Как найти относительную точность приближения

При измерении
длин отрезков и площадей фигур, при взвешивании тел и других измерениях
получаются числа, выражающие эти величины.

Ввиду
погрешностей измерения полученные числа являются приближёнными значениями измеряемой
величины.

У каждого из
вас есть линейка и карандаш. Давайте попытаемся измерить длину карандаша.

Из рисунка
видно, что длина карандаша чуть меньше 10 см. Если бы на этой линейке не было
миллиметровых делений, то мы бы сказали, что длина карандаша равна 10 см. Но
это было бы не совсем точное измерение.

Такую
неточность называют погрешностью измерения.

В нашем случае,
на линейке есть миллиметровые деления, поэтому мы можем измерить длину
карандаша с более высокой точностью – 9,8 см.

Приближённое
значение отличается от точного значения в этом случае на 0,2 см. Чтобы узнать,
на сколько приближённое значение отличается от точного, надо из большего числа
вычесть меньшее, т.е. найти модуль разности точного и приближённого значений.
Этот модуль разности называют абсолютной погрешностью.

Определение:

Абсолютной
погрешностью приближённого значения
называют модуль разности точного и приближённого значений.

Значение
абсолютной погрешности не всегда можно найти. Но обычно известна её оценка
сверху – например, при измерении длины отрезка линейкой с сантиметровыми
делениями абсолютная погрешность измерения не превышает 1 сантиметра, а при
взвешивании на весах с гирями 100 грамм, 200 грамм, 500 грамм и 1 килограмм
абсолютная погрешность взвешивания не превышает ста грамм.

Посмотрите, на слайде
изображён отрезок CD.

Его длина
расположена между цифрами 7 см и 8 см. Понятно, что 7 см – это приближённое
значение длины отрезка
CD с недостатком, а 8 см – это приближённое значение длины отрезка CD с
избытком
.

Если истинную длину
отрезка обозначить за х, то получим, что длина отрезка CD удовлетворяет
неравенству:

Пусть истинное
значение измеряемой величины равно .

Измерение дало
результат .

Тогда разность  – это абсолютная погрешность измерения.

Число  называют границей абсолютной погрешности
измерения, если выполняется неравенство:

Принято писать

Точность
приближённого значения зависит от многих причин. Если приближённое значение
получено в процессе измерения, то, конечно же, его точность будет зависеть от
прибора
, с помощью которого выполнялось это измерение.

Вот, например,
комнатный термометр. На нём деления нанесены через один градус. Это даёт
возможность измерять температуру воздуха с точностью до 1 градуса. А на весах,
у которых цена деления шкалы 20 г, можно взвешивать с точностью до 20 г. Или, к примеру, ещё, механические часы. Цена одного
деления, которых 1 мин. По ним можно сказать время с точностью до 1 минуты.

Для оценки
качества измерения можно использовать относительную погрешность приближённого
значения
.

Определение:

Относительной
погрешностью приближённого значения
называется отношение абсолютной погрешности к модулю приближённого
значения.

Относительную
погрешность принято выражать в процентах. В тех случаях, когда абсолютная
погрешность приближенного значения неизвестна, а известна лишь его точность,
ограничиваются оценкой относительной погрешности.

Например: при измерении (в сантиметрах) длины книжной полки и
толщины компакт-диска получили следующие результаты:

Чем меньше
относительная погрешность измерения, тем оно точнее.

Итоги:

Абсолютной
погрешностью
приближенного значения
называют модуль разности точного и приближенного значений.

Число  называют границей абсолютной погрешности измерения,
если выполняется неравенство:

Относительной
погрешностью
приближенного значения называется
отношение абсолютной погрешности к модулю приближенного значения.

Чем меньше
относительная погрешность измерения, тем оно

точнее.

Автор: Софронова Наталия Андреевна, учитель математики МОУ «Упшинская ООШ» Оршанского района Республики Марий Эл ( К учебнику Ю.А.Макарычева Алгебра 8)

Автор: Софронова Наталия Андреевна,

учитель математики МОУ «Упшинская ООШ»

Оршанского района Республики Марий Эл

( К учебнику Ю.А.Макарычева Алгебра 8)

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ Найдем по графику значение у при х = 1,5 у=х 2 у ≈2,3 Найдем значение у при х = 1,5 по формуле у =1,5 2 = 2,25 Приближенное значение отличается от точного на 2,3 – 2,25 = 0,05

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Найдем по графику значение у при х = 1,5

у=х 2

у ≈2,3

Найдем значение у при х = 1,5 по формуле

у =1,5 2 = 2,25

Приближенное значение отличается от точного на 2,3 – 2,25 = 0,05

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ Найдем по графику значение у при х = 1,8 у=х 2 у ≈3,2 Найдем значение у при х = 1,8 по формуле у =1,8 2 = 3,24 Приближенное значение отличается от точного на 3,24 – 3,2 = 0,04

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Найдем по графику значение у при х = 1,8

у=х 2

у ≈3,2

Найдем значение у при х = 1,8 по формуле

у =1,8 2 = 3,24

Приближенное значение отличается от точного на 3,24 – 3,2 = 0,04

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ х 1,5 Точное значение у  (по формуле) 1,8 2,25 Приближенное значение  у  (по графику) 3,24 2,3 3,2 у=х 2 Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений. у = 2,3 А.П. = |2,25 – 2,3| = |- 0,0 5| = 0,05 у = 3,2 А.П. = |3,24 – 3,2| = | 0,0 4| = 0,04

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

х

1,5

Точное значение у

(по формуле)

1,8

2,25

Приближенное значение у (по графику)

3,24

2,3

3,2

у=х 2

Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений.

