Как найти острый угол равностороннего треугольника

Информация по назначению калькулятора

Треугольник — это одна из основных геометрических фигур: многоугольник с тремя углами (или вершинами) и тремя сторонами (или ребрами), которые являются прямыми отрезками.

В евклидовой геометрии любые три неколлинеарные точки определяют треугольник и единственную плоскость, то есть двумерное декартово пространство.

Сумма длин любых двух сторон треугольника всегда превышает длину третьей стороны. Это и есть неравенство треугольника.

Треугольники могут быть классифицированы в соответствии с относительной длиной их сторон:

В равностороннем треугольнике все стороны имеют одинаковую длину. Равносторонний треугольник также является равноугольным многоугольником, т.е. все его внутренние углы равны, а именно 60° — это правильный многоугольник.

В равнобедренном треугольнике две стороны имеют одинаковую длину. Равнобедренный треугольник также имеет два совпадающих угла (а именно, углы, противоположные совпадающим сторонам). Равносторонний треугольник — это равнобедренный треугольник, но не все равнобедренные треугольники являются равносторонними треугольниками.

В скалярном треугольнике все стороны имеют разную длину. Внутренние углы в скалярном треугольнике все разные.

Треугольники также могут быть классифицированы в соответствии с их внутренними углами:

Прямоугольный треугольник имеет один внутренний угол 90° (прямой угол). Сторона, противоположная прямому углу, является гипотенузой; это самая длинная сторона в прямоугольном треугольнике. Две другие стороны — катеты треугольника.

Тупой треугольник имеет один внутренний угол, больший 90° (тупой угол).

Острый треугольник имеет внутренние углы, которые все меньше 90° (три острых угла). Равносторонний треугольник — это острый треугольник, но не все острые треугольники являются равносторонними треугольниками.

Наклонный треугольник имеет только углы, которые меньше или больше 90°. Следовательно, это любой треугольник, который не является прямоугольным треугольником.

Онлайн калькулятор поможет найти параметры треугольника, такие как:

  • Длины сторон
  • — равны в равностороннем треугольнике

  • Углы
  • — также равны в равностороннем треугольнике

  • Высота
  • — это прямая линия, проходящая через вершину и перпендикулярная противоположной стороне (т. е. образующая прямой угол с ней)

  • Периметр
  • — равен сумме всех 3х сторон (P=AB+BC+AC)

  • Площадь
  • — равна половине произведения высоты и стороны к которой построена высота (S=1/2 * H * AC)

  • Медианы
  • Биссектрисы
  • Радиус Вписанной и Описанной окружностей
  • Диаметр Вписанной и Описанной окружностей
  • Длина Вписанной и Описанной окружностей
  • Площадь Вписанной и Описанной окружностей


Загрузить PDF


Загрузить PDF

В геометрии угол — это фигура, которая образована двумя лучами, которые выходят из одной точки (она называется вершиной угла). В большинстве случаев единицей измерения угла является градус (°) — помните, что полный угол или один оборот равен 360°. Найти значение угла многоугольника можно по его типу и значениям других углов, а если дан прямоугольный треугольник, угол можно вычислить по двум сторонам. Более того, угол можно измерить с помощью транспортира или вычислить с помощью графического калькулятора.

  1. Изображение с названием Calculate Angles Step 1

    1

    Сосчитайте число сторон многоугольника. Чтобы вычислить внутренние углы многоугольника, сначала нужно определить, сколько у многоугольника сторон. Обратите внимание, что число сторон многоугольника равно числу его углов.[1]

    • Например, у треугольника 3 стороны и 3 внутренних углов, а у квадрата 4 стороны и 4 внутренних углов.
  2. Изображение с названием Calculate Angles Step 2

    2

    Вычислите сумму всех внутренних углов многоугольника. Для этого воспользуйтесь следующей формулой: (n — 2) x 180. В этой формуле n — это количество сторон многоугольника. Далее приведены суммы углов часто встречающихся многоугольников:[2]

    • Сумма углов треугольника (многоугольника с 3-мя сторонами) равна 180°.
    • Сумма углов четырехугольника (многоугольника с 4-мя сторонами) равна 360°.
    • Сумма углов пятиугольника (многоугольника с 5-ю сторонами) равна 540°.
    • Сумма углов шестиугольника (многоугольника с 6-ю сторонами) равна 720°.
    • Сумма углов восьмиугольника (многоугольника с 8-ю сторонами) равна 1080°.
  3. Изображение с названием Calculate Angles Step 3

    3

    Разделите сумму всех углов правильного многоугольника на число углов. Правильный многоугольник это многоугольник с равными сторонами и равными углами. Например, каждый угол равностороннего треугольника вычисляется так: 180 ÷ 3 = 60°, а каждый угол квадрата находится так: 360 ÷ 4 = 90°.[3]

    • Равносторонний треугольник и квадрат — это правильные многоугольники. А у здания Пентагона (Вашингтон, США) и дорожного знака «Стоп» форма правильного восьмиугольника.
  4. Изображение с названием Calculate Angles Step 4

    4

    Вычтите сумму всех известных углов из общей суммы углов неправильного многоугольника. Если стороны многоугольника не равны друг другу, и его углы также не равны друг другу, сначала сложите известные углы многоугольника. Теперь полученное значение вычтите из суммы всех углов многоугольника — так вы найдете неизвестный угол.[4]

    • Например, если дано, что 4 угла пятиугольника равны 80°, 100°, 120° и 140°, сложите эти числа: 80 + 100 + 120 + 140 = 440. Теперь вычтите это значение из суммы всех углов пятиугольника; эта сумма равна 540°: 540 — 440 = 100°. Таким образом, неизвестный угол равен 100°.

