Как найти основание ромба если известна угол

Сторона ромба онлайн

С помощю этого онлайн калькулятора ромба можно найти длину стороны ромба по известным элементам. Для нахождения стороны ромба введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже.

Содержание

  1. Сторона ромба через высоту и площадь
  2. Сторона ромба через высоту и угол
  3. Сторона ромба через диагонали
  4. Сторона ромба через угол и противолежащую диагональ
  5. Сторона ромба через угол и диагональ из данного угла
  6. Сторона ромба через площадь и радиус вписанной в ромб окружности
  7. Сторона ромба через площадь и угол

1. Сторона ромба через высоту и площадь

Пусть известны площадь и высота ромба (Рис.1).

Покажем, что сторона ромба через высоту и площадь вычисляется формулой

Формула площади ромба через сторону и высоту имеет следующий вид:

Откуда легко вывести формулу (1).

2. Сторона ромба через высоту и угол

Рассмотрим ромб с высотой h и углом α между сторонами (Рис.2). Выведем формулу вычисления стороны ромба через высоту и угол.

Для прямоугольного треугольника AHB применим теорему синусов:

Откуда получим формулу вычисления высоты ромба через сторону и угол между сторонами:

Заметим, что формула (2) справедлива для любого угла ромба, как для острого, так и для тупого. Действительно. Из четвертого свойста ромба (см. статью Ромб) следует, что сумма соседних углов ромба равна 180°. Тогда для угла C можно записать: (small angle C=180°-alpha.) Следовательно (small sin angle C=sin(180°-alpha)=sin alpha.) Получили, что синусы углов ромба равны. Поэтому в качестве угла между сторонами ромба можно выбрать любой угол ромба.

3. Сторона ромба через диагонали

Выведем формулу вычисления сторон ромба через диагонали.

Выразим сторону a ромба через диагонали. Поскольку диагонали ромба перпендикулярны и делятся пополам точкой их пересечения (свойства 5 и 6 ромба), то диагонали делят ромб на четыре равных прямоугольных треугольника (Рис.3).

Применим к прямоугольному треугольнику AOB теорему Пифагора:

Откуда:

4. Сторона ромба через угол и противолежащую диагональ

Пусть известны один из углов α=∠ABC ромба и противолежащая диагональ d=AC (Рис.4). Выведем формулу вычисления сторон ромба.

Проведем другой диагональ BD. Как было отмечено выше, диагонали ромба перпендикулярны и делятся пополам точкой их пересечения. Кроме этого, диагонали ромба делят углы ромба пополам. Применим теорему синусов для прямоугольного треугольника AOB:

Откуда получим формулу стороны ромба через угол и противолежащую диагональ:

Формулу (4) можно записать и в другом виде, применяя формулу синуса половинного угла:

Подставляя (5) в (4), получим:

или

5. Сторона ромба через угол и диагональ из данного угла

Пусть известны один из углов α=∠ABC ромба и диагональ из данного угла d=BD (Рис.5). Выведем формулу вычисления высоты ромба.

Проведем другой диагональ AC. Как было отмечено в выше, диагонали ромба перпендикулярны и делятся пополам точкой их пересечения. Для прямоугольного треугольника AOB, имеем:

Учитывая, что ( small BO=frac{large d}{large 2}) и ( small angle ABO=frac{large alpha}{large 2}), формулу (13) можно записать так:

или

Формулу (8) можно записать и в другом виде, применяя формулу косинуса половинного угла:

Подставляя (9) в (8), получим:

или

6. Сторона ромба через площадь и радиус вписанной в ромб окружности

В статье Площадь ромба показали, что площадь ромба через сторону и радиус вписанной в ромб окружности вычисляется формулой

Из формулы (11) получим:

7. Сторона ромба через площадь и угол

В статье Площадь ромба показали, что площадь ромба через сторону и угол вычисляется формулой

Из формулы (13) найдем a:

Получили формулу сторон ромба через площадь и угол.

Если известны сторона и угол ромба, то, используя свойства ромба, можно найти остальные его элементы.

1) Сторона ромба равна a, а острый угол — α.

storona-i-ugol-rombaAD=AB=a, ∠A=α.

Площадь ромба равна 

    [S = {a^2}sin alpha ,]

периметр — P=4a.

Проведём диагонали ромба. AC ∩ BD=O.

