Как найти ординату точки пересечения оси оу


Загрузить PDF


Загрузить PDF

Точка пересечения с осью Y – это точка, в которой график функции пересекает ось ординат. Найти такую точку можно несколькими способами, в зависимости от начальной информации.

  1. Изображение с названием Find the Y Intercept Step 1

    1

    Запишите значение углового коэффициента и координаты точки. Угловой коэффициент характеризует угол наклона графика по отношению к оси X. Координаты точки, лежащей на графике, записываются в виде (х,у). Если вам не даны координаты и угловой коэффициент, воспользуйтесь другим методом.

    • Пример 1. Дана прямая, на которой лежит точка А (3,4) и угловой коэффициент которой равен 2. Найдите точку пересечения этой прямой с осью Y.
  2. Изображение с названием Find the Y Intercept Step 2

    2

    Запишите линейную функцию. Ее график представляет собой прямую. Линейная функция имеет вид у = kх + b, где k – угловой коэффициент, b – координата «у» точки пересечения с осью Y.

  3. Изображение с названием Find the Y Intercept Step 3

    3

    В функцию подставьте значение углового коэффициента. Подставьте данное значение вместо k.

    • Пример 1. y = kx + b
      k = 2
      y = 2x + b
  4. Изображение с названием Find the Y Intercept Step 4

    4

    Вместо «х» и «у» подставьте данные координаты точки. Если даны координаты точки, лежащей на прямой, подставьте их в функцию вместо х и у.

    • Пример 1. Точка А (3,4) лежит на прямой. То есть х = 3, у = 4.
      Подставьте эти значения в y = 2x + b
      4 = 2*3 + b
  5. Изображение с названием Find the Y Intercept Step 5

    5

    Найдите значение b. Напомним, что b – это координата «у» точки пересечения с осью Y. В уравнении b является единственной переменной, которую нужно обособить и найти ее значение.

    • Пример 1. 4 = 2*3 + b
      4 = 6 + b
      4 — 6 = b
      -2 = b
      Координата «у» точки пересечения с осью Y равна -2 (у = -2).
  6. Изображение с названием Find the Y Intercept Step 6

    6

    Ответ запишите в виде пары координат точки пересечения прямой с осью Y. Точка лежит на пересечении прямой и оси Y; координата «х» любой точки, лежащей на оси Y, равна 0, поэтому координата «х» точки пересечения всегда равна 0 (х = 0).

    • Пример 1. Точка пересечения прямой с осью Y имеет координаты (0,-2).

    Реклама

  1. Изображение с названием Find the Y Intercept Step 7

    1

    Запишите координаты двух точек, лежащих на прямой. Если координаты обеих точек не даны, воспользуйтесь другим методом. Координаты каждой точки записываются в виде (х,у).

  2. Изображение с названием Find the Y Intercept Step 8

    2

    Пример 2. Прямая проходит через точки А(1,2) и В(3,-4). Найдите точку пересечения этой прямой с осью Y.

  3. Изображение с названием Find the Y Intercept Step 9

    3

    Найдите вертикальное и горизонтальное расстояние между двумя точками. Угловой коэффициент равен тангенсу угла наклона прямой, образуемого с осью Х, и вычисляется как отношение вертикального расстояния между двумя точками к горизонтальному расстоянию между двумя точками.

    • Вертикальное расстояние – это разность координат «у» двух точек.
    • Горизонтальное расстояние – это разность координат «х» двух точек.
    • Пример 2. Координаты «у» двух точек: 2 и -4, поэтому вертикальное расстояние: -4 — 2 = -6.
      Координаты «х» двух точек (в том же порядке): 1 и 3, поэтому вертикальное расстояние: 3 — 1 = 2.
  4. Изображение с названием Find the Y Intercept Step 10

    4

    Разделите вертикальное расстояние на горизонтальное, чтобы найти угловой коэффициент. Найденные значение подставьте в формулу: угловой коэффициент = вертикальное расстояние / горизонтальное расстояние.

    • Пример 2. k = -6/2 = -3.
  5. Изображение с названием Find the Y Intercept Step 11

    5

    Запишите линейную функцию. Ее график представляет собой прямую. Линейная функция имеет вид у = kх + b, где k – угловой коэффициент, b – координата «у» точки пересечения с осью Y. Подставьте известное значение углового коэффициента k и координаты точки (х,у), чтобы найти b.

  6. Изображение с названием Find the Y Intercept Step 12

    6

    В функцию подставьте значение углового коэффициента и координаты точки. Вычисленное значение углового коэффициента подставьте вместо k. Координаты любой из данных точек подставьте вместо «х» и «у».

    • Пример 2. y= kх + b
      k = -3, поэтому у = -3x + b
      На прямой лежит точка А (1,2), поэтому 2 = -3*1 + b.
  7. Изображение с названием Find the Y Intercept Step 13

    7

    Найдите значение b. В уравнении b является единственной переменной, которую нужно обособить и найти ее значение. Напомним, что координата «х» точки пересечения всегда равна 0.

    • Пример 2. 2 = -3*1 + b
      2 = -3 + b
      5 = b
      Координаты точки пересечения прямой с осью Y равны (0,5).

    Реклама

  1. Изображение с названием Find the Y Intercept Step 14

    1

    Запишите уравнение прямой. Если дано уравнение, описывающее прямую, можно найти точку ее пересечения с осью Y.