    Совет: неизвестный угол некоторых многоугольников можно вычислить, если знать свойства фигуры. К примеру, в равнобедренном треугольнике две стороны равны и два угла равны; в параллелограмме (это четырехугольник) противоположные стороны равны и противоположные углы равны.

    Реклама

  1. Изображение с названием Calculate Angles Step 5

    1

    Помните, что в любом прямоугольном треугольнике один угол всегда равен 90°. Это так, даже если прямой угол никак не отмечен или его значение не указано. Таким образом, один угол прямоугольного треугольника всегда известен, а другие углы можно вычислить с помощью тригонометрии.[5]

  2. Изображение с названием Calculate Angles Step 6

    2

    Измерьте длину двух сторон треугольника. Самая длинная сторона прямоугольного треугольника называется гипотенузой. Прилежащая сторона это сторона, которая находится возле неизвестного угла. Противолежащая сторона — это сторона, которая находится напротив неизвестного угла. Измерьте две стороны, чтобы вычислить неизвестные углы треугольника.[6]

    Совет: воспользуйтесь графическим калькулятором, чтобы решить уравнения, или найдите онлайн-таблицу со значениями синусов, косинусов и тангенсов.

  3. Изображение с названием Calculate Angles Step 7

    3

    Вычислите синус угла, если вам известны противолежащая сторона и гипотенуза. Для этого подставьте значения в уравнение: sin(x) = противолежащая сторона ÷ гипотенуза. Например, противолежащая сторона равна 5 см, а гипотенуза равна 10 см. Разделите 5/10 = 0,5. Таким образом, sin(x) = 0,5, то есть x = sin-1 (0,5).[7]

    • Если у вас есть графический калькулятор, введите 0,5 и нажмите клавишу sin-1. Если у вас нет такого калькулятора, используйте онлайн-таблицу, чтобы найти значение угла. В нашем примере угол равен 30°.
  4. Изображение с названием Calculate Angles Step 8

    4

    Вычислите косинус угла, если вам известны прилежащая сторона и гипотенуза. Для этого подставьте значения в уравнение: cos(x) = прилежащая сторона ÷ гипотенуза. Например, прилежащая сторона равна 1,67 см, а гипотенуза равна 2 см. Разделите 1,67/2 = 0,83. Таким образом, cos(x) = 0,83, то есть x = cos-1 (0,83).[8]

    • Если у вас есть графический калькулятор, введите 0,83 и нажмите клавишу cos-1. Если у вас нет такого калькулятора, используйте онлайн-таблицу, чтобы найти значение угла. В нашем примере угол равен 33,6°.
  5. Изображение с названием Calculate Angles Step 9

    5

    Вычислите тангенс угла, если вам известны противолежащая и прилежащая стороны. Для этого подставьте значения в уравнение: tg(x) = противолежащая сторона ÷ прилежащая сторона. Например, противолежащая сторона равна 75 см, а прилежащая сторона равна 75 см. Разделите 75/100 = 0,75. Таким образом, tg(x) = 0,75, то есть x = tg-1 (0,75).[9]

    • Если у вас есть графический калькулятор, введите 0,75 и нажмите клавишу tg-1. Если у вас нет такого калькулятора, используйте онлайн-таблицу, чтобы найти значение угла. В нашем примере угол равен 36,9°.

    Реклама

Советы

  • Названия углов соответствуют их значениям. Угол в 90° — это прямой угол. Угол в 180° — это развернутый угол. Угол, который лежит между 0° и 90° — это острый угол. Угол, который лежит между 90° и 180° — это тупой угол. Угол, который лежит между 180° и 360° — это невыпуклый угол.
  • Если сумма двух углов равна 90°, они называются дополнительными. Запомните: два острых угла прямоугольного треугольника всегда являются дополнительными. Если же сумма двух углов равна 180°, они называются смежными.

Реклама

Об этой статье

Эту страницу просматривали 237 750 раз.

Была ли эта статья полезной?

Треугольник – это форма многоугольника, которая имеет три угла, образованных тремя сторонами. Каждая
из трех точек, в которых пересекаются стороны треугольника, называется его вершиной и образует
определенный угол. Стороны треугольника иногда еще называют линейными длинами, а углы – угловыми.
Сторону, противоположную определенному углу, обозначают той же буквой, что характеризует угол как
прилегающий. Стороны обозначаются латинскими буквами a, b, c, а углы – греческими α, β, γ. Зная
определенные параметры треугольника, можно найти его стороны и углы. При этом можно использовать как
линейные формулы, так и обращаться к различным теоремам, например, теореме синусов и косинусов.

  • Угол треугольника через три стороны
  • Угол прямоугольного треугольника через две стороны
  • Угол треугольника через высоту и катет
  • Угол при основании равнобедренного треугольника через
    биссектрису и боковую сторону
  • Угол при основании равнобедренного треугольника через
    биссектрису и основание
  • Угол между боковыми сторонами равнобедренного треугольника
    через биссектрису и боковую сторону
  • Острый угол прямоугольного треугольника через катет и
    площадь
  • Острый угол между боковыми сторонами равнобедренного
    треугольника через площадь и боковую сторону

Угол треугольника через три стороны

Рис 1

Для того, чтобы найти угол по трем сторонам, нужно вычислить косинус определенного угла. Согласно
теореме косинусов, «квадрат длины стороны треугольника равен сумме квадратов двух других длин его
сторон, минус удвоенное произведение этих длин сторон на косинус угла между ними». Если взять за
предмет вычисления угол β, соответственно, получаем формулу: a² = b² + c² — 2 · b · c · cos (β).
Из полученного равенства можно вычислить

cos(α) = (a² + c² — b²) / 2ac
cos(β) = (a² + b² — c²) /
2ab
cos(γ) = (b² + c² — a²) / 2cb

где a, b, c — стороны треугольника.

