Как найти отношение выделяющихся на резисторах мощностей

Все электронные устройства содержат резисторы, являющиеся их основным элементом. С его помощью изменяют величину тока в электрической цепи. В статье приведены свойства резисторов и методы расчёта их мощности.

Назначение резистора

Для регулировки тока в электрических цепях применяются резисторы. Это свойство определено законом Ома:

I=U/R (1)

Из формулы (1) хорошо видно, что чем меньше сопротивление, тем сильнее возрастает ток, и наоборот, чем меньше величина R, тем больше ток. Именно это свойство электрического сопротивления используется в электротехнике. На основании этой формулы создаются схемы делителей тока, широко применяющиеся в электротехнических устройствах.

мощность резисторов

В этой схеме ток от источника делится на два, обратно пропорциональных сопротивлениям резисторов.

Кроме регулировки тока, резисторы используются в делителях напряжения. В этом случае опять используется закон Ома, но немного в другой форме:

U=I∙R (2)

Из формулы (2) следует, что при увеличении сопротивления увеличивается напряжение. Это свойство используется для построения схем делителей напряжения.

мощность резисторов на схеме

Из схемы и формулы (2) ясно, что напряжения на резисторах распределяются пропорционально сопротивлениям.

Изображение резисторов на схемах

По стандарту резисторы изображаются прямоугольником с размерами 10 х 4 мм и обозначаются буквой R. Часто указывается мощность резисторов на схеме. Изображение этого показателя выполняется косыми или прямыми чёрточками. Если мощность более 2 Ватт, то обозначение производится римскими цифрами. Обычно это делается для проволочных резисторов. В некоторых государствах, например в США, применяются другие условные обозначения. Для облегчения ремонта и анализа схемы часто приводится мощность резисторов, обозначение которых выполняется по ГОСТ 2.728-74.

Технические характеристики устройств

Основная характеристика резистора – номинальное сопротивление Rн, которое указывается на схеме возле резистора и на его корпусе. Единица измерения сопротивления – ом, килоом и мегаом. Изготавливаются резисторы с сопротивлением от долей ома и до сотен мегаомов. Существует немало технологий производства резисторов, все они имеют и преимущества, и недостатки. В принципе, не существует технологии, которая позволила бы абсолютно точно изготавливать резистор с заданным значением сопротивления.

Второй важной характеристикой является отклонение сопротивления. Оно измеряется в % от номинального R. Существует стандартный ряд отклонения сопротивления: ±20, ±10, ±5, ±2, ±1% и далее вплоть до значения ±0,001%.

Следующей важной характеристикой является мощность резисторов. При работе они нагреваются от проходящего по ним тока. Если рассеиваемая мощность будет превышать допустимое значение, то устройство выйдет из строя.

Резисторы при нагревании изменяют своё сопротивление, поэтому для устройств, работающих в широком диапазоне температур, вводится ещё одна характеристика – температурный коэффициент сопротивления. Он измеряется в ppm/°C, то есть 10-6 Rн/°C (миллионная часть от Rн на 1°C).

Последовательное соединение резисторов

Резисторы могут соединяться тремя разными способами: последовательным, параллельным и смешанным. При последовательном соединении ток поочерёдно проходит через все сопротивления.

как определить мощность резисторов

При таком соединении ток в любой точке цепи один и тот же, его можно определить по закону Ома. Полное сопротивление цепи в этом случае равно сумме сопротивлений:

R=200+100+51+39=390 Ом;

I=U/R=100/390=0,256 А.

Теперь можно определить мощность при последовательном соединении резисторов, она рассчитывается по формуле:

P=I2∙R= 0,2562∙390=25,55 Вт.

Аналогично определяется мощность остальных резисторов:

P1= I2∙R1=0,2562∙200=13,11 Вт;

P2= I2∙R2=0,2562∙100=6,55 Вт;

P3= I2∙R3=0,2562∙51=3,34 Вт;

P4= I2∙R4=0,2562∙39=2,55 Вт.

Если сложить мощность резисторов, то получится полная P:

P=13,11+6,55+3,34+2,55=25,55 Вт.

Параллельное соединение резисторов

При параллельном соединении все начала резисторов подключаются к одному узлу схемы, а концы – к другому. При таком соединении ток разветвляется и течёт по каждому устройству. Величина тока, согласно закону Ома, обратно пропорциональна сопротивлениям, а напряжение на всех резисторах одинаково.