    • Пример 3. Найти точку пересечения прямой, которая задана уравнением х + 4y = 16, с осью Y.
    • Примечание: уравнение, приведенное в примере 3, описывает прямую. В конце этого раздела приведен пример квадратного уравнения (в котором переменная возводится в квадрат).
  2. Изображение с названием Find the Y Intercept Step 15

    2

    Вместо «х» подставьте 0. Напомним, что точка пересечения лежит на пересечении прямой и оси Y; координата «х» любой точки, лежащей на оси Y, равна 0, поэтому координата «х» точки пересечения всегда равна 0 (х = 0). Подставьте х = 0 в уравнение прямой.

    • Пример 3. x + 4y = 16
      х = 0
      0 + 4y = 16
      4y = 16
  3. Изображение с названием Find the Y Intercept Step 16

    3

    Найдите «у». Так вы вычислите координату «у» точки пересечения с осью Y.

    • Пример 3. 4y = 16
      {frac  {4y}{4}}={frac  {16}{4}}
      у = 4
      Координаты точки пересечения прямой с осью Y равны (0,4).
  4. Изображение с названием Find the Y Intercept Step 17

    4

    Проверьте ответ, построив график (если хотите). График постройте как можно более точно. Точка, в которой прямая пересекает ось Y, является точкой пересечения.

  5. Изображение с названием Find the Y Intercept Step 18

    5

    Найдите точку пересечения в случае квадратного уравнения. Переменная (в большинстве случаев «х») в квадратном уравнении возводится в квадрат. В квадратное уравнение также подставляется х = 0, но имейте в виду, что квадратное уравнение описывает параболу, которая может пересекать ось Y в одной или двух точках или вообще не пересекать ось ординат. Это значит, что задача будет иметь 1 или 2 решения или вообще не иметь решений.

    Реклама

Советы

  • В случае более сложного уравнения постарайтесь обособить члены с переменной «у» на одной стороне уравнения.
  • В некоторых странах в уравнении y = kx + b переменные k и b обозначаются по-другому.[1]
    Это не меняет значения линейной функции.
  • Вычисляя угловой коэффициент, вычитайте координаты «х» и координаты «у» в любом порядке, но если какая-то точка считается первой, то и ее координаты должны считаться первыми.[2]
    Например, даны координаты двух точек: (1,12) и (3, 7). Угловой коэффициент вычисляется двумя способами:

Реклама

Похожие статьи

Об этой статье

Эту страницу просматривали 50 696 раз.

Была ли эта статья полезной?

Точки пересечения графика осями

Как найти точки пересечения графика функции с осями координат?

С осью абсцисс график функции может иметь любое количество общих точек (или ни одной). С осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).

Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).

Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.

В точке пересечения графика функции с осью Ox y=0:

kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке ( -b/k ; 0).

В точке пересечения с осью Oy x=0:

y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).

Например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.

2x-10=0; x=5. С Ox график пересекается в точке (5; 0).

y=2∙0-10=-10. С Oy график пересекается в точке (0; -10).

2) Найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.

В точке пересечения графика с осью абсцисс y=0. Значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью Ox, надо решить квадратное уравнение ax²+bx+c=0.

В зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает Ox.

В точке пересечения графика с осью Oy x=0.

y=a ∙ 0²+b ∙ 0+c=с. Следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.

Например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.

x1=4; x2=5. График пересекает ось абсцисс в точках (4; 0) и (5; 0).

y=0²-9∙0+20=20. Отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.

Точки пересечения графика функции с осями координат

В алгебре и начале анализа можно встретить множество задач на поиск точек пересечения графиков функций с помощью их построения или другими методами. Благодаря определенному алгоритму действий, найти ответ достаточно просто. В большинстве случаев решение заключается в определении корней различного вида уравнений.

График функции (y = f(x)) является множеством точек ((x; y)) , координаты которых связаны соотношением (y = f(x).)

Равенство (y = f(x)) называют уравнением данного графика. Таким образом, график функции представляет собой множество точек (x; y), где x — является аргументом, а y — определяется как значение функции, соответствующее данному аргументу.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В том случае, когда графики пересекаются в какой-то точке, можно сделать вывод о существовании общего решения системы уравнений. Определить координаты точки можно с помощью графического или аналитического метода. В первом случае требуется построить график уравнения с переменной. Аналитический метод поиска координат точек, в которых графики функций пересекаются, подразумевает решение уравнения, а найденные корни и являются искомыми точками.

Как найти координаты, примеры решения

Существует несколько способов решения подобных задач:

  1. Поиск точек пересечения графиков функций заключается в приравнивании обеих функций друг к другу. При этом все члены с х переносят в левую сторону, а оставшиеся – в правую. Затем остается найти корни уравнения, которое получилось после преобразований.
  2. Второй метод состоит в записи системы уравнения для ее последующего решения с помощью подстановки одной функции в другую.
  3. Третий способ подразумевает построение графиков функций, чтобы определить точки их пересечения визуально.

В качестве примера можно рассмотреть две линейные функции:

Данные функции являются прямыми. Их можно графически изобразить, если принять какие-либо два значения (x_1) и (x_2) и найти (f(x_1)) и ((x_2)) . Далее действия необходимо повторить с функцией (g(x)) . Затем достаточно легко определить визуально координаты точки пересечения рассматриваемых функций.

Важно отметить, что для линейных функций характерна лишь одна точка пересечения только в том случае, когда (k_1 neq k_2) . В противном случае (k_1=k_2) , а функции будут параллельными друг другу, в связи с тем, что k является коэффициентом угла наклона. При ( k_1 neq k_2) и (m_1=m_2) точка пересечения будет соответствовать (M(0;m)) . Данная закономерность упрощает решение многих подобных задач.

Имеются функции: (f(x) = 2x-5)

Требуется определить координаты точки, в которой пересекаются графики рассматриваемых функций.