у = 2,3 А.П. = |2,25 – 2,3| = |- 0,0 5| = 0,05

у = 3,2 А.П. = |3,24 – 3,2| = | 0,0 4| = 0,04

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений. Пример 1 . Старинная русская мера массы пуд равна 16,38. Округлите это значение до целых и найдите абсолютную погрешность приближенного значения. Решение. 1 6 ,38 ≈ 16 16,38 – точное значение; 16 – приближенное значение. А.П. = | 16,38 – 16 | = |0 ,38 | = 0, 38

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений.

Пример 1 . Старинная русская мера массы пуд равна 16,38. Округлите это значение до целых и найдите абсолютную погрешность приближенного значения.

Решение. 1 6 ,38 ≈ 16

16,38 – точное значение;

16 – приближенное значение.

А.П. = | 16,38 16 | = |0 ,38 | = 0, 38

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений. Пример 2 . Старинная русская мера длины верста равна 1067 м. Округлите это значение до десятков и найдите абсолютную погрешность приближенного значения. Решение. 10 6 7 ≈ 1070 1067 – точное значение; 1070 – приближенное значение. А.П. = | 1067 – 1070 | = |-3| = 3

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений.

Пример 2 . Старинная русская мера длины верста равна 1067 м. Округлите это значение до десятков и найдите абсолютную погрешность приближенного значения.

Решение. 10 6 7 ≈ 1070

1067 – точное значение;

1070 – приближенное значение.

А.П. = | 1067 1070 | = |-3| = 3

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений. Пример 3 . Старинная русская мера длины сажень равна 2,13 м. Округлите это значение до десятых и найдите абсолютную погрешность приближенного значения. Решение. 2, 1 3 ≈ 2,1 2,13 – точное значение; 2,1 – приближенное значение. А.П. = | 2,13 – 2,1 | = | 0,03 | = 0,03

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Определение. Абсолютной погрешностью приближенного значения называют модуль разности точного и приближенного значений.

Пример 3 . Старинная русская мера длины сажень равна 2,13 м. Округлите это значение до десятых и найдите абсолютную погрешность приближенного значения.

Решение. 2, 1 3 ≈ 2,1

2,13 – точное значение;

2,1 – приближенное значение.

А.П. = | 2,13 2,1 | = | 0,03 | = 0,03

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ Пример 4 . Представьте дробь в виде бесконечной периодической дроби. Округлите результат до сотых и найдите абсолютную погрешность приближенного значения. Решение.

АБСОЛЮТНАЯ ПОГРЕШНОСТЬ

Пример 4 . Представьте дробь в виде бесконечной периодической дроби. Округлите результат до сотых и найдите абсолютную погрешность приближенного значения.

Решение.

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ Всегда ли можно найти абсолютную погрешность ? АВ ≈ 5,3 см Найдем длину отрезка АВ А В Точного значения длины отрезка АВ мы определить не можем, поэтому и абсолютную погрешность приближенного значения найти невозможно. В подобных случаях в качестве погрешности указывают такое число, больше которого абсолютная погрешность быть не может. В нашем примере в качестве такого числа можно взять число 0,1. ПОЧЕМУ? Цена деления линейки равна 0,1 см и поэтому абсолютная погрешность приближенного значения 5,3 не больше 0,1.

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

Всегда ли можно найти абсолютную погрешность ?

АВ ≈ 5,3 см

Найдем длину отрезка АВ

А

В

Точного значения длины отрезка АВ мы определить не можем, поэтому и абсолютную погрешность приближенного значения найти невозможно.

В подобных случаях в качестве погрешности указывают такое число, больше которого абсолютная погрешность быть не может.

В нашем примере в качестве такого числа можно взять число 0,1.

ПОЧЕМУ? Цена деления линейки равна 0,1 см и поэтому абсолютная погрешность приближенного значения 5,3 не больше 0,1.

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ А В Говорят, что число 5,3 есть приближенное значение длины отрезка АВ (в санти-метрах) с точностью до 0,1 АВ ≈ 5,3 см t ≈ 28 0  с точностью до 1 t ≈ 14 0  с точностью до 2

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

А

В

Говорят, что число 5,3 есть приближенное значение длины отрезка АВ (в санти-метрах) с точностью до 0,1

АВ ≈ 5,3 см

t ≈ 28 0 с точностью до 1

t ≈ 14 0 с точностью до 2

Определите точность приближенных значений величин, полученных при измерении приборами, изображенными на рисунках 1- 4 Рис.2 Рис.1

Определите точность приближенных значений величин, полученных при измерении приборами, изображенными на рисунках 1- 4

Рис.2

Рис.1

Определите точность приближенных значений величин, полученных при измерении приборами, изображенными на рисунках 1- 4 Рис.4 Рис.3

Определите точность приближенных значений величин, полученных при измерении приборами, изображенными на рисунках 1- 4

Рис.4

Рис.3

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ Говорят, что число 5,3 есть приближенное значение длины отрезка АВ (в сантиметрах) с точностью до 0,1 АВ ≈ 5,3 см Если х ≈ а и абсолютная погрешность приближенного значения не превосходит некоторого числа h , то число а называют приближенным значением х с точностью до h х ≈ а   с точностью до h х = а   ± h

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

Говорят, что число 5,3 есть приближенное значение длины отрезка АВ (в сантиметрах) с точностью до 0,1

АВ ≈ 5,3 см

Если х ≈ а и абсолютная погрешность приближенного значения не превосходит некоторого числа h , то число а называют приближенным значением х с точностью до h

х а с точностью до h

х = а ± h

Длина рулона 10,5 ± 0,5

Длина рулона 10,5 ± 0,5

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ А В АВ ≈ 5,3 см с точностью до 0,1 t ≈ 28 0  с точностью до 1 t ≈ 14 0   с точностью до 2

