Как найти отношение отрезков биссектрисы

Биссектриса треугольника

Напомним, что биссектрисой угла называют луч, делящий угол пополам.

Определение . Биссектрисой треугольника называют отрезок, являющийся частью биссектрисы угла треугольника и соединяющий вершину треугольника с точкой на противоположной стороне (рис 1).

Поскольку в каждом треугольнике имеются три угла, то в каждом треугольнике можно провести три биссектрисы.

На рисунке 1 биссектрисой является отрезок AD .

Теорема 1 . Биссектриса угла треугольника делит противоположную сторону на части, пропорциональные прилежащим сторонам треугольника.

Доказательство . Продолжим сторону AC треугольника ABC , изображенного на рисунке 1, за точку A . Проведем через точку B прямую, параллельную биссектрисе AD . Обозначим точку пересечения построенных прямых буквой E (рис. 2).

Докажем, что отрезки AB и AE равны. Для этого заметим, что угол EBA равен углу BAD , поскольку эти углы являются внутренними накрест лежащими при параллельных прямых EB и AD . Заметим также, что угол BEA равен углу DAC , поскольку эти углы являются соответственными при параллельных прямых EB и AD . Таким образом, угол EBA равен углу BEA , откуда вытекает, что треугольник EAB является равнобедренным, и отрезки AB и AE равны.

Отсюда, воспользовавшись теоремой Фалеса, получаем:

что и требовалось доказать.

Следствие 1 . Рассмотрим рисунок 3, на котором изображен тот же треугольник, как и на рисунке 1, но для длин отрезков использованы обозначения

b = |AC|, a = |BC|, c = |AB|, p = |BD|, q = |DC|.

что и требовалось доказать.

Следствие 2 . Рассмотрим рисунок 4, на котором изображены две биссектрисы треугольника, пересекающиеся в точке O .

Тогда справедлива формула:

что и требовалось доказать.

Теорема 2 . Рассмотрим рисунок 5, который практически совпадает с рисунком 2.

Тогда для длины биссектрисы справедлива формула:

Доказательство . Из рисунка 5 следует формула

Если воспользоваться этой формулой, то из подобия треугольников ADC и EBC , получаем:

что и требовалось доказать.

Теорема 3 . Длину биссектрисы треугольника (рис.6) можно найти по формуле:

Доказательство . Рассмотрим рисунок 6

откуда с помощью Теоремы 2 получаем:

что и требовалось доказать.

Задача . Из вершины C треугольника ABC (рис.7) проведена биссектриса CD и высота CE .

Доказать, что выполнено равенство:

Решение . Поскольку CD – биссектриса угла ACB , то

Поскольку CE – высота, то

что и требовалось доказать.

Из решения этой задачи вытекает простое следствие.

Следствие . Длины биссектрисы CD и высоты CE связаны следующей формулой:

Элементы треугольника. Биссектриса

Биссектриса треугольника – отрезок биссектрисы угла треугольника, заключенный между вершиной треугольника и противолежащей ей стороной.

Свойства биссектрисы

1. Биссектриса треугольника делит угол пополам.

2. Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон ()

3. Точки биссектрисы угла треугольника равноудалены от сторон этого угла.

4. Биссектрисы внутренних углов треугольника пересекаются в одной точке — центре вписанной в этот треугольник окружности.

Некоторые формулы, связанные с биссектрисой треугольника

(доказательство формулы – здесь)
, где
— длина биссектрисы, проведённой к стороне ,
— стороны треугольника против вершин соответственно,
— длины отрезков, на которые биссектриса делит сторону ,

Приглашаю посмотреть видеоурок, в котором демонстрируется применение всех указанных выше свойств биссектрисы.