В первую очередь стоит отметить, что функции являются линейными. Важно обратить внимание на коэффициент угла наклона рассматриваемых функций:

По этой причине имеется лишь одна точка пересечения графиков функций. Определить ее можно путем решения уравнения:

Необходимо перенести члены с x в левую часть, а остальные — в правую:

В результате удалось найти x=8, что соответствует абсциссе точки пересечения графиков. Требуется определить ординату y с помощью подстановки x = 8 в любое из уравнений – в (f(x)) , либо в (g(x)) :

(f(8) = 2cdot 8 — 5 = 16 — 5 = 11)

Таким образом, M (8;11) – представляет собой точку, в которой пересекаются графики пары линейных функций.

Записаны две функции: (f(x)=2x-1)

Необходимо определить точки, в которых графики рассматриваемых функций пересекаются.

Таким образом, линейные функции параллельны между собой, что объясняет отсутствие точек пересечения их графиков.

Ответ: графики функций параллельны, точки пересечения отсутствуют.

Требуется определить координаты точки, в которой пересекаются графики следующих функций: (f(x)=x^2-2x+1)

В данном случае функции являются нелинейными. Поэтому алгоритм решения задачи будет несколько отличаться от предыдущих примеров. В первую очередь следует приравнять уравнения:

Далее необходимо разнести в разные стороны уравнения члены с x и без него:

Таким образом, будет определена абсцисса искомой точки. Затем необходимо найти ординату у. Для этого нужно подставить (x = 0) в какое-либо из двух начальных уравнений. К примеру:

(f(0)=0^2-2cdot 0 + 1 = 1)

M (0;1) является точкой, в которой пересекаются графики функций.

Приравнивание функций друг к другу и нахождение корней

Выяснить, имеют ли точки пересечения графики функций, можно путем сравнения соответствующих тождеств и решения уравнения. Однако при этом допускается получение различных равенств с неизвестными. Тогда целесообразно воспользоваться специальными методиками.

Когда уравнение относится к первой степени или является линейным, решение получить достаточно просто. Метод заключается в переносе переменных величин в одну часть уравнения, а известных – в другую. Алгоритм действий:

  • раскрытие скобок, приведение подобных коэффициентов;
  • перенос членов с неизвестными в одну сторону, а с известными – в другую;
  • математические преобразования;
  • определение корня.

Квадратные уравнения решают с помощью одного из способов:

  • разложение на множители;
  • выделение полного квадрата;
  • поиск дискриминанта;
  • теорема Виета.

В первом случае представляется возможным понизить степень при неизвестной величине. Второй метод заключается в выделении квадрата по одной из формул сокращенного умножения. Каждая из этих методик реализуема при наличии знаний соответствующих тождеств, в том числе правил разложения на множители.

Третий способ состоит в поиске корней через дискриминант (Д), который является дополнительным параметром, позволяющим сразу решить задачу. Дискриминант определяется с помощью формулы:

В том случае, когда Д>0, переменная может иметь пару значений, которые превращают равенство в справедливое тождество. Если Д=0, то корень является единственным. Когда Д<0, искомое тождество с неизвестными не имеет решений.

Квадратные уравнения решают таким образом:

  • выполнение необходимых алгебраических преобразований, в том числе раскрытие скобок и приведение подобных слагаемых;
  • выбор наиболее оптимального способа решения и его реализация;
  • проверка корней с помощью их подстановки в начальное выражение.

Распространенной ошибкой является пренебрежение проверкой результатов решения. Некорректные действия могут привести к образованию ложных корней.

Существует несколько методик решения тождеств кубического и биквадратного типов:

  • понижение степени, то есть разложение на множители;
  • замена переменной.

Первый вариант решения подразумевает выполнение преобразований для последующего применения одной из формул сокращенного умножения. Такой способ применяют нечасто. Второй способ состоит в том, что при решении необходимо ввести переменную с более низкой степенью, которая упрощает выражение. Порядок действий при этом следующий:

  • выполнение математических преобразований;
  • выражение переменной через другую;
  • решение квадратного или линейного уравнения;
  • подстановка промежуточных корней, которые получилось найти на третьем шаге, во второй;
  • вычисление искомых корней;
  • проверка;
  • исключение ложных решений;
  • запись ответа.

Путем составления системы уравнений

Данный метод определения точек пересечения графиков функций предполагает запись системы уравнения. К примеру:

К примеру

Решение системы уравнений представляет собой пару чисел (х, у), являющуюся одновременно решением для первого и второго уравнения системы. Решить систему уравнений – значит, отыскать все ее решения, либо установить их отсутствие.

Порядок действий при решении системы уравнений можно рассмотреть на примере:

Порядок действий при решении системы уравнений можно рассмотреть на примере

Решение будет иметь следующий вид:

Решение будет иметь следующий вид

Данные уравнения являются линейными, поэтому график каждого из них представляет собой прямую. График первого уравнения проходит через точки (0; 1) и (-1; 0). График второго уравнения проходит через точки (0; -1) и (-1; 0). Прямые пересекаются в точке (-1; 0), это и является решением системы уравнений.

Прямые пересекаются в точке

Решение системы представляет сбой единственную пару чисел:

Решение системы представляет сбой единственную пару чисел:

Если подставить данные числа в любое из уравнений, то получится справедливое равенство. Таким образом, имеется единственное решение линейной системы. Можно записать отчет: (-1;0).

В процессе решения линейной системы можно столкнуться с разными ситуациями:

  • система обладает единственным решением, прямые пересекаются;
  • решения системы отсутствуют. прямые параллельны;
  • система обладает бесчисленным множеством решений, прямые совпадают.

При рассмотрении частного случая системы p(x; y) и q(x; y) являются линейными выражениями от x и y.

