Как найти отношение масс планет

Характеристики планет Солнечной системы были известны еще в средневековье, во времена Кеплера и Галилея. То есть, массу планет приблизительно можно было определить даже простыми методами и инструментами. В современной астрономии есть несколько методов расчета характеристик планет, звезд, скоплений и галактик.

Планеты солнечной системы

Планеты солнечной системы

Интересный факт: 99,9% всей массы Солнечной системы сосредоточена в самом Солнце. На все планеты вместе взятые приходится не более 0,01%. При этом из этих 0,01%, в свою очередь, 99% массы приходится на газовые гиганты (в том числе 90% только на Юпитер и Сатурн).

Содержание:

  • 1 Рассчитываем массу Земли и Луны
  • 2 Общие методики определения масс планет
  • 3 Значения масс планет Солнечной системы
  • 4 Определение масс звезд и галактик

Рассчитываем массу Земли и Луны

Чтобы измерить массу планет солнечной системы, проще всего в первую очередь найти значения для Земли. Как мы помним, ускорение свободного падения определяется по формуле F=mg, где m – масса тела, а F – действующая на него сила.

Параллельно вспоминаем универсальный закон всемирного тяготения Ньютона:

Сопоставив эти две формулы, и зная значение гравитационной постоянной 6,67430(15)·10−11 м³/(кг·с²), можно рассчитать массу Земли. Ускорение свободного падения на Земле мы знаем, 9,8 м/с2, радиус планеты тоже. Подставив все данные на выходе получим приблизительно 5,97 х 10²⁴ кг.

Земля и луна

Земля и луна

Зная массу Земли, мы легко рассчитает параметры по другим объектам Солнечной системы – Луна, планеты, Солнце и так далее. С Луной вообще все довольно просто. Здесь достаточно учесть, что расстояния от центров тел до центра масс соотносятся обратно их массам. Подставив эти цифры для Земли и ее спутника получим массу Луны 7.36 × 10²² килограмма.

Перейдем теперь к методикам измерения массы планет земной группы – Меркурий, Венера, Марс. После чего рассмотрим газовые гиганты, и в самом конце – экзопланеты, звезды и галактики.

Общие методики определения масс планет

Наиболее классический способ, как узнать массу планет – расчет при помощи формул третьего закона Кеплера. Он гласит, что квадраты периодов обращения планет соотносятся так же, как кубы больших полуосей орбит. Ньютон немного уточнил этот закон, внеся в формулу массы небесных тел. На выходе получилась такая формула –

Таким способом можно найти массу всех планет Солнечной системы и самого Солнца.И периоды обращения, и большие полуоси орбит планет Солнечной системы легко измеряются астрономическими методиками, доступными даже без сложных инструментов. А так как массу Земли мы уже рассчитали, можно все цифры подставить в формулу и найти конечный результат.

В отношении же экзопланет и других звезд (но только двойных) в астрономии обычно применяется метод анализа видимых возмущений и колебаний. Он основан на том факте, что все массивные тела “возмущают” орбиты друг друга.

Такими расчетами были открыты планеты Нептун и Плутон, еще до их визуального обнаружения, как говорят “на кончике пера”.

Значения масс планет Солнечной системы

Итак, мы разобрались с общими методиками расчета масс разных небесных тел и посчитали значения для Луны, Земли и Галактики. Давайте теперь составим рейтинг планет нашей системы по их массе.

Возглавляет рейтинг с наибольшей массой планет Солнечной системы – Юпитер, которому не хватило одного порядка чтобы наша система стала двойной. Еще чуть-чуть и у нас могло быть два Солнца, второе вместо Юпитера. Итак, масса этого газового гиганта равняется 1,9 × 10²⁷ кг.

Интересно, что Юпитер – единственная планета нашей системы, центр масс вращения с Солнцем которой расположен вне поверхности звезды. Он отстоит примерно на 7% расстояния между ними от поверхности Солнца.

Вторая по массе планета – Сатурн, его масса 5,7 × 10²⁶ кг. Следующим идет Нептун – 1 × 10²⁶. Четвёртая по массе планета, газовый гигант Уран, масса которого – 8,7 × 10²⁵ кг.

Далее идут планеты земной группы, каменистые тела, в отличие от газовых гигантов с их большим радиусом и относительно малой плотностью.

Тела солнечной системы, расположенные по убыванию массыСамой тяжелой из этой группы является наша планета, ее массу мы уже рассчитали. Далее идет Венера, масса этой планеты равняется 4,9 × 10²⁴ кг. После нее в рейтинге идет Марс, он почти в 10 раз легче – 6,4 × 10²³кг. И замыкает его, как планета самой маленькой массы, Меркурий – 3,3 × 10²³кг. Что интересно, Меркурий даже легче, чем два спутника в Солнечной системе – Ганимед и Каллисто.

Определение масс звезд и галактик

Для того чтобы найти характеристики одинарных звездных систем применяется гравиметрический метод. Его суть в измерении гравитационного красного смещения света звезды. Оно измеряется по формуле ∆V=0,635 M/R, где M и R – масса и радиус звезды, соответственно.

Косвенно можно также вычислить массу звезды по видимому спектру и светимости. Сначала определяется ее класс светимости по диаграмме Герцшпрунга-Рассела, а потом вычисляется зависимость масса/светимость. Такой способ не подходит для белых карликов и нейтронных звезд.