Цифр после
запятой:

Результат в:

Пример. Пусть a = 3, b = 7, c = 6. Cos (β) = (7² + 6² — 3²) : (2 · 7 · 6) = 19/21.
Зная косинус, нужно воспользоваться таблицей Брадиса и по ней найти угол. По таблице Брадиса, если
Cos (β) = 19/21, то β = 58,4°.

Угол прямоугольного треугольника через две стороны

Рис 2

Если известен катет и гипотенуза, угол вычисляется через синус. Если известны катеты и нужно найти
один из острых углов, то можно сделать это через вычисление тангенса.

sin(α) = cos (β) = a / c
sin(β) = cos (α) = b / c
tg(α) = ctg(β) = a
/ b
tg(β) = ctg(α) = b / a

где a, b — катеты, c — гипотенуза.

Цифр после запятой:

Результат в:

Пример. В прямоугольном треугольнике есть два катета a = 12, b = 9 и гипотенуза c =
15. Если известны катеты и нужно найти один из острых углов, то можно сделать это через вычисление
тангенса: tg(α) = a / b, то есть tg(α) = 12 / 9. По таблице Брадиса, угол
α = 53, 13°. Если известен катет и гипотенуза, угол вычисляется через синус sin(α) = a / c = 12 / 15 = 0,8. В
этом случае по таблице Брадиса для синусов и косинусов, значение угла – 36, 87°.

Острый угол прямоугольного треугольника через катет и площадь

Рис 7

Для того, чтобы вычислить размер острого угла, нужно образовать обратную формулу от площади
прямоугольного треугольника, которая вычисляется через катет и острый угол. Выглядит она следующим
образом: S = (a² * tg β) / 2. Из этих показателей известный площадь S и катет a. Отсюда формула для
нахождения угла будет следующая:

tg(α) = a² / 2S

где a — катет, S — площадь прямоугольного треугольника.

Цифр после
запятой:

Результат в:

Пример. Пусть S = 34, a = 8. Получается следующее уравнение: tg(α) = a² / 2S = 8² + 2 * 34 = 132.
Таким образом выходит, что по таблице Брадиса, угол с таким тангенсом равен 43°.

Угол треугольника через высоту и катет

Рис 3

В некоторых прямоугольных треугольниках, в основании которых один острый угол, а второй 90°, один из
катетов (вертикальная прямая, образующая прямой угол) называется также высотой и обозначается как h.
Второй катет a остается со своим обычным названием.

sin α = h / a

где h — высота, a — катет.

Цифр после запятой:

Результат в:

Пример. Если высота h = 8, а катет a = 10, то угол α находится по формуле sin α = h / a = 8 / 10 = 0.8 то по таблице Брадиса составляет 53°

Угол при основании равнобедренного треугольника через биссектрису и основание

Рис 5

Равнобедренный треугольник ABC с основанием AC имеет биссектрису L (она же CK, делящая основание AC
на два отрезка AK и KB). Также биссектриса L делит угол BCA (он же γ) пополам (каждый из этих
половинок угла γ обозначается как x). То есть γ = 2х. Угол BAC (он же α) = BCA (он же γ), то есть α
= γ. При этом биссектриса L (она же CK) образовала в равнобедренном треугольнике ABC новый
равнобедренный треугольник AKC, в котором AK – это основание, а углы KAC и AKC равны между собой и
равны значению угла γ. Учитывая то, что угол γ равен 2х (то есть двум половинкам угла), то для
треугольника AKC, чтобы вычислить углы при основании, формула будет следующая:

tg α = L / (a/2)

где L — биссектриса, a — основание.

Цифр после
запятой:

Результат в:

Пример. Пусть биссектриса L равна 15, основание а равно 45, подставив в формулу
получим tg α = L / (a/2) = 15 / (45/2) = 33.69º

Угол при основании равнобедренного треугольника через биссектрису и боковую сторону

Рис 4

Допустим, что у равнобедренного треугольника ABC углы при основании A (α) и C (γ) равны. Также AB =
BC. Биссектриса L берет начало из вершины А и пересекается с основанием АС, образуя точку
пересечения K, поэтому биссектрису L также можно называть АK. L разделила угол А пополам и основание
поделила на два отрезка: BK и KC. Образовался угол AKC = α (внешний угол для треугольника ABK).
Согласно свойствам внешнего угла:

sin α = L / b

где L — биссектриса, b — боковая сторона.

Цифр после
запятой:

Результат в:

Пример. Пусть биссектриса L равна 15, боковая сторона b равна 30, подставив в
формулу получим sin α = L / b = 15/30 = 30º.

