⇔   ( b= 4− a     ⇔   ( b= 4− a        ⇔   (b = 3

Таким образом, мы полностью восстановили уравнение функции g(x):

       2
g(x)= x + 3x− 3

Теперь найдем абциссу второй точки пересечения графиков функций f(x)  и g(x) :

  2          2              2
2x − 5x+ 4= x + 3x− 3  ⇔   x − 8x+⌊ 7 =0   ⇔
                                  x= 1
        ⇔   (x− 1)(x − 7) =0   ⇔   ⌈
                                  x= 7

Значит, абсцисса точки B  равна 7. Тогда ордината точки B  равна

g(7)= 72+ 3⋅7− 3= 49+ 21− 3= 67

На рисунке изображены графики функций       √ -
f(x) = a x  и g(x)= kx+ b,  которые пересекаются в точках A(x0;y0)  и B (4;5).
Найдите y0.

xy110AB

Показать ответ и решение

Найдём уравнение функции g(x).  По графику видно, что k = 1,  поскольку функция увеличивается на 1 при увеличении
аргумента на 1. Также прямая пересекает ось ординат в точке (0;1),  откуда b = 1.  Тогда уравнение прямой имеет
вид

g(x)= x +1

Найдём уравнение функции f(x).  Подставим точку (4;5)  на графике в уравнение функции:

f(4)= 5  ⇔   2a = 5  ⇔   a= 2,5

Тогда уравнение корня имеет вид

f(x)= 2,5√x

Найдём координаты точек пересечения графиков, приравняв функции:

x+ 1= 2,5√x

Сделаем замену t =√x-  и получим квадратное уравнение:

      t2− 2,5t+ 1= 0
        2
      2t − 5t+ 2= 0
D = 52− 4⋅2⋅2 =52− 42 = 32
         5 ±3   1
      t= --4- = 2;2

Сделаем обратную замену и получим совокупность

⌊            ⌊
 t= 0,5        x = 0,25
⌈t= 2    ⇔   ⌈x = 4

Точке A  соответствует координата x0 = 0,25.  Подставим её в g(x)  и получим

y0 =g(0,25) =0,25+ 1= 1,25

На рисунке изображены графики функций       √ ----
f(x) =a  x− b+ c  и g(x)= 0,75x+ 1,
которые пересекаются в точках A(0;1)  и B.  Найдите абсциссу точки B.

xy110A

Показать ответ и решение

Заметим, что область определения функции       √ ----
f(x)= a x− b+ c  совпадает с
областью определения функции √----
 x − b  и равна [b;+∞ ).

Из графика видно, что f(x)  определена на [− 1;+ ∞),  откуда получаем
b= − 1.

Тогда функция примет вид

f(x) =a√x-+-1+ c

По графику f(−1)= − 2,  то есть

a√−-1+-1+ c= −2  ⇔   c = −2  ⇒   f(x)= a√x-+1-− 2

По графику f(0)= 1,  то есть

a√0-+1 − 2 = 1 ⇔   a= 3  ⇒   f(x)= 3√x-+1-− 2

Найдем отличную от A  точку пересечения графиков функций f(x)  и
g(x):

pict

Из последней системы получаем x= 8.  Тогда абсцисса точки B  пересечения
графиков равна 8.

На рисунке изображены графики функций f(x)= −2x2− 2x+ 4  и
g(x)= ax2+ bx+ c,  которые пересекаются в точках A(−1;4)  и B(xB;yB).
Найдите xB.

xy110A

Показать ответ и решение

Поскольку f (x)  — квадратичная функция, абсцисса вершины ее графика равна
-−(−2) = −0,5.
2 ⋅(− 2)

Тогда по рисунку график функции f(x)  — это правая парабола.

Найдём уравнение левой параболы в виде

g(x)= a(x− x0)2+ y0

где (x0;y0)= (−2;5)  — ее вершина. Подставим точку (− 1;4)  в уравнение
g(x):

4= a(−1+ 2)2+ 5  ⇔   a= − 1

Получим

g(x)= −(x+ 2)2 +5

Чтобы найти координаты точки B,  решим уравнение f(x)= g(x) :

pict

Значение x= − 1  — это абсцисса точки A,  тогда xB = 3  — это абсцисса
точки B.

