Как найти относительную скорость в физике

From Wikipedia, the free encyclopedia

The relative velocity {displaystyle {vec {v}}_{Bmid A}} (also {displaystyle {vec {v}}_{BA}} or {displaystyle {vec {v}}_{Boperatorname {rel} A}}) is the velocity of an object or observer B in the rest frame of another object or observer A.

Classical mechanics[edit]

In one dimension (non-relativistic)[edit]

Relative motion man on train

We begin with relative motion in the classical, (or non-relativistic, or the Newtonian approximation) that all speeds are much less than the speed of light. This limit is associated with the Galilean transformation. The figure shows a man on top of a train, at the back edge. At 1:00 pm he begins to walk forward at a walking speed of 10 km/h (kilometers per hour). The train is moving at 40 km/h. The figure depicts the man and train at two different times: first, when the journey began, and also one hour later at 2:00 pm. The figure suggests that the man is 50 km from the starting point after having traveled (by walking and by train) for one hour. This, by definition, is 50 km/h, which suggests that the prescription for calculating relative velocity in this fashion is to add the two velocities.

The diagram displays clocks and rulers to remind the reader that while the logic behind this calculation seem flawless, it makes false assumptions about how clocks and rulers behave. (See The train-and-platform thought experiment.) To recognize that this classical model of relative motion violates special relativity, we generalize the example into an equation:

{displaystyle underbrace {{vec {v}}_{Mmid E}} _{text{50 km/h}}=underbrace {{vec {v}}_{Mmid T}} _{text{10 km/h}}+underbrace {{vec {v}}_{Tmid E}} _{text{40 km/h}},}

where:

{displaystyle {vec {v}}_{Mmid E}} is the velocity of the Man relative to Earth,
{displaystyle {vec {v}}_{Mmid T}} is the velocity of the Man relative to the Train,
{displaystyle {vec {v}}_{Tmid E}} is the velocity of the Train relative to Earth.

Fully legitimate expressions for «the velocity of A relative to B» include «the velocity of A with respect to B» and «the velocity of A in the coordinate system where B is always at rest». The violation of special relativity occurs because this equation for relative velocity falsely predicts that different observers will measure different speeds when observing the motion of light. [note 1]

In two dimensions (non-relativistic)[edit]

Relative velocities between two particles in classical mechanics

The figure shows two objects A and B moving at constant velocity. The equations of motion are:

{displaystyle {vec {r}}_{A}={vec {r}}_{Ai}+{vec {v}}_{A}t,}
{displaystyle {vec {r}}_{B}={vec {r}}_{Bi}+{vec {v}}_{B}t,}

where the subscript i refers to the initial displacement (at time t equal to zero). The difference between the two displacement vectors, {vec  r}_{B}-{vec  r}_{A}, represents the location of B as seen from A.

{displaystyle {vec {r}}_{B}-{vec {r}}_{A}=underbrace {{vec {r}}_{Bi}-{vec {r}}_{Ai}} _{text{initial separation}}+underbrace {({vec {v}}_{B}-{vec {v}}_{A})t} _{text{relative velocity}}.}

Hence:

{displaystyle {vec {v}}_{Bmid A}={vec {v}}_{B}-{vec {v}}_{A}.}

After making the substitutions {vec  v}_{{A|C}}={vec  v}_{A} and {vec  v}_{{B|C}}={vec  v}_{B}, we have:

{displaystyle {vec {v}}_{Bmid A}={vec {v}}_{Bmid C}-{vec {v}}_{Amid C}Rightarrow }   {displaystyle {vec {v}}_{Bmid C}={vec {v}}_{Bmid A}+{vec {v}}_{Amid C}.}

Galilean transformation (non-relativistic)[edit]

To construct a theory of relative motion consistent with the theory of special relativity, we must adopt a different convention. Continuing to work in the (non-relativistic) Newtonian limit we begin with a Galilean transformation in one dimension:[note 2]

x'=x-vt
t'=t

where x’ is the position as seen by a reference frame that is moving at speed, v, in the «unprimed» (x) reference frame.[note 3] Taking the differential of the first of the two equations above, we have, {displaystyle dx'=dx-v,dt}, and what may seem like the obvious[note 4] statement that dt'=dt, we have:

{frac  {dx'}{dt'}}={frac  {dx}{dt}}-v

To recover the previous expressions for relative velocity, we assume that particle A is following the path defined by dx/dt in the unprimed reference (and hence dx′/dt′ in the primed frame). Thus {displaystyle dx/dt=v_{Amid O}} and {displaystyle dx'/dt=v_{Amid O'}}, where O and O' refer to motion of A as seen by an observer in the unprimed and primed frame, respectively. Recall that v is the motion of a stationary object in the primed frame, as seen from the unprimed frame. Thus we have {displaystyle v=v_{O'mid O}}, and:

{displaystyle v_{Amid O'}=v_{Amid O}-v_{O'mid O}Rightarrow v_{Amid O}=v_{Amid O'}+v_{O'mid O},}

where the latter form has the desired (easily learned) symmetry.

Special relativity[edit]

As in classical mechanics, in Special Relativity the relative velocity {vec  {v}}_{{mathrm  {B|A}}} is the velocity of an object or observer B in the rest frame of another object or observer A. However, unlike the case of classical mechanics, in Special Relativity, it is generally not the case that

{vec  {v}}_{{mathrm  {B|A}}}=-{vec  {v}}_{{mathrm  {A|B}}}

This peculiar lack of symmetry is related to Thomas precession and the fact that two successive Lorentz transformations rotate the coordinate system. This rotation has no effect on the magnitude of a vector, and hence relative speed is symmetrical.

|{vec  {v}}_{{mathrm  {B|A}}}|=|{vec  {v}}_{{mathrm  {A|B}}}|=v_{{mathrm  {B|A}}}=v_{{mathrm  {A|B}}}

Parallel velocities[edit]

In the case where two objects are traveling in parallel directions, the relativistic formula for relative velocity is similar in form to the formula for addition of relativistic velocities.

{vec  {v}}_{{mathrm  {B|A}}}={frac  {{vec  {v}}_{{mathrm  {B}}}-{vec  {v}}_{{mathrm  {A}}}}{1-{frac  {{vec  {v}}_{{mathrm  {A}}}{vec  {v}}_{{mathrm  {B}}}}{c^{2}}}}}

The relative speed is given by the formula:

{displaystyle v_{mathrm {B|A} }={frac {left|{vec {v}}_{mathrm {B} }-{vec {v}}_{mathrm {A} }right|}{1-{frac {{vec {v}}_{mathrm {A} }{vec {v}}_{mathrm {B} }}{c^{2}}}}}}

Perpendicular velocities[edit]

In the case where two objects are traveling in perpendicular directions, the relativistic relative velocity {vec  {v}}_{{mathrm  {B|A}}} is given by the formula:

{vec  {v}}_{{mathrm  {B|A}}}={{frac  {{vec  {v}}_{{mathrm  {B}}}}{gamma _{{mathrm  {A}}}}}}-{vec  {v}}_{{mathrm  {A}}}

where

{displaystyle gamma _{mathrm {A} }={frac {1}{sqrt {1-left({frac {v_{mathrm {A} }}{c}}right)^{2}}}}}

The relative speed is given by the formula

{displaystyle v_{mathrm {B|A} }={frac {sqrt {c^{4}-left(c^{2}-v_{mathrm {A} }^{2}right)left(c^{2}-v_{mathrm {B} }^{2}right)}}{c}}}

General case[edit]

The general formula for the relative velocity {vec  {v}}_{{mathrm  {B|A}}} of an object or observer B in the rest frame of another object or observer A is given by the formula:[1]