ТОЧНОСТЬ ПРИБЛИЖЕНИЯ

А

В

АВ ≈ 5,3 см

с точностью до 0,1

t ≈ 28 0 с точностью до 1

t ≈ 14 0

с точностью до 2

Определение . Относительной погрешностью (точностью) приближенного значения называется отношение абсолютной погрешности (точности) к модулю приближенного значения Для оценки качества измерения можно использовать определения относительной погрешности и относительной точности   l = 100,0 ± 0,1 b = 0,4 ± 0,1

Определение . Относительной погрешностью (точностью) приближенного значения называется отношение абсолютной погрешности (точности) к модулю приближенного значения

Для оценки качества измерения можно использовать определения относительной погрешности и относительной точности

l = 100,0 ± 0,1

b = 0,4 ± 0,1

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ Определение . Относительной погрешностью приближенного значения называется отношение абсолютной погрешности к модулю приближенного значения Пример 5 . Старинная русская мера массы пуд равна 16,38. Округлите это значение до целых и найдите относительную погрешность приближенного значения. Решение. 1 6 ,38 ≈ 16 16,38 – точное значение; 16 – приближенное значение. А.П. = | 16,38 – 16 | = |0 ,38 | = 0, 38

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ

Определение . Относительной погрешностью приближенного значения называется отношение абсолютной погрешности к модулю приближенного значения

Пример 5 . Старинная русская мера массы пуд равна 16,38. Округлите это значение до целых и найдите относительную погрешность приближенного значения.

Решение. 1 6 ,38 ≈ 16

16,38 – точное значение;

16 – приближенное значение.

А.П. = | 16,38 16 | = |0 ,38 | = 0, 38

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ Определение . Относительной погрешностью приближенного значения называется отношение абсолютной погрешности к модулю приближенного значения Пример 6 . Старинная русская мера длины верста равна 1067 м. Округлите это значение до десятков и найдите относительную погрешность приближенного значения. Решение. 10 6 7 ≈ 1070 1067 – точное значение; 1070 – приближенное значение. А.П. = | 1067 – 1070 | = |-3| = 3

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ

Определение . Относительной погрешностью приближенного значения называется отношение абсолютной погрешности к модулю приближенного значения

Пример 6 . Старинная русская мера длины верста равна 1067 м. Округлите это значение до десятков и найдите относительную погрешность приближенного значения.

Решение. 10 6 7 ≈ 1070

1067 – точное значение;

1070 – приближенное значение.

А.П. = | 1067 1070 | = |-3| = 3

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ Пример 7 . Представьте дробь в виде бесконечной периодической дроби. Округлите результат до сотых и найдите относительную погрешность приближенного значения. Решение.

ОТНОСИТЕЛЬНАЯ ПОГРЕШНОСТЬ

Пример 7 . Представьте дробь в виде бесконечной периодической дроби. Округлите результат до сотых и найдите относительную погрешность приближенного значения.

Решение.

Содержание:

  1. Приближённые вычисления
  2. Абсолютная и относительная погрешности
  3. Выполнение действий над приближёнными числами
  4. Выполнение действий без точного учёта погрешности

Приближённые вычисления

Приближённые вычисления — вычисления, в которых данные и результат (или только результат) являются числами, приближенно представляющими истинные значения соответствующих величин. Числовые данные, полученные измерением реальных объектов, редко бывают точными значениями соответствующей величины, а обычно имеют некоторую погрешность

Абсолютная и относительная погрешности

При решении практических задач часто приходится иметь дело с приближёнными значениями разных числовых величин. К ним относятся: результаты измерения разных величин с помощью приборов; значения полученные при считывании на графиках, диаграммах, номограммах; проектные данные; результаты округления чисел; результаты действий над приближёнными числами; табличные значения некоторых величин; результаты вычислений значений функции. Приближённые значения (приближение, приближённые числа) могут значительно отличаться от точных, либо быть близкими к ним.

Для оценки отклонения приближённых чисел от точных используют такие понятия как абсолютная и относительная погрешности.

Абсолютной погрешностью  приближённой называется модуль разности между точным значением величины Приближённые вычисления в математике и её приближённым значением х, то есть

Приближённые вычисления в математике

Пример.

Абсолютная погрешность приближённого числа Приближённые вычисления в математике числом 0,44 составляет

Приближённые вычисления в математике

Если точное число неизвестно, то найти абсолютную погрешность Приближённые вычисления в математике невозможно. На практике вводят оценку допустимой при данных измерениях или вычислениях абсолютной погрешности, которую называют пределом абсолютной погрешности и обозначают буквой h. Считают, что hПриближённые вычисления в математике. Как правило, предел абсолютной погрешности устанавливают из практических соображений, например, при измерениях  пределом абсолютной погрешности считают наименьшее деление прибора.

При записи приближённых чисел часто используют понятия верной и сомнительной цифры.

Цифра Приближённые вычисления в математике называется верной, если предел абсолютной погрешности данного приближения не превышает единицы того разряда, в котором записана эта цифра. В другом случае цифра называется  сомнительной.

Например: в числе Приближённые вычисления в математикедве цифры верны, поскольку погрешность 0,04 не превышает единицу разряда десятых. Цифры 9 и 7 верны, поскольку Приближённые вычисления в математике а цифры 4 и 6 являются сомнительными, поскольку Приближённые вычисления в математике

В конечной записи приближённого числа сохраняют только верные цифры. Так число Приближённые вычисления в математике можно записать в виде  Приближённые вычисления в математике, число Приближённые вычисления в математике в виде Приближённые вычисления в математике Если в десятичной дроби последние верные цифры — нули, то их оставляют в записи числа.

Например: если Приближённые вычисления в математике, то правильной записью числа будет 0,260.

Если в целом числе последние нули являются сомнительными, их исключают из записи числа.

Именно поэтому при работе с приближёнными числами широко используют стандартную форму записи числа.