На рисунке изображены графики функций

      √ -
f(x) =a  x  и  g(x)= kx+ b,

которые пересекаются в точке A.  Найдите абсциссу точки A.

xy110

Показать ответ и решение

По картинке видим, что точка (4;3)  принадлежит графику функции f,  следовательно,

               √-
 f(4) = 3  ⇔   a 4= 3  ⇔
⇔   a = 3  ⇒   f(x)= 3√x-
        2            2

Посмотрим теперь на график функции g.  По картинке видим, что ему принадлежат точки (−4;− 4)  и (4;0).  Найдем угол
наклона

    0−-(−4)  1
k = 4− (−4) = 2

Найдем b,  подставив точку (4;0)

g(4)= 0  ⇔   1 ⋅4+ b= 0  ⇔
             2        1
⇔   b= − 2  ⇒   g(x) = 2x− 2

Найдем абсциссу точки A  приравняв f  и g

     3√ -  1            √-
     2  x= 2x − 2  ⇔   3 x= x − 4  ⇔
    (                 (
    {9x = (x − 4)2     { −x2+ 17x− 16= 0
⇔   (x − 4 ≥ 0    ⇔   ( x≥ 4              ⇔
              (
              {x =1;16
          ⇔   (         ⇔   x = 16
               x ≥4

На рисунке изображены графики двух функций: одна из них линейная, другая — вида

     √-----
y = a x− x0+ y0

Найдите абсциссу точки пересечения графиков этих функций. Если таких точек несколько, в ответе укажите наименьшую
абсциссу.

xy110

Показать ответ и решение

Для решения найдём уравнения обеих функций, после чего решим уравнение, приравняв эти функции, что и будет означать
пересечение графиков функций.

Найдём уравнение линейной функции. Заметим, что прямая проходит через точки (−4;0)  и (3;2).  Тогда угловой
коэффициент можно найти по формуле

k = y1−-y0= --2−-0- = 2
    x1− x0  3 − (−4)  7

Получим уравнение прямой

y = 2 +b
   7

Для нахождения свободного коэффициента b  подставим произвольную точку на прямой в это уравнение. Подставим точку
(3;2) :

    2               8
2 = 7 ⋅3+ b ⇔   b=  7

Получаем уравнение прямой

y = 2 x+ 8
   7    7

Найдём уравнение второй функции. Заметим, что график имеет вершину (2;3),  из чего можно сделать вывод, что x0 = 2,
y0 = 3.  Чтобы найти a,  подставим в полученную функцию y = a√x-− 2-+3  координаты точки (3;4),  которая находится на
графике.

    √ ----
4= a  3− 2+ 3  ⇔   a= 1

Получаем уравнение второй функции

   √-----
y = x − 2+ 3

Приравняем полученные функции:

 √x-−-2+ 3= 2x + 8
            7    7
√x-−-2=  2x− 13 |⋅7
   √ ----7   7
  7  x− 2= 2x− 13

Возведём в квадрат обе части уравнения, отметив, что правая чать должна быть неотрицательной, то есть
2x − 13 ≥0 ⇔    x≥ 6,5 :

              2
   49(x− 2)= 4x + 169− 52x
     4x2− 101x+ 267= 0
      2                   2
D = 101 − 4 ⋅4⋅267 = 5929 = 77
         101±-77
   x1,2 =    8   = 3;22,25

Поскольку решение уравнения существует при x≥ 6,5  , получим единственное решение x= 22,25.

На рисунке изображены графики функций f(x)= kx  и g(x)= ax+ b,
которые пересекаются в точках A(−2;−3)  и B (x0;y0).  Найдите x0.

xy110A

Показать ответ и решение

Восстановим график функции f(x).  Он проходит через точку (− 3;− 2).  Значит, можем составить уравнение:

                k
f(−3)= −2  ⇔    −3-=− 2  ⇔   k = 6

Значит, f(x) = 6.
      x

Восстановим график функции g(x).  Он проходит через точку (0;5),  следовательно,

g(0)= 5  ⇔   a⋅0 +b =5   ⇔   b= 5

Также график g(x)  проходит через точку (−2;−3),  следовательно,

g(− 2)= −3  ⇔   a ⋅(− 2)+ 5 =− 3  ⇔   a= 4

Значит, g(x)= 4x +5.

