Как найти относительную погрешность в метрологии

2.1. Погрешности измерений, их классификация

Истинное значение
физической величины

– значение физической величины, которое
идеальным образом отражало бы в
количественном и качественном отношениях
соответствующее свойство объекта.

Результат любого
измерения отличается от истинного
значения физической величины на некоторое
значение, зависящее от точности средств
и методов измерения, квалификации
оператора, условий, в которых проводилось
измерение, и т. д. Отклонение результата
измерения от истинного значения
физической величины называется
погрешностью
измерения
.

Поскольку определить
истинное значение физической величины
в принципе невозможно, так как это
потребовало бы применения идеально
точного средства измерений, то на
практике вместо понятия истинного
значения физической величины применяют
понятие действительного
значения измеряемой величины
,
которое настолько точно приближается
к истинному значению, что может быть
использовано вместо него. Это может
быть, например, результат измерения
физической величины образцовым средством
измерения.

Абсолютная
погрешность измерения

(Δ) – это разность между результатом
измерения х
и действительным (истинным) значением
физической величины хи:

Δ
= х
х
и.
(2.1)

Относительная
погрешность измерения

(δ) – это отношение абсолютной погрешности
к действительному (истинному) значению
измеряемой величины (часто выраженное
в процентах):

δ
= (Δ / хи)·100 %
(2.2)

Приведенная
погрешность
(γ)
– это выраженное в процентах отношение
абсолютной погрешности к нормирующему
значению
ХN
– условно принятому значению физической
величины, постоянному во всем диапазоне
измерений:

γ =
(Δ /ХN)·100 %
(2.3)

Для приборов с
нулевой отметкой на краю шкалы нормирующее
значение ХN
равно конечному значению диапазона
измерений. Для приборов с двухсторонней
шкалой, т. е. с отметками шкалы,
расположенными по обе стороны от нуля
значение ХN
равно арифметической сумме модулей
конечных значений диапазона измерения.

Погрешность
измерения (результирующая
погрешность
)
является суммой двух составляющих:
систематической

и случайной
погрешностей.

Систематическая
погрешность

– это составляющая погрешности измерения,
остающаяся постоянной или закономерно
изменяющаяся при повторных измерениях
одной и той же величины. Причинами
появления систематической погрешности
могут являться неисправности средств
измерений, несовершенство метода
измерений, неправильная установка
измерительных приборов, отступление
от нормальных условий их работы,
особенности самого оператора.
Систематические погрешности в принципе
могут быть выявлены и устранены. Для
этого требуется проведение тщательного
анализа возможных источников погрешностей
в каждом конкретном случае.

Систематические
погрешности подразделяются на:

  • методические;

  • инструментальные;

  • субъективные.

Методические
погрешности

происходят от несовершенства метода
измерения, использования упрощающих
предположений и допущений при выводе
применяемых формул, влияния измерительного
прибора на объект измерения. Например,
измерение температуры с помощью термопары
может содержать методическую погрешность,
вызванную нарушением температурного
режима объекта измерения вследствие
внесения термопары.

Инструментальные
погрешности

зависят от погрешностей применяемых
средств измерения. Неточность градуировки,
конструктивные несовершенства, изменения
характеристик прибора в процессе
эксплуатации и т. д. являются причинами
основных погрешностей инструмента
измерения.

Субъективные
погрешности

вызываются неправильными отсчетами
показаний прибора человеком (оператором).
Например, погрешность от параллакса,
вызванная неправильным направлением
взгляда при наблюдении за показаниями
стрелочного прибора. Использование
цифровых приборов и автоматических
методов измерения позволяет исключить
такого рода погрешности.

Во многих случаях
систематическую погрешность в целом
можно представить как сумму двух
составляющих: аддитивной
(а)
и
мультипликативной
(м).

Если реальная
характеристика средства измерения
смещена относительно номинальной так,
что при всех значениях преобразуемой
величины Х
выходная величина Y
оказывается больше (или меньше) на одну
и ту же величину Δ, то такая погрешность
называется аддитивной
погрешностью нуля
(рис.
2.1).

Мультипликативная
погрешность

– это погрешность чувствительности
средства измерения.

Такой подход
позволяет легко скомпенсировать влияние
систематической погрешности на результат
измерения путем введения раздельных
поправочных коэффициентов для каждой
из этих двух составляющих.

Рис.
2.1. К пояснению понятий аддитивной

и
мультипликативной погрешностей

Случайная
погрешность
(с)
– это составляющая погрешности измерения,
изменяющаяся случайным образом при
повторных измерениях одной и той же
величины. Наличие случайных погрешностей
выявляется при проведении ряда измерений
постоянной физической величины, когда
оказывается, что результаты измерений
не совпадают друг с другом. Часто
случайные погрешности возникают из-за
одновременного действия многих
независимых причин, каждая из которых
в отдельности слабо влияет на результат
измерения.

Во многих случаях
влияние случайных погрешностей можно
уменьшить путем выполнения многократных
измерений с последующей статистической
обработкой полученных результатов.

В некоторых случаях
оказывается, что результат одного
измерения резко отличается от результатов
других измерений, выполненных при тех
же контролируемых условиях. В этом
случае говорят о грубой погрешности
(промахе измерения). Причиной могут
послужить ошибка оператора, возникновение
сильной кратковременной помехи, толчок,
нарушение электрического контакта и
т. д. Такой результат, содержащий
грубую
погрешность

необходимо выявить, исключить и не
учитывать при дальнейшей статистической
обработке результатов измерений.

Причины
возникновения погрешностей измерений

Имеется ряд
слагаемых погрешностей, которые являются
доминирующими в общей погрешности
измерений. К ним относятся:

  1. Погрешности,
    зависящие от средств измерений
    .
    Нормируемую допустимую погрешность
    средства измерения следует рассматривать
    как погрешность измерения при одном
    из возможных вариантов использования
    этого средства
    измерения.

  2. Погрешности,
    зависящие от установочных мер.