{displaystyle {vec {v}}_{mathrm {B|A} }={frac {1}{gamma _{mathrm {A} }left(1-{frac {{vec {v}}_{mathrm {A} }{vec {v}}_{mathrm {B} }}{c^{2}}}right)}}left[{vec {v}}_{mathrm {B} }-{vec {v}}_{mathrm {A} }+{vec {v}}_{mathrm {A} }(gamma _{mathrm {A} }-1)left({frac {{vec {v}}_{mathrm {A} }cdot {vec {v}}_{mathrm {B} }}{v_{mathrm {A} }^{2}}}-1right)right]}

where

{displaystyle gamma _{mathrm {A} }={frac {1}{sqrt {1-left({frac {v_{mathrm {A} }}{c}}right)^{2}}}}}

The relative speed is given by the formula

{displaystyle v_{mathrm {B|A} }={sqrt {1-{frac {left(c^{2}-v_{mathrm {A} }^{2}right)left(c^{2}-v_{mathrm {B} }^{2}right)}{left(c^{2}-{vec {v}}_{mathrm {A} }cdot {vec {v}}_{mathrm {B} }right)^{2}}}}}cdot c}

See also[edit]

  • Doppler effect
  • Non-Euclidean geometry § Kinematic geometries
  • Peculiar velocity
  • Proper motion
  • Range rate
  • Radial velocity
  • Rapidity
  • Relativistic speed
  • Space velocity (astronomy)

Notes[edit]

  1. ^ For example, replace the «Man» by a photon traveling at the speed of light.
  2. ^ This result is valid if all motion is restricted to the x-axis, but can be easily generalized by replacing the first equation by {vec  {r}},'={vec  {r}}-{vec  {v}}t
  3. ^ It is easy to be confused about the minus sign before v, or whether v is defined in the prime or unprimed reference frame. It might help to visualize the fact that if x = vt, then x′ = 0, meaning that a particle that is following the path x = vt is at rest in the primed reference frame.
  4. ^ Keep in mind that, due to time dilation, dt = dt′ is valid only in the approximation that the speed is much less than that of light.

References[edit]

  1. ^ Fock 1964 The theory of Space Time and Gravitation, retrieved from https://archive.org/details/TheTheoryOfSpaceTimeGravitation

Further reading[edit]

  • Alonso & Finn, Fundamental University Physics ISBN 0-201-56518-8
  • Greenwood, Donald T, Principles of Dynamics.
  • Goodman and Warner, Dynamics.
  • Beer and Johnston, Statics and Dynamics.
  • McGraw Hill Dictionary of Physics and Mathematics.
  • Rindler, W., Essential Relativity.
  • KHURMI R.S., Mechanics, Engineering Mechanics, Statics, Dynamics

External links[edit]

  • Relative Motion at HyperPhysics
  • A Java applet illustrating Relative Velocity, by Andrew Duffy
  • Relatív mozgás (1)…(3) Relative motion of two train (1)…(3). Videos on the portal FizKapu. (in Hungarian)
  • Sebességek összegzése Relative tranquility of trout in creek. Video on the portal FizKapu. (in Hungarian)

Чтобы получить точное представление о движении двух объектов относительно друг друга относительная скорость является важным. Поэтому в этой статье мы подробно поговорим об относительной скорости между двумя объектами.

Относительная скорость — это, по сути, скорость одного объекта по отношению к другому. Рассмотрим следующие два объекта, А и В, которые движутся с разными скоростями. Скорость объекта А по отношению к объекту В или наоборот называется относительной скоростью. Он также известен как скорость изменения относительного положения одного объекта по отношению к другому с течением времени.

Как найти относительную скорость двух тел?

🠊 Техника определения скорости объекта требует определения скорости изменения положения объекта по отношению к неподвижному окружающему объекту.

Когда объекты A и B находятся в относительном движении, их соответствующие скорости также будут в относительном движении. Чтобы получить относительную скорость объекта A по отношению к B, нужно математически придать равную и противоположную скорость B как объекту A, так и объекту B, чтобы привести объект B в состояние покоя.

В результате равнодействующая обеих скоростей (скорости объекта А и Б) дает нам относительную скорость объекта А относительно объекта Б.

Уравнения относительной скорости следующие:

Скорость объекта А относительно объекта В можно рассчитать следующим образом:

Vab V =a — Vb

Скорость объекта B относительно объекта A можно рассчитать следующим образом:

Vba V =b — Va

Из двух выражений мы можем вывести следующее:

Vab  = — Vba

Однако обе величины равны математически и могут быть представлены как:

|Vab |= |Вba|

Какова относительная скорость между двумя телами, когда они движутся с одинаковой скоростью в одном направлении?

🠊 Когда два тела А и В движутся в одном направлении с одинаковой скоростью, угол между ними равен 0°.

относительная скорость между двумя объектами

Предположим, что два транспортных средства A и B движутся в одном направлении, т. е. параллельно друг другу, с одинаковой скоростью или скоростью (поскольку они движутся в одном направлении), т. е. Va V =b.

В результате скорость автомобиля А относительно автомобиля В равна:

Vab V =a — Vb = 0

Аналогичным образом, скорость транспортного средства B относительная к транспортному средству А:

Vba V =b — Va = 0

Это означает, что если два объекта двигаться в одном направлении с одинаковой скоростью или скорость, их относительная скорость становится равной нулю. Это демонстрирует, что другой может казаться покоящимся для одного объекта.

Построение графика положение-время для двух объектов, движущихся в одном направлении с одинаковой скоростью, приводит к прямым параллельным линиям, как показано на графике ниже.

Какова относительная скорость между двумя телами, когда они движутся с разными скоростями в одном направлении?

🠊 Если два транспортных средства, A и B, движутся в одном направлении с разными скоростями, в первую очередь следует рассмотреть два сценария:

(1) Начальные точки одинаковы (Va > Vb):

Если два транспортных средства движутся с разными скоростями в одном направлении с одной и той же начальной точкой и Va > Vb, человек в транспортном средстве B воспринимает транспортное средство A как удаляющееся от него со скоростью:

Vab V =a — Vb

Транспортное средство B движется назад к пассажиру в транспортном средстве A со скоростью:

Vba V =b — Va = -( Вa — Vb) = -Vab 

В результате обе скорости имеют одинаковую величину, но противоположные знаки.

(2) Различные отправные точки:

Мы можем думать о двух сценариях здесь:

(i) Предположим, что транспортное средство A имеет более высокую скорость, чем транспортное средство B, т. е. Va > Vb, и следует за автомобилем B. 

В этой ситуации транспортное средство A в конечном итоге догонит транспортное средство B, как показано на их графике положение-время.

Vab V =a — Vb ≠ 0

(ii) Рассмотрим ситуацию, когда Va > Vb и автомобиль А движется впереди автомобиля В.

В этом случае транспортное средство B никогда не сможет обогнать транспортное средство A.. Графики положения и времени обоих транспортных средств не будут пересекаться по мере их удаления друг от друга.

Vab V =a — Vb ≠ 0

Какова будет относительная скорость двух тел, когда они движутся в противоположных направлениях?

🠊 Угол, образованный двумя телами, движущимися в противоположных направлениях по прямой, называется 180°.

Рассмотрим два автомобиля А и В, движущихся в противоположных направлениях по прямой. 

В результате скорость автомобиля А относительно автомобиля В равна:

Vab V =a -(- Вb) = Вa +V

Скорость транспортного средства B по отношению к A аналогична:

Vba V =b-(- Вa) = Вa +V

В результате можем написать:

Vab V =ba

Это указывает на то, что если два объекта движутся в противоположных направлениях по прямой линии, кажется, что каждый объект движется очень быстро по сравнению с другим.