Угол между боковыми сторонами равнобедренного треугольника через биссектрису и боковую сторону

Рис 6

В равнобедренном треугольнике угол ABC (он же β) – это вершина треугольника. Стороны AB и BC равны, и
углы у основания BAC (α) и BCA (γ) тоже равны между собой. Биссектриса L берет начало из вершины B и
пересекается с основанием AC в точке K. Биссектриса BK разделила угол β пополам. Кроме того,
биссектриса разделила треугольник ABC на два прямоугольных треугольника ABK и CBK, так как углы BKA
и BKC – прямые и оба по 90°. Так как треугольники ABK и CBK зеркально одинаковые, для определения
угла β можно взять любой из них. В свою очередь биссектриса BK разделила угол β пополам, например,
на два равных угла х. Оба треугольника, образовавшихся внутри равнобедренного из-за биссектрисы,
прямоугольные, поэтому, чтобы вычислить угол β (он же 2х), нужно взять за правило вычисление угла
через высоту (она в данном случая является также биссектрисой) и катет (это отрезок AK или KC,
которые также равны между собой, так как биссектриса и основание равнобедренного треугольника также
поделила пополам).

2cos(β) = L / b

где L — биссектриса, b — боковая сторона.

Цифр после
запятой:

Результат в:

Пример. В треугольнике BKC известна биссектриса L = 47 см и боковая сторона b = 64
см. Подставив значения в формулу получим: 2cos(β) = L / b = 47 / 64 = 85.49º

Острый угол между боковыми сторонами равнобедренного треугольника через площадь и боковую
сторону

Рис 8

Формула площади равнобедренного треугольника S = 1/2 * bh, где b – это
основание треугольника, а h – это медиана, которая разделила равнобедренный треугольника на два
прямоугольных. Формула для нахождения угла между боковыми сторонами через площадь и боковую сторону
будет следующая:

sin(α) = 2S / b²

где b — боковая сторона равнобедренного треугольника, S — площадь.

Цифр после
запятой:

Результат в:

Пример. Если площадь равна 48, а сторона 10, то угол между боковыми сторонами можно
вычислить следующим образом: sin(α) = 2S / b² = 2 * 48 / 10² = 73.7º

Вне зависимости от условия задачи, известно, что сумма всех углов треугольника составляет 180°.
Поэтому, элементарно вычислить один из углов можно, когда известны два других. Но для вычисления
углов могут быть использованы и другие показатели. Например, для того, чтобы находить стороны и углы
треугольников, в них можно проводить дополнительные меридианы, биссектрисы, чертить окружности и
использовать эти фигуры как дополнительные вводные, через которые по формулам находятся
неизвестные.

Углы очень удобно вычислять через синусы, косинусы, тангенсы и котангенсы, после чего сопоставлять
данные с таблицей Брадиса, в которой эти величины можно сконвертировать в градусы.

Свойства равностороннего треугольника: теория и пример задачи

В данной статье мы рассмотрим определение и свойства равностороннего (правильного) треугольника. Также разберем пример решения задачи для закрепления теоретического материала.

Определение равностороннего треугольника

Равносторонним (или правильным) называется треугольник, в котором все стороны имеют одинаковую длину. Т.е. AB = BC = AC.

Примечание: правильный многоугольник – это выпуклый многоугольник, имеющий равные стороны и углы между ними.

Свойства равностороннего треугольника

Свойство 1

В равностороннем треугольнике все углы равны 60°. Т.е. α = β = γ = 60°.

Свойство 2

В равностороннем треугольнике высота, проведенная к любой из сторон, одновременно является биссектрисой угла, из которого она проведена, а также медианой и серединным перпендикуляром.

CD – медиана, высота и серединный перпендикуляр к стороне AB, а также биссектриса угла ACB.

Свойство 3

В равностороннем треугольнике биссектрисы, медианы, высоты и серединные перпендикуляры, проведенные ко всем сторонам, пересекаются в одной точке.

Свойство 4

Центры вписанной и описанной вокруг равностороннего треугольника окружностей совпадают и находятся на пересечении медиан, высот, биссектрис и серединных перпендикуляров.

Свойство 5

Радиус описанной вокруг равностороннего треугольника окружности в 2 раза больше радиуса вписанной окружности.

  • R – радиус описанной окружности;
  • r – радиус вписанной окружности;
  • R = 2r.

Свойство 6

В равностороннем треугольнике, зная длину стороны (условно примем ее за “a”), можно вычислить:

1. Высоту/медиану/биссектрису:

2. Радиус вписанной окружности:

3. Радиус описанной окружности:

4. Периметр:

5. Площадь:

Пример задачи

Дан равносторонний треугольник, сторона которого равна 7 см. Найдите радиус описанной вокруг и вписанной окружности, а также, высоту фигуры.

Решение
Применим формулы, приведеные выше, для нахождения неизвестных величин:

Углы равностороннего треугольника

Чему равны углы равностороннего треугольника?

(свойство углов равностороннего треугольника)

Все углы равностороннего треугольника равны по 60º.

Аналогично, так как AC=BC, ∠A=∠B.

Отсюда следует, что в равностороннем треугольнике все углы равны между собой: ∠A=∠B=∠C

Так как сумма углов треугольника равна 180º, то ∠A=∠B=∠C=180º:3=60º, то есть каждый угол равностороннего треугольника равен 60º.

Что и требовалось доказать .

Тот факт, что все углы равностороннего треугольника равны между собой, можно рассмотреть также как следствие из теоремы о соотношении между сторонами и углами треугольника. В треугольнике напротив большей стороны лежит больший угол, напротив меньшей стороны — меньший угол. Так как все три стороны правильного треугольника равны, то и все углы тоже равны.