мощность резисторов обозначение

Прежде чем найти ток, нужно рассчитать полную проводимость всех резисторов по общеизвестной формуле:

1/R=1/R1+1/R2+1/R3+1/R4=1/200+1/100+1/51+1/39=0,005+0,01+0,0196+0,0256= 0,06024 1/Ом.

Сопротивление – величина, обратная проводимости:

R=1/0,06024= 16,6 Ом.

Воспользовавшись законом Ома, находят ток через источник:

I= U/R=100∙0,06024=6,024 A.

Зная ток через источник, находят мощность параллельно соединённых резисторов по формуле:

P=I2∙R=6,0242∙16,6=602,3 Вт.

По закону Ома рассчитывается ток через резисторы:

I1=U/R1=100/200=0,5 А;

I2=U/R2=100/100=1 А;

I3=U/R1=100/51=1,96 А;

I1=U/R1=100/39=2,56 А.

Немного по другой формуле можно рассчитать мощность резисторов при параллельном соединении:

P1= U2/R1=1002/200=50 Вт;

P2= U2/R2=1002/100=100 Вт;

P3= U2/R3=1002/51=195,9 Вт;

P4= U2/R4=1002/39=256,4 Вт.

Если всё это сложить, то получится мощность всех резисторов:

P= P1+ P2+ P3+ P4=50+100+195,9+256,4=602,3 Вт.

Смешанное соединение

Схемы со смешанным соединением резисторов содержат последовательное и одновременно параллельное соединение. Эту схему несложно преобразовать, заменив параллельное соединение резисторов последовательным. Для этого заменяют сначала сопротивления R2 и R6 на их общее R2,6, используя формулу, приведённую ниже:

R2,6=R2∙R6/R2+R6.

Точно так же заменяются два параллельных резистора R4, R5 одним R4,5:

R4,5=R4∙R5/R4+R5.

В результате получается новая, более простая схема. Обе схемы приведены ниже.

мощность при последовательном соединении резисторов

Мощность резисторов на схеме со смешанным соединением определяется по формуле:

P=U∙I.

Для расчёта по этой формуле сначала находят напряжение на каждом сопротивлении и величину тока через него. Можно использовать другой метод, чтобы определить мощность резисторов. Для этого используется формула:

P=U∙I=(I∙R)∙I=I2∙R.

Если известно только напряжение на резисторах, то применяют другую формулу:

P=U∙I=U∙(U/R)=U2/R.

Все три формулы часто используются на практике.

Расчёт параметров схемы

Расчёт параметров схемы заключается в нахождении неизвестных токов и напряжений всех ветвей на участках электрической цепи. Имея эти данные, можно рассчитать мощность каждого резистора, входящего в схему. Простые методы расчёта были показаны выше, на практике же дело обстоит сложнее.

В реальных схемах часто встречается соединение резисторов звездой и треугольником, что создаёт значительные трудности при расчётах. Для упрощения таких схем были разработаны методы преобразования звезды в треугольник, и наоборот. Этот метод проиллюстрирован на схеме, представленной ниже:

мощность параллельно соединенных резисторов

Первая схема имеет в своём составе звезду, подключенную к узлам 0-1-3. К узлу 1 подсоединён резистор R1, к узлу 3 – R3, а к узлу 0 – R5. На второй схеме к узлам 1-3-0 подключены резисторы треугольника. К узлу 1 подключены резисторы R1-0 и R1-3, к узлу 3 – R1-3 и R3-0, а к узлу 0 – R3-0 и R1-0. Эти две схемы полностью эквивалентны.

Для перехода от первой схемы ко второй рассчитываются сопротивления резисторов треугольника:

R1-0=R1+R5+R1∙R5/R3;

R1-3=R1+R3+R1∙R3/R5;

R3-0=R3+R5+R3∙R5/R1.

Дальнейшие преобразования сводятся к вычислению параллельно и последовательно соединённых сопротивлений. Когда будет найдено полное сопротивление цепи, находят по закону Ома ток через источник. Используя этот закон, несложно найти токи во всех ветвях.

Как определить мощность резисторов после нахождения всех токов? Для этого используют общеизвестную формулу: P=I2∙R, применяя её для каждого сопротивления, найдём их мощности.