Например: в числе Приближённые вычисления в математике верными являются три первые цифры, а два последних нуля — сомнительные цифры. Запись числа возможна только в виде: 

Приближённые вычисления в математике

Следовательно, в десятичной записи приближённого числа последняя цифра указывает на точность приближённости, то есть предел абсолютной погрешности не превышает единицу последнего разряда.

Например:

1. Запись Приближённые вычисления в математике означает, что Приближённые вычисления в математике, то есть предел абсолютной погрешности h=0,01.

2. Запись Приближённые вычисления в математике

3. Если Приближённые вычисления в математике

В десятичной записи числа значимыми цифрами называются все его верные цифры начиная с первой слева, отличной от нуля.

Например: в числе 1,13 — три значимых цифры, в числе 0,017 — две, в числе 0,303 — три, в числе 5,200 — четыре, в числе 25*10— две значимых цифры.

При таком подходе к записи приближенного числа необходимо уметь округлять числа.

Правила округления чисел:

— Если первая цифра, которую отбрасываем является меньше пяти, то в основном разряде, который сохраняется цифра не меняется. Например: 879,673≈879,67.

— Если первая цифра, которую отбрасываем больше пяти, то в последнем разряде, который сохраняется цифра увеличивается на единицу. Например: 456,87≈456,9.

— Если первая цифра, которая отбрасывается пять и за ней есть ещё отличны от нуля, то в последнем разряде, который сохраняется цифра увеличивается на единицу. Например: 1246,5002≈1247.

— Если первая цифра, которая отбрасывается — пять и за ней нет больше никаких цифра, то в последнем разряде, который сохраняется цифра увеличивается на единицу. Например: 0,275≈0,28; 1,865≈1,86.

Абсолютная погрешность не полностью характеризует точность приближения. Например, Приближённые вычисления в математике будет грубой ошибкой при измерении жука, и незначительной при измерении кита. Тоже самое можно сказать и про предел абсолютной погрешности. Качество (точность) приближённости лучше характеризуется относительной погрешностью.

Относительной погрешностью Приближённые вычисления в математике (омега) приближённости х величины Приближённые вычисления в математике называется отношением абсолютной погрешности Приближённые вычисления в математике этого приближения к модулю приближённого значения х, то есть 

Приближённые вычисления в математике

Поскольку абсолютная погрешность Приближённые вычисления в математике обычно бывает неизвестна, то на практике оценивают модуль относительной погрешности некоторым числом, которое не меньше чем этот модуль: 

Приближённые вычисления в математике

Число Приближённые вычисления в математике называется пределом относительной погрешности.

Предел относительной погрешности можно вычислить по формуле: Приближённые вычисления в математике

Конечно относительная погрешность выражается в процентах.

С помощью относительной погрешности легко установить точность приближённости.

Пример 1. Найти относительную погрешность числа Приближённые вычисления в математике

Решение: Имеем Приближённые вычисления в математике

Следовательно Приближённые вычисления в математике

Пример 2. Сравнить точность измерения толщины книги d (см) и высоты стола H (см), если известно, что  Приближённые вычисления в математике.

Решение: 

Приближённые вычисления в математике

Как видим, точность измерения высоты стола значительно выше.

Выполнение действий над приближёнными числами

Результат арифметических действий над приближёнными числами является также приближённым числом.

Необходимо уметь устанавливать погрешности результатов вычислений. Их находят с точным и без точного учёта погрешностей исходных данных. Правила нахождения погрешностей результатов действий с точным учётом погрешности приведены в таблице (обозначения — Приближённые вычисления в математике исходные данные; Приближённые вычисления в математике пределы абсолютных погрешностей относительно чисел; Приближённые вычисления в математикепределы относительных погрешностей).

Приближённые вычисления в математике

Пример 3. Вычислить приближение значения выражения Приближённые вычисления в математике и найти предел погрешностей результата.

Решение: находим значение квадрата числа 5,62 и квадратного корня из числа 18,50. Приближённые вычисления в математике

Найдём границу относительной погрешности результата:

Приближённые вычисления в математике

Граница абсолютной погрешности результата:

Приближённые вычисления в математике

Ответ: Приближённые вычисления в математике

Пример 4. Вычислить приближение значения выражения Приближённые вычисления в математике  и найти предел погрешностей результата.

Решение: находим значение квадратного корня из числа 6,24 и Приближённые вычисления в математике, имеем:

Приближённые вычисления в математике

Граница относительной погрешности результата:

Приближённые вычисления в математике

Граница абсолютной погрешности результата: Приближённые вычисления в математике

Ответ: Приближённые вычисления в математике

Выполнение действий без точного учёта погрешности

Точный учёт погрешности усложняет вычисление. Поэтому, если не надо учитывать погрешность промежуточных результатов, можно использовать более простые правила. 

Сложение и вычитание приближённых вычислений рекомендуется выполнять так:

а) выделить слагаемое с наименьшим числом верных десятичных знаков;

б) округлить другие слагаемые так, чтобы каждое из них содержало на один десятичный знак больше чем выделенное;

в) выполнить действия, учитывая все сохранённые десятичные знаки;

г) результаты округлить и сохранить столько десятичных знаков, сколько их есть в приближённом числе с наименьшим числом десятичных знаков.

Умножение и деление приближённых вычислений рекомендуется выполнять так:

а) выделить среди данных чисел, число с наименьшим количеством верных значимых цифр;

б) округлить оставшиеся данные так, чтобы каждое из них содержало на одну значащую цифру больше, чем в выделенном;

в) выполнить действия — сохранить все значимые цифры;

г) сохранять в результате столько значащих цифр, сколько их имеет выделенное число с наименьшим количеством верных значимых цифр.

При возведении в степень приближённого числа в результате сохраняют столько значимых цифр, сколько верных значимых цифр имеет основа степени.