Какова относительная скорость, когда два тела движутся под углом?

🠊 Рассмотрим пример относительной скорости, который возникает, когда два объекта, A и B, движутся под углом со скоростями Va и Vb.

&

Диагональ даст нам относительную скорость, если мы построим параллелограмм, как показано на рисунке. В результате величина диагонального вектора параллелограмма или относительная скорость с использованием закона косинусов составляет:

Но Cos(180°-𝛳) = -Cos𝛳

Когда два объекта движутся под углом, приведенное выше уравнение дает нам их относительную скорость. Мы также можем вывести случай того же направления и случай противоположного направления из этого уравнения, изменив значение угла на 0° и 180° соответственно.

Однако, как показано на изображении, если вектор относительной скорости Vab образует угол ꞵ со скоростью объекта A, то

Но Sin(180°-𝛳) = Sin𝛳

Или,

Важность относительной скорости:

Важность относительной скорости резюмируется ниже:

  • Рассчитать скорость звезд и астероидов относительно Земли.
  • Для измерения расстояния между любыми двумя объектами в пространстве.
  • Чтобы запустить ракету.
  • Для определения скорости любого объекта.
  • Это помогает нам, когда объект движется через жидкость.

Проблемы, связанные с относительной скоростью:

1. Автомобиль, едущий по шоссе со скоростью 110 км/ч, проезжает мимо автобуса, идущего со скоростью 85 км/ч. Какова скорость автомобиля с точки зрения пассажира автобуса?

Данный:

Скорость автомобиля Vc = 110 км/ч

Скорость автобуса Vb = 85 км/ч

Найти:

Относительная скорость автомобиля относительно автобуса Vcb знак равно

Решение:

Поскольку автомобиль и автобус едут в одном направлении, относительная скорость автомобиля с точки зрения пассажира автобуса равна:

Vcb V =c — Vb = (110 -85)км/ч = 25 км/ч

Таким образом, скорость автомобиля с точки зрения пассажира автобуса составляет 25 км/ч.

2. Две машины, находящиеся на некотором расстоянии друг от друга, начинают двигаться навстречу друг другу со скоростями 150 м/с и 200 м/с по прямой дороге. С какой скоростью они приближаются друг к другу?

Данный:

Скорость автомобиля 1 В1 = 150 м / с

Скорость автомобиля 2 В2 = 200 м / с

Найти:

Относительная скорость вагона 1 относительно вагона 2 V12 знак равно

Относительная скорость вагона 2 относительно вагона 1 V21 знак равно

Решение:

Так как оба автомобиля едут в противоположном направлении, относительная скорость:

V12 V =1 + V2 = (150 + 200) м/с = 350 м/с

Кроме того,

V21 V =1 + V2 = (150 + 200) м/с = 350 м/с

В результате два автомобиля движутся навстречу друг другу с относительной скоростью 350 м/с.

Резюме:

  • Скорость одного объекта по отношению к другому объекту просто называется относительной скоростью этих двух объектов.
  • Рассмотрим два объекта, которые движутся в одном направлении. В этой ситуации величина относительной скорости одного объекта по отношению к другому будет равна разнице в величине их скоростей.
  • Если два объекта движутся в одном направлении и с одинаковыми скоростями, их относительная скорость будет ноль.
  • Предположим, что любые два объекта движутся в противоположном направлении. В этом случае величина относительной скорости одного объекта по отношению к другому окажется суммой величины их скоростей.

Под относительностью понимают зависимость чего-либо от выбора системы отсчета. Так, покой и движение тела, его положение в пространстве всегда относительны. Человек, сидящий внутри движущегося автомобиля, покоится относительно этого автомобиля. Но относительно предметов снаружи он движется с некоторой скоростью.

Относительность перемещения

Пусть движение материальной точки (МТ) описывается относительно двух систем отсчета: подвижной (ПСО) и неподвижной (НСО). Зная, как эта точка движется относительно ПСО, и, как ПСО движется относительно НСО, можно вычислить перемещение точки относительно НСО. В этом заключается правило сложения перемещений:

s′ = s1 + s2

s′ — перемещение МТ относительно НСО, s1— перемещение МТ относительно ПСО, s2 — перемещение ПСО относительно НСО.

Чтобы применять правило сложения перемещений, нужно уметь складывать вектора.

Полезные факты

  • Если тело движется в направлении движения ПСО, то модуль его перемещения относительно НСО равен сумме модулей перемещения этого тела относительно ПСО и перемещения ПСО относительно НСО:

s′ = s1 + s2

  • Если тело движется противоположно движению ПСО, то модуль его перемещения относительно НСО равен разности модулей перемещения этого тела относительно ПСО и перемещения ПСО относительно НСО:

s′ = s1 – s2

  • Если тело движется под прямым углом по отношению к направлению движения ПСО, то модуль его перемещения относительно НСО равен корню из суммы квадратов перемещений этого тела относительно ПСО и перемещения ПСО относительно НСО:

s′ = √(s12 + s22)

  • Если относительно ПСО тело покоится, то его перемещение относительно НСО равно перемещению ПСО относительно НСО: при s1=0, перемещение s′ = s2
  • Если тело движется относительно двух НСО, то его перемещение относительно НСО1 равно перемещению движения относительно НСО2. В этом случае одну из систем можно принять за ПСО с нулевой скоростью. Тогда ее перемещение относительно НСО будет равно 0. При s2=0, перемещение s′ = s1

Пример №1. Человек прошел в автобусе 2 метра в направлении заднего выхода. За это же время автобус успел переместиться относительно остановки на 10 м. Найти перемещение человека относительно автобусной остановки.

Так как человек двигался в сторону конца автобуса, он двигался противоположно его движению. В этом случае его перемещение будет равно модулю разности перемещений, совершенных человеком относительно автобуса и автобусом относительно остановки:

s′=|s1 – s2|=|10 – 2|=8 (м).

Относительность скорости в ПСО и НСО

Тела и системы отсчета могут двигаться с различной скоростью. Но, зная скорость движения МТ относительно ПСО и скорость движения ПСО относительно НСО, можно вычислить скорость движения МТ относительно НСО. В этом заключается правило сложения скоростей:

v′ = v + u

v′ — скорость МТ относительно НСО, v — скорость МТ относительно ПСО, u — скорость движения ПСО относительно НСО.

Складывая векторы скоростей, нужно пользоваться правилами сложения векторов.

Полезные факты

  • Если тело движется в направлении движения ПСО, то модуль его скорости относительно НСО равен сумме модулей скорости этого тела относительно ПСО и скорости ПСО относительно НСО:

v′ = v + u

  • Если тело движется противоположно движению ПСО, то модуль его скорости относительно НСО равен разности модуля скорости этого тела относительно ПСО и скорости ПСО относительно НСО:

v′ = v – u

  • Если тело движется под прямым углом по отношению к направлению движения ПСО, то модуль его скорости относительно НСО равен корню из суммы квадратов скорости этого тела относительно ПСО и скорости ПСО относительно НСО:

v′ = √(v2 + u2)

  • Если относительно ПСО тело покоится, то его скорость относительно НСО равна скорости ПСО относительно НСО: при v=0, скорость v′ = u
  • Если тело движется относительно двух НСО, то его скорость относительно НСО1 равна скорости движения относительно НСО2. В этом случае одну из неподвижных систем можно принять за ПСО с нулевой скоростью. При u=0, скорость v′ = u

Пример №2. Моторная лодка должна пересечь реку, скорость течения которой равна 5 км/ч, по кратчайшему пути. Собственная скорость лодки равна 10 км/ч. Определить, под каким углом к берегу должна быть направлена лодка, чтобы она не отклонялась от кратчайшего пути.