В задачах нередко требуется решить нелинейную систему уравнений. К примеру, необходимо решить следующую систему:

К примеру, необходимо решить следующую систему

Решение имеет следующий вид:

Решение имеет следующий вид

График первого уравнения будет иметь вид прямой, а второго – являться окружностью. Можно построить первый график по точкам:

Можно построить первый график по точкам

Центр окружности в точке О(0; 0), радиус равен 1.

Графики пересекаются в точке А(0; 1) и в точке В(-1; 0).

Можно решить систему графическим способом:

Можно решить систему графическим способом

В первую очередь необходимо построить график первого уравнения, который будет представлять собой окружность с центром в точке О (0; 0) и радиусом 2. График второго уравнения является параболой, которая смещена относительно начала координат на 2 вверх, то есть ее вершина – точка (0; 2).

График второго уравнения является параболой

Графики обладают одной общей точкой А(0; 2). Данная точка является решением системы. Если подставить два числа в уравнение, можно проверить корректность ответа и записать его. Ответ: (0; 2).

В качестве еще одного примера можно решить следующую систему:

В качестве еще одного примера можно решить следующую систему

Первым шагом является построение графика первого уравнения, который будет представлять собой окружность с центром в точке О (0; 0) и радиусом 1.

Первым шагом является построение графика первого уравнения

Далее необходимо построить график функции:

Далее необходимо построить график функции

График будет являться ломанной:

График будет являться ломанной

Далее следует сместить ее на 1 вниз по оси oy. В результате получится график функции:

В результате получится график функции

При помещении обоих графиков в одну систему координат получится следующая ситуация:

При помещении обоих графиков в одну систему координат получится следующая ситуация

Таким образом, получились три точки пересечения: А(1; 0), т. В(-1; 0), т. С(0; -1)

Нахождение через графическое построений функций

Любой определенный график задают с помощью соответствующей функции. Найти точки, в которых пересекаются графики, можно путем решения уравнения, имеющего вид:

Решение данного уравнения будет являться искомой точкой.

Решение данного уравнения будет являться искомой точкой

Построить график можно с помощью бумаги и ручки. В процессе необходимо обратить внимание на то, что количество точек пересечения пары графиков определяется видом функции. Линейные функции обладают лишь одной точкой пересечения, линейная и квадратная – двумя, квадратные – двумя, либо четырьмя.

В общем случае двух линейных функций можно предположить, что:

Для поиска точки пересечения графиков необходимо решить уравнение:

(y1=y2 или k1x+b1=k2x+b2)

После преобразований получится, что:

Далее нужно выразить x:

При известной координате точки по оси абсцисс следует определить координату по оси ординат. Таким образом, можно найти координаты точки пересечения графиков:

График функции y = f (х) представляет собой множество точек плоскости, координаты (х, у) которых соответствуют выражению y = f(x). График функции наглядно иллюстрирует поведение и свойства функции. Для построения графика определяют несколько значений довода х и для них рассчитывают соответствующие значения функции y=f(x). Для больше точного и наглядного построения графика следует обнаружить его точки пересечения с осями координат.

С целью определить точку пересечения графика функции с осью y, нужно определить значение функции при х=0, то есть обнаружить f(0). В качестве примера можно рассмотреть график линейной функции, изображенной на рисунке:

В качестве примера можно рассмотреть график линейной функции

В данном случае при х=0 ((y=a*0+b)) функция равна b. Таким образом, график пересекает ось ординат (ось Y) в точке (0,b). Когда пересекается ось абсцисс (ось Х) функция равна 0, то есть (y=f(x)=0) . Для того чтобы определить х, следует решить уравнение (f(x)=0) . В случае линейной функции получаем уравнение (ax+b=0) , откуда и находим (x=-b/a) . В результате можно сделать вывод, что ось Х пересекается в точке ((-b/a,0).)

При наличии квадратичной зависимости y от х, уравнение (f(x)=0) обладает двумя корнями. Таким образом, ось абсцисс пересекается два раза. В случае периодической зависимости y от х, например, (y=sin(x)) , график функции обладает бесконечным количеством точек пересечения с осью Х. Проверить корректность расчета координат точек, в которых пересекаются графики функций, можно с помощью подстановки найденных значений х в выражение f(x). Значение выражения при любом из вычисленных х должно быть равно 0.

Квадратичная функция и её график

Парабола является графиком квадратичной функции, которая задается формулой y = ax 2 + bx + c.

Нарисовать параболу можно, используя таблицу значений, в которой мы выбираем произвольный х и находим у. Но не всегда этот способ является самым рациональным.

Начнем, как всегда, с простого)

Стандартная парабола.

Рассмотрим функцию y = ax 2 . Она также является квадратичной, просто b = c = 0.

При а = 1, мы получим функцию y = x 2 . Ее график назовем стандартной параболой, или классической (можешь называть как угодно). Начертить её можно с помощью таблицы значений:

x -3 -2 -1 0 1 2 3
y 9 4 1 0 1 4 9

На координатной плоскости отмечаем эти точки и чертим параболу.

Вершина этой параболы находится в точке (0; 0). И не забудь про то, что ветви параболы бесконечно поднимаются ввысь и не ограничены точками с координатами (3; 9) и (3; -9).

Еще одна стандартная парабола задается функцией y = —x 2 (в этом случае а = -1). Для этого графика я тоже напишу табличку:

x -3 -2 -1 0 1 2 3
y -9 -4 -1 0 -1 -4 -9

Начало координат тоже является вершиной этой параболы, как и в предыдущем случае, но ветви уже будут направлены вниз:

Сразу напрашивается вывод: если перед х 2 стоит положительное число, то ветви параболы направлены вверх, если отрицательное — то вниз.