По свойствам ромба, диагонали являются биссектрисами его углов, пересекаются под прямым углом и в точке пересечения делятся пополам.

storona-i-ostryj-ugol-rombaИз прямоугольного треугольника AOB AO=AB∙sin∠BAO, BO=AB∙cos∠BAO, AC=2∙AO, BD=2∙BO,

    [AC = 2acos frac{alpha }{2},BD = 2asin frac{alpha }{2}.]

dany-storona-i-ugol-romba-najti-vysotuПроведём высоту BH.

Из прямоугольного треугольника ABH BH=AB∙sin∠A,

    [BH = h = asin alpha .]

Радиус вписанной окружности равен половине высоты ромба:

    [r = frac{1}{2}h = frac{1}{2}asin alpha .]

2) Сторона ромба рана a, а тупой угол — β.

storona-i-bolshij-ugol-rombaAD=AB=a, ∠B=β.

Площадь ромба равна

    [S = {a^2}sin beta .]

Из прямоугольного треугольника ABO AO=AB∙sin∠ABO, BO=AB∙cos∠ABO,

    [AO = asin frac{beta }{2},AC = 2asin frac{beta }{2},]

    [BO = acos frac{beta }{2},BD = 2acos frac{beta }{2}.]

∠A+∠B=180º (как сумма внутренних односторонних углов при AD∥BC и секущей AB).

Отсюда sin∠A=sin(180º-∠B)=sin∠B=sinβ.

Из прямоугольного треугольника ABH высота равна BH=AB∙sin∠A=a∙sinβ, радиус вписанной окружности —

    [r = frac{1}{2}h = frac{1}{2}asin beta .]

Зная сторону ромба, можно сразу найти его высоту, периметр и площадь, без переменных второго порядка. Высота ромба равна его стороне, умноженной на синус угла α, периметр ромба, зная сторону, можно найти, умножив ее на четыре (количество сторон), а площадь представляет собой произведение стороны ромба на высоту, то есть, преобразуя через формулу высоты, — сторона ромба в квадрате, умноженная на синус угла α. (рис.115.1)
h=a sin⁡α
P=4a
S=ah=a^2 sin⁡α

Второй угол ромба вычисляется как разность 180 градусов и известного угла, исходя из того, что противоположные углы ромба равны по значению, а сумма всех углов равна 360 градусам.
β=180°-α

Диагонали ромба можно найти из равнобедренных треугольников, которые они образуют поочередно со сторонами ромба. Используя теорему косинусов для равнобедренных треугольников, диагонали через сторону и угол будут равны квадратному корню из двух разностей стороны ромба в квадрате и косинуса противоположного диагонали угла. (рис.115.4)
d_1=√(2(a^2-cos⁡α))
d_2=√(2(a^2-cos⁡β))=√(2(a^2+cos⁡α))

Найти радиус окружности, вписанной в ромб, через сторону ромба и угол α можно, заменив в формуле высоту на произведение стороны и синуса угла. (рис.115.3)
r=h/2=(a sin⁡α)/2

Радиус вписанной окружности в ромб

1. Формулы радиуса вписанной окружности если известны: диагональ, стороны и угол

a — сторона ромба

D — большая диагональ

d — меньшая диагональ

α — острый угол

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в ромб через диагонали ( r ) :

Формула радиуса вписанной окружности в ромб через сторону и угол ( r ) :

Формула радиуса вписанной окружности в ромб через диагональ и угол ( r ) :

Формула радиуса вписанной окружности в ромб через диагональ и сторону ( r ) :

2. Радиус вписанной окружности ромба, равен половине его высоты

a — сторона ромба

h — высота

О — центр вписанной окружности

r — радиус вписанной окружности

Формула радиуса вписанной окружности в ромб ( r ) :

Сторона ромба онлайн

С помощю этого онлайн калькулятора ромба можно найти длину стороны ромба по известным элементам. Для нахождения стороны ромба введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже.

Открыть онлайн калькулятор

1. Сторона ромба через высоту и площадь

Пусть известны площадь и высота ромба (Рис.1).

Покажем, что сторона ромба через высоту и площадь вычисляется формулой

(small a=frac<large S><large h>.) (1)

Формула площади ромба через сторону и высоту имеет следующий вид:

Откуда легко вывести формулу (1).

2. Сторона ромба через высоту и угол

Рассмотрим ромб с высотой h и углом α между сторонами (Рис.2). Выведем формулу вычисления стороны ромба через высоту и угол.