Кратчайшим путем между двумя параллельными линиями является отрезок, заключенный между этими линиями при условии, что он лежит на прямой, пересекающей эти линии под прямым углом. На рисунке этот путь отметим отрезком АВ.

Лодка движется прямолинейно. Поэтому направление ее скорости относительно берега совпадает с направлением перемещения:

Векторы скоростей образуют прямоугольный треугольник, и собственная скорость лодки направлена к берегу под некоторым углом α. Косинус этого угла равен отношению прилегающего катета (скорости лодки относительно реки) к гипотенузе (скорости течения реки):

Косинусу 0,5 соответствует угол, равный 60 градусам.

Относительная скорость двух тел

Понятие относительной скорости вводится, когда рассматривается движение двух тел относительно друг друга внутри одной и той же системы отсчета (СО). Примером служат два движущихся автомобиля, в то время как их движение рассматривается относительно неподвижного объекта.

Относительная скорость равна векторной разности скоростей первого и второго тела относительно СО:

vотн = v1v2

vотн — относительная скорость, или скорость первого тела относительно второго, v1 и v2 — скорость первого и второго тела относительно СО.

Варианты обозначения относительной скорости и их проекций:

  • v12 — скорость первого тела относительно второго. Ее проекция равна:

v12x = v1x – v2x

  • v21 — скорость второго тела относительно первого. Ее проекция равна v21x = v2x – v1x

Для вычисления относительной скорости движения тела важно уметь применять правила вычитания векторов.

Полезные факты

  • Если тела движутся в одном направлении, то относительная скорость равна модулю разности скоростей первого и второго тела:

vотн = |v1 – v2|

  • Если тела движутся в противоположных направлениях, то относительная скорость равна сумме скоростей первого и второго тела:

vотн = |v1 + v2|

  • Если тела движутся взаимно перпендикулярно, то относительная скорость равна корню из суммы квадратов скоростей первого и второго тела:

vотн = √(v12 + v22)

Пример №3. Два автомобиля движутся противоположно друг другу. Скорость первого автомобиля относительно дороги равна 100 км/ч. Скорость второго автомобиля относительно первого равна 180 км/ч. Найти модуль скорости второго автомобиля относительно дороги.

Так как автомобили движутся в противоположном направлении, относительная скорость равна сумме скоростей первого и второго автомобиля. Поэтому скорость второго равна разности относительной скорости и скорости движения второго тела, которым в данном случае является первый автомобиль:

Скорость второго автомобиля относительно дороги равна 80 км/час.

Правила сложения векторов

Эта таблица иллюстрирует правила сложения векторов на примере векторов a и b. Результатом их сложения является вектор c .

Сложение двух сонаправленных векторов
Суммой двух сонаправленных векторов является вектор, направленный в ту же сторону.

Его длина равна сумме длин слагаемых векторов: c = a + b.

Сложение двух противоположно направленных векторов
Суммой двух противоположно направленных векторов является вектор, направленный в сторону большего по модулю вектора. Его длина равна модулю разности длин слагаемых векторов: c = |a – b|.
Сложение двух векторов, расположенных друг к другу под углом
Суммой двух векторов, расположенных друг к другу под углом является вектор, направление которого определяется графически методом треугольника или параллелограмма. Его длина зависит от величины угла, под которым расположены два слагаемых векторов.
Если слагаемые векторы перпендикулярны, для вычисления длины вектора их суммы используется теорема Пифагора:

.

Если слагаемые векторы расположены под тупым углом α, для вычисления длины вектора их суммы используется теорема косинусов:

.

Если слагаемые векторы расположены под острым углом α, для вычисления длины вектора их суммы используется теорема косинусов:

.

Правила вычитания векторов

Эта таблица иллюстрирует правила вычитания векторов на примере векторов Результатом их вычитания является вектор .

Вычитание двух сонаправленных векторов
Разностью двух сонаправленных векторов является вектор, направленный в сторону большего по модулю вектора.

Его длина равна модулю разности длин вычитаемых векторов: c = |a – b|.

Вычитание двух противоположно направленных векторов
Разность двух противоположно направленных векторов есть вектор, направленный в сторону уменьшаемого вектора. Его длина равна сумме длин вычитаемых векторов: c = a + b.
Вычитание двух векторов, расположенных друг к другу под углом
Разностью двух векторов, расположенных друг к другу под углом является вектор, являющийся обратным вектору, образующемуся при сложении этих векторов. Его направление определяется графически. Его длина зависит от величины угла, под которым расположены два слагаемых векторов.
Если вычитаемые векторы перпендикулярны, для вычисления длины вектора их разности используется теорема Пифагора:

.

Если вычитаемые векторы расположены под углом α, для вычисления длины вектора их разности используется теорема косинусов:

.

Задание EF17727

Два автомобиля движутся по прямому шоссе, первый — со скоростью v, второй — со скоростью –4v. Найти скорость второго автомобиля относительно первого.


Алгоритм решения

  1. Записать данные в определенной системе отсчета.
  2. Изобразить графическую модель ситуации задачи.
  3. Записать классический закон сложения скоростей в векторном виде.
  4. Записать классический закон сложения скоростей в векторном виде применительно к условиям задачи.
  5. Найти искомую величину.

Решение

Записываем данные относительно Земли:

  • Скорость первого автомобиля относительно оси ОХ: v1 = v.
  • Скорость второго автомобиля относительно оси ОХ: v2 = –4v.

Изображаем графическую модель ситуации. Так как у второго автомобиля перед вектором скорости стоит знак «–», первый и второй автомобили движутся во взаимно противоположных направлениях.

Записываем закон сложения скоростей в векторном виде:

v′ = v + u

v — скорость второго автомобиля относительно оси ОХ (v2), v — скорость второго автомобиля относительно системы отсчета, связанной с первым автомобилем, u — скорость движения первого автомобиля относительно оси ОХ (v1).

Закон сложения скоростей в векторном виде применительно к условиям задачи будет выглядеть так:

v2 = v + v1

Отсюда:

v = v2v1 = –4vv = –5v

Ответ: -5v

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17518

Два автомобиля движутся в одном направлении. Относительно Земли скорость первого автомобиля 110 км/ч, второго 60 км/ч. Чему равен модуль скорости первого автомобиля в системе отсчёта, связанной со вторым автомобилем?


Алгоритм решения

  1. Записать данные в определенной системе отсчета.
  2. Изобразить графическую модель ситуации задачи.
  3. Записать классический закон сложения скоростей в векторном виде.
  4. Выбрать систему отсчета.
  5. Записать классический закон сложения скоростей в скалярном виде.
  6. Найти искомую величину.

Решение

Записываем данные относительно Земли:

  • Скорость первого автомобиля относительно неподвижной системы отсчета: v1 = 110 км/ч;
  • Скорость второго автомобиля относительно Земли: v2 = 60 км/ч.

Изображаем графическую модель ситуации:

Записываем закон сложения скоростей в векторном виде:

v′ = v + u

v — скорость автомобиля относительно земли (v1), v — скорость второго автомобиля относительно системы отсчета, связанной со вторым автомобилем, u — скорость движения второго автомобиля относительно земли (v2).

По условию задачи в качестве системы отсчета нужно выбрать второй автомобиль. Так как система отсчета, связанная со вторым автомобилем, и первый автомобиль движутся в одном направлении, классический закон сложения скоростей в скалярном виде будет выглядеть так:

v’ = v + u

Отсюда скорость первого автомобиля в системе отсчёта, связанной со вторым автомобилем:

v = v’ – u = v1 – v2 = 110 – 60 = 50 (км/ч).