Если у тебя черный пояс по рисованию стандартных парабол, то следующий раздел пройдет у тебя «на ура».

Параболы со смещенной вершиной.

Зачем я начала статью со стандартной параболы? Ответ прост. Графиком любой квадратичной функции y = ±x 2 + bx + c (обязательно коэффициент перед х 2 должен равняться ±1) является стандартной параболой, только вот вершины этих парабол не будут находится в начале координат.

Чтобы начертить подобные параболы нужно сначала узнать, где находится вершина.

Пусть вершиной параболы будет точка О с координатами (x1; y1). Тогда найти эти координаты можно по формулам:

Кстати, можно найти координаты вершины и другим способом.

Координату хО находим по той же формуле, а координату уО можно найти подстановкой координаты хО в функцию.

Без примера не обойтись)

Дана функция y = x 2 — 4x + 4. Найдите вершину параболы и постройте график.

Найдем сначала вершину параболы двумя способами, чтобы убедится, что оба способа рабочие.

1 способ: по формулам.

2 способ: подстановкой.

Одну координаты мы уже нашли по формуле. Подставляем ее в исходную функцию.

Итак, получили, что О(2; 0) — вершина параболы. Отмечаем ее на координатной плоскости.

Перед х 2 стоит положительное число, значит ветви параболы направлены вверх. Наша задача: нарисовать стандартную параболу, представив, что точка О — начало координат. Если тебе это сложно сделать, то необходимо начертить таблицу значений и уже по ней рисовать параболу.

Параболы-стройняшки и параболы-пухляшки.

Удивительно, но числовой коэффициент перед х 2 оказывается влияет на стройность и полноту парабол.

Если числовой коэффициент лежит в промежутке (-1; 0) ∪ (0; 1), то парабола будет более обширно смотреться на координатной плоскости.

А если числовой коэффициент лежит в промежутке (-∞; -1) ∪ (1; +∞), то парабола будет прижиматься к оси Оу и занимать меньше места на плоскости.

Не веришь? Давай проверим! Для примера возьмем две функции:

К сожалению, здесь схитрить не получится: обе параболы нестандартные и для обеих необходимо создать таблицы значений. Но перед эти определимся с их вершинами.

Пусть вершиной первой параболы будет точка А(хА; уА), а вершиной второй параболы — точка B(хB; уB). Вершины буду находить по второму способу (см. выше).

Переходим к таблицам значений.

x 0 2 4 6 8
y 3 6 7 6 3
x -1,5 -1 -0,25 0 1
y -3 1 4,5 3 -3

Чертим обе параболы по получившимся координатам.

Вот о чем я и говорила) Перед тобой парабола-стройняшка и парабола-пухляшка во всей красе.

А ты заметил, что свободный член в уравнении функции — это точка пересечения графика с осью Оу? В обеих функциях свободный член равен 3 и графики пересекают ось Оу в точке с координатами (0; 3).

Практикум по параболам.

Теорию о параболах можно еще писать и дальше, но тебя, скорее всего, интересует практика по графикам.

Поскольку речь идет о параболах, то с параболами мы и будем сейчас возиться.

Задание 1. На рисунке изображены графики функций вида y = ax 2 ​+ bx + c. Установите соответствие между графиками функций и знаками коэффициентов a и c.

Решение. Коэффициент а, стоящий перед х 2 , отвечает за направление ветвей параболы, а свободный член с — за пересечение графика с осью Оу.

А) Если коэффициент а положителен, то ветви направлены вверх; если коэффициент с отрицателен, то график пересекает ось Оу ниже нуля. Подходит график 1.

Б) Если коэффициент а отрицателен, то ветви направлены вниз; если коэффициент с положителен, то график пересекает ось Оу выше нуля. Подходит график 3.

В) Если коэффициент а положителен, то ветви направлены вверх; если коэффициент с положителен, то график пересекает ось Оу выше нуля. Подходит график 2.

Задание 2 (наоборот). На рисунке изображены графики функций вида y = ax 2 ​+ bx + c. Установите соответствие между графиками функций и знаками коэффициентов a и c.

А) Ветви направлены вверх, значит а > 0; график пересекает ось Оу выше нуля, значит и с > 0. Подходит вариант под номером 3.

Б) Ветви направлены вверх, значит а > 0; график пересекает ось Оу ниже нуля, значит и с < 0. Подходит вариант под номером 1.

В) Ветви направлены вниз, значит а < 0; график пересекает ось Оу выше нуля, значит и с > 0. Подходит вариант под номером 2.

Задание 3. Установите соответствие между графиками и их функциями.

График В отличается от остальных тем, что его ветви направлены вниз. За направление ветвей отвечает коэффициент перед х 2 — он отрицательный. Отрицательный коэффициент только в функции под номером 3. Значит В-3.

Дальше рекомендую отработанную годами технику. Она минимизирует твои ошибки, если ты, конечно, умеешь считать)

Итак, рассматриваем график А и выбираем на нем точку с красивыми координатами (красивые значит не дробные). Мне нравится тут вершина. Ее координаты (4; -3). Даже не спрашивайте почему не прорисованы оси; эти задания взяты с сайта ФИПИ)

Теперь эти координаты подставляем в оставшиеся функции: вместо у подставляем -3, а вместо х подставляем 4.

Подставляем в первую функцию: -3 = 2 · 4 2 — 16 · 4 + 29; -3 = -3 — верно. Значит, А-1.

Задание 4 (наоборот, но принципе тот же). Установите соответствие между функциями и их графиками.

Очевидно, что В-2.