Масса галактик вычисляется в основном по скорости вращения ее звезд (или просто по относительной скорости звезд, если это не спиральная галактика). Все тот же всемирный закон тяготения Ньютона нам гласит, что центробежную силу звезд в галактике можно выразить в формуле:

Только в этот раз в формулу мы подставляем расстояние от Солнца до центра нашей галактики и его массу. Так можно рассчитать массу Млечного Пути, которая равняется 2,2 × 10⁴⁴г.

Не забываем, что эта цифра – это масса галактики без учета звезд, орбиты которых располагаются вне орбиты вращения Солнца. Поэтому для более точных расчетов берутся самые внешние звезды рукавов спиральных галактик.

Для эллиптических галактик способ нахождения массы схож, только там берется зависимость между угловым размером, скоростью движения звезд и общей массой.

МА́ССЫ НЕБЕ́СНЫХ ТЕЛ (ме­то­ды оп­ре­де­ле­ния). Оп­ре­де­ле­ние М. н. т. ста­ло воз­мож­ным в 17 в., по­сле от­кры­тия все­мир­но­го тя­го­те­ния за­ко­на.

Массы Земли и других планет

Од­на из пер­вых оце­нок мас­сы Зем­ли по­лу­че­на Г. Ка­вен­ди­шем по­сле про­ве­де­ния опы­та по экс­пе­рим. оп­ре­де­ле­нию уни­вер­саль­ной гра­ви­тац. по­сто­ян­ной. Из­ме­ряя с по­мо­щью кру­тиль­ных ве­сов си­лу при­тя­же­ния ме­ж­ду мас­сив­ным свин­цо­вым ша­ром и под­ве­шен­ным вбли­зи не­го не­боль­шим ме­тал­лич. ша­ри­ком, Ка­вен­диш срав­нил ве­ли­чи­ну этой си­лы с си­лой при­тя­же­ния ша­ри­ка Зем­лёй и су­мел вы­чис­лить, во сколь­ко раз мас­са Зем­ли пре­вы­ша­ет мас­су свин­цо­во­го ша­ра. Та­ким об­ра­зом бы­ла по­лу­че­на оцен­ка мас­сы Зем­ли (6·1024 кг) и её ср. плот­но­сти (5,5 кг/м3).

Мас­сы др. пла­нет оп­ре­де­ля­ют по па­ра­мет­рам их ор­бит с по­мо­щью третье­го за­ко­на Ке­п­ле­ра (см. Ке­п­ле­ра за­ко­ны). В обоб­щён­ной фор­ме этот за­кон име­ет вид: $T_1^2(M_☉+m_1)/T_2^2(M_☉+m_2)=a_1^3/a_2^3$, где $M☉$  – мас­са Солн­ца, $m_1$ и $m_2$ – мас­сы двух пла­нет, $a_1$ и $a_2$ – боль­шие по­лу­оси их ор­бит, $T_1$ и $T_2$ – пе­рио­ды об­ра­ще­ния этих пла­нет во­круг Солн­ца. Для пла­не­ты, имею­щей спут­ник мас­сой $m_с$, дви­жу­щий­ся по пла­не­то­цен­три­че­ской ор­би­те с боль­шой по­лу­осью $a_с$ и пе­рио­дом об­ра­ще­ния $T_с$, этот за­кон при­об­ре­та­ет вид: $T^2(M_☉+m)/T_с^2(m+m_с)=a^3/a_с^3,$  где $m$ – масса планеты, $a$ и $T$– её боль­шая по­лу­ось и пе­ри­од об­ра­ще­ния со­от­вет­ствен­но. Ес­ли в этой фор­му­ле пре­неб­речь мас­сой пла­не­ты по срав­не­нию с $M_☉$ и мас­сой спут­ни­ка по срав­не­нию с мас­сой пла­не­ты, то мож­но по­лу­чить со­от­но­ше­ние, по­зво­ляю­щее оп­ре­де­лить от­но­ше­ние мас­сы пла­не­ты к $M_☉:: m/M_☉=T^2a_с^3/T_с^2a^3$. По па­ра­мет­рам ор­бит Зем­ли и Лу­ны бы­ла про­ве­де­на оцен­ка массы Солнца – при­мер­но в 333 000 раз боль­ше мас­сы Зем­ли.