По условию задачи ответом должен быть модуль этой скорости. Модуль числа 50 есть 50.Ответ: 50

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 7.4k

Кинематика

Механика — это раздел физики, изучающий механическое движение тел.

Кинематика — это раздел механики, в котором изучается механическое движение тел без учета причин, вызывающих это движение.

Материальная точка — тело, обладающее массой, размерами которого в данной задаче можно пренебречь, если

  • расстояние, которое проходит тело, много больше его размера;
  • расстояние от данного тела до другого тела много больше его размера;
  • тело движется поступательно.

Система отсчета — это тело отсчета, связанная с ним система координат и прибор для измерения времени.
Траектория — это линия, которую описывает тело при своем движении.
Путь — это скалярная величина, равная длине траектории.
Перемещение — это вектор, соединяющий начальное положение тела с его конечным положением за данный промежуток времени.

Важно! 
В процессе движения путь может только увеличиваться, а перемещение как увеличиваться, так и уменьшаться, например, когда тело поворачивает обратно.
При прямолинейном движении в одном направлении путь равен модулю перемещения, а при криволинейном — путь больше перемещения.
Перемещение на замкнутой траектории равно нулю.

Основная задача механики — определить положение тела в пространстве в любой момент времени.

Содержание

  • Механическое движение и его виды
  • Относительность механического движения
    • Правило сложения перемещений
    • Правило сложения скоростей
    • Относительная скорость
  • Скорость
  • Ускорение
  • Равномерное движение
    • График скорости (проекции скорости)
    • График перемещения (проекции перемещения)
  • Прямолинейное равноускоренное движение
  • Свободное падение (ускорение свободного падения)
    • Движение тела по вертикали
    • Движение тела, брошенного горизонтально
    • Движение тела, брошенного под углом к горизонту (баллистическое движение)
  • Движение по окружности с постоянной по модулю скоростью
  • Основные формулы по теме «Кинематика»

Механическое движение и его виды

Механическое движение — это изменение положения тела в пространстве относительно других тел с течением времени.

Механическое движение может быть:
1. по характеру движения

  • поступательным — это движение, при котором все точки тела движутся одинаково и любая прямая, мысленно проведенная в теле, остается параллельна сама себе;
  • вращательным — это движение, при котором все точки твердого тела движутся по окружностям, расположенным в параллельных плоскостях;
  • колебательным — это движение, которое повторяется в двух взаимно противоположных направлениях;

2. по виду траектории

  • прямолинейным — это движение, траектория которого прямая линия;
  • криволинейным — это движение, траектория которого кривая линия;

3. по скорости

  • равномерным — движение, при котором скорость тела с течением времени не изменяется;
  • неравномерным — это движение, при котором скорость тела с течением времени изменяется;

4. по ускорению

  • равноускоренным — это движение, при котором скорость тела увеличивается с течением времени на одну и ту же величину;
  • равнозамедленным — это движение, при котором скорость тела уменьшается с течением времени на одну и ту же величину.

Относительность механического движения

Относительность движения — это зависимость характеристик механического движения от выбора системы отсчета.

Правило сложения перемещений

Перемещение тела относительно неподвижной системы отсчета равно векторной сумме перемещения тела относительно подвижной системы отсчета и перемещения подвижной системы отсчета относительно неподвижной системы отсчета:

где ​( S )​ — перемещение тела относительно неподвижной системы отсчета;
( S_1 )​ — перемещение тела относительно подвижной системы отсчета;
( S_2 )​ — перемещение подвижной системы отсчета относительно неподвижной системы отсчета.

Правило сложения скоростей

Скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной системы отсчета:

где ​( v )​ — скорость тела относительно неподвижной системы отсчета;
( v_1 )​ — скорость тела относительно подвижной системы отсчета;
( v_2 )​ — скорость подвижной системы отсчета относительно неподвижной системы отсчета.

Относительная скорость

Важно! Чтобы определить скорость одного тела относительно другого, надо мысленно остановить то тело, которое мы принимаем за тело отсчета, а к скорости оставшегося тела прибавить скорость остановленного, изменив направление его скорости на противоположное.

Пусть ( v_1 ) — скорость первого тела, а ( v_2 ) — скорость второго тела.
Определим скорость первого тела относительно второго ( v_{12} ):

Определим скорость второго тела относительно первого ( v_{21} ):

Следует помнить, что траектория движения тела и пройденный путь тоже относительны.

Если скорости направлены перпендикулярно друг к другу, то относительная скорость рассчитывается по теореме Пифагора:

Если скорости направлены под углом ​( alpha )​ друг к другу, то относительная скорость рассчитывается по теореме косинусов:

Скорость

Скорость — это векторная величина, характеризующая изменение перемещения данного тела относительно тела отсчета с течением времени.

Обозначение — ​( v )​, единицы измерения — ​м/с (км/ч)​.

Средняя скорость — это векторная величина, равная отношению всего перемещения к промежутку времени, за которое это перемещение произошло:

Средняя путевая скорость — это скалярная величина, равная отношению всего пути, пройденного телом, к промежутку времени, за которое этот путь пройден:

Важно! Чтобы определить среднюю скорость на всем участке пути, надо время разделить на отдельные промежутки и все время представить в виде суммы этих промежутков.
Чтобы определить среднюю скорость за все время движения, надо путь разделить на отдельные участки и весь путь представить как сумму этих участков.

Мгновенная скорость — это скорость тела в данный момент времени или в данной точке траектории.
Мгновенная скорость направлена по касательной к траектории движения.

Ускорение

Ускорение – это векторная физическая величина, характеризующая быстроту изменения скорости.

Обозначение — ​( a )​, единица измерения — м/с2.
В векторном виде:

где ​( v )​ – конечная скорость; ​( v_0 )​ – начальная скорость;
( t )​ – промежуток времени, за который произошло изменение скорости.

В проекциях на ось ОХ:

где ​( a_n )​ – нормальное ускорение, ​( a_{tau} )​ – тангенциальное ускорение.

Тангенциальное ускорение сонаправлено с вектором линейной скорости, а значит, направлено вдоль касательной к кривой:

Нормальное ускорение перпендикулярно направлению вектора линейной скорости, а значит, и касательной к кривой:

Ускорение характеризует быстроту изменения скорости, а скорость – векторная величина, которая имеет модуль (числовое значение) и направление.

Важно!
Тангенциальное ускорение характеризует быстроту изменения модуля скорости. Нормальное ускорение характеризует быстроту изменения направления скорости.
Если ( a_{tau} ) ≠ 0, ( a_n ) = 0, то тело движется по прямой;
если ( a_{tau} ) = 0, ( a_n ) = 0, ​( v )​ ≠ 0, то тело движется равномерно по прямой;
если ( a_{tau} ) = 0, ( a_n ) ≠ 0, тело движется равномерно по кривой;
если ( a_{tau} ) = 0, ( a_n ) = const, то тело движется равномерно по окружности;
если ( a_{tau} ) ≠ 0, ( a_n ) ≠ 0, то тело движется неравномерно по окружности.

Равномерное движение

Равномерное движение – это движение, при котором тело за любые равные промежутки времени совершает равные перемещения.

Скорость при равномерном движении – величина, равная отношению перемещения к промежутку времени, за которое это перемещение произошло:

Проекция вектора скорости на ось ОХ:

Проекция вектора скорости на координатную ось равна быстроте изменения данной координаты:

График скорости (проекции скорости)

График скорости (проекции скорости) представляет собой зависимость скорости от времени:

График скорости при равномерном движении – прямая, параллельная оси времени.
График 1 лежит над осью ​( t )​, тело движется по направлению оси ОХ.
Графики 2 и 3 лежат под осью ​( t )​, тело движется против оси ОХ.