    Установочные меры могут быть универсальными
    (концевые меры) и специальными
    (изготовленными по виду измеряемой
    детали). Погрешность измерения будет
    меньшее, если установочная мера будет
    максимально подобна измеряемой детали
    о конструкции, массе, материалу, его
    физическим свойствам, способу базирования
    и т. д. Погрешности от концевых мер длины
    возникают из-за погрешности изготовления
    или погрешности аттестации, а также
    из-за погрешности их притирки.

  3. Погрешности,
    зависящие от измерительного усилия
    .
    При оценке влияния измерительного
    усилия на погрешность измерения
    необходимо выделить упругие деформации
    установочного узла и деформации в зоне
    контакта измерительного наконечника
    с деталью.

  4. Погрешности,
    происходящие от температурных деформаций
    .
    Погрешности возникают из-за разности
    температур объекта измерения и
    измерительного средства. Существует
    два основных источника, обуславливающих
    погрешность от температурных деформаций:
    отклонение температуры воздуха от
    20 °С и кратковременные колебания
    температуры воздуха в процессе измерения.

  5. Погрешности,
    зависящие от оператора

    (субъективные погрешности). Возможны
    четыре вида субъективных погрешностей:

  • погрешность
    отсчитывания

    (особенно важна, когда обеспечивается
    погрешность измерения, не превышающая
    цену деления);

  • погрешность
    присутствия

    (проявляется в виде влияния теплоизлучения
    оператора на температуру окружающей
    среды, а тем самым и на измерительное
    средство);

  • погрешность
    действия

    (вносится оператором при настройке
    прибора);

  • профессиональные
    погрешности

    (связаны с квалификацией оператора, с
    отношением его к процессу измерения).

  1. Погрешности при
    отклонениях от правильной геометрической
    формы
    .

  2. Дополнительные
    погрешности при измерении внутренних
    размеров
    .

При характеристике
погрешностей средств измерений часто
пользуются

понятием
предела допускаемой погрешности средств
измерений.

Предел допускаемой
погрешности средства измерений

– это наибольшая, без учета знака,
погрешность средства измерений, при
котором оно может быть признано и
допущено к применению. Определение
применимо к основной и дополнительной
погрешности средств измерений.

Учет всех нормируемых
метрологических характеристик средств
измерений является сложной и трудоемкой
процедурой. На практике такая точность
не нужна. Поэтому для средств измерений,
используемых в повседневной практике,
принято деление на классы
точности
,
которые дают их обобщенную метрологическую
характеристику.

Требования к
метрологическим характеристикам
устанавливаются в стандартах на средства
измерений конкретного типа.

Классы точности
присваиваются средствам измерений с
учетом результатов государственных
приемочных испытаний.

Класс точности
средства измерений

– обобщенная характеристика средства
измерений, определяемая пределами
допускаемых основных и дополнительных
погрешностей. Класс точности может
выражаться одним числом или дробью
(если аддитивная и мультипликативная
погрешности сопоставимы – например,
0,2/0,05 – адд./мульт.).

Обозначения классов
точности наносятся на циферблаты, щитки
и корпуса средств измерений, приводятся
в нормативно-технических документах.
Классы точности могут обозначаться
буквами (например, М, С и т. д.) или
римскими цифрами (I,
II,
III
и т. д.). Обозначение классов точности
по ГОСТу 8.401-80 может сопровождаться
дополнительными условными знаками:

  • 0,5;
    1,6; 2,5 и т. д. – для приборов, приведенная
    погрешность которых составляет 0,5; 1,6;
    2,5 % от нормирующего значения XN.
    При этом XN
    принимается равным большему из модулей
    пределов измерений, если нулевое
    значение входного (выходного) сигнала
    находится на краю или вне диапазона
    измерений;

  • 0,1,
    0,4, 1,0 и т. д. – для приборов, у которых
    относительная
    погрешность
    составляет 0,1; 0,4; 1,0 % непосредственно
    от полученного значения измеряемой
    величины x;

  • 0,02/0,01 – для
    приборов, у которых измеряемая величина
    не может отличаться от значения x,
    показанного указателем, больше, чем на
    [С+d(|XN/x|-1)]%,
    где C
    и d
    – числитель и знаменатель соответственно
    в обозначении класса точности; XN
    – больший
    (по модулю) из пределов измерений
    прибора.

Примеры обозначения
классов точности приведены на рис. 2.2.

Рис.
2.2. Лицевые панели приборов:

а
– вольтметра
класса точности 0,5; б
– амперметра
класса точности 1,5;

в
– амперметра
класса точности 0,02/0,01;

г
– мегомметра класса точности 2,5 с
неравномерной шкалой

Метрологическая
надежность средств измерения

В процессе
эксплуатации любого средства измерения
может возникнуть неисправность или
поломка, называемые отказом.

Метрологическая
надежность

средств
измерения

– это свойство средств измерений
сохранять установленные значения
метрологических характеристик в течение
определенного времени при нормальных
режимах и рабочих условиях эксплуатации.
Она характеризуется интенсивностью
отказов, вероятностью безотказной
работы и наработкой на отказ.

Интенсивность
отказов

определяется выражением:

,
(2.1)

где
L
– число отказов; N
– число однотипных элементов; ∆t
– промежуток времени.

Для средств
измерения, состоящего из
n
типов элементов, интенсивность
отказов

рассчитывается как

(2.2)

где
mi

количество элементов i-го
типа.

Вероятность
безотказной работы
:

(2.3)

Наработка на
отказ
:

(2.4)

Для внезапного
отказа, интенсивность отказов которого
не зависит от времени работы средства
измерения:

(2.5)

Межповерочный
интервал
, в
течение которого обеспечивается заданная
вероятность безотказной работы,
определяется по формуле:

,
(2.6)

где
Pмо
– вероятность метрологического отказа
за время между поверками; P(t)
– вероятность безотказной работы.

В процессе
эксплуатации может производиться
корректировка межповерочного интервала.

Поверка средств
измерения

В основе обеспечения
единообразия средств измерений лежит
система передачи размера единицы
измеряемой величины. Технической формой
надзора за единообразием средств
измерений является государственная
(ведомственная) поверка средств измерений
,
устанавливающая их метрологическую
исправность.