Экспериментальное определение характеристик элементов схемы

Для экспериментального определения нужных характеристик элементов требуется собрать заданную схему из реальных компонентов. После этого с помощью электроизмерительных приборов выполняют все необходимые измерения. Этот метод трудоёмкий и дорогостоящий. Разработчики электрических и электронных устройств для этой цели используют моделирующие программы. С помощью них производятся все необходимые вычисления, и моделируется поведение элементов схемы в различных ситуациях. Только после этого собирается опытный образец технического устройства. Одной из таких распространённых программ является мощная система моделирования Multisim 14.0 фирмы National Instruments.

Как определить мощность резисторов с помощью этой программы? Это можно сделать двумя методами. Первый метод – это измерить ток и напряжение с помощью амперметра и вольтметра. Перемножив результаты измерений, получают искомую мощность.

мощность резисторов при параллельном соединении

Из этой схемы определяем мощность сопротивления R3:

P3=U∙I=1,032∙0,02=0,02064 Вт=20,6 мВт.

Второй метод – это непосредственное измерение мощности при помощи ваттметра.

Ключевые словамощность резисторов

Из этой схемы видно, что мощность сопротивления R3 равна P3=20,8 мВт. Расхождение из-за погрешности в первом методе больше. Точно так же определяются мощности остальных элементов.

Все известные виды проводников обладают определенными свойствами, в том числе и электрическим сопротивлением. Это качество нашло свое применение в резисторах, представляющих собой элементы цепи с точно установленным сопротивлением. Они позволяют выполнять регулировку тока и напряжения с высокой точностью в схемах. Все подобные сопротивления имеют свои индивидуальные качества. Например, мощность при параллельном и последовательном соединении резисторов будет различной. Поэтому на практике очень часто используются различные методики расчетов, благодаря которым возможно получение точных результатов.

Свойства и технические характеристики резисторов

Как уже отмечалось, резисторы в электрических цепях и схемах выполняют регулировочную функцию. С этой целью используется закон Ома, выраженный формулой: I = U/R. Таким образом, с уменьшением сопротивления происходит заметное возрастание тока. И, наоборот, чем выше сопротивление, тем меньше ток. Благодаря этому свойству, резисторы нашли широкое применение в электротехнике. На этой основе создаются делители тока, использующиеся в конструкциях электротехнических устройств.

Помимо функции регулировки тока, резисторы применяются в схемах делителей напряжения. В этом случае закон Ома будет выглядеть несколько иначе: U = I x R. Это означает, что с ростом сопротивления происходит увеличение напряжения. На этом принципе строится вся работа устройств, предназначенных для деления напряжения. Для делителей тока используется параллельное соединение резисторов, а для делителей напряжения – последовательное.
Мощность при параллельном и последовательном соединении резисторов
На схемах резисторы отображаются в виде прямоугольника, размером 10х4 мм. Для обозначения применяется символ R, который может быть дополнен значением мощности данного элемента. При мощности свыше 2 Вт, обозначение выполняется с помощью римских цифр. Соответствующая надпись наносится на схеме возле значка резистора. Мощность также входит в состав маркировки, нанесенной на корпус элемента. Единицами измерения сопротивления служат ом (1 Ом), килоом (1000 Ом) и мегаом (1000000 Ом). Ассортимент резисторов находится в пределах от долей ома до нескольких сотен мегаом. Современные технологии позволяют изготавливать данные элементы с довольно точными значениями сопротивления.

Важным параметром резистора считается отклонение сопротивления. Его измерение осуществляется в процентах от номинала. Стандартный ряд отклонений представляет собой значения в виде: +20, +10, +5, +2, +1% и так далее до величины +0,001%.

Большое значение имеет мощность резистора. По каждому из них во время работы проходит электрический ток, вызывающий нагрев. Если допустимое значение рассеиваемой мощности превысит норму, это приведет к выходу из строя резистора. Следует учитывать, что в процессе нагревания происходит изменение сопротивления элемента. Поэтому если устройства работают в широких диапазонах температур, применяется специальная величина, именуемая температурным коэффициентом сопротивления.

Для соединения резисторов в схемах используются три разных способа подключения — параллельное, последовательное и смешанное. Каждый способ обладает индивидуальными качествами, что позволяет применять данные элементы в самых разных целях.