Перемещение при равномерном движении – это величина, равная произведению скорости на время:

Проекция вектора перемещения на ось ОХ:

График перемещения (проекции перемещения)

График перемещения (проекции перемещения) представляет собой зависимость перемещения от времени:

График перемещения при равномерном движении – прямая, выходящая из начала координат.
График 1 лежит над осью ( t ), тело движется по направлению оси ОХ.
Графики 2 и 3 лежат под осью ( t ), тело движется против оси ОХ.

По графику зависимости скорости от времени можно определить перемещение, пройденное телом за время ( t ). Для этого необходимо определить площадь фигуры под графиком (заштрихованной фигуры).

Координата тела при равномерном движении рассчитывается по формуле:

График координаты представляет собой зависимость координаты от времени: ​( x=x(t) )​.

График координаты при равномерном движении – прямая.
График 1 направлен вверх, тело движется по направлению оси ОХ:

График 2 параллелен оси ОХ, тело покоится.
График 3 направлен вниз, тело движется против оси ОХ:

Прямолинейное равноускоренное движение

Прямолинейное равноускоренное движение – это движение по прямой, при котором тело движется с постоянным ускорением:

При движении с ускорением скорость может как увеличиваться, так и уменьшаться.

Скорость тела при равноускоренном движении рассчитывается по формуле:

При разгоне (в проекциях на ось ОХ):

При торможении (в проекциях на ось ОХ):

График ускорения (проекции ускорения) при равноускоренном движении представляет собой зависимость ускорения от времени:

График ускорения при равноускоренном движении – прямая, параллельная оси времени.
График 1 лежит над осью t, тело разгоняется, ​( a_x )​ > 0.
График 2 лежит под осью t, тело тормозит, ( a_x ) < 0.

График скорости (проекции скорости) представляет собой зависимость скорости от времени:

График скорости при равноускоренном движении – прямая.
График 1 направлен вверх, тело движется равноускоренно в положительном направлении оси ОХ, ​( v_{0x} )​ > 0, ​( a_x )​ > 0.

График 2 направлен вниз, тело движется равнозамедленно в положительном направлении оси ОХ, ( v_{0x} ) > 0, ( a_x ) < 0,

График 3 направлен вниз, тело движется равноускоренно против оси ОХ, ( v_{0x} ) < 0, ( a_x ) < 0. По графику зависимости скорости от времени можно определить перемещение, пройденное телом за промежуток времени ​( t_2-t_1 )​. Для этого необходимо определить площадь фигуры под графиком (заштрихованной фигуры).

Перемещение при равноускоренном движении рассчитывается по формулам:

Перемещение в ​( n )​-ую секунду при равноускоренном движении рассчитывается по формуле:

Координата тела при равноускоренном движении рассчитывается по формуле:

Свободное падение (ускорение свободного падения)

Свободное падение – это движение тела в безвоздушном пространстве под действием только силы тяжести.

Все тела при свободном падении независимо от массы падают с одинаковым ускорением, называемым ускорением свободного падения.
Ускорение свободного падения всегда направлено к центру Земли (вертикально вниз).

Обозначение – ​( g )​, единицы измерения – м/с2.

Важно! ( g ) = 9,8 м/с2, но при решении задач считается, что ( g ) = 10 м/с2.

Движение тела по вертикали

Тело падает вниз, вектор скорости направлен в одну сторону с вектором ускорения свободного падения:

Если тело падает вниз без начальной скорости, то ​( v_0 )​ = 0.
Время падения рассчитывается по формуле:

Тело брошено вверх:

Если брошенное вверх тело достигло максимальной высоты, то ​( v )​ = 0.
Время подъема рассчитывается по формуле:

Движение тела, брошенного горизонтально

Движение тела, брошенного горизонтально, можно представить как суперпозицию двух движений:

  1. равномерного движения по горизонтали со скоростью ​( v_0=v_{0x} )​;
  2. равноускоренного движения по вертикали с ускорением свободного падения ​( g )​ и без начальной скорости ​( v_{0y}=0 )​.

Уравнение скорости:

Уравнение координаты:

Скорость тела в любой момент времени:

Дальность полета:

Угол между вектором скорости и осью ОХ:

Движение тела, брошенного под углом к горизонту (баллистическое движение)

Движение тела, брошенного под углом к горизонту, можно представить как суперпозицию двух движений:

  1. равномерного движения по горизонтали;
  2. равноускоренного движения по вертикали с ускорением свободного падения.

Уравнение скорости:

Уравнение координаты:

Скорость тела в любой момент времени:

Угол между вектором скорости и осью ОХ:

Время подъема на максимальную высоту:

Максимальная высота подъема:

Время полета:

Максимальная дальность полета:

Важно!
При движении вверх вертикальная составляющая скорости будет уменьшаться, т. е. тело вдоль вертикальной оси движется равнозамедленно.
При движении вниз вертикальная составляющая скорости будет увеличиваться, т. е. тело вдоль вертикальной оси движется равноускоренно.
Скорость ​( v_0 )​, с которой тело брошено с Земли, будет равна скорости, с которой оно упадет на Землю. Угол ​( alpha )​, под которым тело брошено, будет равен углу, под которым оно упадет.

При решении задач на движение тела, брошенного под углом к горизонту, важно помнить, что в точке максимального подъема проекция скорости на ось ОУ равна нулю:

Это облегчает решение задач:

Движение по окружности с постоянной по модулю скоростью

Движение по окружности с постоянной по модулю скоростью – простейший вид криволинейного движения.

Траектория движения – окружность. Вектор скорости направлен по касательной к окружности.
Модуль скорости тела с течением времени не изменяется, а ее направление при движении по окружности в каждой точке изменяется, поэтому движение по окружности – это движение с ускорением.
Ускорение, которое изменяет направление скорости, называется центростремительным.
Центростремительное ускорение направлено по радиусу окружности к ее центру.

Центростремительное ускорение – это ускорение, характеризующее быстроту изменения направления вектора линейной скорости.
Обозначение – ​( a_{цс} )​, единицы измерения – ​м/с2​.

Движение тела по окружности с постоянной по модулю скоростью является периодическим движением, т. е. его координата повторяется через равные промежутки времени.
Период – это время, за которое тело совершает один полный оборот.
Обозначение – ​( T )​, единицы измерения – с.

где ​( N )​ – количество оборотов, ​( t )​ – время, за которое эти обороты совершены.
Частота вращения – это число оборотов за единицу времени.
Обозначение – ​( nu )​, единицы измерения – с–1 (Гц).

Период и частота – взаимно обратные величины:

Линейная скорость – это скорость, с которой тело движется по окружности.
Обозначение – ​( v )​, единицы измерения – м/с.
Линейная скорость направлена по касательной к окружности:

Угловая скорость – это физическая величина, равная отношению угла поворота к времени, за которое поворот произошел.
Обозначение – ​( omega )​, единицы измерения – рад/с .

Направление угловой скорости можно определить по правилу правого винта (буравчика).
Если вращательное движение винта совпадает с направлением движения тела по окружности, то поступательное движение винта совпадает с направлением угловой скорости.
Связь различных величин, характеризующих движение по окружности с постоянной по модулю скоростью:

Важно!
При равномерном движении тела по окружности точки, лежащие на радиусе, движутся с одинаковой угловой скоростью, т. к. радиус за одинаковое время поворачивается на одинаковый угол. А вот линейная скорость разных точек радиуса различна в зависимости от того, насколько близко или далеко от центра они располагаются:

Если рассматривать равномерное движение двух сцепленных тел, то в этом случае одинаковыми будут линейные скорости, а угловые скорости тел будут различны в зависимости от радиуса тела:

Когда колесо катится равномерно по дороге, двигаясь относительно нее с линейной скоростью ​( v_1 )​, и все точки обода колеса движутся относительно его центра с такой же линейной скоростью ( v_1 ), то относительно дороги мгновенная скорость разных точек колеса различна.