При извлечении корня из приближённого числа в результате сохраняют столько верных цифр, сколько имеет подкоренное число.

Лекции:

  • Уравнение сферы
  • Пределы: примеры решения
  • Площадь поверхности конуса
  • Целые рациональные выражения
  • Числовые ряды. Числовой ряд. Сумма ряда
  • Свойства логарифмов
  • Линейные дифференциальные уравнения первого порядка
  • Скрещивающиеся прямые
  • Скалярное призведение двух векторов
  • Теоремы, связанные с понятием производной

Погрешность и точность приближения.

Найдем значение функции у = х2 при х=1,5 и при х=2,1.

Можно найти значение функции двумя способами: по формуле и с помощью графика.

С помощью графика приближенные значения функции равны:

при х = 1,5 у ≈ 2,3;

при х = 2,1 у ≈ 4,4.

По формуле:

при х = 1,5 у = 1,52 = 2,25;

при х = 2,1 у = 2,12 = 4,41.

Приближенное значение отличается от точного, так как по графику мы не можем определить с точностью до сотых значение функции.

В первом случае приближенное значение отличается от точного на 0,05, а во втором – на 0,01.

Чтобы узнать, на сколько приближенное значение отличается от точного, надо из большего числа вычесть меньшее, т.е. найти модуль разности точного и приближенного значений.

Модуль разности точного и приближенного значений называется абсолютной погрешностью.

Но найти абсолютную погрешность не всегда возможно. Пусть, например, при измерении длины некоторого отрезка получен результат АВ ≈ 4,3 см. Мы не можем найти абсолютную погрешность приближенного значения, так как не знаем точного значения длины отрезка АВ. В таких случаях важно указать такое число, больше которого абсолютная погрешность быть не может. В рассматриваемом случае это 0,1 см, то есть 1 мм – цена деления линейки.

Если х ≈ a и абсолютная погрешность этого приближенного значения не превосходит некоторого числа h, то число а называют приближенным значением х с точностью до h.

Пишут х ≈ a с точностью до h.

Используют также такую запись:

x = а±h

Запись х= а±h означает, что точное значение переменной х заключено между числами a-h и a+h.

То есть a-h ≤ х ≤ a+h.

Для оценки качества измерения можно использовать относительную погрешность приближенного значения.

Относительной погрешностью приближенного значения называется отношение абсолютной погрешности к модулю приближенного значения.

Относительную погрешность принято выражать в процентах.

В тех случаях, когда абсолютная погрешность приближенного значения неизвестна, а известна только его точность, ограничиваются оценкой относительной погрешности.

Рассмотрим пример. При измерении в сантиметрах толщины стекла b получаем такой результат

b = 0,4±0,1.

В этом случае относительная погрешность не превосходит 0,10,4·100% , то есть 25%. Говорят, что измерение выполнено с относительной точностью 25%.

ВИДЕО УРОК

Абсолютная погрешность.

Разность между истинным значением измеряемой величины
и её приближённым значением называется абсолютной погрешностью.

Для подсчёта
абсолютной погрешности необходимо из большего числа вычесть меньшее число.

Существует формула
абсолютной погрешности. Обозначим точное число буквой 
А, а буквой  а
приближение к точному числу. Приближённое число – это число, которое
незначительно отличается от точного и обычно заменяет его в вычислениях. Тогда
формула будет выглядеть следующим образом:

а = А – а.

ПРИМЕР:

В школе учится  374 ученика. Если округлить это число до  400,
то абсолютная погрешность измерения равна
:

400 – 374 = 26.

ПРИМЕР:

На предприятии  1284  рабочих и
служащих. При округлении этого числа до 
1300  абсолютная
погрешность составляет

1300 – 1284 = 16.

При округлении до  1280  абсолютная
погрешность составляет

1284 – 1280 = 4.

Редко когда можно
точно знать значение измеряемой величины, чтобы рассчитать абсолютную
погрешность. Но при выполнении различных измерений мы обычно представляем себе
границы абсолютной погрешности и всегда можем сказать, какого определённого
числа она не превосходит.

ПРИМЕР:

Торговые весы могут дать абсолютную погрешность, не
превышающую 
5 г, а аптекарские – не превышающую одной сотой грамма.

Записывают
абсолютную погрешность числа, используя знак 
±.

ПРИМЕР:

Длина рулона обоев составляет.

30 м ± 3
см.

Границу абсолютной
погрешности называют предельной абсолютной погрешностью.

Но абсолютная
погрешность не даёт нам представление о качестве измерения, то есть о том,
насколько тщательно это измерение выполнено. Чтобы понять эту мысль, достаточно
разобраться в таком примере.

ПРИМЕР:

Допустим, что при измерении коридора длиной в  20
м  мы допустили абсолютную погрешность
всего только в 
1 см. Теперь представим себе, что, измеряя корешок книги,
имеющий 
18
см  длины, мы тоже допустили абсолютную
погрешность в 
1 см. Тогда понятно, что первое измерение нужно признать
превосходным, но зато второе – совершенно неудовлетворительным. Это значит, что
на 
20
м  ошибка в 
1
см  вполне допустима и неизбежна, но
на 
18
см  такая ошибка является очень грубой.

Отсюда ясно, что для оценки качества измерения
существенна не сама абсолютная погрешность, а та доля, какую она составляет от
измеряемой величины. При измерении коридора длиной в 
20 м погрешность в  1 см 
составляет

долю
измеряемой величины, а при измерении корешка книги погрешность в 
см составляет


долю
измеряемой величины
.

Делаем вывод, что измеряя корешок книги, имеющий  18
см  длины и допустив погрешность в 
1
см, можно считать измерение с большой ошибкой. Но если погрешность в 
1
см  была допущена при измерении коридора
длиной в 
20
м, то это измерение можно считать максимально точным.