Мас­сы Мер­ку­рия и Ве­не­ры, у ко­то­рых от­сут­ст­ву­ют ес­теств. спут­ни­ки, этим спо­со­бом оп­ре­де­лить не­воз­мож­но. Един­ст­вен­ный и го­раз­до бо­лее труд­ный путь со­сто­ит в ис­поль­зо­ва­нии воз­му­ще­ний (все­гда яв­ляю­щих­ся функ­ция­ми воз­му­щаю­щей мас­сы), ко­то­рые пла­не­та вы­зы­ва­ет в дви­же­нии др. тел Сол­неч­ной сис­те­мы. Зна­чи­тель­но бо­лее труд­ную за­да­чу пред­став­ля­ет оп­ре­де­ле­ние мас­сы Лу­ны. Яв­ля­ясь бли­жай­шим к Зем­ле не­бес­ным те­лом, Лу­на не мо­жет, стро­го го­во­ря, счи­тать­ся спут­ни­ком на­шей пла­не­ты, т. к. Солн­це при­тя­ги­ва­ет её в 2,5 раза силь­нее, чем Зем­ля. Во­круг Солн­ца об­ра­ща­ет­ся т. н. ба­ри­центр (центр масс) двой­ной пла­не­ты Зем­ля–Лу­на, в то вре­мя как обе они опи­сы­ва­ют от­но­си­тель­но ба­ри­цен­тра эл­лип­тич. ор­би­ты с пе­рио­дом в 1 ме­сяц. По­это­му мас­су Лу­ны мож­но вы­чис­лить по ве­ли­чи­не ме­сяч­но­го сме­ще­ния Зем­ли от­но­си­тель­но ба­ри­цен­тра. В точ­ных ас­тро­но­мич. на­блю­де­ни­ях дол­го­ты Солн­ца про­яв­ля­ет­ся т. н. лун­ное не­ра­вен­ст­во, сви­де­тель­ст­вую­щее о том, что центр Зем­ли в те­че­ние ме­ся­ца опи­сы­ва­ет эл­липс с боль­шой по­лу­осью, рав­ной при­мер­но 3/4 ра­диу­са Зем­ли. По­след­нее оз­на­ча­ет, что ба­ри­центр сис­те­мы Зем­ля–Лу­на все­гда рас­по­ла­га­ет­ся внут­ри Зем­ли и ни­ко­гда не вы­хо­дит за пре­де­лы её по­верх­но­сти. Оп­ре­де­лён­ная по этим дан­ным мас­са Лу­ны со­став­ля­ет ок. 1/81 мас­сы Зем­ли.

Мас­сы всех пла­нет Сол­неч­ной сис­те­мы вхо­дят в чис­ло фун­дам. ас­тро­но­мич. по­сто­ян­ных, зна­че­ния ко­то­рых ре­гу­ляр­но уточ­ня­ют­ся на ос­но­ве всей со­вокуп­но­сти ас­тро­но­мич. на­блю­де­ний и утвер­жда­ют­ся Ме­ж­ду­на­р. ас­тро­но­ми­ч. сою­зом.

Массы звёзд

Тре­тий за­кон Ке­п­ле­ра в его обоб­щён­ной фор­ме по­зво­ля­ет так­же оп­ре­де­лить сум­мар­ную мас­су двой­ной звез­ды по из­вест­но­му зна­че­нию её го­дич­но­го па­рал­лак­са. Ес­ли $m_1$ и $m_2$ – мас­сы ком­по­нен­тов звёзд­ной па­ры, $A$ – боль­шая по­лу­ось ор­би­ты звез­ды-спут­ни­ка от­но­си­тель­но гл. звез­ды, $P$ – её пе­ри­од об­ра­ще­ния, $a$ – ср. рас­стоя­ние от Зем­ли до Солн­ца (рав­ное 1 а. е.), $T$ – пе­ри­од об­ра­ще­ния Зем­ли во­круг Солн­ца (1 год), $m$ – мас­са Зем­ли, то, со­глас­но тре­ть­ему за­ко­ну Ке­п­ле­ра, $a^3/T^2(M_☉+m) =A^3/P^2(m_1+m_2)$. Пре­неб­ре­гая мас­сой Зем­ли по срав­не­нию с мас­сой Солн­ца и вы­брав в ка­че­ст­ве еди­ни­цы из­ме­ре­ния вре­ме­ни год, а рас­стоя­ния – а. е., по­лу­чим фор­му­лу $(m_1+m_2)/M_☉=A^3/P^2$, по­зво­ляю­щую оп­ре­де­лить от­но­ше­ния сум­мы масс двой­ной звез­ды к $M_☉$. Зна­че­ние $A$ мож­но вы­чис­лить, ес­ли из­вес­тны го­дич­ный па­рал­лакс π двой­ной звез­ды и зна­че­ние боль­шой по­лу­оси $a″$ от­но­ситель­ной ор­би­ты звез­ды-спут­ни­ка, вы­ражен­ное в уг­ло­вых се­кун­дах. То­гда $A=a″/π$ и для оп­ре­де­ле­ния от­но­ше­ния сум­мар­ной мас­сы двой­ной звёзд­ной сис­те­мы к $M_☉$ мож­но вос­поль­зо­вать­ся фор­му­лой $(m_1+m_2)/M_☉= (a″ )^3/π^3P^2$. Напр., для двой­ной звёзд­ной сис­те­мы Си­ри­ус А и Си­ри­ус B со­от­вет­ст­вую­щие зна­че­ния со­став­ля­ют $a″$=7,57″, $π$=0,37″ и $P$ = 50 лет, со­от­вет­ст­вен­но сум­мар­ная мас­са этой двой­ной звёзд­ной сис­те­мы оце­ни­ва­ет­ся в 3,4$M_☉$.