Поверка
– определение метрологическим органом
погрешностей средства измерений и
установление его пригодности к применению.

Пригодным к
применению в течение определенного
межповерочного
интервала

времени признают те СИ, поверка которых
подтверждает их соответствие
метрологическим и техническим требованиям
к данному СИ.

Средства измерений
подвергают первичной, периодической,
внеочередной, инспекционной и экспертной
поверкам.

Первичной поверке
подвергаются
СИ при выпуске из производства или
ремонта, а также СИ, поступающие по
импорту.

Периодической
поверке
подлежат
СИ, находящиеся в эксплуатации или на
хранении через определенные межповерочные
интервалы, установленные с расчетом
обеспечения пригодности к применению
СИ на период между поверками.

Инспекционную
поверку
производят
для выявления пригодности к применению
СИ при осуществлении госнадзора и
ведомственного метрологического
контроля за состоянием и применением
СИ.

Экспертную
поверку
выполняют
при возникновении спорных вопросов по
метрологическим характеристикам (MX),
исправности СИ и пригодности их к
применению.

Достоверная
передача размера единиц во всех звеньях
метрологической цепи от эталонов или
от исходного образцового средства
измерений к рабочим средствам измерений
производится в определенном порядке,
приведенном в поверочных схемах.

Поверочная схема
– это утвержденный в установленном
порядке документ, регламентирующий
средства, методы и точность передачи
размера единицы физической величины
от государственного эталона или исходного
образцового средства измерений рабочим
средствам.

Различают
государственные, ведомственные и
локальные поверочные схемы органов
государственной или ведомственных
метрологических служб.

Государственная
поверочная схема

распространяется на все средства
измерений данной ФВ, имеющиеся в стране.
Устанавливая многоступенчатый порядок
передачи размера единицы ФВ от
государственного эталона, требования
к средствам и методам поверки,
государственная поверочная схема
представляет собой структуру
метрологического обеспечения определённого
вида измерений в стране. Эти схемы
разрабатываются главными центрами
эталонов и оформляются одним ГОСТом
ГСИ.

Локальные
поверочные схемы

распространяются на средства измерений,
подлежащие поверке в данном метрологическом
подразделении на предприятии, имеющем
право поверки средств измерений, и
оформляются в виде стандарта предприятия.
Ведомственные и локальные поверочные
схемы не должны противоречить
государственным и должны учитывать их
требования применительно к специфике
конкретного предприятия.

Ведомственная
поверочная схема

разрабатывается органом ведомственной
метрологической службы, согласовывается
с главным центром эталонов – разработчиком
государственной поверочной схемы
средств измерений данной ФВ и
распространяется только на средства
измерений, подлежащие внутриведомственной
поверке.

Поверочная схема
устанавливает передачу размера единиц
одной или нескольких взаимосвязанных
величин. Она должна включать не менее
двух ступеней передачи размера. Поверочную
схему для СИ одной и той же величины,
существенно отличающихся по диапазонам
измерений, условиям применения и методам
поверки, а также для СИ нескольких ФВ
допускается подразделять на части. На
чертежах поверочной схемы должны быть
указаны:

  • наименования СИ
    и методов поверки;

  • номинальные
    значения ФВ или их диапазоны;

  • допускаемые
    значения погрешностей СИ;

  • допускаемые
    значения погрешностей методов поверки.
    Правила расчета параметров поверочных
    схем и оформления чертежей поверочных
    схем приведены в ГОСТ 8.061-80 «ГСИ.
    Поверочные схемы. Содержание и построение»
    и в рекомендациях МИ 83-76 «Методика
    определения параметров поверочных
    схем».

Калибровка
средств измерения

Калибровка
средства измерений

– это
совокупность операций, выполняемых
калибровочной лабораторией с целью
определения и подтверждения действительных
значений метрологических характеристик
и (или) пригодности средства измерений
к применению в сферах, не подлежащих
государственному метрологическому
контролю и надзору в соответствии с
установленными требованиями.

Результаты
калибровки средств измерений удостоверяются
калибровочным
знаком
,
наносимым на средства измерений, или
сертификатом
о калибровке,

а также записью
в эксплуатационных документах
.

Поверку (обязательная
госповерка) может выполнять, как правило,
орган государственной метрологической
службы, а калибровку –
любая
аккредитованная и неаккредитованная
организация.

Поверка обязательна
для средств измерений, применяемых в
сферах, подлежащих государственному
метрологическому контролю (ГМК),
калибровка же –
процедура
добровольная, поскольку относится к
средствам измерений, не подлежащим ГМК.
Предприятие вправе самостоятельно
решать вопрос о выборе форм и режимов
контроля состояния средств измерений,
за исключением тех областей применения
средств измерений, за которыми государства
всего мира устанавливают свой контроль
– это
здравоохранение, безопасность труда,
экология и др.

Освободившись от
государственного контроля, предприятия
попадают под не менее жёсткий контроль
рынка. Это означает, что свобода выбора
предприятия по «метрологическому
поведению» является относительной, все
равно необходимо соблюдать метрологические
правила.

В развитых странах
устанавливает и контролирует исполнение
этих правил негосударственная организация,
именуемая «национальной калибровочной
службой». Эта служба берёт на себя
функции регулирования и разрешения
вопросов, связанных со средствами
измерений, не подпадающими под контроль
государственных метрологических служб.

Желание иметь
конкурентоспособную продукцию побуждает
предприятия иметь измерительные
средства, дающие достоверные результаты.

Внедрение системы
сертификации продукции дополнительно
стимулирует поддержание измерительных
средств на соответствующем уровне. Это
согласуется с требованиями систем
качества, регламентируемыми стандартами
ИСО серии 9000.

Построение
Российской системы калибровки (РСК)
основывается на следующих принципах:

  • добровольность
    вступления;

  • обязательность
    получения размеров единиц от
    государственных эталонов;

  • профессионализм
    и компетентность персонала;

  • самоокупаемость
    и самофинансирование.