Мощность при последовательном соединение

При соединение резисторов последовательно электрический ток по очереди проходит через каждое сопротивление. Значение тока в любой точке цепи будет одинаковым. Данный факт определяется с помощью закона Ома. Если сложить все сопротивления, приведенные на схеме, то получится следующий результат: R = 200+100+51+39 = 390 Ом.

Учитывая напряжение в цепи, равное 100 В, по закону Ома сила тока будет составлять I = U/R = 100/390 = 0,256 A. На основании полученных данных можно рассчитать мощность резисторов при последовательном соединении по следующей формуле: P = I2 x R = 0,2562 x 390 = 25,55 Вт.

Таким же образом можно рассчитать мощность каждого отдельно взятого резистора:

  • P1 = I2 x R1 = 0,2562 x 200 = 13,11 Вт;
  • P2 = I2 x R2 = 0,2562 x 100 = 6,55 Вт;
  • P3 = I2 x R3 = 0,2562 x 51 = 3,34 Вт;
  • P4 = I2 x R4 = 0,2562 x 39 = 2,55 Вт.

Если сложить полученные мощность, то полная Р составит: Р = 13,11+6,55+3,34+2,55 = 25,55 Вт.

Мощность при параллельном соединение

При параллельном подключении все начала резисторов соединяются с одним узлом схемы, а концы – с другим. В этом случае происходит разветвление тока, и он начинает протекать по каждому элементу. В соответствии с законом Ома, сила тока будет обратно пропорциональна всем подключенным сопротивлениям, а значение напряжения на всех резисторах будет одним и тем же.

Прежде чем вычислять силу тока, необходимо выполнить расчет полной проводимости всех резисторов, применяя следующую формулу:

  • 1/R = 1/R1+1/R2+1/R3+1/R4 = 1/200+1/100+1/51+1/39 = 0,005+0,01+0,0196+0,0256 = 0,06024 1/Ом.
  • Поскольку сопротивление является величиной, обратно пропорциональной проводимости, его значение составит: R = 1/0,06024 = 16,6 Ом.
  • Используя значение напряжения в 100 В, по закону Ома рассчитывается сила тока: I = U/R = 100 x 0,06024 = 6,024 A.
  • Зная силу тока, мощность резисторов, соединенных параллельно, определяется следующим образом: P = I2 x R = 6,0242 x 16,6 = 602,3 Вт.
  • Расчет силы тока для каждого резистора выполняется по формулам: I1 = U/R1 = 100/200 = 0,5A; I2 = U/R2 = 100/100 = 1A; I3 = U/R3 = 100/51 = 1,96A; I4 = U/R4 = 100/39 = 2,56A. На примере этих сопротивлений прослеживается закономерность, что с уменьшением сопротивления, сила тока увеличивается.

Существует еще одна формула, позволяющая рассчитать мощность при параллельном подключении резисторов: P1 = U2/R1 = 1002/200 = 50 Вт; P2 = U2/R2 = 1002/100 = 100 Вт; P3 = U2/R3 = 1002/51 = 195,9 Вт; P4 = U2/R4 = 1002/39 = 256,4 Вт. Сложив мощности отдельных резисторов, получится их общая мощность: Р = Р1234 = 50+100+195,9+256,4 = 602,3 Вт.

Таким образом, мощность при последовательном и параллельном соединении резисторов определяется разными способами, с помощью которых можно получить максимально точные результаты.

  1. Расчет мощностей рассеивания на резисторах

Произведем расчет
мощностей, рассеиваемых на резисторах,
и выберем резисторы в соответствии с
ГОСТ 28884-90 с 5% запасом мощности.