На графике 1 выбираем точку. Вершина снова четкая, но для разнообразия давайте возьмем другую точку, например, точку с координатами (-4; 1). Будь внимателен и смотри, чтобы точно такой же точки не было на третьем графике!

Подставляем в функцию А: 1 = (-4) 2 + 4 · (-4) + 1; 1 = 1 — верно. Значит, А-1.

Если ты считаешь, что чего-то не хватает или у тебя есть ещё задания из первой части, связанные с параболами, — напиши мне в VK)

В этой статье мы рассмотрим линейную функцию, график линейной функции и его свойства. И, как обычно, решим несколько задач на эту тему.

Линейной функцией называется функция вида y=kx+b

В уравнении функции число k, которое мы умножаем на x называется коэффициентом наклона.

Например, в уравнении функции y=-2x+3 k=-2; ~~b=3;

в уравнении функции y=-2+3x   k=3; ~~b=-2;

в уравнении функции y=-x   k=-1; ~~b=0;

в уравнении функции y=5   k=0; ~~b=5.

Графиком линейной функции является прямая линия.

1. Чтобы построить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.

Например, чтобы построить график функции y={1/3}x+2  , удобно взять x=0  и x=3  , тогда ординаты эти точек будут равны y=2   и y=3  .

Получим точки А(0;2) и В(3;3). Соединим их и получим график  функции y={1/3}x+2  :

2. В уравнении функции y=kx+b коэффициент k   отвечает за наклон графика функции:

Коэффициент b отвечает за сдвиг графика вдоль оси OY:

На рисунке ниже изображены графики функций y=2x+3; y={1/2}x+3y=x+3

Заметим, что во всех этих функциях коэффициент k больше нуля, и все графики функций наклонены вправо. Причем, чем больше значение k, тем круче идет прямая.

Во всех функциях b=3 — и мы видим, что все графики пересекают ось OY в точке (0;3)

Теперь рассмотрим графики функций y=-2x+3; y=-{1/2}x+3y=-x+3

На этот раз  во всех  функциях коэффициент k меньше нуля, и все графики функций наклонены влево.

Заметим, что чем больше |k|, тем круче идет прямая. Коэффициент b тот же, b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)

Рассмотрим графики функций  y=2x+3y=2x; y=2x-2

Теперь  во всех уравнениях функций коэффициенты k равны. И мы получили три параллельные прямые.

Но коэффициенты b различны, и эти графики пересекают ось OY  в различных точках:

График функции y=2x+3 (b=3) пересекает ось OY  в точке (0;3)

График функции y=2x (b=0) пересекает ось OY  в точке (0;0) —  начале координат.

График функции y=2x-2 (b=-2) пересекает ось OY  в точке (0;-2)

Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции y=kx+b.

Если  k<0 и b>0то график функции y=kx+b имеет вид:

Если  k>0 и b>0то график функции y=kx+b имеет вид:

Если  k>0 и b<0то график функции y=kx+b имеет вид:

Если  k<0 и b<0то график функции y=kx+b имеет вид:

Если  k=0то  функция y=kx+b превращается в функцию   y=b и ее график имеет вид:

Ординаты всех точек графика функции y=b равны b

Если b=0, то график функции y=kx проходит через начало координат:

 Это график прямой пропорциональности.

3. Отдельно отмечу график уравнения x=a. График этого уравнения представляет собой прямую линию, параллельую оси OY все точки которой имеют абсциссу x=a.

Например, график уравнения x=3  выглядит так:

Внимание! Уравнение x=a не является функцией, так  как различным значениям функции соответствует одно и то же значение аргумента, что не соответствует определению функции.

4. Условие параллельности двух прямых:

График функции y=k_1{x}+b_1 параллелен графику функции y=k_2{x}+b_2, если k_1=k_2

5. Условие перпендикулярности двух прямых:

График функции y=k_1{x}+b_1 перпендикулярен графику функции y=k_2{x}+b_2, если k_1*k_2=-1 или k_1=-1/{k_2}

6. Точки пересечения графика функции y=kx+b с осями координат.

С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).

С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда x=-b/k. То есть точка пересечения с осью OX имеет координаты (-b/k;0):

Рассмотрим решение задач.

1. Постройте график функции y=kx+b, если известно, что он проходит через точку А(-3;2) и параллелен прямой y=-4x.

В уравнении функции  y=kx+b два неизвестных параметра: k и b. Поэтому в тексте задачи должны быть два условия, характеризующих график функции.

а) Из того, что график функции y=kx+b параллелен прямой y=-4x, следует, что k=-4. То есть уравнение функции имеет вид y=-4x+b

б) Нам осталось найти b. Известно, что график функции y=-4x+b проходит через точку А(-3;2). Если точка принадлежит графику функции, то при подстановке ее координат в уравнение функции, мы получим верное равенство:

2=-4*(-3)+b  отсюда b=-10

Таким образом, нам надо построить график функции y=-4x-10

Точка А(-3;2) нам известна, возьмем точку B(0;-10)

Поставим эти точки в координатной плоскости и соединим их прямой:

2. Написать уравнение прямой, проходящей через точки A(1;1); B(2;4).

Если прямая проходит через точки с заданными координатами, следовательно, координаты точек удовлетворяют уравнению прямой  y=kx+b. То есть если мы координаты точек подставим в уравнение прямой, то получим верное равенство.

Подставим координаты каждой точки в уравнение  y=kx+b и получим систему линейных уравнений.

delim{lbrace}{matrix{2}{1}{{1=k+b} {4=2k+b} }}{ }

Вычтем из второго уравнения системы первое, и получим k=3. Подставим значение k в первое уравнение системы, и получим b=-2.