Мгновенная скорость нижней точки ​( (m) )​ равна нулю, мгновенная скорость в верхней точке ​( (n) )​ равна удвоенной скорости ​( v_1 )​, мгновенная скорость точки ​( (p) )​, лежащей на горизонтальном радиусе, рассчитывается по теореме Пифагора, а мгновенная скорость в любой другой точке ​( (c) )​ – по теореме косинусов.

Основные формулы по теме «Кинематика»

Кинематика

3 (60.29%) 140 votes

2.2.1 Как перевести из км/ч в м/с и т. д?

В задачах часто необходимо переводить из одних единиц измерения в другие:

1 км/ч = (1000 м)/(3600 с) = 5/18 м/с,

1 м/с = 18/5 км/ч,

1 км/с = 1000 м/с,

1 см/с = 0,01 м/с,

1 м/мин = 1/60 м/с.

Например, если nu =36км/ч, то для того, чтобы перевести в м/с, нужно умножить на 5/18:

36 км/ч=36 умножить на дробь: числитель: 5, знаменатель: 18 конец дроби =10 м/с.

2.2.2 Как найти скорость тела, если известен закон движения?

Закон равномерного движения имеет вид:

x=x_0 плюс nu_x t.

Видим, что в этой формуле скорость стоит коэффициентом перед временем. Поэтому, если в условии задачи дан закон движения, необходимо посмотреть на коэффициент перед t — это и есть скорость.

Например, пусть закон движения имеет вид: x=3 плюс 5t. В данном случае коэффициент перед t равен 5, следовательно, nu_x=5 м/с.

2.2.3 Как определить скорость по графику координаты от времени?

Закон равномерного движения имеет вид:

x=x_0 плюс nu_x t.

Графиком этого закона является прямая линия. Так как nu_x — коэффициент перед t, то nu_x является угловым коэффициентом прямой.

Для графика 1:

nu_x_1= левая круглая скобка Delta x_1 правая круглая скобка / левая круглая скобка Delta t_1 правая круглая скобка .

То, что график 1 «поднимается вверх», означает — тело едет в положительном направлении оси Ox.

Для графика 2:

nu_x_2= левая круглая скобка Delta x_2 правая круглая скобка / левая круглая скобка Delta t_2 правая круглая скобка .

То, что график 2 «опускается вниз», означает — тело едет в отрицательном направлении оси Ox.

Для определения Delta x и Delta t выбираем такие точки на графике, в которых можно точно определить значения, как правило, это точки, находящиеся в вершинах клеток.

2.2.4 Как найти закон движения, если известны координаты тела в моменты времени t_1 и t_2?

Пусть в момент времени t_1 тело находилось в точке с координатой x_1, а в момент времени t_2 тело находилось в точке с координатой x_2.

Для времени t_1 имеем:

x_1=x_0 плюс nu_x t_1.

Для времени t_2 имеем:

x_2=x_0 плюс nu_x t_2.

Решая систему уравнений (2.19) и (2.20), получим

nu_x= дробь: числитель: x_1 минус x_2, знаменатель: t_1 минус t_2 конец дроби , x_0= дробь: числитель: x_2 t_1 минус x_1 t_2, знаменатель: t_1 минус t_2 конец дроби .

2.2.5 Как найти графически момент и координату встречи двух тел?

Пусть даны законы движения двух тел: x_1=x_01 плюс nu_x_1 t и x_2=x_02 плюс nu _x_2 t. Согласно пункту 2.5 графиками обоих законов являются прямые линии. Необходимо на одном графике построить оба закона.

Графики пересекаются в одной точке. Координаты этой точки и являются временем и местом встречи.

2.2.6 Как аналитически найти координату и время встречи двух тел?

Пусть даны законы движения двух тел: x_1=x_01 плюс nu_x_1 t и x_2=x_02 плюс nu_x_2 t. В момент встречи тела оказываются в одной координате, то есть x_1=x_2, и необходимо решить уравнение:

x_01 плюс nu_x_1 t=x_02 плюс nu_x_2 t.

Решение уравнения имеет вид:

t_встр= дробь: числитель: |x_01 минус x_02|, знаменатель: |nu_x_1 минус nu_x_2| конец дроби .

Для нахождения координаты достаточно подставить вместо t найденное значение  t_встр в любой из законов движения:

x_встр=x_01 плюс nu_x_1 t_встр,

или

x_встр=x_02 плюс nu_x_2 t_встр.

2.2.7 Как найти среднюю скорость, если тело половину пути проехало со скоростью nu_1, а вторую половину пути nu_2?

По определению (2.8):

nu_ср= дробь: числитель: L, знаменатель: t конец дроби .

В нашем случае, так как на каждой половине пути тело едет с постоянной скоростью, то

t=t_1 плюс t_2= дробь: числитель: дробь: числитель: L, знаменатель: 2 конец дроби , знаменатель: nu_1 конец дроби 	 плюс дробь: числитель: дробь: числитель: L, знаменатель: 2 конец дроби , знаменатель: nu_2 конец дроби = дробь: числитель: L, знаменатель: 2 конец дроби левая круглая скобка дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 правая круглая скобка конец дроби

Получаем

nu_ср= дробь: числитель: L, знаменатель: дробь: числитель: L, знаменатель: 2 конец дроби левая круглая скобка дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 правая круглая скобка конец дроби конец дроби = дробь: числитель: 2nu_1nu_2, знаменатель: nu_1 плюс nu_2 конец дроби .

В общем случае, если весь путь разбить на n равных участков, на каждом из которых тело едет с постоянной скоростью, то

nu_ср= дробь: числитель: n, знаменатель: дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 конец дроби плюс дробь: числитель: 1, знаменатель: nu_3 конец дроби плюс ... плюс дробь: числитель: 1, знаменатель: nu_n конец дроби конец дроби .

Формула справедлива только если весь путь разбит на равные участки. Если же разбиение будет иное, то, естественно, формула для нахождения средней скорости, будет иной.

2.2.8 Как найти среднюю скорость, если тело половину времени проехало со скоростью nu_1, а вторую половину времени nu_2?

По определению (2.8):

nu_ср= дробь: числитель: L, знаменатель: t конец дроби .

В нашем случае, так как каждую половину времени тело едет с постоянной скоростью, то

L=L_1 плюс L_2= дробь: числитель: t, знаменатель: 2 конец дроби nu_1 плюс дробь: числитель: t, знаменатель: 2 конец дроби nu_2.

Получаем

nu_ср= дробь: числитель: дробь: числитель: t, знаменатель: 2 конец дроби nu_1 плюс дробь: числитель: t, знаменатель: 2 конец дроби nu_2, знаменатель: t конец дроби = дробь: числитель: дробь: числитель: t, знаменатель: 2 конец дроби левая круглая скобка nu_1 плюс nu_2 правая круглая скобка , знаменатель: t конец дроби = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка nu_1 плюс nu_2 правая круглая скобка .

В общем случае, если все время разбито на n равных промежутков, на каждом из которых тело едет с постоянной скоростью, то

nu_ср= дробь: числитель: 1, знаменатель: n конец дроби левая круглая скобка nu_1 плюс nu_2 плюс nu _3 плюс ⋯ плюс nu _4 правая круглая скобка .

Формула справедлива только если все время разбито на равные промежутки. Если же разбиение будет иное, то, естественно, формула для нахождения средней скорости, будет иной.

2.2.9 Как найти скорость, с которой движется моторная лодка по течению реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecu.