При расчетах будем
руководствоваться общей формулой
расчета мощности

,

(6.1)

Мощности, рассеиваемые
на резисторах R1, R2, R3,
R4, R5, R6 определяются
следующим образом:

(6.2)

(6.3)

(6.4)

(6.5)

,

(6.6)

,

(6.7)

Произведя подстановку
числовых значений в (6.2)–(6.7), получим:

PR1=((0,18+0,06)∙10-3)2∙15520=0,894
мВт,

PR2=(0,18∙10-3)2∙42910=
1,390 мВт,

PR3=((2,8+0,06)∙10-3)2∙230=1,881
мВт,

PR4=((0,18+0,06)∙10-3)2∙15520=0,894
мВт,

PR5=(0,18∙10-3)2∙42910=
1,390 мВт,

PR6==(2,8∙10-3)2∙2500=19,6
мВт,

Мощность, выделяемая
на резисторах фазовращающей цепочки,
при различной частоте, определяется по
формуле:

(6.8)

Найдем максимальную
мощность, выделяемую в ветвях фазовращающей
цепи при различных диапазонах частот
по формуле (6.8):

f1=10÷50Гц:
P2 =(4/√2)2/26300=0,3
мВт

f2=100÷200Гц:
P1=(4/√2)2/6570=1,2
мВт

В соответствие с
ГОСТ 28884-90 произведем подбор резисторов
с 5% запасом по мощности:

R1:
МЛТ-0,125-16
кОм5%;

R2:
МЛТ-0,125-43
кОм5%;

R3:
МЛТ-0,125-240
Ом5%;

R4:
МЛТ-0,125-51
кОм5%;

R5:
МЛТ-0,125-1,6
Ом5%;

R6:
МЛТ-0,125-2,7
кОм5%;

R7,
R8, R9
: МЛТ-0,125-6,8
кОм5%;

R7’,
R8’, R9’
: МЛТ-0,125-27
кОм5%;

Заключение

В процессе расчета
RC-генератора гармонических
колебаний были изучены схема генератора
и принципы его действия; также был
произведен электрический расчет
генератора, фазовращающей цепи и расчет
номиналов резисторов и конденсаторов.
Был произведен графоаналитический
расчет генератора, определены постоянные
составляющие токов коллектора и базы,
напряжений коллектор-эмиттер и
база-эмиттер, найдены амплитуды токов
и напряжений; Были построены выходные
и входные характеристики транзистора,
графики которых представлены в приложении
А.

Список используемой литературы

1.
Каяцкас А.А. Основы
радиоэлектроники: учебное пособие
для студентов ВУЗов по специальности
«Конструирование и производство
радиоаппаратуры»-М.:Высш.шк.,1988.

2.
Справочник по полупроводниковым диодам,
транзисторам и интегральным схемам/под
общ. ред. Н.Н.Горюнова-М,:Энергия,1972.

3.
Терещук P.M..
Терещук К.М., Седов С.А. Полупроводниковые
приемно-усилительные устройства:
Справочник радиолюбителя-Киев :Hayкова
думка, 1982.

4.
Скаржепа В.А., Сенько В.И. Электроника и
микросхемотехника: Сборник задач/под
общ, ред. Красношеиной, -Киев: Выщя школа,
1989.

5.
Манаев Е.И. Основы радиоэлектроники:
учеб. для вузов. – М.: МИРЭА,

1997–
512 с.

6.
Нефёдов В.И. Основы радиоэлектроники:
учеб. для вузов. – М.: В.Ш., 2000

– 398
с.

7.
Кушнир В.Ф., Ферсман Б.А. Теория нелинейных
электрических цепей. М.:

Связь.,
1974 –383с.

8.
Ушаков В.Н. Основы радиоэлектроники. –
М.: В.Ш., 1979 – 287 с.

9.
Гусев В.Г., ГусевЮ.М. Электроника. – М.:
В.Ш., 1982 – 495 с.

10.
Горбачев Г.Н., Чаплыгин Е.Е. Промышленная
электроника. – М.:

Энергоатомиздат.,
1988 – 320 с.

11.
Методические указания к лабораторным
раб

Резисторы:
Справочник/ В.В. Дубровский, Д.М. Иванов,
Н.Я. Пратусевич и др.; Под ред. И.И.
Четверткова и В.М. Терехова. – 2-е изд.,
перераб. и доп. – М.: Радио и связь, 1991.
-528 с.: ил.

Приложение
А

RC-
генератор гармонических колебаний –
принципиальная схема

RC-
генератор гармонических колебаний –
входная характеристика

RC-
генератор гармонических колебаний –
выходная характеристика

RC-
генератор гармонических колебаний –
перечень элементов

26

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как составить карту конфликтов
  • Как составить планы развития для руководителей
  • Как можно найти работу в хабаровске
  • Как найти вторую половинку предназначенную судьбой женщине
  • Как найти страницу вк по электронной почте