Основное звено
РСК –
калибровочная
лаборатория. Она представляет собой
самостоятельное предприятие или
подразделение в составе метрологической
службы предприятия, которое может
осуществлять калибровку средств
измерений для собственных нужд или для
сторонних организаций. Если калибровка
проводится для сторонних организаций,
то калибровочная лаборатория должна
быть аккредитована органом РСК.
Аккредитацию осуществляют государственные
научные метрологические центры или
органы Государственной метрологической
службы в соответствии со своей компетенцией
и требованиями, установленными в ГОСТе
51000.2-95 «Общие требования к аккредитующему
органу».

Порядок аккредитации
метрологической службы утвержден
постановлением Госстандарта РФ от 28
декабря 1995 г. № 95 «Порядок аккредитации
метрологических служб юридических лиц
на право проведения калибровочных
работ».

Методы поверки
(калибровки) средств измерения

Допускается
применение четырех методов
поверки
(калибровки) средств измерений:

  • непосредственное
    сличение с эталоном;

  • сличение с помощью
    компаратора;

  • прямые измерения
    величины;

  • косвенные измерения
    величины.

Метод
непосредственного сличения

поверяемого (калибруемого) средства
измерения с эталоном соответствующего
разряда широко применяется для различных
средств измерений в таких областях, как
электрические и магнитные измерения,
для определения напряжения, частоты и
силы тока. В основе метода лежит проведение
одновременных измерений одной и той же
физической величины поверяемым
(калибруемым) и эталонным приборами.
При этом определяют погрешность как
разницу показаний поверяемого и
эталонного средств измерений, принимая
показания эталона за действительное
значение величины. Достоинства этого
метода в его простоте, наглядности,
возможности применения автоматической
поверки (калибровки), отсутствии
потребности в сложном оборудовании.

Метод сличения
с помощью компаратора

основан на использовании прибора
сравнения, с помощью которого сличаются
поверяемое (калибруемое) и эталонное
средства измерения. Потребность в
компараторе возникает при невозможности
сравнения показаний приборов, измеряющих
одну и ту же величину, например, двух
вольтметров, один из которых пригоден
для постоянного тока, а другой –
переменного.
В подобных ситуациях в схему поверки
(калибровки) вводится промежуточное
звено –
компаратор.
Для приведенного примера потребуется
потенциометр, который и будет компаратором.
На практике компаратором может служить
любое средство измерения, если оно
одинаково реагирует на сигналы как
поверяемого (калибруемого), так и
эталонного измерительного прибора.
Достоинством данного метода специалисты
считают последовательное во времени
сравнение двух величин.

Метод прямых
измерений

применяется, когда имеется возможность
сличить испытуемый прибор с эталонным
в определенных пределах измерений. В
целом этот метод аналогичен методу
непосредственного сличения, но методом
прямых измерений производится сличение
на всех числовых отметках каждого
диапазона (и поддиапазонов, если они
имеются в приборе). Метод прямых измерений
применяют, например, для поверки или
калибровки вольтметров постоянного
электрического тока.

Метод косвенных
измерений

используется, когда действительные
значения измеряемых величин невозможно
определить прямыми измерениями либо
когда косвенные измерения оказываются
более точными, чем прямые. Этим методом
определяют вначале не искомую
характеристику, а другие, связанные с
ней определенной зависимостью. Искомая
характеристика определяется расчетным
путем. Например, при поверке (калибровке)
вольтметра постоянного тока эталонным
амперметром устанавливают силу тока,
одновременно измеряя сопротивление.
Расчетное значение напряжения сравнивают
с показателями калибруемого (поверяемого)
вольтметра. Метод косвенных измерений
обычно применяют в установках
автоматизированной поверки (калибровки).

Статья обновлена 10.07.2022

Что такое погрешность измерения

Любой расчет состоит из истинного и вычисляемого значения. При этом всегда должны учитываться значения ошибки или погрешности. Погрешность — это расхождение между истинным значением и вычисляемым. В маркетинге выделяют следующие виды погрешностей.

  1. Математическая погрешность. Она описывается алгебраической формулой и бывает абсолютной, относительной и приведенной. Абсолютная погрешность измерения — это разница между вычисляемым и истинным значением. Относительная погрешность вычисляется в процентном соотношении истинного значения и полученного. Вычисление погрешности приведенной схоже с относительной, указывается она также в процентах, но дает разницу между нормирующей шкалой и полученными данными, то есть между эталонными и полученными значениями.
  2. Оценочная погрешность. В маркетинге она бывает случайной и систематической. Случайная погрешность возникает из-за любых факторов, которые случайным образом влияют на измерение переменной в выборке. Систематическая погрешность вызывается факторами, которые систематически влияют на измерение переменной в выборке.

Математическая погрешность: формула для каждого типа

Если определение погрешности можно провести точным путем, она считается математической. Зачем нужно вычисление этого значения в маркетинге?

Погрешности возникают настолько часто, что популярной практикой в исследованиях является включение значения погрешности в окончательные результаты. Для этого используются формулы. Математическая погрешность — это значение, которое отражает разницу между выборкой и фактическим результатом. Если при расчетах учитывалась  погрешность, в тексте исследования указывается что-то вроде: «Абсолютная погрешность для этих данных составляет 3,25%». Погрешность можно вычислить с любыми цифрами: количество человек, участвующих в опросе, погрешность суммы, затраченной на маркетинговый бюджет, и так далее.

Формулы погрешностей вычисляются следующим образом.

Абсолютная погрешность измерений: формула

Формула дает разницу между измеренным и реальным значением.

Формула абсолютной погрешности
Формула абсолютной погрешности

Относительная погрешность: формула

Формула использует значение абсолютной погрешности и вычисляется в процентах по отношению к фактическому  значению.

Формула относительной погрешности
Формула относительной погрешности

Приведенная погрешность: формула

Формула также использует значение абсолютной погрешности. В чем измеряется приведенная погрешность? Тоже в процентах, но в качестве «эталона» используется не реальное значение, а единица измерения любой нормирующей шкалы. Например, для обычной линейки это значение равно 1 мм.