Задачи, рассматриваемые в видеоролике:
1.В треугольнике АВС со сторонами АВ=2 см, ВС=3 см, АС=3 см проведена биссектриса ВМ. Найти длины отрезков АМ и МС
2. Биссектриса внутреннего угла при вершине А и биссектриса внешнего угла при вершине С треугольника АВС пересекаются в точке М. Найдите угол BMC, если угол В равен 40, угол С – 80 градусов
3. Найти радиус окружности, вписанной в треугольник, считая стороны квадратных клеток равными 1

Возможно, вам будет интересен и этот небольшой видеоурок, где применяется одно из свойств биссектрисы

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Теорема о биссектрисе треугольника. Доказательство

Теорема 1. Биссектриса при вершине треугольника делит противоположную сторону на две отрезки, пропорциональные сторонам, прилежащим к данной вершине. То есть если биссектриса при вершине A делит в точке D сторону BC на отрезки BD и CD (Рис.1), то имеет место следующее соотношение:

Доказательство (метод площадей 1). Из вершины A опущена биссектриса AD. Построим вершину треугольника AH. Найдем площади треугольников ABD и ACD:

Построим следующее соотношение

С другой стороны, площадь треугольников ABD и ACD можно найти используя следующие формулы:

Построим следующее соотношение используя формулы (6) и (7):

Из формул (5) и (8) получим соотношение (1).

Доказательство (метод площадей 2). С одной стороны, аналогично вышеизложенному имеем соотношение (5). Далее из точки D проведем вершины L и M для треугольников ABD и ACD (Рис.2).

Тогда площади треугольников ABD и ACD можно найти из формул:

Построим следующее соотношение

Из формул (5) и (11) получим соотношение (1).

Доказательство (через теорему синусов). Рассмотрим треугольник ABC. Из точки A проведем биссектрису AD (Рис.3):

Применяя теорему синусов для треугольников ABD и ACD можем записать:

Поделив (12) на (13) и учитывая, что ( small sin(180°-delta)=sin delta , ) (см. статью Формулы приведения тригонометрических функций онлайн) получим равенство (1).

Доказательство (через подобие треугольников). Рассмотрим треугольник ABC. Из точки A проведем биссектрису AD (Рис.4). Проведем перпендикуляры из вершин B и C на луч AD и обозначим точки пересечения через L и K.

Рассмотрим треугольники ABL и ACK. Эти треугольники подобны по двум углам (( small ∠ ALB= ∠ AKC ,;; ∠ BAL= ∠ CAK ) ). Тогда имеем:

Рассмотрим, далее, треугольники BLD и CKD. Они также подобны поскольку ( small ∠ BLD= ∠ CKD ,) а углы BDL и CDK равны так как они вертикальные. Тогда имеет место следующее соотношение:

Из равенств (14) и (15) получаем:

Пример. Даны стороны треугольника ABC: AB=18, AC=6, BC=20. Найти отрезки, полученные делением биссектрисей большой стороны треугольника.

Решение. Поскольку напротив самой большой стороны треугольника находится вершина A, то бисскетриса AD делит сторону BC на отрезки BD и CD. Тогда имеем:

Обозначим BD=x. Тогда CD=BC−x=20−x. Подставляя данные в уравнение (16), получим:

Методом перекресного умножения упростим (17) и решим:

источники:

Элементы треугольника. Биссектриса

http://matworld.ru/geometry/teorema-o-bissektrise.php

Биссектриса угла

Когда-то древние астрономы и математики открыли очень много интересных свойств биссектрисы угла треугольников и других фигур.

Эти знания сильно упростили жизнь людей. Стало легче строить, считать расстояния, даже корректировать стрельбу из пушек… 

Нам же знание этих свойств поможет решить некоторые задания ЕГЭ!

Приступим!

Биссектриса угла — коротко о главном

Биссектриса угла — это линия, делящая угол пополам.

Биссектриса угла – это геометрическое место точек, равноудаленых от сторон угла.

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.

Теорема 1. Три биссектрисы в треугольнике пересекаются в одной точке, и эта точка – центр вписанной в треугольник окружности.

Теорема 2. В равнобедренном треугольнике биссектриса, проведённая из вершины к основанию, является также и медианой, и высотой.

Теорема 3. Биссектриса угла параллелограмма отсекает равнобедренный треугольник.

Теорема 4. Биссектрисы внутреннего и внешнего углов треугольника перпендикулярны.

Теорема 5. Биссектрисы односторонних углов параллелограмма и трапеции пересекаются под прямым углом.