В том слу­чае, ко­гда уда­ёт­ся из­ме­рить по­ло­же­ния ви­зу­аль­но-двой­ных звёзд от­но­си­тель­но их ба­ри­цен­тра, воз­ни­ка­ет воз­мож­ность оп­ре­де­лить от­но­ше­ние масс обо­их ком­по­нен­тов. Та­кие из­ме­ре­ния тре­бу­ют зна­ния точ­ных по­ло­же­ний ком­по­нен­тов сис­те­мы от­но­си­тель­но да­лё­ких звёзд (т. н. звёзд фо­на) на дос­та­точ­но дли­тель­ных ин­тер­ва­лах вре­ме­ни. Про­дол­жит. на­блю­де­ния оди­ноч­ной звез­ды в те­че­ние мн. лет по­ка­зы­ва­ют, что ес­ли она име­ет соб­ст­вен­ное дви­же­ние от­но­си­тель­но звёзд­но­го фо­на, то её пе­ре­ме­ще­ние про­ис­хо­дит по ду­ге боль­шо­го кру­га не­бес­ной сфе­ры. Но ес­ли звез­да – ви­зу­аль­но-двой­ная, то по ду­ге боль­шо­го кру­га сме­ща­ет­ся её ба­ри­центр, а оба ком­по­нен­та сис­те­мы дви­жут­ся по кри­во­ли­ней­ным ба­ри­цен­трич. тра­ек­то­ри­ям. Точ­ные ас­т­ро­мет­рич. из­ме­ре­ния по­ло­же­ний ком­по­нен­тов двой­ной сис­те­мы по­зво­ля­ют про­сле­дить тра­ек­то­рию цен­тра масс, а за­тем и ин­ди­ви­ду­аль­ные ор­би­ты отд. ком­по­нен­тов. Ес­ли $α_1$ и $α_2$ – вы­ра­жен­ные в се­кун­дах ду­ги уг­ло­вые рас­стоя­ния от гл. звез­ды с мас­сой $M_1$ и звез­ды-спут­ни­ка с мас­сой $M_2$ до ви­ди­мо­го по­ло­же­ния цен­тра масс двой­ной сис­те­мы, то то­гда, по оп­ре­де­ле­нию цен­тра масс, $M_1α_1=M_2α_2$, от­ку­да сле­ду­ет фор­му­ла для от­но­ше­ния масс ком­по­нен­тов ви­зу­аль­но-двой­ной звез­ды: $M_1/M_2=α_2/α_1$.

Зна­ние сум­мар­ной мас­сы двой­ной звез­ды и от­но­ше­ния масс её ком­по­нен­тов по­зво­ля­ет без тру­да вы­чис­лить мас­сы обе­их звёзд. Ти­пич­ные зна­че­ния масс звёзд, по­лу­чен­ные по на­блю­де­ни­ям ви­зу­аль­но-двой­ных звёзд, ле­жат в пре­де­лах (0,1–20)$M_☉$. Бо­лее по­ло­ви­ны звёзд на­шей Га­лак­ти­ки вхо­дят в со­став двой­ных, трой­ных звёзд или звёзд­ных сис­тем боль­шей крат­но­сти. Имен­но ис­сле­до­ва­ния двой­ных звёзд по­зво­ли­ли по­лу­чить дан­ные о звёзд­ных мас­сах и по­слу­жи­ли ос­но­вой для ус­та­нов­ле­ния со­от­но­ше­ния мас­са – све­ти­мость (см. Мас­са – све­ти­мость за­ви­си­мость). Это со­от­но­ше­ние ши­ро­ко ис­поль­зу­ет­ся в звёзд­ной ас­тро­но­мии и ас­т­ро­фи­зи­ке в ка­че­ст­ве не­за­ме­ни­мо­го сред­ст­ва оцен­ки масс звёзд по их све­ти­мо­стям.

Со­глас­но совр. пред­став­ле­ни­ям, мас­сы звёзд за­клю­че­ны в пре­де­лах (0,08–100)$M_☉$. Мас­са отд. звез­ды в сред­нем близ­ка к $M_☉$, в то вре­мя как звёз­ды с мас­са­ми, в де­сят­ки раз бóльшими мас­сы Солн­ца, встре­ча­ют­ся дос­та­точ­но ред­ко: это гл. обр. звёз­ды ран­них спек­траль­ных клас­сов O и B.

Массы звёздных скоплений и галактик

Мас­су $M$ ша­ро­во­го звёзд­но­го ско­п­ле­ния ра­диу­са $R$ мож­но оце­нить по ве­ли­чи­не кру­го­вой ско­ро­сти $V$ звез­ды, дви­жу­щей­ся на гра­ни­це ско­п­ле­ния, счи­тая, что цен­тро­ст­ре­мит. ус­ко­ре­ние звез­ды вы­зва­но при­тя­же­ни­ем всех звёзд ша­ро­во­го ско­п­ле­ния. То­гда мас­са ско­п­ле­ния оце­ни­ва­ет­ся по фор­му­ле $M=V^2R/G$, где $G$ – гра­ви­тац. по­сто­ян­ная. Бо­лее точ­ная оцен­ка мас­сы звёзд­но­го ско­п­ле­ния по­лу­ча­ет­ся при ис­поль­зо­ва­нии не­ко­то­рых ус­ред­нён­ных зна­че­ний ско­ро­стей звёзд и их ср. уда­лён­но­сти от цен­тра ско­п­ле­ния.