Найдем абсциссу точки B :

                                  ⌊
-6               2                ⌈x = −2
x = 4x+ 5  ⇔   4x + 5x− 6= 0  ⇔     x= 0,75  ⇒   x0 = 0,75

На рисунке изображены графики функций

      k
f(x)=  x  и  g(x)= ax+ b,

которые пересекаются в точках A  и B(x0;y0).  Найдите ординату точки B.

xy110A

Показать ответ и решение

Подставим точку (−2;2),  расположенную на графике гиперболы, в функцию f(x):

        k
f(−2)= −-2 = 2 ⇔   k = −4

Найдём коэффициент по точкам на графике линейной функции

a = Δy-= −2-− (−5)-= 3
    Δx    4− (− 4)   8

Найдём b,  подставив точку (4;−2):

     3
− 2= 8 ⋅4+ b  ⇔   b= −3,5

Найдём точки пересечения, приравняв f(x)  и g(x):

        f(x)= g(x)

−4-= 3x− 3,5− 32= 3x2− 28x
x    8 2
     3x − 28x+ 32= 0

Решим данное уравнение методом переброски коэффициента. Решим уравнение

x2− 28x +32 ⋅3 = 0

По теореме Виета легко находятся корни  ′
x1 = 4  и  ′
x2 = 24.  Тогда у исходного уравнения корни равны

    x′1   4          x′2
x1 =-3 = 3  и   x2 = 3-= 8

Видно, что точке A  соответствует координата x1,  тогда точке B  — координата x2.  Найдём ординату, подставив x2  в
g(x):

g(8)= 3 ⋅8− 3,5 = −0,5
     8

На рисунке изображены графики функций       k
f(x) = x  и g(x)= ax+ b,  которые пересекаются в точках A(−4;−2)  и B (x0;y0).
Найдите абсциссу точки B.

PIC

На рисунке изображены графики функций f(x) = kx  и g(x) = ax+ b  , которые пересекаются в точках A  и B  .
Найдите ординату точки B  .

PIC

На рисунке изображены графики функций

       2                   √----
f(x)= ax + bx+ c  и |g(x)|= k x + r,

которые пересекаются в точках A(− 1;0),  B(0;−2),  C(3;−4)  и D(x0;y0).
Найдите y0.

xy110ABC

Показать ответ и решение

Найдем уравнения каждой функции. Пусть          ----
g1(x)= k√x+ r,            ----
g2(x)= −k√x + r
— функции, задающие второе уравнение условия. Тогда график g2(x)  проходит
через точки A  и B  , следовательно,

{0 = −k√ −1+-r-       {r = 1
  −2 =− k√0+-r    ⇔     k = 2

Следовательно,

       √ -----
|g(x)|= 2  x+ 1

График f(x)= ax2 +bx +c  проходит через точки A,B,C :

(                      (    1
|{ 0= a− b+ c           |{ a= 35
|( −2= c            ⇔   |( b= −3
  −4= 9a+ 3b+ c          c= −2

Следовательно,

f(x)= 1x2− 5x − 2
      3    3

Найдем четвертую точку пересечения, то есть корень x0 ⁄= −1; 0; 3  уравнения
f(x)= |g(x)|.  По картинке можно предположить, что точка D  — общая для
графиков f(x)  и g1(x).  Тогда имеем:

      x2 − 5x − 6 = 6√x-+-1
              √-----  √-----
(x − 6)(x+ 1)= 6√x-+1-|: x +1 ⁄= 0
        (x− 6) x+ 1= 6
       (x− 6)2(x +1)= 36
     3     2
    x − 11x + 24x = 0 |:x ⁄=0
        x2− 11x+ 24= 0

Корни последнего уравнения x =3; 8.  Мы ищем корень x0 = 8.  Тогда

           √ ----
y0 = g1(8)= 2 8+ 1= 6

было в ЕГЭ

в условии
в решении
в тексте к заданию
в атрибутах

Категория

Атрибут

Всего: 119    1–20 | 21–40 | 41–60 | 61–80 | 81–100 …

Добавить в вариант

Точки O(0; 0), A(10; 8), C(2; 6) и B являются вершинами параллелограмма. Найдите ординату точки B.


Точки O(0; 0), A(10; 8), B(8; 2) и C являются вершинами параллелограмма. Найдите ординату точки C.


Точки O(0; 0), B(8; 2), C(2; 6) и A являются вершинами параллелограмма. Найдите ординату точки A.


Точки O(0; 0), A(10; 8), B(8; 2), C(2; 6) являются вершинами четырехугольника. Найдите ординату точки P пересечения его диагоналей.


Найдите абсциссу точки пересечения прямой, заданной уравнением 3x + 2y  =  6, с осью Ox.


Найдите ординату точки пересечения прямой, заданной уравнением 3x + 2y  =  6, с осью Oy.


Найдите ординату точки пересечения прямых, заданных уравнениями 3x + 2y  =  6 и y = −x.


Найдите ординату центра окружности, описанной около прямоугольника ABCD, вершины которого имеют координаты соответственно (−2; −2), (6; −2), (6; 4), (−2; 4).