Теорема 6. Отношение отрезков, на которые биссектриса делит противоположную сторону, такое же, как и отношение двух сторон, между которыми эта биссектриса прошла.

( displaystyle frac{x}{y}=frac{a}{b})

А теперь подробнее…

Определение биссектрисы угла

Помнишь шутку: «Биссектриса это крыса, которая бегает по углам и делит угол пополам»?

Так вот, настоящее определение биссектрисы угла очень похоже на эту шутку — биссектриса действительно делит пополам угол (а не отрезок, например):

Биссектриса угла – это линия, делящая угол пополам.

Или еще вот такое определение биссектрисы:

Биссектриса угла – это геометрическое место точек, равноудаленых от сторон угла.

А вот определение биссектрисы треугольника:

Биссектриса треугольника – это отрезок биссектрисы угла треугольника, соединяющий вершину этого угла с точкой на противолежащей стороне.

Тебе встретилась в задаче биссектриса? Постарайся применить одно (а иногда можешь и несколько) из следующих потрясающих свойств.

Биссектриса равнобедренного треугольника

Биссектриса равнобедренного треугольника, проведенная к основанию, является и медианой, и высотой.

Но представляешь, это ещё не всё. Верна ещё и обратная теорема:

Если в треугольнике биссектриса, проведённая из какого-то угла, совпадает с медианой или с высотой, то этот треугольник равнобедренный.

Мы скоро докажем обе этих теоремы, а пока твердо запомни:

Биссектриса совпадает с высотой и медианой только в равнобедренном треугольнике!

Зачем же это твердо запоминать? Как это может помочь?

А вот представь, что у тебя задача:

Дано: ( AB=5,~angle ~ABD=~angle DBC,~AD=DC. )

Найти: ( displaystyle BC. )

Ты тут же соображаешь, (displaystyle BD ) биссектриса и, о чудо, она разделила сторону ( displaystyle AC ) пополам! (по условию…).

Если ты твердо помнишь, что так бывает только в равнобедренном треугольнике, то делаешь вывод, что AB=BC и значит, пишешь ответ: BC=5.

Здорово, правда? Конечно, не во всех задачах будет так легко, но знание обязательно поможет!

Доказательство теорем о совпадении биссектрисы с медианой и высотой в равнобедренном треугольнике

Почему в случае с равнобедренным треугольником биссектриса оказывается одновременно и медианой и высотой?

Как это доказать?

Смотри: у ( triangle ABL ) и ( triangle CBL ) равны стороны ( AB ) и ( BC ), сторона ( BL ) у них вообще общая и ( angle 1=angle 2). (( BL ) – биссектриса!)

И вот, получилось, что два треугольника имеют по две равные стороны и угол между ними.

Вспоминаем первый признак равенства треугольников (не помнишь, загляни в тему «Треугольник») и заключаем, что ( triangle ABL=triangle CBL ), а значит ( AL )= ( CL ) и ( angle 3=angle 4 ).

( AL ) = ( CL ) – это уже хорошо – значит, ( BL ) оказалась медианой.

А вот что такое ( angle 3=angle 4 )?

Готов дальше?

Будет немного сложнее, но пока мы отвлечемся на термины — повторим что такое биссектриса, медиана и высота, чем они похожи и чем они отличаются.

Биссектриса, медиана, высота — определения и отличия

Кстати, а помнишь ли ты все эти термины? Чем они отличаются друг от друга?

Если нет, не страшно. Сейчас разберемся.

  • Основание равнобедренного треугольника – это та сторона, которая не равна никакой другой. Посмотри на рисунок, как ты думаешь, какая это сторона? Правильно – это сторона ( AC. );
  • Медиана – это линия, проведенная из вершины треугольника и делящая противоположную сторону (это снова ( AC ) пополам. Заметь, мы не говорим: «Медиана равнобедренного треугольника». А знаешь почему? Потому что медиана, проведенная из вершины треугольника, делит противоположную сторону пополам в ЛЮБОМ треугольнике.;
  • Высота – это линия, проведенная из вершины и перпендикулярная основанию. Ты заметил? Мы опять говорим о любом треугольнике, а не только о равнобедренном. Высота в ЛЮБОМ треугольнике всегда перпендикулярна основанию.