На­ли­чие у га­лак­ти­ки од­но­го спут­ни­ка (иг­раю­ще­го роль проб­но­го те­ла) по­зво­ля­ет оце­нить мас­су га­лак­ти­ки с по­мо­щью ана­ло­гич­ной фор­му­лы, но точ­ность та­кой оцен­ки очень не­вы­со­ка. В ка­че­ст­ве проб­но­го те­ла мо­жет рас­смат­ри­вать­ся др. га­лак­ти­ка, ша­ро­вое ско­п­ле­ние, рас­по­ло­жен­ное на пе­ри­фе­рии га­лак­ти­ки, и да­же об­ла­ко меж­звёзд­но­го га­за. Ес­ли у га­лак­ти­ки име­ет­ся неск. спут­ни­ков (или др. проб­ных тел), то мож­но пред­по­ло­жить, что рас­пре­де­ле­ние по­ло­же­ний и ско­ро­стей спут­ни­ков име­ет слу­чай­ный ха­рак­тер. Это пред­по­ло­же­ние реа­ли­зу­ет­ся тем точ­нее, чем боль­ше име­ет­ся проб­ных тел (напр., в га­лак­ти­ке М31 в со­звез­дии Ан­дро­ме­ды ок. 400 ша­ро­вых ско­п­ле­ний). То­гда в при­ве­дён­ной фор­му­ле мож­но ис­поль­зо­вать ви­ди­мые рас­стоя­ния и ско­ро­сти проб­ных тел, ус­ред­нён­ные за про­ме­жу­ток вре­ме­ни, зна­чи­тель­но пре­вы­шаю­щий их ор­би­таль­ные пе­рио­ды. Мас­сы спи­раль­ных га­лак­тик мож­но оце­ни­вать с по­мо­щью об­ла­ков меж­звёзд­но­го га­за на кру­го­вых ор­би­тах в га­лак­тич. плос­ко­сти. Из­ло­жен­ный ме­тод из­ме­ре­ния масс га­лак­тик (ме­тод Нью­то­на) ба­зи­ру­ет­ся на за­ко­не все­мир­но­го тя­го­те­ния. Бо­лее пер­спек­тив­ным счи­та­ет­ся ме­тод Эйн­штей­на, в ко­то­ром мас­сив­ные га­лак­ти­ки рас­смат­ри­ва­ют­ся в ка­че­ст­ве гра­ви­тац. лин­зы (см. Гра­ви­та­ци­он­ная фо­ку­си­ров­ка).

В оцен­ке сум­мар­ной мас­сы га­лак­ти­ки с учё­том всех её со­став­ляю­щих (звёзд, га­за, пы­ли и др.) су­ще­ст­вен­ную роль иг­ра­ет кру­го­вая ско­рость проб­но­го те­ла. Эта ско­рость при уда­ле­нии от цен­тра га­лак­ти­ки долж­на умень­шать­ся по оп­ре­де­лён­но­му за­ко­ну. Од­на­ко по ре­зуль­та­там на­блю­де­ний уда­лось ус­та­но­вить, что этот за­кон вы­пол­ня­ет­ся толь­ко во внутр. об­лас­ти га­лак­ти­ки. На пе­ри­фе­рии лю­бой га­лак­ти­ки кру­го­вая ско­рость поч­ти все­гда вы­ше зна­че­ния, по­лу­чен­но­го в пред­по­ло­же­нии, что вся мас­са га­лак­ти­ки за­клю­че­на в её звёз­дах и га­зе. Ча­ще все­го ско­рость вра­ще­ния звёзд не умень­ша­ет­ся с рас­стоя­ни­ем от цен­тра га­лак­ти­ки, а ос­та­ёт­ся по­сто­ян­ной или да­же рас­тёт при при­бли­же­нии к ви­ди­мо­му краю га­лак­ти­ки. Для объ­яс­не­ния та­ко­го фе­но­ме­на бы­ло вы­дви­ну­то пред­по­ло­же­ние о су­ще­ст­во­ва­нии в га­лак­ти­ках скры­той мас­сы, по­вы­шаю­щей ве­ли­чи­ну на­пря­жён­но­сти гра­ви­тац. по­ля га­лак­ти­ки вда­ли от её цен­тра. Во­прос о гра­ни­цах га­лак­тик и их пол­ных мас­сах на нач. 21 в. не ре­шён: не­све­тя­щие­ся час­ти га­лак­тик мо­гут про­сти­рать­ся на по­ря­док даль­ше ви­ди­мой гра­ни­цы их звёзд­ных дис­ков.


В основе определения масс небесных тел лежит закон всемирного тяготения, выражаемый
ф-лой:

(1)

где F
— сила взаимного притяжения масс и , пропорциональная их произведению и обратно пропорциональная квадрату
расстояния r
между их центрами. В астрономии часто (но не всегда) можно пренебречь
размерами самих небесных тел по сравнению с разделяющими их расстояниями, отличием
их формы от точной сферы и уподоблять небесные тела материальным точкам, в к-рых
сосредоточена вся их масса.

Коэффициент пропорциональности G = наз. или постоянной тяготения. Её находят из физического эксперимента с
крутильными весами, позволяющими определить силу гравитац. взаимодействия тел известной
массы.

В случае свободного падения тел сила F
, действующая на тело, равна произведению
массы тела на ускорение свободного падения g
. Ускорение
g
может быть определено, напр., по периоду T
колебаний вертикального
маятника: , где l
— длина маятника. На широте
45 o
и на уровне моря g
= 9,806 м/с 2 .