Если ошибка,
возникающая при измерении линейкой или каким либо другим измерительным
инструментом, значительно меньше, чем деления шкалы этой линейки, то в качестве
абсолютной погрешности измерения обычно берут половину деления. Если деления на
линейке нанесены достаточно точно, то ошибка при измерении близка к нулю.

Тогда
значение измеряемой длины предмета будет значение ближайшей метки линейки.
Поэтому, если измерение выполнено аккуратно, то истинная длина предмета может
отличаться от измеренной длины не более чем на половину деления шкалы, то есть 
0,5 мм.

ПРИМЕР:

Для измерения длины болта использованы метровая линейка с
делениями 
0,5 см  и линейка с
делениями 
1 мм. В обоих случаях получен результат  3,5
см. Ясно, что в первом случае отклонение найденной длины 
3,5
см  от истинной, не
должно по модулю превышать 
0,5 см, во втором случае 
0,1 см.

Если этот же результат получится при измерении
штангенциркулем, то

p(l; 3,5) = |l – 3,5 ≤ 0,01|.

Данный пример показывает зависимость абсолютной
погрешности и границ, в которых находится точный результат, от точности
измерительных приборов. В одном случае 
l = 0,5  и, следовательно,

3
l ≤ 4,

в другом – l = 0,1  и

3,4
l ≤ 3,6.

ПРИМЕР:

Длина листа бумаги формата  А4  равна  (29,7 ± 0,1)
см. А расстояние от Санкт-Петербурга до Москвы равно 
(650 ± 1) км. Абсолютная погрешность в первом случае
не превосходит одного миллиметра, а во втором – одного километра. Необходимо
сравнить точность этих измерений.

РЕШЕНИЕ:

Если вы думаете, что длина листа измерена точнее потому,
что величина абсолютной  погрешности не
превышает  1 мм, то вы ошибаетесь.
Напрямую сравнить эти величины нельзя. Проведём некоторые рассуждения.

При измерении длины листа абсолютная погрешность не
превышает 
0,1 см на  29,7 см, то есть в процентном отношении это составляет

0,1
: 29,7 ∙ 100% ≈ 0,33%

измеряемой величины.

Когда мы измеряем расстояние от Санкт-Петербурга до
Москвы, то абсолютная погрешность не превышает 
1 км 
на 
650 км, что в процентном соотношении составляет

1
: 650 ∙ 100% ≈ 0,15%

измеряемой величины.

Видим, что расстояние между городами измерено точнее, чем
длинна листа формата 
А4.

Истинное значение
измеряемой величины известно бывает лишь в очень редких случаях, а поэтому и
действительная величина абсолютной погрешности почти никогда не может быть вычислена.
На практике абсолютной погрешности недостаточно для точной оценки измерения.
Поэтому на практике более важное значение имеет определение относительной
погрешности измерения.

Относительная погрешность.

Абсолютная
погрешность, как мы убедились, не даёт возможности судить о качестве измерения.
Поэтому для оценки качества приближения вводится новое понятие – относительная
погрешность. Относительная погрешность позволяет судить о качестве измерения.

Относительная погрешность –
это частное от деления абсолютной погрешности на модуль приближённого значения
измеряемой величины, выраженная в долях или процентах. 

Относительная
погрешность величина всегда положительная. Это следует из того, что абсолютная погрешность
всегда положительная величина, и мы делим её на модуль приближённого значения
измеряемой величины, а модуль тоже всегда положителен.

ПРИМЕР:

Округлим дробь  14,7 до целых и найдём относительную погрешность приближённого
значения
:

14,7 ≈ 15,

Для вычисления
относительной погрешности, кроме приближённого значения, нужно знать ещё и
абсолютную погрешность. Обычно абсолютная погрешность неизвестна, поэтому
вычислить относительную погрешность нельзя. В таких случаях ограничиваются
оценкой относительной погрешности.

ПРИМЕР:

При измерении в (сантиметрах) толщины 
b 
стекла и длины 
l  книжной полки
получили следующие результаты
:

b 0,4 с
точностью до
  0,1,

l 100 с
точностью до
  0,1.

Абсолютная погрешность каждого из этих измерений не
превосходит 
0,1. Однако  0,1  составляет
существенную часть числа 
0,4  и
ничтожную часть числа 
100. Это показывает, что качество второго
измерения намного выше, чем первого.

В результате измерения нашли,
что 
b
0,4  с точностью до  0,1, то
есть абсолютная погрешность измерения не превосходит 
0,1.
Значит, отношение абсолютной погрешности к приближённому значению меньше или равно

то есть относительная погрешность приближения не превосходит  25%.

Аналогично найдём, что
относительная погрешность приближения, полученного при измерении длины полки,
не превосходит

Говорят, что в первом случае измерение выполнено с
относительной точностью до 
25%,
а во втором – с относительной точностью до
  0,1%.

ПРИМЕР:

Если взять абсолютную погрешность в  1
см,  при измерении длины отрезков 
10
см  и  10
м, то относительные погрешности будут соответственно равны 
10%  и  0,1%. Для
отрезка длиной в 
10 см  погрешность
в 
1
см  очень велика, это ошибка в  
10%. А для десятиметрового отрезка  1 см  не имеет значения, эта ошибка всего в   0,1%.

Чем меньше относительная погрешность
измерения, тем оно точнее.

Различают
систематические и случайные погрешности.

Систематической погрешностью называют ту погрешность, которая остаётся неизменной при
повторных измерениях.

Случайной погрешностью называют ту погрешность, которая возникает в результате
воздействия на процесс измерения внешних факторов и может изменять своё
значение.

В большинстве
случаев невозможно узнать точное значение приближённого числа, а значит, и
точную величину погрешности. Однако почти всегда можно установить, что
погрешность (абсолютная или относительная) не превосходит некоторого числа.