Чем биссектриса, медиана и высота похожи между собой?

Биссектриса, медиана и высота – все они «выходят» из вершины треугольника и упираются в противоположную сторону и «что-то делают» либо с углом из которого выходят, либо с противоположной стороной.

Чем биссектриса, медиана и высота отличаются между собой?

  • Биссектриса делит угол, из которого выходит, пополам.
  • Медиана делит противоположную сторону пополам.
  • Высота всегда перпендикулярна противоположной стороне.

Вернемся к нашим баранам — к свойствам биссектрисы…

Угол между биссектрисами любого треугольника

B ( triangle ABC )проведем две биссектрисы ( AO )и ( OC ). 

Они пересеклись. Какой же угол получился у точки ( O )?

Давай его посчитаем. Ты помнишь, что сумма углов треугольника равна ( 180{}^circ ) ?

Применим этот потрясающий факт. С одной стороны, из ( triangle ABC ):

( angle A+angle B+angle C=180{}^circ ), то есть ( angle B=180{}^circ text{ }-text{ }left( angle A+angle C right) ).

Теперь посмотрим на ( triangle AOC ):

( angle 2+angle 6+angle 3=180{}^circ )

Но биссектрисы, биссектрисы же!

( angle 2=frac{angle A}{2}; angle 3=frac{angle C}{2} )

Значит ( left( triangle AOC right) )

( frac{angle A}{2}+angle 6+frac{angle C}{2}=180{}^circ ), то есть

( angle 6=180{}^circ -frac{angle A}{2}-frac{angle C}{2} );

(  angle 6=180{}^circ -frac{angle A+angle C}{2} )

Вспомним про ( triangle ABC : angle A+angle C=180{}^circ -angle B )

Значит, ( angle 6=180{}^circ -frac{180{}^circ -angle B}{2}=90+frac{angle B}{2} )

Теперь через буквы

(  angle AOC=90{}^circ +frac{angle B}{2} )

Не удивительно ли?

Получилось, что угол между биссектрисами двух углов зависит только от третьего угла!

Ну вот, две биссектрисы мы посмотрели. А что, если их три?! Пересекутся ли они все в одной точке?

Или будет так:

Биссектриса угла – геометрическое место точек, равноудалённых от сторон угла

Ленивые математики как обычно в двух строчках спрятали четыре.

Итак, что же значит, «Биссектриса – геометрическое место точек»? А это значит, что выполняются сразу два утверждения:

  1. Если точка лежит на биссектрисе, то расстояния от неё до сторон угла равны.
  2. Если у какой-нибудь точки расстояния до сторон угла равны, то эта точка обязательно лежит на биссектрисе.

Видишь разницу между утверждениями 1 и 2? Если не очень, то вспомни Шляпника из «Алисы в стране чудес»: «Так ты еще чего доброго скажешь, будто «Я вижу то, что ем» и «Я ем то, что вижу», — одно и то же!»

Итак, нам нужно доказать утверждения 1 и 2, и тогда утверждение: «биссектриса – это геометрическое место точек, равноудаленных от сторон угла» будет доказано!

Почему же верно 1?

Возьмём любую точку на биссектрисе и назовём её ( displaystyle A. )

Опустим из этой точки перпендикуляры ( displaystyle ) AB и ( displaystyle AC ) на стороны угла.

А теперь… Приготовились вспоминать признаки равенства прямоугольных треугольников! Если ты их подзабыл, то загляни в раздел «Прямоугольный треугольник».

Итак… Два прямоугольных треугольника: ( displaystyle AOC ) и ( displaystyle AOB. ) У них:

Почему же верно 2?

Возьмем какую-то точку ( displaystyle E) внутри угла, для которой расстояние до сторон угла равны.

И соединим точки ( displaystyle E) и ( displaystyle O).

Теперь ( displaystyle triangle EOC=triangle EOB) как прямоугольные по катету и гипотенузе.

