Как найти осевое сечение через стороны треугольника

Содержание

  1. Решаем задачу на нахождение осевого сечения треугольника: примеры и подробное объяснение
  2. Методы нахождения осевого сечения треугольника
  3. Примеры решения задач на нахождение осевого сечения треугольника
  4. Пример 1
  5. Решение
  6. Пример 2
  7. Решение
  8. Выводы
  9. Сечения трехмерных фигур — площади и периметр
  10. Алгоритм определения площади и периметра сечения объемных фигур
  11. Площадь сечения
  12. Площадь треугольника
  13. Площадь круга
  14. Площадь прямоугольника
  15. Пример решения задачи
  16. Как находить осевое сечение треугольника: шаг за шагом инструкция
  17. Шаг 1: Найти медианы
  18. Шаг 2: Отметить точку пересечения медиан
  19. Шаг 3: Нарисовать линию осевого сечения
  20. Пример
  21. Шаг 1: Найти медианы
  22. Шаг 2: Отметить точку пересечения медиан
  23. Шаг 3: Нарисовать линию осевого сечения
  24. Как находить осевое сечение треугольника: шаг за шагом инструкция
  25. Шаг 1: Найти медианы
  26. Шаг 2: Отметить точку пересечения медиан
  27. Шаг 3: Нарисовать линию осевого сечения
  28. Пример
  29. Шаг 1: Найти медианы
  30. Шаг 2: Отметить точку пересечения медиан
  31. Шаг 3: Нарисовать линию осевого сечения

Решаем задачу на нахождение осевого сечения треугольника: примеры и подробное объяснение

Осевое сечение – это треугольник, который образуется пересечением трех плоскостей, проходящих через середины ребер треугольника. Нахождение осевого сечения может понадобиться, например, при проектировании деталей механизмов или расчетах в строительстве. В данной статье мы разберем примеры решения задач на нахождение осевого сечения треугольника.

Методы нахождения осевого сечения треугольника

Существует несколько способов нахождения осевого сечения треугольника:

  • Метод пересечения биссектрис
  • Метод пересечения высот
  • Метод пересечения медиан

Метод пересечения биссектрис является наиболее точным, поскольку биссектриса разбивает угол пополам. В методе пересечения высот используется нахождение высот треугольника. Метод пересечения медиан позволяет находить осевое сечение, опираясь на прохождение медиан через точку пересечения (baricenter) медиан.

Примеры решения задач на нахождение осевого сечения треугольника

Пример 1

Дан треугольник ABC со сторонами: AB = 8, AC = 5, BC = 7. Найдите осевое сечение треугольника.

Решение

  1. Находим середины каждого из ребер треугольника:
  • Середина AB: MAB = (A + B)/2 = (0; 0)/2 + (8; 0)/2 = (4; 0)
  • Середина AC: MAC = (A + C)/2 = (0; 0)/2 + (0; 5)/2 = (0; 2.5)
  • Середина BC: MBC = (B + C)/2 = (8; 0)/2 + (0; 5)/2 = (4; 2.5)
  1. Находим уравнение плоскости, проходящей через точки MAB, MAC и MBC:
  • Находим векторное произведение векторов AB и AC: (8; 0; 0) x (0; 5; 0) = (0; 0; 40)
  • Находим уравнение плоскости, проходящей через точку MAB и полученный вектор: 0 * x + 0 * y + 40 * z = 40z
  • Подставляем координаты точки MAC и MBC и получаем систему уравнений: 40z = 10 40z = 20
  • Решаем систему уравнений и получаем координаты точки осевого сечения: z = 0.25 x = 2 y = 1.25
  1. Ответ: координаты точки осевого сечения треугольника ABC: (2; 1.25; 0.25)

Пример 2

Дан треугольник ABC со сторонами: AB = 12, AC = 9, BC = 15. Найдите осевое сечение треугольника.

Решение

  1. Находим середины каждого из ребер треугольника:
  • Середина AB: MAB = (A + B)/2 = (-6; 0)/2 + (6; 0)/2 = (0; 0)
  • Середина AC: MAC = (A + C)/2 = (-6; 0)/2 + (0; 9)/2 = (-3; 4.5)
  • Середина BC: MBC = (B + C)/2 = (6; 0)/2 + (0; 9)/2 = (3; 4.5)
  1. Находим уравнение плоскости, проходящей через точки MAB, MAC и MBC:
  • Находим векторное произведение векторов AB и AC: (12; 0; 0) x (0; 9; 0) = (0; 0; 108)
  • Находим уравнение плоскости, проходящей через точку MAB и полученный вектор: 0 * x + 0 * y + 108 * z = 108z
  • Подставляем координаты точки MAC и MBC и получаем систему уравнений: 108z = 54 108z = 81
  • Решаем систему уравнений и получаем координаты точки осевого сечения: z = 0.5 x = 1.5 y = 4.5
  1. Ответ: координаты точки осевого сечения треугольника ABC: (1.5; 4.5; 0.5)

Выводы

Нахождение осевого сечения треугольника может быть выполнено несколькими способами – методом пересечения биссектрис, методом пересечения высот и методом пересечения медиан. В данной статье мы рассмотрели метод пересечения биссектрис и выполнили два примера решения задач на нахождение осевого сечения треугольника. Надеемся, что эта статья поможет вам успешно решать подобные задачи.

Источник

Сечения трехмерных фигур — площади и периметр

Умеешь строить сечения трехмерных фигур – точно не пропадешь.

В этой статье я расскажу тебе об алгоритме построения сечений и разберу пример!