Найдите ординату центра окружности, описанной около треугольника, вершины которого имеют координаты (8; 0), (0; 6), (8; 6).




Найдите расстояние от точки A с координатами (4, 9) до оси абсцисс.


Найдите ординату точки, симметричной точке A(−5; 2) относительно оси Ox.


Найдите ординату точки, симметричной точке A(1, −4) относительно начала координат.


Найдите ординату середины отрезка, соединяющего точки O левая круглая скобка 0;0 правая круглая скобка и A левая круглая скобка 5;8 правая круглая скобка .


Найдите ординату точки пересечения оси Oy и отрезка, соединяющего точки A  левая круглая скобка минус 4; минус 6 правая круглая скобка и B  левая круглая скобка 4; 3 правая круглая скобка .


Прямая a проходит через точки с координатами (0; 2) и (2; 0). Прямая b проходит через точку с координатами (0; 4) и параллельна прямой a. Найдите абсциссу точки пересечения прямой b с осью Ox.




Всего: 119    1–20 | 21–40 | 41–60 | 61–80 | 81–100 …

Как найти координаты точки пересечения двух прямых

Если две прямые не параллельны, то они обязательно пересекутся в одной точке. Найти координаты точки пересечения двух прямых можно как графическим, так и арифметическим способом, в зависимости от того, какие данные предоставляет задача.

Как найти координаты точки пересечения двух прямых

Вам понадобится

  • — две прямые на чертеже;
  • — уравнения двух прямых.

Инструкция

Если прямые уже начерчены на графике, найдите решение графическим способом. Для этого продолжите обе или одну из прямых так, чтобы они пересеклись. Затем отметьте точку пересечения и опустите из нее перпендикуляр на ось абсцисс (как правило, ох).

При помощи шкалы делений, отмеченных на оси, найдите значение х для этой точки. Если она находится на положительном направлении оси (справа от нулевой отметки), то ее значение будет положительным, в противном случае – отрицательным.

Точно также найдите ординату точки пересечения. Если проекция точки расположена выше нулевой отметки – она положительная, если ниже – отрицательная. Запишите координаты точки в виде (х, у) — это и есть решение задачи.

Если прямые заданы в виде формул у=kх+b, вы можете также решить задачу графическим способом: начертите прямые на координатной сетке и найдите решение описанным выше способом.

Попробуйте найти решение задачи, используя данные формулы. Для этого составьте из этих уравнений систему и решите ее. Если уравнения даны в виде у=kх+b, просто приравняйте обе части с х и найдите х. Затем подставьте значение х в одно из уравнений и найдите у.

Можно найти решение способом Крамера. В таком случае приведите уравнения к виду А1х+В1у+С1=0 и А2х+В2у+С2=0. Согласно формуле Крамера х=-(С1В2-С2В1)/(А1В2-А2В1), а у=-(А1C2-А2С1)/(А1В2-А2В1). Обратите внимание, если знаменатель равен нулю, то прямые параллельны или совпадают и, соответственно, не пересекаются.

Если вам даны прямые в пространстве в каноническом виде, перед тем, как начать поиск решения, проверьте, не параллельны ли прямые. Для этого оцените коэффициенты перед t, если они пропорциональны, например, x=-1+3t, y=7+2t, z=2+t и x=-1+6t, y=-1+4t, z=-5+2t, то прямые параллельны. Кроме того, прямые могут скрещиваться, в этом случае система не будет иметь решения.

Если вы выяснили, что прямые пересекаются, найдите точку их пересечения. Сначала приравняйте переменные из разных прямых, условно заменив t на u для первой прямой и на v для второй прямой. Например, если вам даны прямые x=t-1, y=2t+1, z=t+2 и x=t+1, y=t+1, z=2t+8 вы получите выражения типа u-1=v+1, 2u+1=v+1, u+2=2v+8.

Выразите из одного уравнения u, подставьте в другое и найдите v (в данной задаче u=-2,v=-4). Теперь, чтобы найти точку пересечения, подставьте полученные значения вместо t (без разницы, в первое или второе уравнение) и получите координаты точки x=-3, y=-3, z=0.

Видео по теме

Источники:

  • Нахождение точек пересечения прямых

Понравилась статья? Поделить с друзьями:
  • Как составить жалобу на мебельный магазин
  • Как найти уравнение эллипса по точками
  • Как найти массу льда в калориметре
  • Константа диссоциации как найти примеры
  • Как найти песню музыка на всю