Углы треугольника

Геометрическая фигура из трех отрезков, соединенных между собой тремя точками, не лежащими на одной прямой, называется треугольником. Это — многоугольник с тремя углами. Сумма всех углов треугольника равна 180°. Если известна величина двух из них, третий угол определяем вычитанием из 180° величины двух известных углов.

α = 180°-β-γ

Если известны стороны треугольника, можно рассчитать его углы, воспользовавшись теоремой косинусов. Здесь, квадрат одной стороны треугольника (а) равен сумме квадратов двух его других сторон (b,с), образующих искомый угол (α), плюс удвоенное произведение этих сторон (b,с) на косинус угла.

a 2 = b 2 + c 2 + 2abc cos (α)

Отсюда, косинус искомого угла равняется сумме квадратов смежных сторон (b, с) минус квадрат третей стороны треугольника (а), противолежащей искомому углу, и все это делится на удвоенное произведение смежных сторон:

cos (α) = (b 2 + c 2 — a 2 ) / 2bc

,
где а, b, с — стороны треугольника.
Используя теорему косинусов, определяем косинусы остальных углов. Величины углов в градусах находим по тригонометрической таблице.

From Wikipedia, the free encyclopedia

Equilateral triangle
Triangle.Equilateral.svg
Type Regular polygon
Edges and vertices 3
Schläfli symbol {3}
Coxeter–Dynkin diagrams CDel node 1.pngCDel 3.pngCDel node.png
Symmetry group D3
Area tfrac{sqrt{3}}{4} a^2
Internal angle (degrees) 60°

In geometry, an equilateral triangle is a triangle in which all three sides have the same length. In the familiar Euclidean geometry, an equilateral triangle is also equiangular; that is, all three internal angles are also congruent to each other and are each 60°. It is also a regular polygon, so it is also referred to as a regular triangle.

Principal properties[edit]

An equilateral triangle. It has equal sides (a=b=c), equal angles (alpha = beta =gamma), and equal altitudes ({displaystyle h_{a}=h_{b}=h_{c}}).

Denoting the common length of the sides of the equilateral triangle as a, we can determine using the Pythagorean theorem that:

Denoting the radius of the circumscribed circle as R, we can determine using trigonometry that:

  • The area of the triangle is {displaystyle mathrm {A} ={frac {3{sqrt {3}}}{4}}R^{2}}

Many of these quantities have simple relationships to the altitude («h») of each vertex from the opposite side:

In an equilateral triangle, the altitudes, the angle bisectors, the perpendicular bisectors, and the medians to each side coincide.

Characterizations[edit]

A triangle ABC that has the sides a, b, c, semiperimeter s, area T, exradii r_{a}, {displaystyle r_{b}}, {displaystyle r_{c}} (tangent to a, b, c respectively), and where R and r are the radii of the circumcircle and incircle respectively, is equilateral if and only if any one of the statements in the following nine categories is true. Thus these are properties that are unique to equilateral triangles, and knowing that any one of them is true directly implies that we have an equilateral triangle.

Sides[edit]

Semiperimeter[edit]

Angles[edit]

Area[edit]

Circumradius, inradius, and exradii[edit]

Equal cevians[edit]

Three kinds of cevians coincide, and are equal, for (and only for) equilateral triangles:[7]

  • The three altitudes have equal lengths.
  • The three medians have equal lengths.
  • The three angle bisectors have equal lengths.

Coincident triangle centers[edit]

Every triangle center of an equilateral triangle coincides with its centroid, which implies that the equilateral triangle is the only triangle with no Euler line connecting some of the centers. For some pairs of triangle centers, the fact that they coincide is enough to ensure that the triangle is equilateral. In particular:

  • A triangle is equilateral if any two of the circumcenter, incenter, centroid, or orthocenter coincide.[8]: p.37 
  • It is also equilateral if its circumcenter coincides with the Nagel point, or if its incenter coincides with its nine-point center.[6]

Six triangles formed by partitioning by the medians[edit]

For any triangle, the three medians partition the triangle into six smaller triangles.

  • A triangle is equilateral if and only if any three of the smaller triangles have either the same perimeter or the same inradius.[9]: Theorem 1 
  • A triangle is equilateral if and only if the circumcenters of any three of the smaller triangles have the same distance from the centroid.[9]: Corollary 7 

Points in the plane[edit]

Notable theorems[edit]

Visual proof of Viviani’s theorem

Morley’s trisector theorem states that, in any triangle, the three points of intersection of the adjacent angle trisectors form an equilateral triangle.

Napoleon’s theorem states that, if equilateral triangles are constructed on the sides of any triangle, either all outward, or all inward, the centers of those equilateral triangles themselves form an equilateral triangle.

A version of the isoperimetric inequality for triangles states that the triangle of greatest area among all those with a given perimeter is equilateral.[11]

Viviani’s theorem states that, for any interior point P in an equilateral triangle with distances d, e, and f from the sides and altitude h,

{displaystyle d+e+f=h,}

independent of the location of P.[12]

Pompeiu’s theorem states that, if P is an arbitrary point in the plane of an equilateral triangle ABC but not on its circumcircle, then there exists a triangle with sides of lengths PA, PB, and PC. That is, PA, PB, and PC satisfy the triangle inequality that the sum of any two of them is greater than the third. If P is on the circumcircle then the sum of the two smaller ones equals the longest and the triangle has degenerated into a line, this case is known as Van Schooten’s theorem.