Алгоритм определения площади и периметра сечения объемных фигур

  1. Нарисовать сечение.
  2. Определить фигуру, которая получилась в этом сечении.
  3. Вспомнить формулы площади/периметра этой фигуры.
  4. Найти площадь/периметр фигуры.

Стандартное сечение имеет вид треугольника, круга или четырехугольника. Следовательно, нам необходимо искать площади именно этих фигур.

Площадь сечения

Площадь треугольника

Площадь круга

Площадь прямоугольника

Пример решения задачи

Диаметр основания конуса ( displaystyle left( AB right)) равен ( displaystyle 8) см.

Длина образующей ( displaystyle left( AC; BC right)) равна ( displaystyle 5) см (линия от вершины конуса до любой точки его основания).

Найдите площадь осевого сечения этого конуса.

Осевое сечение конуса – это равнобедренный треугольник ( displaystyle left( ABC right)), высота которого совпадает с высотой конуса ( displaystyle left( CO right)), а основание ( displaystyle left( AB right)) является диаметром основания конуса.

Значит, ( displaystyle S) осевого сечения конуса =( displaystyle S) треугольника ( displaystyle ABC).

Вспомним формулу площади треугольника:

( displaystyle S=frac<(COcdot AB)><2> ) begin
AB -длина стороны треугольника \
CO — высота, опущенная на сторону AB \
end

Найдем высоту ( displaystyle Delta ABC):

Рассмотрим ( displaystyle Delta COA).

т.к. ( displaystyle OC) – высота ( displaystyle Delta ABC rightarrow angle COA=90<>^circ rightarrow Delta COA) – прямоугольный.

( displaystyle AO=frac<2>=frac<8><2>=4) (т.к. ( displaystyle AO) – радиус окружности, ( displaystyle AB) – диаметр).

Подставим получившиеся значения в формулу площади:

Площадь осевого сечения этого конуса равна ( displaystyle 12см<< >^<2>>).

Источник

Как находить осевое сечение треугольника: шаг за шагом инструкция

Осевое сечение треугольника — это линия, которая проходит через точку пересечения медиан. Оно является осью симметрии треугольника и делит его на две равные части.

В этой статье будут рассмотрены шаги, необходимые для нахождения осевого сечения треугольника.

Для начала необходимо найти медианы треугольника. Медианы — это линии, которые соединяют вершину треугольника с противоположной стороной и проходят через середину этой стороны. В треугольнике всегда три медианы.

Следующим шагом является нахождение точки пересечения всех трех медиан. Эта точка называется центром масс или барицентром треугольника.

Шаг 3: Нарисовать линию осевого сечения

Последний шаг — нарисовать линию, которая проходит через центр масс и перпендикулярна каждой из медиан. Эта линия будет являться осевым сечением треугольника.

Пример

Давайте рассмотрим пример. Пусть у нас есть треугольник ABC со сторонами AB = 8, BC = 6 и AC = 10.

Шаг 1: Найти медианы

Для нахождения медиан треугольника ABC проводим линии от вершин A, B и C через середины сторон BC, AC и AB соответственно. Получаем точки D, E и F.

Шаг 2: Отметить точку пересечения медиан

Найдём точку пересечения всех трех медиан, то есть барицентр треугольника. Проведем линии между точками D, E и F.

Точка пересечения линий будет центром масс треугольника. Обозначим эту точку G.

Шаг 3: Нарисовать линию осевого сечения

Для построения осевого сечения треугольника находим проекции точки центра масс на каждую медиану и соединяем их — нарисуем линию HG.

Таким образом, осевое сечение треугольника ABC — это линия, проходящая через центр масс G и перпендикулярна каждой из медиан.

Источник

Как находить осевое сечение треугольника: шаг за шагом инструкция

Осевое сечение треугольника — это линия, которая проходит через точку пересечения медиан. Оно является осью симметрии треугольника и делит его на две равные части.

В этой статье будут рассмотрены шаги, необходимые для нахождения осевого сечения треугольника.

Для начала необходимо найти медианы треугольника. Медианы — это линии, которые соединяют вершину треугольника с противоположной стороной и проходят через середину этой стороны. В треугольнике всегда три медианы.

Следующим шагом является нахождение точки пересечения всех трех медиан. Эта точка называется центром масс или барицентром треугольника.

Шаг 3: Нарисовать линию осевого сечения

Последний шаг — нарисовать линию, которая проходит через центр масс и перпендикулярна каждой из медиан. Эта линия будет являться осевым сечением треугольника.

Пример

Давайте рассмотрим пример. Пусть у нас есть треугольник ABC со сторонами AB = 8, BC = 6 и AC = 10.

Шаг 1: Найти медианы

Для нахождения медиан треугольника ABC проводим линии от вершин A, B и C через середины сторон BC, AC и AB соответственно. Получаем точки D, E и F.

Шаг 2: Отметить точку пересечения медиан

Найдём точку пересечения всех трех медиан, то есть барицентр треугольника. Проведем линии между точками D, E и F.

Точка пересечения линий будет центром масс треугольника. Обозначим эту точку G.

Шаг 3: Нарисовать линию осевого сечения

Для построения осевого сечения треугольника находим проекции точки центра масс на каждую медиану и соединяем их — нарисуем линию HG.

Таким образом, осевое сечение треугольника ABC — это линия, проходящая через центр масс G и перпендикулярна каждой из медиан.