Значит, ( displaystyle angle 1=angle 2), то есть ( displaystyle E) лежит на биссектрисе!

Вот и всё!

Как же все это применить при решении задач? Вот например, в задачах часто бывает такая фраза: «Окружность касается сторон угла….». Ну, и найти нужно что-то.

То быстро соображаешь, что:

  • Окружность касается сторон угла – значит, ( displaystyle AC=AB). (Правда, для этого нужно ещё знать, что радиус, проведённый в точку касания, перпендикулярен касательной)
  • А раз ( displaystyle AC=AB), то ( displaystyle AO) – точно биссектриса!

И можно пользоваться равенством ( displaystyle angle 1=angle 2).

Три биссектрисы в треугольнике пересекаются в одной точке

Из свойства биссектрисы быть геометрическим местом точек, равноудаленных от сторон угла, вытекает следующее утверждение:

Три биссектрисы в треугольнике пересекаются в одной точке, и эта точка – центр вписанной в треугольник окружности.

Как именно вытекает? А вот смотри: две-то биссектрисы точно пересекутся, правда?

А третья биссектриса могла бы пройти так:

Но на самом деле-то всё гораздо лучше!

Давай рассмотрим точку пересечения двух биссектрис. Назовём её ( displaystyle O).

Эта точка лежит на биссектрисе ( displaystyle AD). Что из этого следует? 

Правильно! ( displaystyle OK=OM)!

Точка ( displaystyle O) лежит ещё и на биссектрисе ( displaystyle CE), поэтому ( displaystyle OK=ON).

Что мы тут оба раза применяли?

Да пункт 1, конечно же! Если точка лежит на биссектрисе, то она одинаково удалена от сторон угла.

Вот и получилось ( displaystyle OK=OM) и ( displaystyle OK=ON).

Но посмотри внимательно на эти два равенства! Ведь из них следует, что:

Переходим к следующему свойству… Ух и много же свойств у биссектрисы, правда? И это здорово, потому что, чем больше свойств, тем больше инструментов для решения задач про биссектрису.

Биссектриса и параллельность, биссектрисы смежных углов

Тот факт, что биссектриса делит угол пополам, в каких-то случаях приводит к совершенно неожиданным результатам. Вот, например, некоторые из них:

Случай 1

Биссектриса угла параллелограмма отсекает равнобедренный треугольник.

Здорово, правда? Давай поймём, почему так.

С одной стороны, ( displaystyle angle 1=angle 2) — мы же проводим биссектрису!

Но, с другой стороны, ( displaystyle angle 2=angle 3) — как накрест лежащие углы (вспоминаем тему «Параллельные прямые»).

И теперь выходит, что:

Случай 2

Биссектрисы внутреннего и внешнего углов треугольника перпендикулярны.

Представь треугольник (или посмотри на картинку)

Давай продолжим сторону ( displaystyle AC) за точку ( A). Теперь получилось два угла ( displaystyle A):

  • ( displaystyle angle 1) – внутренний угол ( displaystyle triangle ABC)
  • ( displaystyle angle 2) – внешний угол ( displaystyle triangle ABC) – он же снаружи, верно?

Так вот, а теперь кому-то захотелось провести не одну, а сразу две биссектрисы: и для ( displaystyle angle 1), и для ( displaystyle angle 2). Что же получится?

А получится прямоугольный ( displaystyle triangle ALK)!

Удивительно, но это именно так.

Разбираемся.

Как ты думаешь, чему равна сумма ( displaystyle angle 1+angle 2+angle 3+angle 4)?

Случай 3

Биссектрисы односторонних углов параллелограмма и трапеции пересекаются под прямым углом.

Видишь, что здесь все так же, как и для внутреннего и внешнего углов?

Или ещё раз подумаем, почему так получается?

Снова, как и для смежных углов,

( angle 1+angle 2+angle 3+angle 4=180{}^circ ) (как соответственные при параллельных основаниях).

И опять, ( angle 2+angle 3 ) составляют ровно половину от суммы ( angle 1+angle 2+angle 3+angle 4=180{}^circ )

Значит, ( angle 2+angle 3=90{}^circ ).