Geometric construction[edit]

Construction of equilateral triangle with compass and straightedge

An equilateral triangle is easily constructed using a straightedge and compass, because 3 is a Fermat prime. Draw a straight line, and place the point of the compass on one end of the line, and swing an arc from that point to the other point of the line segment. Repeat with the other side of the line. Finally, connect the point where the two arcs intersect with each end of the line segment

An alternative method is to draw a circle with radius r, place the point of the compass on the circle and draw another circle with the same radius. The two circles will intersect in two points. An equilateral triangle can be constructed by taking the two centers of the circles and either of the points of intersection.

In both methods a by-product is the formation of vesica piscis.

The proof that the resulting figure is an equilateral triangle is the first proposition in Book I of Euclid’s Elements.

Equilateral Triangle Inscribed in a Circle.gif

Derivation of area formula[edit]

The area formula A = frac{sqrt{3}}{4}a^2 in terms of side length a can be derived directly using the Pythagorean theorem or using trigonometry.

Using the Pythagorean theorem[edit]

The area of a triangle is half of one side a times the height h from that side:

{displaystyle A={frac {1}{2}}ah.}

An equilateral triangle with a side of 2 has a height of 3, as the sine of 60° is 3/2.

The legs of either right triangle formed by an altitude of the equilateral triangle are half of the base a, and the hypotenuse is the side a of the equilateral triangle. The height of an equilateral triangle can be found using the Pythagorean theorem

{displaystyle left({frac {a}{2}}right)^{2}+h^{2}=a^{2}}

so that

{displaystyle h={frac {sqrt {3}}{2}}a.}

Substituting h into the area formula {displaystyle {frac {1}{2}}ah} gives the area formula for the equilateral triangle:

{displaystyle A={frac {sqrt {3}}{4}}a^{2}.}

Using trigonometry[edit]

Using trigonometry, the area of a triangle with any two sides a and b, and an angle C between them is

{displaystyle A={frac {1}{2}}absin C.}

Each angle of an equilateral triangle is 60°, so

{displaystyle A={frac {1}{2}}absin 60^{circ }.}

The sine of 60° is {tfrac {sqrt {3}}{2}}. Thus

{displaystyle A={frac {1}{2}}abtimes {frac {sqrt {3}}{2}}={frac {sqrt {3}}{4}}ab={frac {sqrt {3}}{4}}a^{2}}

since all sides of an equilateral triangle are equal.

Other properties[edit]

An equilateral triangle is the most symmetrical triangle, having 3 lines of reflection and rotational symmetry of order 3 about its center, whose symmetry group is the dihedral group of order 6, {displaystyle mathrm {D} _{3}}. The integer-sided equilateral triangle is the only triangle with integer sides, and three rational angles as measured in degrees.[13] It is the only acute triangle that is similar to its orthic triangle (with vertices at the feet of the altitudes),[14]: p. 19  and the only triangle whose Steiner inellipse is a circle (specifically, the incircle). The triangle of largest area of all those inscribed in a given circle is equilateral, and the triangle of smallest area of all those circumscribed around a given circle is also equilateral.[15] It is the only regular polygon aside from the square that can be inscribed inside any other regular polygon.

By Euler’s inequality, the equilateral triangle has the smallest ratio of the circumradius R to the inradius r of any triangle, with[16]: p.198 

{displaystyle {frac {R}{r}}=2.}

Given a point P in the interior of an equilateral triangle, the ratio of the sum of its distances from the vertices to the sum of its distances from the sides is greater than or equal to 2, equality holding when P is the centroid. In no other triangle is there a point for which this ratio is as small as 2.[17] This is the Erdős–Mordell inequality; a stronger variant of it is Barrow’s inequality, which replaces the perpendicular distances to the sides with the distances from P to the points where the angle bisectors of {displaystyle angle APB}, {displaystyle angle BPC}, and {displaystyle angle CPA} cross the sides (A, B, and C being the vertices). There are numerous other triangle inequalities that hold with equality if and only if the triangle is equilateral.

For any point P in the plane, with distances p, q, and t from the vertices A, B, and C respectively,[18]

{displaystyle 3left(p^{4}+q^{4}+t^{4}+a^{4}right)=left(p^{2}+q^{2}+t^{2}+a^{2}right)^{2}.}

For any point P in the plane, with distances p, q, and t from the vertices,[19]

{displaystyle p^{2}+q^{2}+t^{2}=3left(R^{2}+L^{2}right),}

{displaystyle p^{4}+q^{4}+t^{4}=3left[left(R^{2}+L^{2}right)^{2}+2R^{2}L^{2}right],}

where R is the circumscribed radius and L is the distance between point P and the centroid of the equilateral triangle.

For any point P on the inscribed circle of an equilateral triangle, with distances p, q, and t from the vertices,[20]

{displaystyle 4left(p^{2}+q^{2}+t^{2}right)=5a^{2},}

{displaystyle 16left(p^{4}+q^{4}+t^{4}right)=11a^{4}.}

For any point P on the minor arc BC of the circumcircle, with distances p, q, and t from A, B, and C, respectively[12]

{displaystyle p=q+t,}

{displaystyle q^{2}+qt+t^{2}=a^{2}.}

Moreover, if point D on side BC divides PA into segments PD and {displaystyle DA} with {displaystyle DA} having length z and PD having length y, then[12]: 172 

{displaystyle z={frac {t^{2}+tq+q^{2}}{t+q}},}

which also equals {textstyle {tfrac {t^{3}-q^{3}}{t^{2}-q^{2}}}} if {displaystyle tneq q} and

{displaystyle {frac {1}{q}}+{frac {1}{t}}={frac {1}{y}},}

which is the optic equation.