Итак, уравнение прямой y=3x-2.

3. Постройте график уравнения (2y-x+1)(y^2-1)=0

Чтобы найти,  при каких значениях неизвестного произведение нескольких множителей равно нулю, нужно каждый множитель приравнять к нулю и учесть ОДЗ каждого множителя. 

Это уравнение не имеет ограничений на ОДЗ. Разложим на множители вторую скобку и приравняем каждый множитель к нулю. Получим совокупность уравнений:

delim{[}{matrix{3}{1}{{2y-x+1=0} {y-1=0} {y+1=0}}}{ }

delim{[}{matrix{3}{1}{{y={x/2}-1/2} {y=1} {y=-1}}}{ }

Построим графики всех  уравнений совокупности в одной коорднатной плоскости. Это и есть график уравнения  (2y-x+1)(y^2-1)=0:

4. Постройте график функции y=kx+b, если он перпендикулярен прямой y=-{1/2}x   и проходит через точку М(-1;2)

Мы не будем строить график, только найдем уравнение прямой.

а) Так как график функции y=kx+b, если он перпендикулярен прямой y=-{1/2}x  , следовательно k*{-1/2}=-1, отсюда k=2. То есть уравнение функции имеет вид y=2x+b

б) Мы знаем, что  график функции y=2x+b проходит через точку М(-1;2). Подставим ее координаты в уравнение функции. Получим:

2=2*{-1}+b, отсюда b=4.

Следовательно, наша функция имеет вид: y=2x+4.

5. Постройте график функции y=(x^2-1)(1/{x-1}-1/{x+1})+x

Упростим выражение, стоящее в правой части уравнения функции.

Важно! Прежде чем упрощать выражение, найдем его ОДЗ.

Знаменатель дроби не может быть равен нулю, поэтому x<>1, x<>-1.

(x^2-1)(1/{x-1}-1/{x+1})+x = (x-1)(x+1)({x+1-(x-1)}/({{x-1})({x+1})})+x= (x-1)(x+1)2/{(x-1)(x+1)}+x=x+2

Тогда наша функция принимает вид:

delim{lbrace}{matrix{3}{1}{{y=x+2} {x<>1} {x<>-1}}}{ }

То есть нам надо построить график функции y=x+2 и выколоть на нем две точки: с абсциссами x=1 и x=-1:

И.В. Фельдман, репетитор по математике.

Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha, предназначен для решения задачи нахождения точек
пересечения графика функции с осями координат.

При проведении исследования функции, возникает задача нахождения точек пересечения этой функции с осями координат. Рассмотрим на конкретном примере алгоритм решения такой задачи. Для простоты будем работать с функцией одной переменной:

График данной функции представлен на рисунке:

график функции y=x^2-2*x-5

Как следует из рисунка, наша функция пересекает ось

в двух точках, а ось

— в одной.

Сначала найдём точки пересечения функции

с осью
. Сразу отметим, что в этих точках координата
. Поэтому для их поиска, нам нужно
решить уравнение:

Это
квадратное уравнение
имеет два корня:

Таким образом, мы нашли две точки пересечения нашей функции с осью абсцисс:

и
. Стоит отметить, что задача поиска пересечений функции с осью

эквивалентна задаче нахождения
нулей функции.

Теперь найдём точку пересечения с осью ординат. В этой точке координата
. Поэтому для их поиска, просто подставляем значение

в нашу функцию:

Таким образом, мы нашли точку пересечения нашей функции с осью ординат
.

В предыдущем уроке мы подробно разобрали,
как построить параболу.
В этом уроке мы разберем, как решать типовые задачи на квадратичную функцию.


Как найти нули квадратичной функции

Запомните!
!

Чтобы найти координаты точек нулей функции, нужно
в исходную функцию подставить вместо «y» число
ноль.

Рассмотрим задачу.

Найти нули квадратичной
функции «y = x2 − 3».

Подставим в исходную функцию вместо «y» ноль и решим полученное
квадратное уравнение.

0 = x2 − 3
x2 − 3 = 0

x1;2 =

0 ±
02 − 4 · 1 · (−3)
2 · 1

x1;2 =

x1;2 =

x1;2 =

x1;2 = ±√3

Ответ: нули функции «y = x2 − 3» :
    

x1 = √3;
    

x2 = 3 .

Как найти при каких значениях
«x» квадратичная функция принимает заданное
числовое значение

Запомните!
!

Чтобы найти при каких значениях «x» квадратичная функция принимает заданное числовое значение,
нужно:

  • вместо «y» подставить в функцию заданное числовое значение;
  • решить полученное квадратное уравнение относительно «x».

Рассмотрим задачу.

При каких значениях «x» функция
«y = x2 − x − 3» принимает значение
«−3»
.

Подставим в исходную функцию
«y = x2 − x − 3» вместо «y = −3» и
найдем «x».

y = x2 − x − 3

−3 = x2 − x − 3
x2 − x − 3 = −3
x2 − x − 3 + 3 = 0
x2 − x = 0
x1;2 =

1 ±
12 − 4 · 1 · 0
2 · 1

x1;2 =

x1;2 =

x1 = x2 =
x1 = x2 =
x1 = 1 x2 = 0

Ответ: при «x = 0» и
«x = 1» функция «y = x2 − x − 3»
принимает значение «y = −3».

Как найти координаты точек пересечения параболы и прямой

Запомните!
!

Чтобы найти точки пересечения параболы с прямой нужно:

  • приравнять правые части функций (те части функций, в которых содержатся «x»);
  • решить полученное уравнение относительно «x»;
  • подставить полученные числовые значения «x»
    в любую из функций и найти координаты точек по оси «Оy».