Источник

Решаем задачу на нахождение осевого сечения треугольника: примеры и подробное объяснение

Осевое сечение – это треугольник, который образуется пересечением трех плоскостей, проходящих через середины ребер треугольника. Нахождение осевого сечения может понадобиться, например, при проектировании деталей механизмов или расчетах в строительстве. В данной статье мы разберем примеры решения задач на нахождение осевого сечения треугольника.

Методы нахождения осевого сечения треугольника

Существует несколько способов нахождения осевого сечения треугольника:

  • Метод пересечения биссектрис
  • Метод пересечения высот
  • Метод пересечения медиан

Метод пересечения биссектрис является наиболее точным, поскольку биссектриса разбивает угол пополам. В методе пересечения высот используется нахождение высот треугольника. Метод пересечения медиан позволяет находить осевое сечение, опираясь на прохождение медиан через точку пересечения (baricenter) медиан.

Примеры решения задач на нахождение осевого сечения треугольника

Пример 1

Дан треугольник ABC со сторонами: AB = 8, AC = 5, BC = 7. Найдите осевое сечение треугольника.

Решение

  1. Находим середины каждого из ребер треугольника:
  • Середина AB: MAB = (A + B)/2 = (0; 0)/2 + (8; 0)/2 = (4; 0)
  • Середина AC: MAC = (A + C)/2 = (0; 0)/2 + (0; 5)/2 = (0; 2.5)
  • Середина BC: MBC = (B + C)/2 = (8; 0)/2 + (0; 5)/2 = (4; 2.5)
  1. Находим уравнение плоскости, проходящей через точки MAB, MAC и MBC:
  • Находим векторное произведение векторов AB и AC:
    (8; 0; 0) x (0; 5; 0) = (0; 0; 40)
  • Находим уравнение плоскости, проходящей через точку MAB и полученный вектор:
    0 * x + 0 * y + 40 * z = 40z
  • Подставляем координаты точки MAC и MBC и получаем систему уравнений:
    40z = 10
    40z = 20
  • Решаем систему уравнений и получаем координаты точки осевого сечения:
    z = 0.25
    x = 2
    y = 1.25
  1. Ответ: координаты точки осевого сечения треугольника ABC: (2; 1.25; 0.25)

Пример 2

Дан треугольник ABC со сторонами: AB = 12, AC = 9, BC = 15. Найдите осевое сечение треугольника.

Решение

  1. Находим середины каждого из ребер треугольника:
  • Середина AB: MAB = (A + B)/2 = (-6; 0)/2 + (6; 0)/2 = (0; 0)
  • Середина AC: MAC = (A + C)/2 = (-6; 0)/2 + (0; 9)/2 = (-3; 4.5)
  • Середина BC: MBC = (B + C)/2 = (6; 0)/2 + (0; 9)/2 = (3; 4.5)
  1. Находим уравнение плоскости, проходящей через точки MAB, MAC и MBC:
  • Находим векторное произведение векторов AB и AC:
    (12; 0; 0) x (0; 9; 0) = (0; 0; 108)
  • Находим уравнение плоскости, проходящей через точку MAB и полученный вектор:
    0 * x + 0 * y + 108 * z = 108z
  • Подставляем координаты точки MAC и MBC и получаем систему уравнений:
    108z = 54
    108z = 81
  • Решаем систему уравнений и получаем координаты точки осевого сечения:
    z = 0.5
    x = 1.5
    y = 4.5
  1. Ответ: координаты точки осевого сечения треугольника ABC: (1.5; 4.5; 0.5)

Выводы

Нахождение осевого сечения треугольника может быть выполнено несколькими способами – методом пересечения биссектрис, методом пересечения высот и методом пересечения медиан. В данной статье мы рассмотрели метод пересечения биссектрис и выполнили два примера решения задач на нахождение осевого сечения треугольника. Надеемся, что эта статья поможет вам успешно решать подобные задачи.

Как найти площадь треугольника

На данной странице калькулятор поможет рассчитать площадь треугольника онлайн. Для расчета задайте высоту, ширину и длину.

Треугольник – это многоугольник с тремя сторонами.

По формуле Герона

Формула Герона для нахождения площади треугольника:

Через основание и высоту

Формула нахождения площади треугольника с помощью половины его основания и высоту:

Через две стороны и угол

Формула нахождения площади треугольника через две стороны и угол между ними:

Через сторону и два прилежащих угла

Формула нахождения площади треугольника через сторону и два прилежащих к ней угла:

Площадь прямоугольного треугольника

Прямоугольный треугольник — треугольник у которого один из углов прямой, т.е. равен 90°.

Формула нахождения площади прямоугольного треугольника через катеты:

Площадь равнобедренного треугольника через стороны

Равнобедренный треугольник — треугольник, в котором две стороны равны. А значит, равны и два угла.

Формула нахождения площади равнобедренного треугольника через две стороны:

Площадь равнобедренного треугольника через основание и угол

Формула нахождения площади равнобедренного треугольника через основание и угол:

Площадь равностороннего треугольника через стороны

Равносторонний треугольник — треугольник, в котором все стороны равны, а каждый угол равен 60°.

Формула нахождения площади равностороннего треугольника через сторону:

Площадь равностороннего треугольника через высоту

Формула нахождения площади равностороннего треугольника через высоту:

Площадь равностороннего треугольника через радиус вписанной окружности

Формула нахождения пощади равностороннего треугольника через радиус вписанной окружности:

Площадь равностороннего треугольника через радиус описанной окружности

Формула нахождения пощади равностороннего треугольника через радиус описанной окружности:

Площадь треугольника через радиус описанной окружности и три стороны

Формула нахождения пощади треугольника через радиус описанной окружности и три стороны:

Площадь треугольника через радиус вписанной окружности и три стороны

Формула нахождения пощади треугольника через радиус вписанной окружности и три стороны:

Площадь сечения треугольника

Треугольник — это геометрическая фигура, образованная тремя отрезками, которые соединяют три точки (вершины треугольника), не лежащие на одной прямой. Основными математическими характеристиками треугольника являются длины сторон и высота.