Вывод:

Биссектриса и противоположная сторона

Оказывается, биссектриса угла треугольника делит противоположную сторону не как-нибудь, а специальным и очень интересным образом:

( displaystyle frac{x}{y}=frac{a}{b})

То есть:

Отношение отрезков, на которые биссектриса поделила сторону ( displaystyle AB), такое же, как и отношение двух сторон, между которыми эта биссектриса прошла.

Удивительный факт, не правда ли?

Сейчас мы этот факт докажем, но приготовься: будет немного сложнее, чем раньше.

Снова – выход в «космос» — дополнительное построение!

Проведём прямую ( BKparallel AC).

Зачем? Сейчас увидим.

Продолжим биссектрису ( displaystyle CD) до пересечения с прямой ( displaystyle BK).

Знакомая картинка? Да-да-да, точно так же, как в пункте 4, случай 1 – получается, что ( angle 1=angle 2) (( displaystyle CD) – биссектриса)

( angle 2=angle 3) — как накрест лежащие

( Rightarrow angle 1=angle 3) и ( BC=BL)

Значит, ( BL) – это тоже ( a).

А теперь посмотрим на треугольники ( ACD) и ( BLD).

Что про них можно сказать?

Теперь можешь смело использовать! Разберём ещё одно свойство биссектрис углов треугольника. Самое сложное кончилось – будет проще.

Угол между биссектрисами треугольника

Пусть ( AO) и ( CO) – биссектрисы. 

Найдём ( angle AOC) (помним, что сумма углов треугольника равна ( displaystyle 180{}^circ )).

( angle text{ }!!~!!text{ AOC}=180{}^circ -text{ }!!~!!text{ }frac{angle A}{2}-frac{angle text{C}}{2}=180{}^circ -frac{angle text{A}+angle text{C}}{2}=180{}^circ -frac{180{}^circ -angle text{B}}{2})

Получаем, что 

( angle text{ }!!~!!text{ AOC}=90{}^circ +frac{angle B}{2})

Это знание можно применить в тех задачах, где участвуют две биссектрисы и дан лишь угол ( B), а искомые величины выдерживаются через ( angle AOC) или, наоборот, ( angle AOC) дан, а нужно найти что-то с участием угла ( B).

Основные знания о биссектрисе закончились. Комбинируя эти факты, ты найдёшь ключ к любой задаче о биссектрисе!

Самые бюджетные курсы по подготовке к ЕГЭ на 90+

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

Рассмотрим свойство биссектрисы треугольника с доказательством и задачу на применение свойства.

Теорема (Свойство биссектрисы треугольника)

Биссектриса треугольника делит третью сторону на отрезки, пропорциональные двум другим сторонам:

    [frac{{AC}}{{CP}} = frac{{AB}}{{BP}}]

svoystvo bissektrisyi treugolnika Дано: ∆АВС, АР — биссектриса.

Доказать:

    [frac{{AC}}{{CP}} = frac{{AB}}{{BP}}]

Доказательство:

svoystvo bissektrisyi treugolnika dokazatelstvo I. Если АС=АВ, то биссектриса АР является также медианой, СР=ВР, и

    [frac{{AC}}{{CP}} = frac{{AB}}{{BP}}]

II.Если АС≠АВ.

1) Опустим перпендикуляры BN и CF на луч AP.

2) Прямоугольные треугольники ABN и ACF подобны по острому углу (∠BAP=∠CAP, так как AP — биссектриса ∠BAC (по условию)), следовательно,

    [frac{{AB}}{{AC}} = frac{{BN}}{{CF}}.]

3) Прямоугольные треугольники BNP и CFP  подобны по острому углу (∠BPN=∠CPF (как вертикальные)), следовательно,

    [frac{{BN}}{{CF}} = frac{{BP}}{{CP}}.]

    [4)frac{{AB}}{{AC}} = frac{{BN}}{{CF}}{rm{ u }}frac{{BN}}{{CF}} = frac{{BP}}{{CP}},]

    [ Rightarrow frac{{AB}}{{AC}} = frac{{BP}}{{CP}}.]