Формула приведенной погрешности
Формула приведенной погрешности

Классификация оценочной погрешности

Определение погрешности в оценках — это всегда методическая погрешность, то есть допустимое значение ошибки, основанное на методах проведения исследования. Погрешность метода вызывает два типа погрешностей — случайные и систематические. Таблица погрешностей в графической форме покажет все возможные типы.

Классификация оценочной погрешности
Классификация оценочной погрешности

Что такое случайная погрешность

Случайная погрешность бывает статической и динамической. Динамическая погрешность возникает, когда мы имеем дело с меняющимися значениями — например, количество человек в выборке при маркетинговом исследовании. Статическая погрешность описывает ошибки при вычислении неизменных величин — вроде количества вопросов в вопроснике. Все они относятся к случайным погрешностям.

Типичный пример возникновения случайной погрешности — настроение участников маркетингового опроса. Как известно, эмоциональный настрой человека всегда влияет на его производительность. В ходе тестирования одни люди могут быть в хорошем расположении духа, а другие — в «миноре». Если настроение влияет на их ответы по заданному критерию выборки, это может искусственно завышать или занижать наблюдаемые оценки. Например, в случае с истинным значением 1 случайная погрешность может дать как -0,8, так и +0,5 к этому числу. Очень часто это случается при оценке времени ответа, например.

Случайная погрешность добавляет изменчивости данным, но не оказывает постоянного влияния на всю выборку. Вместо этого она произвольно изменяет измеряемые значения в диапазоне. В маркетинговой практике считается, что все случайные погрешности в распределении перекрывают друг друга и практически не влияют на конечный результат. Поэтому случайная погрешность считается «шумом» и в расчет не принимается. Эту погрешность нельзя устранить совсем, но можно уменьшить, просто увеличив размер выборки.

Что такое систематическая погрешность

Систематическая погрешность существует в результатах исследования, если эти результаты показывают устойчивую тенденцию к отклонению от истинных значений. Иными словами, если полученные цифры постоянно выше или ниже расчетных, речь идет о том, что в данных имеется систематическая погрешность.

В маркетинговых исследованиях есть два основных типа систематической погрешности: погрешность выборки и погрешность измерения. 

Погрешность выборки

Погрешность выборки возникает, когда выборка, используемая в исследовании, не репрезентативна для всей совокупности данных. Типы такой погрешности включают погрешность структуры, погрешность аудитории и погрешность отбора.

Погрешность структуры

Погрешность структуры возникает из-за использования неполной или неточной основы для выборки. Распространенным источником такой погрешности в рамках маркетинговых исследований является проведение какого-либо опроса по телефону на основе существующего телефонного справочника или базы данных абонентов. Многие данные там указаны неполно или неточно — например, если люди недавно переехали или изменили свой номер телефона. Также такие данные часто указывают неполную или неверную демографию.

Если в качестве основы для исследования взят телефонный справочник, оно подвержено погрешности структуры, так как не учитывает всех возможных респондентов.

Погрешность аудитории

Погрешность аудитории возникает, если исследователь не знает, как определить аудиторию для исследования. Пример — оценка результатов исследования, проведенного среди клиентов крупного банка. Доля ответов на анкету составила чуть менее 1%. Анализ профессий всех опрошенных показал, что процент пенсионеров среди них в 20 раз выше, чем в целом по городу. Если эта группа значительно различается по интересующим переменным, то результаты будут неверными из-за погрешности аудитории.

Погрешность отбора

Даже если маркетологи правильно определили структуру и аудиторию, они не застрахованы от погрешности отбора. Она возникает, когда процедуры отбора являются неполными, неправильными или не соблюдаются должным образом. Например, интервьюеры при полевом исследовании могут избегать людей, которые живут в муниципальных домах. Потому что, по их мнению, жители вряд ли согласятся пройти такой опрос. Если жители муниципальных домов отличаются от тех, кто проживает в домах бизнес-класса, в результаты опроса будет внесена погрешность отбора.

Как минимизировать погрешность выборки

  • Знайте свою аудиторию.
    Знайте, кто покупает ваш продукт, использует его, работает с вами и так далее. Имея базовую социально-экономическую информацию, можно составить стабильную выборку целевой аудитории. Маркетинговые исследования часто касаются одной конкретной группы населения — например, пользователей Facebook или молодых мам.
  • Разделите аудиторию на группы.
    Вместо случайной выборки разбейте аудиторию на группы в соответствии с их численностью в общей совокупности данных. Например, если люди с определенной демографией составляют 35% населения, убедитесь, что 35% респондентов исследования отвечают этому условию.
  • Увеличьте размер выборки.
    Больший размер выборки приводит к более точному результату.

Погрешность измерения

Погрешность измерения представляет собой серьезную угрозу точности исследования. Она возникает, когда существует разница между искомой информацией — то есть истинным значением, и информацией, фактически полученной в процессе измерения. К таким погрешностям приводят различные недостатки процесса исследования. Погрешность измерения, в основном, вызывается человеческим фактором — например, формулировкой вопросника, ошибками ввода данных и необъективными выводами.

К погрешностям измерения приводят следующие виды ошибок.

Ошибка цели

Ошибка цели возникает, когда существует несоответствие между информацией, фактически необходимой для решения проблемы, и данными , которые собирает исследование. Например, компания Kellogg впустую потратила миллионы на разработку завтраков для снижения уровня холестерина. Реальный вопрос, который нужно было бы задать в исследовании, заключался в том, купят ли люди овсяные хлопья для решения своей проблемы. Ответ «Нет» обошелся бы компании дешевле.

Предвзятость ответов

Некоторые люди склонны отвечать на конкретный вопрос определенным образом. Тогда возникает предвзятость ответа. Предвзятость ответа может быть результатом умышленной фальсификации или неосознанного искажения фактов.

Умышленная фальсификация происходит, когда респонденты целенаправленно дают неверные ответы на вопросы. Есть много причин, по которым люди могут сознательно искажать информацию. Например, они хотят скрыть  или хотят казаться лучше, чем есть на самом деле.