Сечение треугольника — это изображение фигуры, образованной рассечением треугольника плоскостью в поперечном направлении.

Формула для расчета площади сечения треугольника:

a — основание треугольника;
h — высота треугольника.

Смотрите также статью о всех геометрических фигурах (линейных 1D, плоских 2D и объемных 3D).

Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

На этой странице представлен самый простой онлайн калькулятор расчета площади сечения треугольника (осевого сечения), если известны основание треугольника и высота. С помощью этого калькулятора вы в один клик сможете рассчитать площадь сечения треугольника (площадь осевого сечения треугольника, площадь сечения прямоугольного треугольника, площадь сечения равнобедренного треугольника).

Как найти площадь треугольника

О чем эта статья:

8 класс, 9 класс

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные понятия

Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, не лежащими на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

Площадь — это численная характеристика, которая дает нам информацию о размере части плоскости, ограниченной замкнутой геометрической фигурой.

Если значения заданы в разных единицах измерения длины, мы не сможем узнать, какая площадь треугольника получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

Популярные единицы измерения площади:

  • квадратный миллиметр (мм 2 );
  • квадратный сантиметр (см 2 );
  • квадратный дециметр (дм 2 );
  • квадратный метр (м 2 );
  • квадратный километр (км 2 );
  • гектар (га).

Формула площади треугольника

Для решения задач применяются различные формулы, в зависимости от известных исходных данных. Далее мы рассмотрим способы решения для всех типов треугольников, в том числе частные случаи для равносторонних, равнобедренных и прямоугольных фигур.

Быстро вычислить площадь треугольника поможет наш онлайн-калькулятор. Просто введите известные вам значения и получите ответ в метрах, сантиметрах или миллиметрах.

Научиться быстро щелкать задачки на нахождение площади треугольника помогут курсы по математике от Skysmart!

Общая формула

1. Площадь треугольника через основание и высоту

, где — основание, — высота.

2. Площадь треугольника через две стороны и угол между ними

, где , — стороны, — угол между ними.

3. Площадь треугольника через описанную окружность и стороны

, где , , — стороны, — радиус описанной окружности.

4. Площадь треугольника через вписанную окружность и стороны

, где , , — стороны, — радиус вписанной окружности.

Если учитывать, что — это способ поиска полупериметра, то формулу можно записать следующим образом:

5. Площадь треугольника по стороне и двум прилежащим углам

, где — сторона, и — прилежащие углы.

6. Формула Герона для вычисления площади треугольника

Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.

, где , , — стороны, — полупериметр, который можно найти по формуле:

Для прямоугольного треугольника

Площадь треугольника с углом 90° по двум сторонам

Площадь треугольника по гипотенузе и острому углу

, где — гипотенуза, — любой из прилегающих острых углов.

Гипотенузой принято называть сторону, которая лежит напротив прямого угла.

Площадь прямоугольного треугольника по катету и прилежащему углу

, где — катет, — прилежащий угол.

Катетом принято называть одну из двух сторон, образующих прямой угол.

Площадь треугольника через гипотенузу и радиус вписанной окружности

, где — гипотенуза, — радиус вписанной окружности.

Площадь треугольника по отрезкам, на которые делит вписанная окружность его гипотенузу

, где , — части гипотенузы.

Площадь прямоугольного треугольника по формуле Герона

, где , — катеты, — полупериметр, который можно найти по формуле:

Для равнобедренного треугольника

Вычисление площади через основание и высоту

, где — основание, — высота, проведенная к основанию.

Поиск площади через боковые стороны и угол между ними

, где — боковая сторона, — угол между боковыми сторонами.

Площадь равностороннего треугольника через радиус описанной окружности

, где — радиус описанной окружности.

Площадь равностороннего треугольника через радиус вписанной окружности

, где — радиус вписанной окружности.

Площадь равностороннего треугольника через сторону

Площадь равностороннего треугольника через высоту

Таблица формул нахождения площади треугольника

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу, использовать как закладку в тетрадке или учебнике и обращаться к ней по необходимости.

источники:

http://www.center-pss.ru/math/secheniay/sechenie-treugolnika.htm

http://skysmart.ru/articles/mathematic/ploshad-treugolnika

Сечения трехмерных фигур — площади и периметр

Умеешь строить сечения трехмерных фигур – точно не пропадешь.

В этой статье я расскажу тебе об алгоритме построения сечений и разберу пример!

Поехали!

Алгоритм определения площади и периметра сечения объемных фигур

  1. Нарисовать сечение.
  2. Определить фигуру, которая получилась в этом сечении.
  3. Вспомнить формулы площади/периметра этой фигуры.
  4. Найти площадь/периметр фигуры.

Стандартное сечение имеет вид треугольника, круга или четырехугольника. Следовательно, нам необходимо искать площади именно этих фигур.

Площадь сечения

Площадь треугольника

Площадь круга

Площадь прямоугольника

Пример решения задачи

Диаметр основания конуса ( displaystyle left( AB right)) равен ( displaystyle 8) см.

Длина образующей ( displaystyle left( AC; BC right)) равна ( displaystyle 5) см (линия от вершины конуса до любой точки его основания).