ПРИМЕР:

Продавец взвешивает арбуз на чашечных весах. В наборе
наименьшая гиря –
50
г. Взвешивание показало  
3600 г. Это число – приближённое. Точный вес арбуза
неизвестен. Но абсолютная погрешность не превышает 
50
г. Относительная погрешность не превосходит 

50/3600
1,4%.

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей), называется предельной абсолютной
погрешностью.

Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей), называется предельной относительной
погрешностью.

В предыдущем примере
за предельную абсолютную погрешность можно взять 
50 г, а за предельную относительную погрешность  1,4%.

Величина предельной
погрешности не является вполне определённой. Так в предыдущем примере можно
принять за предельную абсолютную погрешность 
100 г, 150 г  и вообще всякое
число, большее чем 
50 г.
На практике берётся по возможности меньшее значение предельной погрешности. В
тех случаях, когда известна точная величина погрешности, эта величина служит
одновременно предельной погрешностью. Для каждого приближённого числа должна
быть известна его предельная погрешность (абсолютная или относительная). Когда
она прямо не указана, подразумевается что предельная абсолютная погрешность
составляет половину единицы последнего выписанного разряда. Так, если приведено
приближённое число 
4,78  без указания предельной погрешности, то подразумевается,
что предельная абсолютная погрешность составляет 
0,005. В следствии этого соглашения всегда можно обойтись без указания
предельной погрешности числа.

Предельная
абсолютная погрешность обозначается греческой буквой 
(<<дельта>>),
предельная относительная погрешность – греческой буквой 
δ
(<<дельта малая>>). Если приближённое число обозначить буквой 
а

Правила округления.

На практике
относительную погрешность округляют до двух значащих цифр, выполняя округление
с избытком, то есть, всегда увеличивая последнюю значащую цифру на единицу.

ПРИМЕР:

Для  х = 1,7 ± 0,2  относительная погрешность измерений равна:

ПРИМЕР:

Длина карандаша измерена линейкой с миллиметровым
делением. Измерение показало 
17,9 см. Какова предельная относительная погрешность этого
измерения
?

РЕШЕНИЕ:

Здесь  а =
17,9
см. Можно принять 
= 0,1 см, так как с точностью
до 
1 мм 
измерить карандаш нетрудно, а значительно уменьшить предельную
погрешность не удастся
(при навыке можно прочесть на хорошей линейке и  0,02  и даже  0,01 см, но
у самого карандаша рёбра могут отличаться на большую величину
). Относительная погрешность равна

Округляя, находим

ПРИМЕР:

Цилиндрический поршень имеет около  35
мм  в диаметре. С какой точностью нужно
его измерить микрометром, чтобы предельная относительная погрешность составляла
  0,05% ?

РЕШЕНИЕ:

По условию, предельная относительная
погрешность должна составлять 
0,05%  от  35 мм. Следовательно, предельная абсолютная
погрешность равна

или, усиливая, 0,02
мм.

Можно воспользоваться
формулой

Подставляя в формулу 

а = 35,

𝛿 = 0,0005,

имеем

Значит,


= 35 × 0,0005 = 0,0175
мм.

Действия над приближёнными числами.

Сложение и вычитание приближённых чисел.

Абсолютная погрешность суммы двух величин равна сумме
абсолютных погрешностей отдельных слагаемых.

ПРИМЕР:

Складываются приближённые числа

265  и  32.

РЕШЕНИЕ:

Пусть предельная погрешность первого есть  5,
а второго 
1. Тогда предельная погрешность суммы равна

5
+ 1 = 6.

Так, если истинное значение первого есть  270,
а второго 
33, то приближённая сумма

265
+ 32 = 297

на  6  меньше истинной

270
+ 33 = 303.

ПРИМЕР:

Найти сумму приближённых чисел:

0,0909
+ 0,0833 + 0,0769 + 0,0714 + 0,0667

 + 0,0625 + 0,0588 + 0,0556 + 0,0526.

РЕШЕНИЕ:

Сложение даёт следующий результат – 0,6187.

Предельная погрешность каждого слагаемого 

0,00005.

Предельная погрешность суммы:

0,00005
9 = 0,00045.

Значит, в последнем (четвёртом) знаке суммы возможна ошибка до  5
единиц. Поэтому округляем сумму до третьего знака, то есть до тысячных.
Получаем 
0,619,
здесь все знаки верные.

При значительном
числе слагаемых обычно происходит взаимная компенсация погрешностей, поэтому
истинная погрешность суммы лишь в исключительных случаях совпадает с предельной
погрешностью или близка к ней. Насколько редки эти случаи, видно из предыдущего
примера, где 
9 слагаемых. Истинная величина каждого из них может
отличаться в пятом знаке от взятого приближённого значения на 
1, 2, 3, 4  или даже на  5 единиц в ту и в другую сторону.

Например, первое
слагаемое может быть больше своего истинного значения на 
4 единицы пятого знака, второе – на две, третье – меньше
истинного на одну единицу и так далее.

Расчёт показывает,
что число всех возможных случаев распределения погрешностей составляет около
одного миллиарда. Между тем лишь в двух случаях погрешность суммы может
достигнуть предельной погрешности 
0,00045,
это произойдёт:

– когда истинная величина каждого слагаемого больше
приближённой величины на 
0,00005;

– когда истинная величина каждого слагаемого меньше
приближённой величины на 
0,00005.

Значит, случаи,
когда погрешность суммы совпадает с предельной, составляют только 
0,0000002%  всех возможных случаев.