При движении по течению вектора overrightarrownu_0 и vecu направлены в одну сторону, следовательно, получаем сложение двух векторов, направленных в одну сторону — используем формулу (1.15):

nu =nu_0 плюс u.

Таким образом, при движении любого тела по течению его скорость определяется формулой nu =nu_0 плюс u.

2.2.10 Как найти скорость, с которой движется моторная лодка против течения реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли) равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecnu

Перепишем формулу в виде:

vecnu=overrightarrownu_0 минус левая круглая скобка минус vecnu правая круглая скобка .

Вектора overrightarrownu_0 и  левая круглая скобка минус vecnu правая круглая скобка направлены в одну сторону, следовательно, получаем вычитание двух векторов, направленных в одну сторону — используем формулу c=|a минус b|:

nu =nu_0 минус u.

2.2.11 Как найти скорость, с которой движется моторная лодка, если ее скорость направлена перпендикулярно течению реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecnu

В данном случае вектора overrightarrownu_0 и vecnu направлены перпендикулярно, следовательно, получаем задачу о сложении взаимно перпендикулярных векторов — используем формулу c= корень из: начало аргумента: a в степени левая круглая скобка 2 конец аргумента плюс b в квадрате правая круглая скобка :

nu = корень из: начало аргумента: nu_0 конец аргумента в квадрате плюс u в квадрате .

2.2.12 Как найти расстояние, на которое снесет лодку, если ее скорость направлена перпендикулярно скорости реки?

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OD. В результате, когда тело окажется на противоположном берегу, оно попадет в точке D, и его снесет на длину CD=S.

Треугольник OAB подобен треугольнику OCD:

 дробь: числитель: CD, знаменатель: AB конец дроби = дробь: числитель: OC, знаменатель: OA конец дроби Rightarrow дробь: числитель: S, знаменатель: u конец дроби = дробь: числитель: h, знаменатель: nu_0 конец дроби Rightarrow S=h дробь: числитель: u, знаменатель: nu_0 конец дроби .

2.2.13 Как найти скорость, с которой движется моторная лодка, если ее скорость направлена под углом φ к скорости течения реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecu.

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OB. Как видим, получили треугольник, в котором известен один из углов — левая круглая скобка 180 градусов минус фи правая круглая скобка . Тогда по теореме косинусов:

nu = корень из: начало аргумента: nu_0 конец аргумента в квадрате плюс u в квадрате минус 2nu _0 u косинус ⁡ левая круглая скобка 180 градусов минус фи правая круглая скобка = корень из: начало аргумента: nu _0 конец аргумента в квадрате плюс u в квадрате плюс 2nu_0 u косинус ⁡ фи .

2.2.14 Как найти расстояние, на которое снесет лодку, если ее скорость направлена под углом  фи к скорости течения реки?

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OB. В результате, когда тело окажется на противоположном берегу, оно попадет в точке В, и его снесет на длину АВ=S.

В задачах, когда движение происходит в плоскости, то есть и вдоль оси Ox, и вдоль оси Oy, необходимо введение системы координат для того, чтобы упростить рассмотрение задачи.

Проекция nu_x:

nu_x=nu _0 косинус ⁡ фи плюс u.

Проекция nu_y:

nu _y=nu_0 синус ⁡ фи .

Формулы nu_x=nu _0 косинус ⁡ фи плюс u и nu _y=nu_0 синус ⁡ фи не просто результат математической операции нахождения проекции, nu_x и nu_y имеют физический смысл: со скоростью nu_x тело плывет вдоль оси Ox, то есть по течению; со скоростью nu_y тело переплывает реку. Например, время, за которое тело переплывет реку, можно найти просто поделив ширину реки на nu_y:

t_0= дробь: числитель: h, знаменатель: nu_y конец дроби = дробь: числитель: h, знаменатель: nu_0 синус фи конец дроби .

Тогда

S=nu_xt_0= дробь: числитель: h, знаменатель: nu_0 синус фи конец дроби левая круглая скобка nu_0 косинус фи плюс u правая круглая скобка .

2.2.15 Под каким углом α нужно направить собственную скорость лодки, чтобы за минимальное время переплыть реку?

Согласно формуле nu _y=nu_0 синус ⁡ фи скорость, с которой лодка переплывает реку, равна:

nu_y=nu_0 синус ⁡ фи .

Очевидно, что время будет минимальным, если nu_y будет максимальным, то есть  фи =90 градусов= дробь: числитель: Пи , знаменатель: 2 конец дроби .

2.2.16 С какой скоростью машина обгоняет вторую машину, если они движутся в одну сторону?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина также движется вправо со скоростью overrightarrownu_2. Скорость обгона — это скорость, с которой 1-ая машина движется относительно 2-ой, то есть — это относительная скорость, и она определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Так как overrightarrownu_1 и overrightarrownu_2 направлены в одну сторону, то получили задачу о вычитании векторов, направленных в одну сторону — формула c=|a минус b|:

nu_обгона=nu_1 минус nu_2.

Заметим, что при обгоне, естественно nu_1 больше nu_2, поэтому nu_обгона больше 0.

2.2.17 За какое время проедут мимо друг друга два поезда, двигающиеся в одном направлении?

Пусть длина 1-го поезда L_1, а скорость 2-го поезда L_2. Скорость обгона определяется формулой nu_обгона=nu_1 минус nu_2. Тогда

t= дробь: числитель: L_1 плюс L_2, знаменатель: nu_обгона конец дроби = дробь: числитель: L_1 плюс L_2, знаменатель: nu_1 минус nu_2 конец дроби .

2.2.18 С какой скоростью машина едет навстречу вторую машину, если они движутся в противоположных направлениях?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина движется влево со скоростью overrightarrownu_2. Скорость движения навстречу — это скорость, с которой 1-ая машина движется относительно 2-ой, то есть — это относительная скорость, и она определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Перепишем эту формулу в виде:

overrightarrownu_отн=overrightarrownu_1 минус левая круглая скобка минус overrightarrownu_2 правая круглая скобка .

Так как overrightarrownu_1 и  левая круглая скобка минус overrightarrownu_2 правая круглая скобка направлены в одну сторону, то получили задачу о вычитании векторов, направленных в одну сторону — формула c=|a минус b|:

nu_встр=nu_1 минус левая круглая скобка минус nu_2 правая круглая скобка =nu_1 плюс nu_2.

2.2.19 За какое время проедут мимо друг друга два поезда, двигающиеся в противоположных направлениях?

Пусть длина 1-го поезда L_1, а скорость 2-го поезда L_2. Скорость обгона определяется формулой nu_обгона=nu_1 минус nu_2. Тогда

t= дробь: числитель: L_1 плюс L_2, знаменатель: nu_встр конец дроби = дробь: числитель: L_1 плюс L_2, знаменатель: nu_1 плюс nu_2 конец дроби .

2.2.20 Как найти относительную скорость, если тела движутся по взаимно перпендикулярным направлениям?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина движется перпендикулярно первой со скоростью overrightarrownu_2. Относительная скорость определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Так как вектора overrightarrownu_1 и overrightarrownu_2 перпендикулярны, то воспользуемся формулой c= корень из: начало аргумента: a в степени левая круглая скобка 2 конец аргумента плюс b в квадрате правая круглая скобка :

nu_отн= корень из: начало аргумента: nu_1 конец аргумента в квадрате плюс nu_2 в квадрате .

Понравилась статья? Поделить с друзьями:
  • Как составить интерпритацию
  • Как найти varka hero shadith
  • Как найти площадь туалета в квартире
  • Призовой уголок фнаф 9 как найти
  • Активные сеансы в вайлдберриз как найти