Найдите площадь осевого сечения этого конуса.

Осевое сечение конуса – это равнобедренный треугольник ( displaystyle left( ABC right)), высота которого совпадает с высотой конуса ( displaystyle left( CO right)), а основание ( displaystyle left( AB right)) является диаметром основания конуса.

Значит, ( displaystyle S) осевого сечения конуса =( displaystyle S) треугольника ( displaystyle ABC).

Вспомним формулу площади треугольника:

( displaystyle S=frac{(COcdot AB)}{2} ) begin{matrix}
AB -длина стороны треугольника \
CO — высота, опущенная на сторону AB \
end{matrix}

Найдем высоту ( displaystyle Delta ABC):

Рассмотрим ( displaystyle Delta COA).

т.к. ( displaystyle OC) – высота ( displaystyle Delta ABC rightarrow angle COA=90{}^circ rightarrow Delta COA) – прямоугольный.

( displaystyle AO=frac{AB}{2}=frac{8}{2}=4) (т.к. ( displaystyle AO) – радиус окружности, ( displaystyle AB) – диаметр).

Найдем ( displaystyle AC):

По теореме Пифагора:

( displaystyle A{{C}^{2}}=C{{O}^{2}}+A{{O}^{2}}; C{{O}^{2}}=A{{C}^{2}}-A{{O}^{2}}={{5}^{2}}-{{4}^{2}}=9см; CO=sqrt{9}=3см)

Подставим получившиеся значения в формулу площади:

( displaystyle {{S}_{ABC}}=frac{left( COcdot AB right)}{2}=frac{3cdot 8}{2}=)( displaystyle 12см{{ }^{2}})

Площадь осевого сечения этого конуса равна ( displaystyle 12см{{ }^{2}}).

Самые бюджетные курсы по подготовке к ЕГЭ на 90+

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

Содержание:

Великий греческий ученый Архимед был очень взволнован, когда он обнаружил, что отношение площади поверхности шара и описанного около него цилиндра и отношение их объемов равно 2:3. Великий математик, физик, инженер, Архимед, среди всех своих работ самой значимой считал именно эту. Он завещал на своей могильной плите выгравировать доказательство данной теоремы. Из истории известно, что долгое время его родной город Сиракузы, располагающийся на Сицилии, противостоял римлянам именно благодаря оружию, которое изобрел Архимед. Поэтому при взятии города римский военачальники приказал сохранить ученому жизнь. Но римский воин, который не знал Архимеда в лицо, убил его. Великий философ и писатель Цицерон потратил много времени, чтобы отыскать могилу Архимеда (по историческим сведениям он нашел ее через 137 лет). Это дело Цицерона стало идеей для работ многих художников.

Определение фигур вращения

Гончарное ремесло позволяет создавать керамическую посуду из глины. Форму глиняной лепешке придают вращением вокруг оси. Затем полученную форму обжигают. Это ремесло живо и по сей день. В различных районах Азербайджана есть ремесленники, которые изготавливают керамическую посуду. Исследуйте принцип работы по которому кусок глины приобретает какую-либо форму.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Плоские фигуры (плоская часть ограниченная кривой), совершая один полный оборот вокруг определенной оси, образуют пространственные фигуры. Эта ось называется осью вращении.

Цилиндр, конус и сфера являются простыми пространственными фигурами, полученными при вращении.

Например, при вращении прямоугольного треугольника вокруг одного из катетов получается конус, при вращении прямоугольника вокруг стороны образуется цилиндр, а при вращении полукруга вокруг диаметра — шар.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Цилиндр

Наглядно образование фигур вращения можно увидеть на примере вращающихся стеклянных дверей, которые мы часто видим в общественных зданиях, отелях и больницах. Прямоугольный слой двери, прикрепленный к неподвижной стойке, при вращении очерчивает цилиндр.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Цилиндром называется пространственная фигура, образованная двумя параллельными и конгруэнтными плоскими фигурами, которые совпадают при параллельном переносе, и отрезками, соединяющими соответствующие точки данных фигур. Плоские фигуры называются основаниями цилиндра, отрезки, соединяющие соответствующие точки основания называются образующими цилиндра. Если образующая перпендикулярна основанию, то цилиндр называется прямым, иначе — наклонным. Расстояние между основаниями называется высотой цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

На рисунках ниже изображены прямые и наклонные цилиндрические фигуры.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сравнивая рисунки, изображенные ниже, можно сделать вывод, что призму можно рассматривать как частный случай цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Прямой цилиндр, в основании которого лежит круг, называют прямым круговым цилиндром.

Далее, говоря о цилиндре, мы будем иметь в виду прямой круговой цилиндр. В любом другом случае будут отмечены его особенности.

Прямой круговой цилиндр также можно рассматривать как фигуру, полученную вращением прямоугольника вокруг одной из его сторон. Высота прямого кругового цилиндра равна его образующей. Радиусом цилиндра называется радиус круга в основании.

Вращая прямоугольник вокруг любой стороны, можно получить цилиндр, высота которого равна стороне прямоугольника.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Прямая, проходящая через центры оснований прямого кругового цилиндра называется осью цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности цилиндра

Площадь боковой и полной поверхностей цилиндра.

Изобразите на листе бумаги рисунки разверток цилиндров различных размеров, вырежьте и склейте цилиндры.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Мустафа красит стену цилиндрической кистью. Чтобы подсчитать время, потраченное на покраску, он захотел узнать, какую площадь покрывает кисть при одном полном обороте? Какие советы вы могли бы дать мальчику?