Для прямоугольного треугольника AHB применим теорему синусов:

(small frac<large a><large sin 90°>=frac<large h><large sin alpha>.)

Откуда получим формулу вычисления высоты ромба через сторону и угол между сторонами:

(small a=frac<large h><large sin alpha>.) (2)

Заметим, что формула (2) справедлива для любого угла ромба, как для острого, так и для тупого. Действительно. Из четвертого свойста ромба (см. статью Ромб) следует, что сумма соседних углов ромба равна 180°. Тогда для угла C можно записать: (small angle C=180°-alpha.) Следовательно (small sin angle C=sin(180°-alpha)=sin alpha.) Получили, что синусы углов ромба равны. Поэтому в качестве угла между сторонами ромба можно выбрать любой угол ромба.

3. Сторона ромба через диагонали

Выведем формулу вычисления сторон ромба через диагонали.

Выразим сторону a ромба через диагонали. Поскольку диагонали ромба перпендикулярны и делятся пополам точкой их пересечения (свойства 5 и 6 ромба), то диагонали делят ромб на четыре равных прямоугольных треугольника (Рис.3).

Применим к прямоугольному треугольнику AOB теорему Пифагора:

(small a^2= left( frac<large d_1> <large 2>right)^2+left( frac<large d_2> <large 2>right)^2.)

(small a= frac<sqrt<large d_1^2+d_2^2>> <large 2>) (3)

4. Сторона ромба через угол и противолежащую диагональ

Пусть известны один из углов α=∠ABC ромба и противолежащая диагональ d=AC (Рис.4). Выведем формулу вычисления сторон ромба.

Проведем другой диагональ BD. Как было отмечено выше, диагонали ромба перпендикулярны и делятся пополам точкой их пересечения. Кроме этого, диагонали ромба делят углы ромба пополам. Применим теорему синусов для прямоугольного треугольника AOB:

(small frac<large a><large sin 90°>=frac<large frac<2>><large sin frac<alpha><2>>.)

Откуда получим формулу стороны ромба через угол и противолежащую диагональ:

(small a=frac<large d><large 2 cdot sin frac< alpha>< 2>>.) (4)

Формулу (4) можно записать и в другом виде, применяя формулу синуса половинного угла:

(small sin frac< alpha>< 2>=sqrt<frac<large 1-cos alpha><large 2 >>.) (5)

Подставляя (5) в (4), получим:

(small a=frac<large d><large 2 cdot sqrt<frac<large 1-cos alpha><large 2 >>>.)

(small a=large frac< d>< sqrt< 2-2 cdot cos alpha>>.) (6)

5. Сторона ромба через угол и диагональ из данного угла

Пусть известны один из углов α=∠ABC ромба и диагональ из данного угла d=BD (Рис.5). Выведем формулу вычисления высоты ромба.

Проведем другой диагональ AC. Как было отмечено в выше, диагонали ромба перпендикулярны и делятся пополам точкой их пересечения. Для прямоугольного треугольника AOB, имеем:

(small frac<large OB > <large a>=cos angle ABO.) (7)

Учитывая, что ( small BO=frac<large d><large 2>) и ( small angle ABO=frac<large alpha><large 2>), формулу (13) можно записать так:

(small frac< large frac<large d > <large 2>><large a>= cos frac<large alpha> <large 2>.)

(small a=frac<large d><large 2 cdot cos large frac< alpha>< 2>>.) (8)

Формулу (8) можно записать и в другом виде, применяя формулу косинуса половинного угла:

(small cos frac< alpha>< 2>=sqrt<frac<large 1+cos alpha><large 2 >>.) (9)

Подставляя (9) в (8), получим:

(small a=frac<large d><large 2 cdot sqrt<frac<large 1+cos alpha><large 2 >>>.)

(small a=large frac< d>< sqrt< 2+2 cdot cos alpha>>.) (10)

6. Сторона ромба через площадь и радиус вписанной в ромб окружности

В статье Площадь ромба показали, что площадь ромба через сторону и радиус вписанной в ромб окружности вычисляется формулой

(small S= 2 cdot a cdot r.) (11)

Из формулы (11) получим:

( small a=frac<large S> <large 2 cdot r>) (12)

7. Сторона ромба через площадь и угол

В статье Площадь ромба показали, что площадь ромба через сторону и угол вычисляется формулой

(small S= a^2 cdot sin alpha.) (13)

Из формулы (13) найдем a:

( small a=frac<large S> <large sin alpha>) (14)

Получили формулу сторон ромба через площадь и угол.