Если средние члены пропорции поменять местами, пропорция останется верной, поэтому

    [frac{{AB}}{{BP}} = frac{{AC}}{{CP}}.]

Что и требовалось доказать.

Задача.

Стороны треугольника равны 10 см, 11 см и 12 см. Найти отрезки, на которые делит биссектриса треугольника среднюю сторону.

Дано: AC=10 см, BC=11 см, AB=12 см, AP = биссектриса.

Найти: CP и BP.

Решение:

По свойству биссектрисы треугольника:

    [frac{{AB}}{{BP}} = frac{{AC}}{{CP}}.]

    [frac{{12}}{{BP}} = frac{{10}}{{CP}}.]

Пусть CP=x см, тогда BP=11-x см:

    [frac{{12}}{{11 - x}} = frac{{10}}{x},]

откуда по основному свойству пропорции

    [12x = 10(11 - x)]

    [22x = 110]

    [x = 5]

CP=5 см, BP=6 см.

Ответ: 5 см, 6 см.

Теорема о биссектрисе треугольника. Доказательство

Теорема 1. Биссектриса при вершине треугольника делит противоположную сторону на две отрезки, пропорциональные сторонам, прилежащим к данной вершине. То есть если биссектриса при вершине A делит в точке D сторону BC на отрезки BD и CD (Рис.1), то имеет место следующее соотношение:

Доказательство (метод площадей 1). Из вершины A опущена биссектриса AD. Построим вершину треугольника AH. Найдем площади треугольников ABD и ACD:

Построим следующее соотношение

С другой стороны, площадь треугольников ABD и ACD можно найти используя следующие формулы:

Построим следующее соотношение используя формулы (6) и (7):

Из формул (5) и (8) получим соотношение (1).Конец доказательства

Доказательство (метод площадей 2). С одной стороны, аналогично вышеизложенному имеем соотношение (5). Далее из точки D проведем вершины L и M для треугольников ABD и ACD (Рис.2).

Тогда площади треугольников ABD и ACD можно найти из формул:

Построим следующее соотношение

Из формул (5) и (11) получим соотношение (1).Конец доказательства

Доказательство (через теорему синусов). Рассмотрим треугольник ABC. Из точки A проведем биссектрису AD (Рис.3):

Применяя теорему синусов для треугольников ABD и ACD можем записать:

Поделив (12) на (13) и учитывая, что ( small sin(180°-delta)=sin delta , ) (см. статью Формулы приведения тригонометрических функций онлайн) получим равенство (1).Конец доказательства

Доказательство (через подобие треугольников). Рассмотрим треугольник ABC. Из точки A проведем биссектрису AD (Рис.4). Проведем перпендикуляры из вершин B и C на луч AD и обозначим точки пересечения через L и K.

Рассмотрим треугольники ABL и ACK. Эти треугольники подобны по двум углам (( small ∠ ALB= ∠ AKC ,;; ∠ BAL= ∠ CAK ) ). Тогда имеем:

Рассмотрим, далее, треугольники BLD и CKD. Они также подобны поскольку ( small ∠ BLD= ∠ CKD ,) а углы BDL и CDK равны так как они вертикальные. Тогда имеет место следующее соотношение:

Из равенств (14) и (15) получаем:

Пример. Даны стороны треугольника ABC: AB=18, AC=6, BC=20. Найти отрезки, полученные делением биссектрисей большой стороны треугольника.

Решение. Поскольку напротив самой большой стороны треугольника находится вершина A, то бисскетриса AD делит сторону BC на отрезки BD и CD. Тогда имеем:

Обозначим BD=x. Тогда CD=BC−x=20−x. Подставляя данные в уравнение (16), получим:

или

Методом перекресного умножения упростим (17) и решим:

Тогда BD=x=15,   CD=BC−x=20−x=5.

Ответ. BD=15,   CD=5.

В данной публикации мы рассмотрим определение и основные свойства биссектрисы угла треугольника, а также приведем пример решения задачи, чтобы закрепить представленный материал.