Подстановка выражения для сил земного притяжения
в ф-лу (1) приводит к зависимости ,
где
— масса Земли, а — радиус
земного шара. Таким путём была определена масса Земли г. Определение массы Земли явл. первым звеном в цепи определений масс
др. небесных тел (Солнца, Луны, планет, а затем и звёзд). Массы этих тел находят,
опираясь
либо на 3-й закон Кеплера (см. ),
либо на правило: расстояния к.-л. масс от общего центра масс обратно пропорциональны
самим массам. Это правило позволяет определить массу Луны. Из измерений точных координат
планет и Солнца найдено, что Земля и Луна с периодом в один месяц движутся вокруг
барицентра — центра масс системы Земля — Луна. Расстояние центра Земли от барицентра
равно 0,730 (он расположен внутри земного шара). Ср. расстояние
цeнтpa Луны от центра Земли составляет 60,08 . Отсюда отношение
расстояний центров Луны и Земли от барицентра равно 1/81,3. Поскольку это отношение
обратно
отношению масс Земли и Луны, масса Луны

г.

Массу Солнца можно определить, применив 3-й закон Кеплера к движению Земли (вместе
с Луной) вокруг Солнца и движению Луны вокруг Земли:

, (2)

где а
— большие полуоси орбит, T
— периоды (звёздные или сидерические)
обращения. Пренебрегая по сравнению с , получим отношение , равное 329390. Отсюда г, или ок. .

Аналогичным путём определяют массы планет, имеющих спутников. Массы планет, не имеющих
спутников, определяют по возмущениям, к-рые они оказывают на движение соседних с
ними
планет. Теория возмущённого движения планет позволила заподозрить существование тогда
неизвестных планет Нептуна и Плутона, найти их массы, предсказать их положение на
небе.

Массу звезды (помимо Солнца) можно определить со сравнительно высокой надёжностью
только в том случае, если она явл. физ. компонентом визуально-двойной звезды (см.
), расстояние до к-рой известно. Третий закон Кеплера в
этом случае даёт сумму масс компонентов (в ед. ):


,

где а
«» -большая полуось (в секундах дуги) истинной орбиты спутника вокруг
главной (обычно более яркой) звезды, к-рую в этом случае считают неподвижной, Р


период обращения в годах, —
системы (в секундах дуги). Величина даёт большую полуось
орбиты в а. е. Если можно измерить угловые расстояния компонентов
от общего центра масс, то их отношение даст величину, обратную отношению масс: . Найденная сумма масс и их отношение позволяют получить
массу каждой звезды в отдельности. Если компоненты двойной имеют примерно одинаковый
блеск
и сходные спектры, то полусумма масс
даёт верную оценку массы каждого компонента и без дополнит. определения их отношения.

Для др. типов двойных звезд (затменно-двойных и спектрально-двойных) имеется ряд
возможностей приблизительно определить массы звёзд или оценить их нижний предел (т.е.
величины,
меньше которых не могут быть их массы).

Совокупность данных о массах компонентов примерно ста двойных звёзд разных типов
позволила обнаружить важную статистич. зависимость между их массами и светимостями
(см. ).
Она даёт возможность оценивать массы одиночных звёзд по их
(иначе говоря, по их абс. ).
Абс. звёздные величины М
определяются по ф-ле:
M = m
+ 5 + 5 lg — A(r)
, (3)
где m
— видимая звёздная величина в выбранном оптич. диапазоне (в определённой
фотометрич. системе, напр. U, В
или V
; см. ),
— параллакс и A(r)
— величина света в том же оптич. диапазоне в данном
направлении
до расстояния .

Если параллакс звезды не измерен, то приближённое значение абс. звёздной величины
можно определить по её спектру. Для этого необходимо, чтобы спектрограмма позволяла
не только
узнать звезды, но
и оценить относительные интенсивности нек-рых пар спектр. линий, чувствительных к
«эффекту
абс. величины». Иначе говоря, сначала необходимо определить класс светимости звезды
— принадлежность к одной из последовательностей на диаграмме спектр-светимость (см.
),
а по классу светимости — её абс. величину. По полученной таким образом абс. величине
можно найти массу звезды, воспользовавшись зависимостью масса-светимость (этой зависимости
не подчиняются лишь и ).

Ещё один метод оценки массы звезды связан с измерением гравитац. красного смещения
спектр. линий в её поле тяготения. В сферически-симметричном поле тяготения оно эквивалентно
доплеровскому красному смещению , где
— масса звезды в ед. массы Солнца, R
— радиус звезды
в
ед. радиуса Солнца, а выражено в км/с. Это соотношение было
проверено по тем белым карликам, к-рые входят в состав двойных систем. Для них были
известны
радиусы, массы и истинные
v r
, являющиеся проекциями орбитальной скорости.

Невидимые (тёмные) спутники, обнаруженные около нек-рых звёзд по наблюдённым колебаниям
положения звезды, связанным с её движением около общего центра масс (см. ), имеют массы меньше 0,02 . Они, вероятно, не явл. самосветящимися телами и больше похожи на
планеты.

Из определений масс звёзд выяснилось, что они заключены примерно в пределах от 0,03
до 60 . Наибольшее
количество
звёзд имеют массы от 0,3 до 3 .
Ср. масса звезд в ближайших окрестностях Солнца , т.е. 10 33 г. Различие
в массах звёзд оказывается много меньшим, чем их различие в светимостях (последнее
может
достигать десятков млн.). Сильно отличаются и радиусы звёзд. Это приводит к разительному
различию их ср. плотностей: от до
г/см 3 (ср. плотность Солнца 1,4 г/см 3).