Бессознательное искажение информации происходит, когда респондент пытается быть правдивым, но дает неточный ответ. Этот тип предвзятости может возникать из-за формата вопроса, его содержания или по другим причинам.

Предвзятость интервьюера

Интервьюер оказывает влияние на респондента — сознательно или бессознательно. Одежда, возраст, пол, выражение лица, язык тела или тон голоса могут повлиять на ответы некоторых или всех респондентов.

Ошибка обработки

Примеры включают наводящие вопросы или элементы дизайна анкеты, которые затрудняют запись ответов или приводят к ошибкам в них.

Ошибка ввода

Это ошибки, возникающие при вводе информации. Например, документ может быть отсканирован неправильно, и его данные по ошибке перенесутся неверно. Или люди, заполняющие опросы на смартфоне или ноутбуке, могут нажимать не те клавиши.

Виды проводимых маркетинговых исследований различны, поэтому универсальных рецептов не существует. Мы дадим несколько общих советов, используемых для минимизации систематических погрешностей разного типа.

Как минимизировать погрешность измерения

  • Предварительно протестируйте.
    Погрешностей обработки и предвзятости можно избежать, если проводить предварительные тесты вопросника до начала основных интервью.
  • Проводите выборку случайным образом.
    Чтобы устранить предвзятость, при выборке респондентов можно включать каждого четвертого человека из общего списка.
  • Тренируйте команду интервьюеров и наблюдателей.
    Отбор и обучение тех, кто проводит исследования, должен быть тщательным. Особое внимание нужно уделять соблюдению инструкций в ходе каждого исследования.
  • Всегда выполняйте проверку сделанных записей.
    Чтобы исключить ошибки ввода, все данные, вводимые для компьютерного анализа, должны быть перепроверены как минимум дважды.

Мир без ошибок  не может существовать. Но понимание факторов, влияющих на маркетинговые исследования и измеряемые погрешности, имеет важное значение для сбора качественных данных.


Загрузить PDF


Загрузить PDF

Абсолютная погрешность – это фактическая ошибка, допущенная при измерении какой-либо величины. Относительная погрешность сравнивает абсолютную погрешность со значением измеряемой величины. Чтобы вычислить относительную погрешность, следует найти и абсолютную погрешность. Если вы измеряете предмет, длина которого равна 12 см, и вы допустили ошибку в 6 см, то относительная погрешность будет огромной. Но если длина измеряемого предмета равна 12 м, а ошибка – 6 см, то относительная погрешность будет значительно меньше, даже с учетом того, что абсолютная погрешность (6 см) не изменилась.[1]

  1. Изображение с названием Calculate Relative Error Step 1

    1

    Если вам дано ожидаемое значение, вычтите из него полученное вами значение, чтобы вычислить абсолютную погрешность. Как правило, ожидаемое значение находится в ходе тестовых или лабораторных испытаний. Ожидаемое значение является наиболее точным значением некоторой величины, которое используется при различных вычислениях. Чтобы получить абсолютную погрешность, сравните результаты ваших измерений с ожидаемым значением – так вы узнаете, насколько ваши результаты отличаются от ожидаемого значения. Для этого просто вычтите полученное вами значение из ожидаемого. Если разность отрицательная, превратите ее в положительную, проигнорировав знак «минус». Вы получите абсолютную погрешность.[2]

    • Например, вы хотите узнать точность измерения расстояния при помощи шагов. Вы идете от одного дерева к другому, считаете шаги и выясняете, что деревья расположены на расстоянии 5,4 м друг от друга. Это экспериментальное значение. Потом вы берете рулетку и измеряете точное расстояние между деревьями, которое равно 6 м. Это действительное значение. Абсолютная погрешность равна: 6 – 5,4 = 0,6 м = 60 см.[3]
  2. Изображение с названием Calculate Relative Error Step 2

    2

    Теперь допустим, что абсолютная погрешность – это наименьшая единица измерения. Например, рулетка имеет миллиметровые деления, то есть ее наименьшей единицей является 1 мм. Таким образом, вы можете измерить расстояние с точностью до ± 1 мм; в этом случае абсолютная погрешность составляет 1 мм.

    • Это верно для любых измерительных инструментов или систем. Например, на корпус многих научных инструментов, таких как прецизионные весы и измерительные приборы, наносят маркировку об абсолютной погрешности в виде «± ____».
  3. Изображение с названием Calculate Relative Error Step 3

    3

    Не забудьте приписать соответствующие единицы измерения. Предположим, что абсолютная погрешность равна 2 м. Такая информация позволит наглядно представить величину ошибки. Но если вы записываете, что погрешность равна 2, то эта цифра ничего не значит. Используйте те же единицы измерения, которыми вы пользовались в ваших измерениях.[4]

  4. Изображение с названием Calculate Relative Error Step 4

    4

    Попрактикуйтесь на нескольких примерах. Это наилучший способ научиться вычислять погрешность. Решите следующие задачи (ответы приведены в конце каждой задачи).

    • На уроке химии в результате реакции ученик получил вещество массой 32 г. Известно, что действительное значение выхода этой реакции равно 34 г. Абсолютная погрешность равна ± 2 г.
    • На уроке химии ученику необходимо 10 мл воды, чтобы вызвать реакцию; при этом погрешность капельницы составляет «± 0,5 мл». В этом случае абсолютная погрешность измерений равна ± 0,5 мл.
  5. Изображение с названием Calculate Relative Error Step 5

    5

    Уясните, что приводит к появлению погрешности и как ее устранить. Всякое научное исследование подразумевает наличие ошибок – даже в научных работах, за которые вручаются Нобелевские премии, сообщается о допущениях или погрешностях. Но если вы определите причину появления погрешности, вы, возможно, сможете устранить ее.[5]

    • Человеческий фактор – наиболее распространенная причина появления ошибок. Сюда относятся неподобающие условия для проведения измерений и плохо продуманные эксперименты.
    • Одной из причин появления ошибок может являться внезапное отключение энергии, недостаточное количество рабочего материала или изменение других условий, например, нехватка воды в результате ее испарения, внезапное изменение температуры окружающей среды и так далее.
    • Еще одной причиной является несовершенство оборудования, используемого для измерений или исследований, например, прецизионных инструментов или горелок, которые обеспечивают неравномерное распределение тепла.[6]

    Реклама

  1. Изображение с названием Calculate Relative Error Step 6

    1

    Разделите абсолютную погрешность на действительное значение исследуемой величины. Так вы вычислите относительную погрешность. Эта формула позволит вам выяснить, насколько полученное вами значение отличается от действительного значения изучаемой величины. Конечно, прекрасно, если относительная погрешность мала. Продолжим рассматривать пример с измерением расстояния между двумя деревьями.