Ромб. Формулы, признаки и свойства ромба

Признаки ромба

∠BAC = ∠CAD или ∠BDA = ∠BDC

Δ ABO = Δ BCO = Δ CDO = Δ ADO

Основные свойства ромба

∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC

AC 2 + BD 2 = 4AB 2

Сторона ромба

Формулы определения длины стороны ромба:

1. Формула стороны ромба через площадь и высоту:

2. Формула стороны ромба через площадь и синус угла:

3. Формула стороны ромба через площадь и радиус вписанной окружности:

4. Формула стороны ромба через две диагонали:

5. Формула стороны ромба через диагональ и косинус острого угла ( cos α ) или косинус тупого угла ( cos β ):

6. Формула стороны ромба через большую диагональ и половинный угол:

7. Формула стороны ромба через малую диагональ и половинный угол:

8. Формула стороны ромба через периметр:

Диагонали ромба

Формулы определения длины диагонали ромба:

d 1 = a √ 2 + 2 · cosα

d 1 = a √ 2 — 2 · cosβ

d 2 = a √ 2 + 2 · cosβ

d 2 = a √ 2 — 2 · cosα

d 1 = 2 a · cos ( α /2)

d 1 = 2 a · sin ( β /2)

d 2 = 2 a · sin ( α /2)

d 2 = 2 a · cos ( β /2)

7. Формулы диагоналей через площадь и другую диагональ:

8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:

Периметр ромба

Периметром ромба называется сумма длин всех сторон ромба.

Длину стороны ромба можно найти за формулами указанными выше.

Формула определения длины периметра ромба:

Площадь ромба

Формулы определения площади ромба:

4. Формула площади ромба через две диагонали:

5. Формула площади ромба через синус угла и радиус вписанной окружности:

6. Формулы площади через большую диагональ и тангенс острого угла ( tgα ) или малую диагональ и тангенс тупого угла ( tgβ ):

S = 1 d 1 2 · tg ( α /2)
2
S = 1 d 2 2 · tg ( β /2)
2

Окружность вписанная в ромб

Формулы определения радиуса круга вписанного в ромб:

1. Формула радиуса круга вписанного в ромб через высоту ромба:

2. Формула радиуса круга вписанного в ромб через площадь и сторону ромба:

3. Формула радиуса круга вписанного в ромб через площадь и синус угла:

4. Формулы радиуса круга вписанного в ромб через сторону и синус любого угла:

5. Формулы радиуса круга вписанного в ромб через диагональ и синус угла:

6. Формула радиуса круга вписанного в ромб через две диагонали:

r = d 1 · d 2
2√ d 1 2 + d 2 2

7. Формула радиуса круга вписанного в ромб через две диагонали и сторону:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

источники:

http://matworld.ru/geometry/storona-romba.php

http://ru.onlinemschool.com/math/formula/rhombus/


Свойства ромба:

1. Ромб — частный случай параллелограмма

2. Противоположные стороны — параллельны

3. Все четыре стороны — равны

4. Диагонали пересекаются под прямым углом (90°)

5. Диагонали являются биссектрисами

сторона ромба

a — сторона ромба

D — большая диагональ

d — меньшая диагональ

α — острый угол

β — тупой угол

Формула стороны через диагонали, ( a ):

Формула стороны ромба

Формулы стороны через диагональ и угол, ( a ):

Формула стороны ромба

Формула стороны ромба

Формулы стороны через диагональ и половинный угол, ( a ):

Формула стороны ромба

Формула стороны ромба

Формулы стороны через диагонали и угол, ( a ):

Формула стороны ромба

Формулы стороны через площадь ромба ( S ) и угол, ( a ):

Формула стороны ромба

Формулы стороны через периметр ромба ( P ) и угол, ( a ):

Формула стороны ромба



Формулы площади ромба

Формула периметра ромба

Все формулы по геометрии

Подробности

Опубликовано: 27 ноября 2011

Обновлено: 13 августа 2021

Понравилась статья? Поделить с друзьями:
  • Как найти энергию в космосе
  • Как найти хороших друзей подростку
  • Как найти mysql на linux
  • Как найти вербное воскресенье
  • Как найти различия между двумя файлами