Массу Солнца можно найти из условия, что тяготение Земли к Солнцу проявляется в качестве центростремительной силы, удерживающей Землю на ее орбите (орбиту Земли для упрощения мы будем считать окружностью)

Здесь масса Земли, среднее расстояние Земли от Солнца. Обозначая продолжительность года в секундах через имеем. Таким образом

откуда, подставляя числовые значения , находим массу Солнца:

Ту же формулу можно применить для вычисления массы какой-либо планеты, имеющей спутника. В этом случае среднее расстояние спутника от планеты, время его обращения вокруг планеты, масса планеты. В частности, по расстоянию Луны от Земли и числу секунд в месяце указанным способом можно определить массу Земли.

Массу Земли можно определить также, приравнивая вес какого-либо тела к тяготению этого тела к Земле, за вычетом той составляющей тяготения, которая проявляется динамически, сообщая данному телу, участвующему в суточном вращении Земли, соответствующее центростремительное ускорение (§ 30). Необходимость указанной поправки отпадает, если для такого вычисления массы Земли мы воспользуемся тем ускорением тяжести, которое наблюдается на полюсах Земли Тогда, обозначив через средний радиус Земли и через массу Земли, имеем:

откуда масса Земли

Если среднюю плотность земного шара обозначить через то, очевидно, Отсюда средняя плотность земного шара получается равной

Средняя плотность минеральных пород верхних слоев Земли равна примерно Стало быть, ядро земного шара должно иметь плотность, значительно превышающую

Исследование вопроса о плотности Земли на различных глубинах было предпринято Лежандром и продолжено многими учеными. По выводам Гутенберга и Гаалька (1924 г.) на различных глубинах имеют место примерно следующие значения плотности Земли:

Давление внутри земного шара, на большой глубине, по-видимому громадно. Многие геофизики считают, что уже на глубине давление должно достигать атмосфер, на квадратный сантиметр В ядре Земли, на глубине около 3000 и более километров давление, возможно, достигает 1-2 млн. атмосфер.

Что касается температуры а глубине земного шара, то достоверно, что она выше (температура лавы). В шахтах и буровых скважинах температура повышается в среднем на один градус на каждые Предполагают, что на глубине около температура доходит до 1500-2000° и далее остается постоянной.

Рис. 50. Относительные размеры Солнца и планет.

Полная теория движения планет, излагаемая в небесной механике, позволяет вычислить массу планеты по наблюдениям того влияния, которое данная планета оказывает на движение какой-либо другой планеты. В начале прошлого столетия были известны планеты Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран. Было замечено, что движение Урана обнаруживает некоторые «неправильности», которые указывали на то, что за Ураном находится ненаблюденная планета, влияющая на движение Урана. В 1845 г. французский ученый Леверье и независимо от него англичанин Адаме, исследовав движение Урана, вычислили массу и местоположение планеты, которую еще никто не наблюдал. Только после этого планета была найдена на небе как раз в том месте, которое было указано вычислениями; эта планета была названа Нептуном.

В 1914 г. астроном Ловелл аналогичным путем предсказал существование еще одной планеты, находящейся еще дальше от Солнца, чем Нептун. Только в 1930 г. эта планета была найдена и названа Плутоном.

Основные сведения о больших планетах

(см. скан)

В приведенной таблице содержатся основные сведения о девяти больших планетах солнечной системы. Рис. 50 иллюстрирует относительные размеры Солнца и планет.

Кроме перечисленных больших планет, известно около 1300 весьма малых планет, так называемых астероидов (или планетоидов) Их орбиты в основном находятся между орбитами Марса и Юпитера.

Закон всемирного тяготения Ньютона позволяет измерить одну из важнейших физических характеристик небесного тела — его массу.

Массу можно определить:

а) из измерений силы тяжести на поверхности данного тела (гравиметрический способ),

б) по третьему уточнённому закону Кеплера,

в) из анализа наблюдаемых возмущений, производимых небесным телом в движениях других небесных тел.

1. Первый способ применяется на Земле.

На основании закона тяготения ускорение g на поверхности Земли:

где m — масса Земли, а R — её радиус.

g и R измеряются на поверхности Земли. G = const.

С принятыми сейчас значениями g, R, G получается масса Земли:

m = 5,976 .1027г = 6 .1024кг.

Зная массу и объём, можно найти среднюю плотность. Она равна 5,5 г/см3.

2. По третьему закону Кеплера можно определить соотношение между массой планеты и массой Солнца, если у планеты есть хотя бы один спутник и известны его расстояние от планеты и период обращения вокруг неё.

где M, m, mc- массы Солнца, планеты и её спутника, T и tc- периоды обращений планеты вокруг Солнца и спутника вокруг планеты, а
и ас
— расстояния планеты от Солнца и спутника от планеты соответственно.

Из уравнения следует

Отношение М/m для всех планет очень велико; отношение же m/mc, очень мало (кроме Земли и Луны, Плутона и Харона) и им можно пренебречь.

Соотношение М/m можно легко найти из уравнения.

Для случая Земли и Луны нужно сначала определить массу Луны. Это сделать очень сложно. Решается задача путём анализа возмущений в движении Земли, которые вызывает Луна.

3. По точным определениям видимых положений Солнца в его долготе были обнаружены изменения с месячным периодом, называемые «лунным неравенством». Наличие этого факта в видимом движении Солнца указывает на то, что центр Земли описывает небольшой эллипс в течение месяца вокруг общего центра масс «Земля — Луна», расположенного внутри Земли, на расстоянии 4650 км. от центра Земли.