    • Абсолютная погрешность равна 0,6 м, а действительное значение равно 6 м.
    • 0,6 м / 6 м
    • Относительная погрешность равна 0,1 м.[7]
  2. Изображение с названием Calculate Relative Error Step 7

    2

    Полученный результат умножьте на 100, чтобы выразить относительную погрешность в процентах. Вы можете представить относительную погрешность в виде обыкновенной дроби, десятичной дроби или в процентах – в этом случае умножьте десятичную дробь на 100. Так вы узнаете, какой процент от полученного вами значения составляет погрешность. Если вы измеряете длину 60 м лодки, а погрешность составляет 0,6 м, то процент ошибки будет значительно меньше, чем при вычислении расстояния между деревьями (6 м) с погрешностью 0,6 м. Погрешность представляет собой небольшой процент от экспериментального значения. [8]

    • 0,6 м / 6 м = 0,1 м
    • 0,1 * 100 = 10% – относительная погрешность.
  3. Изображение с названием Calculate Relative Error Step 8

    3

    Вычислите относительную погрешность без нахождения абсолютной погрешности. Для этого выражение для вычисления абсолютной погрешности запишите в числителе выражения для нахождения относительной погрешности. Уяснив разницу между абсолютной и относительной погрешностями, нет необходимости отдельно вычислять абсолютную погрешность. Просто замените значение абсолютной погрешности на выражение для ее вычисления. Обратите внимание, что вертикальные черты обозначают абсолютную величину, то есть любое полученное значение нужно превратить в положительное.

    • Относительная погрешность: ={frac  {|{mathrm  {E}}-{mathrm  {D}}|}{{mathrm  {D}}}}, где Е — экспериментальное значение, D — действительное значение.
    • Умножьте это выражение на 100, чтобы выразить относительную погрешность в процентах.[9]
  4. Изображение с названием Calculate Relative Error Step 9

    4

    Не забудьте приписать соответствующие единицы измерения. Предположим, что абсолютная погрешность равна 2 м. Такая информация позволит наглядно представить величину ошибки. Но если вы записываете, что погрешность равна 2, то эта цифра ничего не значит. Также не имеет смысла указывать погрешность в виде процентов от ошибки (10% от 0,6 м) – следует писать, например, так: относительная погрешность равна 10%.[10]

    Реклама

Советы

  • Удостоверьтесь, что экспериментальное значение и действительное значение измеряются в одних единицах измерения. Например, если экспериментальное значение измеряется в сантиметрах, а действительное значение – в миллиметрах, преобразуйте одну из этих единиц измерения в другую.

Реклама

Предупреждения

  • Убедитесь, что вы правильно округляете числа.

Реклама

Похожие статьи

Об этой статье

Эту страницу просматривали 169 791 раз.

Была ли эта статья полезной?

Погрешность средств измерения и результатов измерения. 

Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).
Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины.

Инструментальные и методические погрешности. 

Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений. Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели.

Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета. Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены.

Инструментальная погрешность обусловлена несовершенством применяемых средств измерений. Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы.

Статическая и динамическая погрешности.

  • Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения, то есть при измерении постоянных величин после завершения переходных процессов в элементах приборов и преобразователей.
    Статическая погрешность средства измерений возникает при измерении с его помощью постоянной величины. Если в паспорте на средства измерений указывают предельные погрешности измерений, определенные в статических условиях, то они не могут характеризовать точность его работы в динамических условиях.
  • Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения. Динамическая погрешность появляется при измерении переменных величин и обусловлена инерционными свойствами средств измерений. Динамической погрешностью средства измерений является разность между погрешностью средсва измерений в динамических условиях и его статической погрешностью, соответствующей значению величины в данный момент времени. При разработке или проектировании средства измерений следует учитывать, что увеличение погрешности измерений и запаздывание появления выходного сигнала связаны с изменением условий.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины. 

Систематическая и случайная погрешности. 

Систематическая погрешность измерения – составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины. Систематические погрешности являются в общем случае функцией измеряемой величины, влияющих величин (температуры, влажности, напряжения питания и пр.) и времени. В функции измеряемой величины систематические погрешности входят при поверке и аттестации образцовых приборов.

Причинами возникновения систематических составляющих погрешности измерения являются:

  • отклонение параметров реального средства измерений от расчетных значений, предусмотренных схемой;
  • неуравновешенность некоторых деталей средства измерений относительно их оси вращения, приводящая к дополнительному повороту за счет зазоров, имеющихся в механизме;
  • упругая деформация деталей средства измерений, имеющих малую жесткость, приводящая к дополнительным перемещениям;
  • погрешность градуировки или небольшой сдвиг шкалы;
  • неточность подгонки шунта или добавочного сопротивления, неточность образцовой измерительной катушки сопротивления;
  • неравномерный износ направляющих устройств для базирования измеряемых деталей;
  • износ рабочих поверхностей, деталей средства измерений, с помощью которых осуществляется контакт звеньев механизма;
  • усталостные измерения упругих свойств деталей, а также их естественное старение;
  • неисправности средства измерений.

Случайной погрешностью называют составляющие погрешности измерений, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности определяются совместным действием ряда причин: внутренними шумами элементов электронных схем, наводками на входные цепи средств измерений, пульсацией постоянного питающего напряжения, дискретностью счета.

Погрешности адекватности и градуировки. 

Погрешность градуировки средства измерений – погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.