For an equilateral triangle:

  • The ratio of its area to the area of the incircle, {frac {pi }{3{sqrt {3}}}}, is the largest of any triangle.[21]: Theorem 4.1 
  • The ratio of its area to the square of its perimeter, frac{1}{12sqrt{3}}, is larger than that of any non-equilateral triangle.[11]

{displaystyle {frac {7}{9}}leq {frac {A_{1}}{A_{2}}}leq {frac {9}{7}}.}

If a triangle is placed in the complex plane with complex vertices {displaystyle z_{1}}, {displaystyle z_{2}}, and {displaystyle z_{3}}, then for either non-real cube root omega of 1 the triangle is equilateral if and only if[22]: Lemma 2 

{displaystyle z_{1}+omega z_{2}+omega ^{2}z_{3}=0.}

The equilateral triangle tiling fills the plane.

Notably, the equilateral triangle tiles two dimensional space with six triangles meeting at a vertex, whose dual tessellation is the hexagonal tiling. 3.122, 3.4.6.4, (3.6)2, 32.4.3.4, and 34.6 are all semi-regular tessellations constructed with equilateral triangles.[23]

A regular tetrahedron is made of four equilateral triangles.

In three dimensions, equilateral triangles form faces of regular and uniform polyhedra. Three of the five Platonic solids are composed of equilateral triangles: the tetrahedron, octahedron and icosahedron.[24]: p.238  In particular, the tetrahedron, which has four equilateral triangles for faces, can be considered the three-dimensional analogue of the triangle. All Platonic solids can inscribe tetrahedra, as well as be inscribed inside tetrahedra. Equilateral triangles also form uniform antiprisms as well as uniform star antiprisms in three-dimensional space. For antiprisms, two (non-mirrored) parallel copies of regular polygons are connected by alternating bands of 2n equilateral triangles.[25] Specifically for star antiprisms, there are prograde and retrograde (crossed) solutions that join mirrored and non-mirrored parallel star polygons.[26][27] The Platonic octahedron is also a triangular antiprism, which is the first true member of the infinite family of antiprisms (the tetrahedron, as a digonal antiprism, is sometimes considered the first).[24]: p.240 

As a generalization, the equilateral triangle belongs to the infinite family of n-simplexes, with n=2.[28]

In culture and society[edit]

Equilateral triangles have frequently appeared in man made constructions:

  • The shape occurs in modern architecture such as the cross-section of the Gateway Arch.[29]
  • Its applications in flags and heraldry includes the flag of Nicaragua[30] and the flag of the Philippines.[31]
  • It is a shape of a variety of road signs, including the yield sign.[32]

See also[edit]

  • Almost-equilateral Heronian triangle
  • Isosceles triangle
  • Ternary plot
  • Trilinear coordinates

References[edit]