Положение центра масс Земля-Луна было найдено также из наблюдений малой планеты Эрос в 1930 — 1931 гг.

По возмущениям в движениях искусственных спутников Земли отношение масс Луны и Земли получилось 1/81,30.

В 1964 году Международный астрономический союз принял его как const.

Из уравнения Кеплера получаем для Солнца массу = 2.1033г., что в 333000 раза превосходит земную.

Массы планет, не имеющих спутников, определены по возмущениям, которые они вызывают в движении Земли, Марса, астероидов, комет, по возмущениям, производимым ими друг на друга.

Земля — уникальная планета солнечной системы. Она не самая маленькая, но и не самая крупная: занимает пятое место по габаритам. Среди планет земной группы она является крупнейшей по массе, диаметру, плотности. Планета располагается в космическом пространстве, и узнать, сколько весит Земля, сложно. Ее же нельзя положить на весы и взвесить, поэтому об ее весе говорят, суммируя массу всех веществ, из которых она состоит. Приблизительно этот показатель равен 5,9 секстиллиона тонн. Чтобы понимать, какая это цифра, можно ее просто математически записать: 5 900 000 000 000 000 000 000. От этого количества нулей как-то рябит в глазах.

История попыток определения размера планеты

Ученых всех веков и народов пытались найти ответ на вопрос о том, сколько весит Земля. В древние времена люди предполагали, что планета — это плоская тарелка, которую держат киты и черепаха. В некоторых нациях вместо китов были слоны. В любом случае разные народы мира представляли планету плоской и имеющей свой край.

Во времена Средневековья представления о форме и весе изменились. Первым, кто заговорил о сферическом виде, был Дж. Бруно, однако, за свои убеждения его казнила инквизиция. Другой вклад в науку, который показывает радиус и массу Земли, внес путешественник Магеллан. Именно он предположил, что планета круглая.

Первые открытия

Земля — физическое тело, имеющее определенные свойства, среди которых есть и вес. Это открытие позволило начать самые разные исследования. По физической теории вес — это сила действия тела на опору. Учитывая, что Земля не имеет никакой опоры, можно сделать вывод, что у нее нет веса, а вот масса имеется, и большая.

Вес Земли

Впервые определить размер планеты пытался Эратосфен — древнегреческий ученый. В разных городах Греции он проводил замеры тени, а после сравнивал полученные данные. Таким образом он пытался рассчитать объем планеты. После него провести вычисления пытался итальянец Г. Галилей. Именно он открыл закон свободного тяготения. Эстафета по определению того, сколько весит Земля, была принята И. Ньютоном. Благодаря попыткам сделать замеры, он открыл закон гравитации.

Впервые определить, сколько весит Земля, удалось шотландскому ученому Н. Мэкелин. По его вычислениям масса планеты составляет 5,9 секстиллионов тонн. Сейчас этот показатель увеличился. Различия в весе связано с оседанием на поверхности планеты космической пыли. Примерно тридцать тонн пыли ежегодно остаются на планете, делая ее тяжелее.

Масса Земли

Чтобы точно узнать, сколько весит Земля, необходимо знать состав и вес веществ, из которых состоит планета.

  1. Мантия. Масса этой оболочки составляет примерно 4,05 Х 10 24 кг.
  2. Ядро. Эта оболочка весит меньше мантии — всего 1.94 Х 10 24 кг.
  3. Кора земная. Данная часть очень тонкая и весит всего 0,027 Х 10 24 кг.
  4. Гидросфера и атмосфера. Эти оболочки весят 0,0015 Х 10 24 и 0,0000051 Х 10 24 кг, соответственно.

Сложив все эти данные, получаем вес Земли. Однако по разным источникам масса планеты различна. Так сколько весит планета Земля в тоннах, и сколько весят другие планеты? Вес планеты составляет 5,972 Х 10 21 т. Радиус — 6370 километров.

На основе принципа гравитации можно с легкостью определить вес Земли. Для этого берется нить, и на нее подвешивается маленький груз. Его местоположение определяется точно. Рядом размещают тонну свинца. Между двумя телами возникает притяжение, из-за которого груз отклоняется в сторону на незначительное расстояние. Однако даже отклонение в 0,00003 мм дает возможность вычислить массу планеты. Для этого достаточно измерить силу притяжения по отношению к весу и силу притяжения малого груза к большому. Полученные данные позволяют провести расчеты массы Земли.

Масса Земли и других планет

Земля является самой большой планетой земной группы. По отношению к ней масса Марса составляет около 0,1 земного веса, а Венера — 0,8. составляет около 0,05 от земного. Газовые гиганты во много раз крупнее Земли. Если сравнить Юпитер и нашу планету, то гигант больше в 317 раз, а Сатурн тяжелее в 95 раз, Уран — в 14. Есть планеты, которые весят больше Земли в 500 раз и более. Это огромные газовые тела, расположенные за пределами нашей солнечной системы.

Понравилась статья? Поделить с друзьями:
  • Как найти опорное решение транспортной задачи
  • Как найти загруженные файлы на айпад
  • Как найти местоположение по номеру телефона билайн
  • Как найти установленный индикатор
  • Как найти заблокированные контакты в whatsapp айфон