Дальнейший расчёт
показывает, что случаи, когда погрешность суммы девяти слагаемых может
превысить три единицы последнего знака, тоже очень редки. Они составляют
лишь 
0,07% 
из числа всех
возможных. Две единицы последнего знака погрешность может превысить 
2%  всех возможных случаев, а одну единицу –
примерно в 
25%.
В остальных 
75%  случаев погрешность девяти слагаемых не
превышает одной единицы последнего знака.

ПРИМЕР:

Найти сумму точных чисел:

0,0909
+ 0,0833 + 0,0769 + 0,0714 + 0,0667

 + 0,0625 + 0,0588 + 0,0556 + 0,0526.

РЕШЕНИЕ:

Сложение даёт следующий результат – 0,6187.

Округлим их до тысячных и сложим:

0,091
+ 0,083 + 0,077 + 0,071 + 0,067

 + 0,062 + 0,059 + 0,056 + 0,053 = 0,619.

Предельная погрешность суммы:

0,0005
9 = 0,0045.

Приближённая сумма отличается от истинной на  0,0003,
то есть на треть единицы последнего знака приближённых чисел. Все три знака
приближённой суммы верны, хотя теоретически последняя цифра могла быть грубо
неверной.

Произведём в наших слагаемых округление до сотых. Теперь
предельная погрешность суммы будет
:

0,005
9 = 0,045.

Между тем получим:

0,09
+ 0,08 + 0,08 + 0,07 + 0,07

 + 0,06 + 0,06 + 0,06 + 0,05 = 0,62.

Истинная погрешность составляет только  0,0013.

Предельная абсолютная погрешность разности двух величин
равна сумме предельных абсолютных погрешностей уменьшаемого и вычитаемого.

ПРИМЕР:

Пусть предельная погрешность приближённого
уменьшаемого 
85  равна  2,
а предельная погрешность вычитаемого 
32  равна  3.
Предельная погрешность разности

85
– 32 = 53

есть

2
+ 3 = 5.

В самом деле, истинное значение уменьшаемого и
вычитаемого могут равняться

85
+ 2 = 87 
и

32
– 3 = 29
.

Тогда истинная разность есть

87
– 29 = 58.

Она на  5  отличается от
приближённой разности 
53.

Относительная погрешность суммы и разности.

Предельную
относительную погрешность суммы и разности легко найти, вычислив сначала
предельную абсолютную погрешность.

Предельная
относительная погрешность суммы (но не разности!) лежит между наименьшей и
наибольшей из относительных погрешностей слагаемых. Если все слагаемые имеют
одну и ту же (или примерно одну и ту же) предельную относительную погрешность,
то и сумма имеет ту же (или примерно ту же) предельную относительную
погрешность. Другими словами, в этом случае точность суммы (в процентном
выражении) не уступает точности слагаемых. При значительном же числе слагаемых
сумма, как правило, гораздо точнее слагаемых.

ПРИМЕР:

Найти предельную абсолютную и предельную относительную
погрешность суммы чисел
:

24,4
+ 25,2 + 24,7.

РЕШЕНИЕ:

В каждом слагаемом суммы

24,4
+ 25,2 + 24,7 = 74,3

предельная относительная погрешность примерно одна и та
же, а именно
:

0,05
: 25 = 0,2%.

Такова же она и для суммы.

Здесь предельная абсолютная погрешность равна  0,15,
а относительная

0,15
: 74,3 ≈ 0,15 : 75 = 0,2%.

В противоположность
сумме разность приближённых чисел может быть менее точной, чем уменьшаемое и
вычитаемое. <<Потеря точности>> особенно велика в том случае, когда
уменьшаемое и вычитаемое мало отличаются друг от друга.

Относительные погрешности при сложении и вычитании
складывать нельзя.

Умножение и деление приближённых чисел.

При делении и умножении чисел требуется сложить
относительные погрешности.

ПРИМЕР:

Пусть перемножаются приближённые числа  50  и  20, и пусть предельная относительная погрешность первого
сомножителя есть 
0,4%, а второго 
0,5%.

Тогда предельная относительная погрешность произведения

50
× 20 = 1000

приближённо равна  0,9%.
В самом деле предельная абсолютная погрешность первого сомножителя есть

50
× 0,004 = 0,2,

а второго

20
× 0,005 = 0,1
.

Поэтому истинная величина произведения не больше чем

(50
+ 0,2)(20 + 0,1) = 1009,02,

и не меньше, чем

(50
– 0,2)(20 – 0,1) = 991,022
.

Если истинная величина произведения есть  1009,2,
то погрешность произведения равна

1009,2
– 1000 = 9,02,

а если  991,02, то погрешность произведения равна

1000
– 991,02 = 8,98.

Рассмотренные два случая – самые неблагоприятные. Значит,
предельная абсолютная погрешность произведения есть 
9,02.
Предельная относительная погрешность равна

9,02
: 1000 = 0,902%,

то есть приближённо  0,9%.

Задания к уроку 16

  • Задание 1
  • Задание 2
  • Задание 3
  • Урок 1. Числовые неравенства
  • Урок 2. Свойства числовых неравенств
  • Урок 3. Сложение и умножение числовых неравенств
  • Урок 4. Числовые промежутки
  • Урок 5. Линейные неравенства
  • Урок 6. Системы линейных неравенств
  • Урок 7. Нелинейные неравенства
  • Урок 8. Системы нелинейных неравенств
  • Урок 9. Дробно-рациональные неравенства
  • Урок 10. Решение неравенств с помощью графиков
  • Урок 11. Неравенства с модулем
  • Урок 12. Иррациональные неравенства
  • Урок 13. Неравенства с двумя переменными
  • Урок 14. Системы неравенств с двумя переменными
  • Урок 15. Приближённые вычисления

Понравилась статья? Поделить с друзьями:
  • Как найди скрытые папки
  • Как найти код краски на ваз 2107
  • Все буквы капсом как исправить
  • Как магия помог найти работу
  • Как найти человека для сетевого маркетинга