Так как кисть имеет цилиндрическую форму, то за один полный оборот кисть покрывает площадь в форме прямоугольника, равную боковой поверхности цилиндра.

Полная поверхность цилиндра находится но формуле схожей с формулой полной поверхности призмы. Полная поверхность цилиндра состоит из боковой поверхности и двух конгруэнтных кругов.

Боковую поверхность цилиндра с высотой Фигуры вращения: цилиндр, конус, шар - с примерами решения и радиусом Фигуры вращения: цилиндр, конус, шар - с примерами решения можно рассматривать как свернутый вокруг окружности прямоугольник со сторонами Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Боковая поверхность цилиндра равна произведению длины окружности основания и высоты.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь полной поверхности цилиндра равна сумме площади боковой поверхности и площадей оснований

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №1

Найдите площадь полной поверхности цилиндра выстой 12 см и радиусом 5 см.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №2

По данным рисунка, найдите площадь боковой поверхности прямого цилиндра, основанием которой являются полукруг.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №3

По данным на рисунке найдите площадь полной поверхности прямого цилиндра, основанием которой является круговой сектор с углом 40°.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: известно, что Фигуры вращения: цилиндр, конус, шар - с примерами решения

По формуле площади сектора:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Боковая поверхность фигуры равна Фигуры вращения: цилиндр, конус, шар - с примерами решения части боковой поверхности цилиндра с радиусом 9 см и высотой 20 см плюс площадь двух конгруэнтных прямоугольников размерами Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Таким образом,

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Конус

Конусом называется пространственная фигура, образованная всеми отрезками, соединяющими какую-либо плоскую фигуру с точкой, не принадлежащей данной плоскости. Плоскую фигуру называют основанием конуса, а точку —вершиной конуса.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Перпендикуляр, проведенный из вершины конуса на плоскость его основания, называется высотой конуса. Конус, в основании которого лежит круг, называется круговым конусом. Если ортогональная проекция вершины конуса лежит в центре основания, то конус называется прямым круговым конусом. Отрезок, соединяющий вершину конуса с любой точкой окружности основания кругового конуса, называется образующей конуса. В дальнейшем, говоря о конусе, будем иметь ввиду прямой круговой конус.

Конус можно рассматривать как фигуру, образованную вращением прямоугольного треугольника вокруг одного из катетов.

Прямая, выходящая из вершины конуса и проходящая через центр основания, называется осью конуса, радиус основания называется радиусом конуса. Для образующей, высоты и радиуса конуса справедливо отношение Фигуры вращения: цилиндр, конус, шар - с примерами решения (по теореме Пифагора)

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сооружение конуса

Известно, что при сворачивании прямоугольника можно получить цилиндр. Скручивая круговой сектор можно соорудить конус.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Радиус сектора равен образующей конуса, а длина дуги сектора равна длине окружности основания.

Боковая поверхность конуса, полная поверхность конуса

Поверхность конуса состоит из боковой поверхности и круга в основании. На рисунке показаны радиус основания Фигуры вращения: цилиндр, конус, шар - с примерами решения и образующая Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Боковая поверхность конуса — круговой сектор с радиусом Фигуры вращения: цилиндр, конус, шар - с примерами решения и соответствующим центральным углом Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит, площадь сектора и есть площадь боковой поверхности.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит, сектор составляет Фигуры вращения: цилиндр, конус, шар - с примерами решения часть окружности.

* Зная, что площадь круга Фигуры вращения: цилиндр, конус, шар - с примерами решения тогда Фигуры вращения: цилиндр, конус, шар - с примерами решения часть площади круга будет Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит,

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Боковая поверхность конуса равна произведению половины длины окружности основания и образующей.

* Площадь полной поверхности конуса

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №4

По рисунку найдите площадь боковой и полной поверхностей конуса.

Решение: Дано: Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Найти: Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения

Чтобы найти образующую Фигуры вращения: цилиндр, конус, шар - с примерами решения применим теорему Пифагора

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сечения цилиндра и конуса плоскостью

Сечения поверхности конуса плоскостью (теория конических сечений) считались одной из вершин античной геометрии. Исследования Аполлония (3-й в.до н.э.) показали, что сечением плоскостью конуса, с бесконечной образующей (лучом) является: эллине (плоскость пересекает все образующие), парабола (плоскость сечения параллельна одной из образующих) или ветвь гиперболы (плоскость сечения параллельна двум образующим).

Сечения цилиндра плоскостью

Сечением цилиндра плоскостью, параллельной основанию, является круг. Сечение цилиндра плоскостью, проходящей через ось симметрии, называется осевым сечением. Осевое сечение цилиндра является прямоугольником со сторонами Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения Значит, Фигуры вращения: цилиндр, конус, шар - с примерами решения Цилиндр, осевое сечение которого является квадратом Фигуры вращения: цилиндр, конус, шар - с примерами решения называется равносторонним цилиндром.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сечения конуса плоскостью

Сечением конуса плоскостью, параллельной основанию, является круг. Сечение конуса, проходящее через ось конуса называется осевым сечением конуса. Это сечение является равнобедренным треугольником, боковые стороны которого являются образующими, а основание равно диаметру конуса: Фигуры вращения: цилиндр, конус, шар - с примерами решения Если осевое сечение конуса является правильным треугольником Фигуры вращения: цилиндр, конус, шар - с примерами решения то конус называется равносторонним конусом.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №5