Погрешностью адекватности модели называют погрешность при выборе функциональной зависимости. Характерным примером может служить построение линейной зависимости по данным, которые лучше описываются степенным рядом с малыми нелинейными членами.

Погрешность адекватности относится к измерениям для проверки модели. Если зависимость параметра состояния от уровней входного фактора задана при моделировании объекта достаточно точно, то погрешность адекватности оказывается минимальной. Эта погрешность может зависеть от динамического диапазона измерений, например, если однофакторная зависимость задана при моделировании параболой, то в небольшом диапазоне она будет мало отличаться от экспоненциальной зависимости. Если диапазон измерений увеличить, то погрешность адекватности сильно возрастет.

Абсолютная, относительная и приведенная погрешности. 

Абсолютная погрешность – алгебраическая разность между номинальным и действительным значениями измеряемой величины. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина, в расчетах её принято обозначать греческой буквой – ∆. На рисунке ниже ∆X и ∆Y – абсолютные погрешности.

Относительная погрешность – отношение абсолютной погрешности к тому значению, которое принимается за истинное. Относительная погрешность является безразмерной величиной, либо измеряется в процентах, в расчетах обозначается буквой – δ.

Приведённая погрешность – погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

где Xn – нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

– если шкала прибора односторонняя и нижний предел измерений равен нулю (например диапазон измерений 0…100), то Xn определяется равным верхнему пределу измерений (Xn=100);
– если шкала прибора односторонняя, нижний предел измерений больше нуля, то Xn определяется как разность между максимальным и минимальным значениями диапазона (для прибора с диапазоном измерений 30…100, Xn=Xmax-Xmin=100-30=70);
– если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора (диапазон измерений -50…+50, Xn=100).

Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.

Аддитивные и мультипликативные погрешности.

  • Аддитивной погрешностью называется погрешность, постоянную в каждой точке шкалы.
  • Мультипликативной погрешностью называется погрешность, линейно возрастающую или убывающую с ростом измеряемой величины.

Различать аддитивные и мультипликативные погрешности легче всего по полосе погрешностей (см.рис.).

Если абсолютная погрешность не зависит от значения измеряемой величины, то полоса определяется аддитивной погрешностью (а). Иногда аддитивную погрешность называют погрешностью нуля.

Если постоянной величиной является относительная погрешность, то полоса погрешностей меняется в пределах диапазона измерений и погрешность называется мультипликативной (б). Ярким примером аддитивной погрешности является погрешность квантования (оцифровки).

Класс точности измерений зависит от вида погрешностей. Рассмотрим класс точности измерений для аддитивной и мультипликативной погрешностей:

– для аддитивной погрешности:
аддитивная погрешность 
где Х – верхний предел шкалы, ∆0 – абсолютная аддитивная погрешность.
– для мультипликативной погрешности:
мультипликативная погрешность 
порог чувствительности прибора – это условие определяет порог чувствительности прибора (измерений).

May 8 2015, 14:46

Абсолютные ,относительные и приведенные погрешности измерений

Абсолютная погрешность – это разница между измеренной датчиком величиной Хизм и действительным значением Хд этой величины.

1
Действительное значение Хд измеряемой величины это найденное экспериментально значение измеряемой величины максимально близкое к ее истинному значению. Говоря простым языком действительное значение Хд это значение, измеренное эталонным прибором, или сгенерированное калибратором или задатчиком высокого класса точности. Абсолютная погрешность выражается в тех же единицах измерения, что и измеряемая величина (например, в м3/ч, мА, МПа и т.п.). Так как измеренная величина может оказаться как больше, так и меньше ее действительного значения, то погрешность измерения может быть как со знаком плюс (показания прибора завышены), так и со знаком минус (прибор занижает).
См.Абсолютная погрешность микрокомпьютерного расходомера скоростемера МКРС
Относительная погрешность – это отношение абсолютной погрешности измерения Δ к действительному значению Хд измеряемой величины.

2

Относительная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.
См.Относительная погрешность ультразвукового  уровнемера ЭХО-АС-01
Приведенная погрешность – это отношение абсолютной погрешности измерения Δ к нормирующему значению Хn, постоянному во всем диапазоне измерения или его части.

3
Нормирующее значение Хn зависит от типа шкалы датчика КИП:

  1. Если шкала датчика односторонняя и нижний предел измерения равен нулю (например, шкала датчика от 0 до 150 м3/ч), то Хn принимается равным верхнему пределу измерения (в нашем случае Хn = 150 м3/ч).
  2. Если шкала датчика односторонняя, но нижний предел измерения не равен нулю (например, шкала датчика от 30 до 150 м3/ч), то Хn принимается равным разности верхнего и нижнего пределов измерения (в нашем случае Хn = 150-30 = 120 м3/ч).
  3. Если шкала датчика двухсторонняя (например, от -50 до +150 ˚С), то Хn равно ширине диапазона измерения датчика (в нашем случае Хn = 50+150 = 200 ˚С).

Приведенная погрешность выражается в процентах, либо является безразмерной величиной, а также может принимать как положительные, так и отрицательные значения.

Довольно часто в описании на тот или иной датчик указывается не только диапазон измерения, например, от 0 до 50 мг/м3, но и диапазон показаний, например, от 0 до 100 мг/м3. Приведенная погрешность в этом случае нормируется к концу диапазона измерения, то есть к 50 мг/м3, а в диапазоне показаний от 50 до 100 мг/м3 погрешность измерения датчика не определена вовсе – фактически датчик может показать все что угодно и иметь любую погрешность измерения. Диапазон измерения датчика может быть разбит на несколько измерительных поддиапазонов, для каждого из которых может быть определена своя погрешность как по величине, так и по форме представления. При этом при поверке таких датчиков для каждого поддиапазона могут применяться свои образцовые средства измерения, перечень которых указан в методике поверки на данный прибор.

Понравилась статья? Поделить с друзьями:
  • Как найти частоту колебаний вектора напряженности
  • Как исправить программа просмотра
  • Как найти набор для школы
  • Как найти трек по аудио
  • Как найти скорость по уравнению гармонических колебаний