  • Определение биссектрисы угла треугольника

  • Свойства биссектрисы треугольника

    • Свойство 1 (теорема о биссектрисе)

    • Свойство 2

    • Свойство 3

    • Свойство 4

    • Свойство 5

  • Пример задачи

Определение биссектрисы угла треугольника

Биссектриса угла – это луч, который берет начала в вершине угла и делит данный угол пополам.

Биссектриса треугольника – это отрезок, соединяющий вершину угла треугольника с противоположной стороной и делящий этот угол на две равные части. Такая биссектриса, также, называется внутренней.

Внутренняя биссектриса треугольника

  • BD – биссектриса угла ABC;
  • α = β.

Основание биссектрисы – точка на стороне треугольника, которую пересекает биссектриса. Т.е. в нашем случае – это точка D.

Внешней называется биссектриса угла, смежного с внутренним углом треугольника.

Внешняя биссектриса треугольника

  • СD – внешняя биссектриса угла, смежного с ∠ACB;
  • α = β.

Свойства биссектрисы треугольника

Свойство 1 (теорема о биссектрисе)

Биссектриса угла треугольника делит его противоположную сторону в пропорции, равной отношению прилежащих к данному углу сторон. Т.е. для нашего треугольника (см. самый верхний рисунок):

Теорема о биссектрисе (формула)

Свойство 2

Точка пересечения трех внутренних биссектрис любого треугольника (называется инцентром) является центром вписанной в фигуру окружности.

Центр вписанной в треугольник окружности на пересечении биссектрис (инцентр)

Свойство 3

Все биссектрисы треугольника в точке пересечения делятся в отношении, равном сумме прилежащих к углу сторон, деленной на противолежащую сторону (считая от вершины).

Пересечение биссектрис в треугольнике

Деление биссектрис треугольника в точке пересечения (соотношение)

Деление биссектрис треугольника в точке пересечения (соотношение)

Деление биссектрис треугольника в точке пересечения (соотношение)

Свойство 4

Если известны длины отрезков, образованных на стороне, которую пересекает биссектриса, а также две другие стороны треугольника, найти длину биссектрисы можно по формуле ниже (следует из теоремы Стюарта):

BD2 = AB ⋅ BC – AD ⋅ DC

Биссектриса треугольника

Свойство 5

Внешняя и внутренняя биссектрисы одного и того же угла треугольника перпендикулярны друг к другу.

Перпендикулярность внешней и внутренней биссектрис одного и того же угла треугольника

  • CD – внутренняя биссектриса ∠ACB;
  • CE – биссектриса угла, смежного с ∠ACB;
  • DCE равен 90°, т.е. биссектрисы CD и CE перпендикулярны.

Пример задачи

Дан прямоугольный треугольник с катетами 6 см и 8 см. Найдите длину биссектрисы, проведенной к гипотенузе.

Решение
Нарисуем чертеж согласно условиям задачи.

Биссектриса прямоугольного треугольника к гипотенузе

Применив теорему Пифагора мы можем найти длину гипотенузы (ее квадрат равен сумме квадратов двух катетов).
BC2 = AB2 + AC2 = 62 + 82 = 100.
Следовательно, BC = 10 см.

Далее составляем пропорцию согласно Свойству 1, условно приняв отрезок BD на гипотенузе за “a” (тогда DC = “10-a”):

Теорема о биссектрисе (пример задачи)

Избавляемся от дробей и решаем получившееся уравнение:
8a = 60 – 6a
14a = 60
a ≈ 4,29

Таким образом, BD ≈ 4,29 см, CD ≈ 10 – 4,29 ≈ 5,71 см.

Теперь мы можем вычислить длину биссектрисы, использую формулу, приведенную в Свойстве 4:
AD2 = AB ⋅ AC – BD ⋅ DC = 6 ⋅ 8 – 4,29 ⋅ 5,71 ≈ 23,5.

Следовательно, AD ≈ 4,85 см.

Понравилась статья? Поделить с друзьями:
  • Как найти тангенс через треугольник
  • Как найти отрицательное решение уравнения с модулем
  • Как найти жир смеси
  • Как найти максимальную скорость вырванного электрона
  • Скол на экране ноутбука как исправить