Рассмотрим задачу.

Найти координаты точек пересечения параболы «y = x2»
и прямой «y = 3 − 2x».

Приравняем правые части функций и решим
полученное уравнение относительно «x».

x2 = 3 − 2x
x2 − 3 + 2x = 0
x2 + 2x − 3 = 0

x1;2 =

−2 ±
22 − 4 · 1 · (−3)
2 · 1

x1;2 =

x1;2 =

x1;2 =

x1 = x2 =
x1 = x2 =
x1 = 1 x2 = −3

Теперь подставим в любую из заданных функций (например, в
«y = 3 − 2x») полученные
числовые значения «x», чтобы найти координаты
«y» точек пересечения.


1)   x = −3
y = 3 − 2x
y(−3) = 3 − 2 · (−3) = 3 − (−6) = 3 + 6 = 9
(·) A (−3; 9)
— первая точка пересечения.


2)   x = 1
y = 3 − 2x
y(1) = 3 − 2 · 1 = 3 − 2 = 1
(·) B (1; 1)
— вторая точка пересечения.

Запишем полученные точки пересечения с их координатами в ответ.

Ответ: точки пересечения параболы
«y = x2»
и прямой «y = 3 − 2x»:
(·) A (−3; 9) и
(·) B (1; 1).

Как определить, принадлежит ли точка графику функции параболы

Запомните!
!

Чтобы проверить принадлежность точки параболе нет необходимости строить график функции.

Достаточно подставить координаты точки в формулу функции (координату по оси
«Ox» вместо
«x», а координату по оси
«Oy» вместо «y») и выполнить арифметические расчеты.

  • Если получится верное равенство, значит, точка принадлежит графику функции.
  • Если получится неверное равенство, значит, точка
    не принадлежит графику функции.

Рассмотрим задачу:

Не строя графика функции «y = x2», определить, какие точки принадлежат ему:
(·) А(2; 6),    
(·) B(−1; 1)
.

Подставим в функцию
«y = x2»

координаты точки (·) А(2; 6).


y = x2
6 = 22
6 = 4


(неверно)

Значит, точка (·) А(2; 6)
не принадлежит графику функции
«y = x2».

Подставим в функцию
«y = x2»

координаты точки (·) B(−1; 1).


y = x2
1 = (−)12
1 = 1


(верно)

Значит, точка (·) B(−1; 1)
принадлежит графику функции
«y = x2».


Как найти точки пересечения параболы с осями координат

Рассмотрим задачу

Найти координаты точек пересечения параболы
«y = x2 −3x + 2» с осями координат
.

Сначала определим точки пересечения функции с осью «Ox».
На графике функции эти точки выглядят так:

точки пересечения с осью Ox

Как видно на рисунке выше, координата «y» точек пересечения с осью «Ox»
равна нулю, поэтому подставим «y = 0» в
исходную функцию «y = x2 −3x + 2»
и найдем их координаты по оси «Ox».

0 = x2 −3x + 2
x2 −3x + 2 = 0

x1;2 =

3 ±
32 − 4 · 1 · 2
2 · 1

x1;2 =

x1;2 =

x1;2 =

x1 = x2 =
x1 = x2 =
x1 = 2 x2 = 1

Запишем координаты точек пересечения графика с осью «Ox»:
(·) A (2; 0) и
(·) B (1; 0).

Теперь найдем координаты точки пересечения с осью «Oy».

точки пересечения с осью Oy

Как видно на рисунке выше, координата «x»
точки пересечения с осью «Oy» равна нулю.

Подставим «x = 0»
в исходную функцию
«y = x2 −3x + 2»
и найдем координату точки по оси
«Oy».

y(0) = 02 − 3 · 0 + 2 = 2

Выпишем координаты полученной точки: (·) C (0; 2)

Запишем в ответ все координаты точек пересечения параболы с осями.

Ответ: точки пересечения с осью «Ox»:
(·) A (2; 0) и
(·) B (1; 0).
С осью «Oy»: (·)C (0; 2).


Как определить при каких значениях x функция принимает
положительные или
отрицательные значения

Напоминаем, что когда в задании говорится «функция принимает
значения» — речь идет о
значениях«y».
Другими словами, необходимо ответить на вопрос: при каких значениях
«x», координата
«y» положительна или отрицательна.

Запомните!
!

Чтобы по графику функции определить, где функция принимает положительные или отрицательные значения нужно:

  • провести прямые через точки в местах, где график пересекает ось «Ox»;
  • определить положительные или отрицательные значения принимает функция на промежутках между проведенными прямыми;
  • записать ответ для каждого промежутка относительно «x».

Рассмотрим задачу.

С помощью графика квадратичной функции, изображенного на рисунке, ответить:
При каких значениях «x» функция принимает 1) положительные значения; 2) отрицательные значения.

положительные и отрицательные значения функциии

Проведем через точки, где график функции пересекает ось «Ox» прямые.

положительные и отрицательные значения функциии с доп. прямыми

Определим области, где функция принимает отрицательные или положительные значения.

положительные и отрицательные значения на графике

Подпишем над каждой полученной областью, какие значения принимает
«x» в каждой из выделенных областей.

положительные и отрицательные значения на графике c подписью относительно x

Ответ: при «x < −1» и
«x > 2» функция принимает отрицательные значения;
при «−1 < x < 2» функция принимает
положительные значения.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Понравилась статья? Поделить с друзьями:
  • Fallout 4 как найти id предмета
  • Как найти площадь сечения параллелепипеда через ребра
  • Как найти балку в стене
  • Как найти фотографа для свадьбы
  • Как найти амперы физика 8 класс