  1. ^ Bencze, Mihály; Wu, Hui-Hua; Wu, Shan-He (2008). «An equivalent form of fundamental triangle inequality and its applications» (PDF). Journal of Inequalities in Pure and Applied Mathematics. 10 (1): 1–6 (Article No. 16). ISSN 1443-5756. MR 2491926. S2CID 115305257. Zbl 1163.26316.
  2. ^ Dospinescu, G.; Lascu, M.; Pohoata, C.; Letiva, M. (2008). «An elementary proof of Blundon’s inequality» (PDF). Journal of Inequalities in Pure and Applied Mathematics. 9 (4): 1-3 (Paper No. 100). ISSN 1443-5756. S2CID 123965364. Zbl 1162.51305.
  3. ^ Blundon, W. J. (1963). «On Certain Polynomials Associated with the Triangle». Mathematics Magazine. Taylor & Francis. 36 (4): 247–248. doi:10.2307/2687913. JSTOR 2687913. S2CID 124726536. Zbl 0116.12902.
  4. ^ a b Alsina, Claudi; Nelsen, Roger B. (2009). When less is more. Visualizing basic inequalities. Dolciani Mathematical Expositions. Vol. 36. Washington, D.C.: Mathematical Association of America. pp. 71, 155. doi:10.5948/upo9781614442028. ISBN 978-0-88385-342-9. MR 2498836. OCLC 775429168. S2CID 117769827. Zbl 1163.00008.
  5. ^ a b Pohoata, Cosmin (2010). «A new proof of Euler’s inradius — circumradius inequality» (PDF). Gazeta Matematica Seria B (3): 121–123. S2CID 124244932.
  6. ^ a b c Andreescu, Titu; Andrica, Dorian (2006). Complex Numbers from A to…Z (1st ed.). Boston, MA: Birkhäuser. pp. 70, 113–115. doi:10.1007/0-8176-4449-0. ISBN 978-0-8176-4449-9. OCLC 871539199. S2CID 118951675.
  7. ^ Owen, Byer; Felix, Lazebnik; Deirdre, Smeltzer (2010). Methods for Euclidean Geometry. Classroom Resource Materials. Vol. 37. Washington, D.C.: Mathematical Association of America. pp. 36, 39. doi:10.5860/choice.48-3331. ISBN 9780883857632. OCLC 501976971. S2CID 118179744.
  8. ^ Yiu, Paul (1998). «Notes on Euclidean Geometry» (PDF). Florida Atlantic University, Department of Mathematical Sciences (Course Notes).
  9. ^ a b Cerin, Zvonko (2004). «The vertex-midpoint-centroid triangles» (PDF). Forum Geometricorum. 4: 97–109.
  10. ^ a b «Inequalities proposed in «Crux Mathematicorum»» (PDF).
  11. ^ a b Chakerian, G. D. «A Distorted View of Geometry.» Ch. 7 in Mathematical Plums (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979: 147.
  12. ^ a b c Posamentier, Alfred S.; Salkind, Charles T. (1996). Challenging Problems in Geometry. Dover Publ.
  13. ^ Conway, J. H., and Guy, R. K., «The only rational triangle», in The Book of Numbers, 1996, Springer-Verlag, pp. 201 and 228–239.
  14. ^ Leon Bankoff and Jack Garfunkel, «The heptagonal triangle», Mathematics Magazine 46 (1), January 1973, 7–19,
  15. ^ Dörrie, Heinrich (1965). 100 Great Problems of Elementary Mathematics. Dover Publ. pp. 379–380.
  16. ^ Svrtan, Dragutin; Veljan, Darko (2012). «Non-Euclidean versions of some classical triangle inequalities» (PDF). Forum Geometricorum. 12: 197–209.
  17. ^ Lee, Hojoo (2001). «Another proof of the Erdős–Mordell Theorem» (PDF). Forum Geometricorum. 1: 7–8.
  18. ^ Gardner, Martin, «Elegant Triangles», in the book Mathematical Circus, 1979, p. 65.
  19. ^ Meskhishvili, Mamuka (2021). «Cyclic Averages of Regular Polygonal Distances» (PDF). International Journal of Geometry. 10: 58–65.
  20. ^ De, Prithwijit (2008). «Curious properties of the circumcircle and incircle of an equilateral triangle» (PDF). Mathematical Spectrum. 41 (1): 32–35.
  21. ^ Minda, D.; Phelps, S. (2008). «Triangles, ellipses, and cubic polynomials». American Mathematical Monthly. 115 (October): 679–689. doi:10.1080/00029890.2008.11920581. JSTOR 27642581. S2CID 15049234.
  22. ^ Dao, Thanh Oai (2015). «Equilateral triangles and Kiepert perspectors in complex numbers» (PDF). Forum Geometricorum. 15: 105–114.
  23. ^ Grünbaum, Branko; Shepard, Geoffrey (November 1977). «Tilings by Regular Polygons» (PDF). Mathematics Magazine. Taylor & Francis, Ltd. 50 (5): 231–234. doi:10.2307/2689529. JSTOR 2689529. MR 1567647. S2CID 123776612. Zbl 0385.51006.
  24. ^ a b Johnson, Norman W. (2018). Geometries and Transformations (1st ed.). Cambridge: Cambridge University Press. pp. xv, 1–438. doi:10.1017/9781316216477. ISBN 978-1107103405. S2CID 125948074. Zbl 1396.51001.
  25. ^ Cromwell, Peter T. (1997). «Chapter 2: The Archimedian solids». Polyhedra (1st ed.). New York: Cambridge University Press. p. 85. ISBN 978-0521664059. MR 1458063. OCLC 41212721. Zbl 0888.52012.
  26. ^ Klitzing, Richard. «n-antiprism with winding number d». Polytopes & their Incidence Matrices. bendwavy.org (Anton Sherwood). Retrieved 2023-03-09.
  27. ^ Webb, Robert. «Stella Polyhedral Glossary». Stella. Retrieved 2023-03-09.
  28. ^ H. S. M. Coxeter (1948). Regular Polytopes (1 ed.). London: Methuen & Co. LTD. pp. 120–121. OCLC 4766401. Zbl 0031.06502.
  29. ^ Pelkonen, Eeva-Liisa; Albrecht, Donald, eds. (2006). Eero Saarinen: Shaping the Future. Yale University Press. pp. 160, 224, 226. ISBN 978-0972488129.
  30. ^ White, Steven F.; Calderón, Esthela (2008). Culture and Customs of Nicaragua. Greenwood Press. p. 3. ISBN 978-0313339943.
  31. ^ Guillermo, Artemio R. (2012). Historical Dictionary of the Philippines. Scarecrow Press. p. 161. ISBN 978-0810872462.
  32. ^ Riley, Michael W.; Cochran, David J.; Ballard, John L. (December 1982). «An Investigation of Preferred Shapes for Warning Labels». Human Factors: The Journal of the Human Factors and Ergonomics Society. 24 (6): 737–742. doi:10.1177/001872088202400610. S2CID 109362577.

External links[edit]

  • Weisstein, Eric W. «Equilateral Triangle». MathWorld.
  • v
  • t
  • e

Fundamental convex regular and uniform polytopes in dimensions 2–10

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron Octahedron • Cube Demicube Dodecahedron • Icosahedron
Uniform polychoron Pentachoron 16-cell • Tesseract Demitesseract 24-cell 120-cell • 600-cell
Uniform 5-polytope 5-simplex 5-orthoplex • 5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex • 6-cube 6-demicube 122 • 221
Uniform 7-polytope 7-simplex 7-orthoplex • 7-cube 7-demicube 132 • 231 • 321
Uniform 8-polytope 8-simplex 8-orthoplex • 8-cube 8-demicube 142 • 241 • 421
Uniform 9-polytope 9-simplex 9-orthoplex • 9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex • 10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplex • n-cube n-demicube 1k2 • 2k1 • k21 n-pentagonal polytope
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds

Понравилась статья? Поделить с друзьями:
  • Как найти объем прямоугольного листа
  • Как исправить цветопередачу на телефоне
  • Как найти середину лица
  • Расписка при дтп как правильно составить
  • Как найти приложение деепричастие