Сечением цилиндра плоскостью, проведенного параллельно оси цилиндра на расстоянии 3 см от оси, является квадрат, площадь которого равна 64 Фигуры вращения: цилиндр, конус, шар - с примерами решения Найдите площадь полной поверхности цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: сначала найдем радиус и высоту цилиндра. По условию Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения Отсюда Фигуры вращения: цилиндр, конус, шар - с примерами решения значит Фигуры вращения: цилиндр, конус, шар - с примерами решения Из Фигуры вращения: цилиндр, конус, шар - с примерами решения Фигуры вращения: цилиндр, конус, шар - с примерами решения отсюда Фигуры вращения: цилиндр, конус, шар - с примерами решения Таким образом, Фигуры вращения: цилиндр, конус, шар - с примерами решения

Усеченный конус и площадь поверхности

Усеченный конус

Если параллельно основанию прямого кругового конуса провести плоскость, то получим маленький конус и усеченный конус.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Усеченным конусом называется часть конуса, заключенная между основанием и секущей плоскостью, параллельной основанию.

Боковая поверхность усеченного конуса равна разности боковых поверхностей большого конуса и маленького конуса, отсеченного плоскостью, параллельной основанию, от большого конуса. Используя обозначения на рисунке, можно записать:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Из подобия треугольников запишем следующее отношение Фигуры вращения: цилиндр, конус, шар - с примерами решения

Тогда, подставив Фигуры вращения: цилиндр, конус, шар - с примерами решения или Фигуры вращения: цилиндр, конус, шар - с примерами решения в формулу для нахождения боковой поверхности, получим:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

В данной формуле введем обозначение Фигуры вращения: цилиндр, конус, шар - с примерами решения среднего радиуса

усеченного конуса. Тогда

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Полная поверхность усеченного конуса равна сумме боковой поверхности и площадей нижнего и верхнего оснований.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №6

Конус высотой 8 см и радиусом 6 см рассечен плоскостью, параллельной основанию. Высота полученного усеченного конуса равна 4 см. Найдите площади боковой и полной поверхностей усеченного конуса

Решение: дано: Фигуры вращения: цилиндр, конус, шар - с примерами решения

Найти:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности шара и его частей

Шаром называется множество всех точек пространства находящихся от данной точки на расстоянии, не больше данного. Данная точка называется центром шара, данное расстояние радиусом Фигуры вращения: цилиндр, конус, шар - с примерами решения шара.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Множество всех точек, расположенных на расстоянии Фигуры вращения: цилиндр, конус, шар - с примерами решения от центра шара, образует поверхность шара. Поверхность шара называется сферой. Прямая, соединяющая любые две точки на поверхности шара, называется хордой Фигуры вращения: цилиндр, конус, шар - с примерами решения Хорда, проходящая через центр шара называется диаметром шара Фигуры вращения: цилиндр, конус, шар - с примерами решения

Шар получается, при вращении полукруга вокруг диаметра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения Любое сечение шара плоскостью является кругом. Центр этого круга является основанием перпендикуляра, проведенного к плоскости и проходящего через центр шара. Если Фигуры вращения: цилиндр, конус, шар - с примерами решения — радиус шара, Фигуры вращения: цилиндр, конус, шар - с примерами решения — расстояние между плоскостью и центром, а Фигуры вращения: цилиндр, конус, шар - с примерами решения — радиус сечения, то получим:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №7

Шар радиуса 10 см пересечена плоскостью на расстояние

8 см от центра. Вычислите площадь сечения.

Решение: По условию Фигуры вращения: цилиндр, конус, шар - с примерами решения

Тогда Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сечение шара плоскостью, проходящей через центр шара, называется

большим кругом. Центр, радиус и диаметр большого круга равны

центру, радиусу и диаметру шара.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Также для шара известны следующие части:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности шара

Площадь поверхности шара находится по формуле Фигуры вращения: цилиндр, конус, шар - с примерами решения Здесь Фигуры вращения: цилиндр, конус, шар - с примерами решения радиус шара.

В окружность радиусом Фигуры вращения: цилиндр, конус, шар - с примерами решения впишем правильный многоугольник. Поверхность шара, полученного при вращении относительно диаметра соответствующих кругов, можно рассматривать как сумму пределов боковых поверхностей фигур — конуса,усеченного конуса и цилиндра, образующие которых являются сторонами данного многоугольника.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Покажем, что при вращении сторон многоугольника вокруг оси получается тело (конус, усеченный конус, цилиндр), площадь боковой поверхности которого равна площади боковой поверхности цилиндра, высота которого равна высоте данного тела, радиус основания равен апофеме многоугольника. Обозначим апофему многоугольника через Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения— площадь боковой поверхности конуса с образующей Фигуры вращения: цилиндр, конус, шар - с примерами решения Так как Фигуры вращения: цилиндр, конус, шар - с примерами решениято Фигуры вращения: цилиндр, конус, шар - с примерами решения Умножим на 2 обе части равенства

Фигуры вращения: цилиндр, конус, шар - с примерами решения Учитывая, что Фигуры вращения: цилиндр, конус, шар - с примерами решения Фигуры вращения: цилиндр, конус, шар - с примерами решения получим Фигуры вращения: цилиндр, конус, шар - с примерами решения Значит, Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения — площадь боковой поверхности усеченного конуса.

Зная, что Фигуры вращения: цилиндр, конус, шар - с примерами решения получим, что Фигуры вращения: цилиндр, конус, шар - с примерами решения

Так как Фигуры вращения: цилиндр, конус, шар - с примерами решения то Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Умножим на 2 обе части равенства Фигуры вращения: цилиндр, конус, шар - с примерами решения Учитывая,что

Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения получим Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит, Фигуры вращения: цилиндр, конус, шар - с примерами решения

Понятно, что площадь боковой поверхности цилиндра с образующей Фигуры вращения: цилиндр, конус, шар - с примерами решения равна Фигуры вращения: цилиндр, конус, шар - с примерами решения Аналогично получаем, что площадь боковых поверхностей усеченного конуса с образующей Фигуры вращения: цилиндр, конус, шар - с примерами решения и конуса с образующей Фигуры вращения: цилиндр, конус, шар - с примерами решения можно найти но формулам Фигуры вращения: цилиндр, конус, шар - с примерами решения Таким образом, поверхность тела, полученного вращением многоугольника вокруг диаметра, равна :

Фигуры вращения: цилиндр, конус, шар - с примерами решения

При бесконечном увеличении количества сторон многоугольника значение

Фигуры вращения: цилиндр, конус, шар - с примерами решения стремится к радиусу, а площадь поверхности полученного тела к площади

поверхности шара, т. е. Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности шара

Доказательство Архимеда:

Пусть, в правильный многоугольник вписан круг, как показано на рисунке.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

При вращении получается шар и покрывающее шар тело

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Это тело состоит из двух усеченных конусов и цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

При увеличении количества сторон до бесконечности, тело будет стремится принять форму шара.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Найдя сумму поверхностей усеченных конусов и цилиндра, можно найти площадь поверхности шара. Рассмотрим осевое сечение одного из усеченных конусов. Пусть радиус средней окружности равен Фигуры вращения: цилиндр, конус, шар - с примерами решения а высота Фигуры вращения: цилиндр, конус, шар - с примерами решения радиус шара Фигуры вращения: цилиндр, конус, шар - с примерами решения сторона многоугольника, описанного вокруг большего круга равна Фигуры вращения: цилиндр, конус, шар - с примерами решения Площадь боковой поверхности усеченного конуса будет Фигуры вращения: цилиндр, конус, шар - с примерами решения а также Фигуры вращения: цилиндр, конус, шар - с примерами решения т. е. боковая поверхность усеченного конуса равна боковой поверхности цилиндра, радиус основания которого равен Фигуры вращения: цилиндр, конус, шар - с примерами решения и высота Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит, фигуру, описанную вокруг шара, можно принять за цилиндр. Отсюда получается, что площадь поверхности шара равна площади боковой поверхности цилиндра с радиусом основания Фигуры вращения: цилиндр, конус, шар - с примерами решения и высотой Фигуры вращения: цилиндр, конус, шар - с примерами решения

Т. е., Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь сегмента шара

Часть шара, отсекаемая плоскостью сечения называется сегментом. Круг, полученный при сечении плоскостью, называется основанием сегмента. Часть диаметра шара, перпендикулярного основанию сегмента, расположенная внутри него, называется высотой сегмента.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Из доказательства формулы поверхности шара, аналогично, можно показать, что для шара радиуса Фигуры вращения: цилиндр, конус, шар - с примерами решения площадь сферической поверхности сегмента высотой Фигуры вращения: цилиндр, конус, шар - с примерами решения вычисляется по формуле Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь шарового пояса

Часть поверхности шара, расположенная между двумя параллельными плоскостями, называется шаровым поясом. Расстояние между параллельными плоскостями называется высотой шарового пояса.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности шарового пояса можно найти, как разность площадей сегментов, отсекаемых параллельными плоскостями.

Площадь поверхности шарового пояса высотой Фигуры вращения: цилиндр, конус, шар - с примерами решения отсекаемого от шара радиуса Фигуры вращения: цилиндр, конус, шар - с примерами решения вычисляется по формуле Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №8

Радиус шара разбит на три равные части и через эти точки проведены перпендикулярные к радиусу плоскости. Зная, что радиус шара Фигуры вращения: цилиндр, конус, шар - с примерами решения найдите площадь поверхности шарового пояса.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: если Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения то площадь поверхности шарового пояса будет Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площади поверхностей подобных фигур

Отношение соответствующих линейных размеров подобных пространственных фигур постоянно и равно коэффициенту подобия.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Например, чтобы проверить подобны ли конусы на рисунке, найдем отношение соответствующих размеров. Если эти конусы подобны, то отношение радиусов должно быть равно отношению высот.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит эти конусы подобны и коэффициент подобия равен 2. Это говорит о том, что если все линейные размеры маленького конуса пропорционально увеличить в два раза, то получим конус, конгруэнтный большому конусу. Или наоборот, пропорционально уменьшив размеры большого конуса в два раза, получим конус, конгруэнтный маленькому. Если пропорционально увеличить или уменьшить размеры какой-либо фигуры, то можно получить подобные фигуры.

Отношение площадей подобных фигур равно квадрату отношения соответствующих линейных размеров или квадрату коэффициента подобия

Фигуры вращения: цилиндр, конус, шар - с примерами решения

  • Объем фигур вращения
  • Длина дуги кривой
  • Геометрические фигуры и их свойства
  • Основные фигуры геометрии и их расположение в пространстве
  • Вписанные и описанные многоугольники
  • Площадь прямоугольника
  • Объем пространственных фигур
  • Объёмы поверхностей геометрических тел

Понравилась статья? Поделить с друзьями:
  • Как найти подсос воздуха видео
  • Как найти данные на транспортное средство
  • Как мне найти любимую девушку
  • Как вы нашли свою стезю
  • Smart status bad backup and replace как исправить asus ноутбук