Как найти относительный показатель преломления двух сред

«Никто
не зажигает свечу,

чтобы
хранить ее за дверью,

ибо
свет затем и существует,

чтобы
светить, открывать людям глаза,

показывать
какие вокруг чудеса».

Пауло
Коэльо

В
курсе физики 8 класса вы рассматривалось явление преломления света. Известно, что
свет представляет собой электромагнитные волны определенного оптического диапазона.

Опираясь
на знание о природе света, в данной теме рассмотрим физическую причину преломления
и объясним многие другие связанные с ним световые явления.

Преломление
— это изменение направления распространения света при его переходе через границу
раздела двух сред.

Угол
(a) между падающим лучом и перпендикуляром, восстановленным
в точке падения луча, называется углом падения.

Угол
(b) между перпендикуляром, проведенным к границе раздела
двух сред, восстановленным в точке падения луча, и преломленным лучом
называется углом преломления.

Если
падающий луч перпендикулярен к границе раздела, то угол преломления равен нулю,
т.е. луч идет не преломляясь.

В
курсе физики 8 класса  изучался закон преломления света, который излагался
в следующей форме: луч падающий, луч преломленный и перпендикуляр к границе раздела
двух сред, восставленный в точке падения луча, лежат в одной плоскости; отношение
синуса угла падения к синусу угла преломления есть величина постоянная для данных
двух сред, не зависящая от угла падения.

Величина
n21 называется относительным показателем преломления
второй среды относительно первой.

Относительным
показателем преломления
второй среды относительно первой называется
скалярная физическая величина, равная отношению синуса угла падения к синусу угла
преломления.

Из
закона преломления света следует, что если  менять угол падения, то соответственно
будет меняться и угол преломления
. Но при любом угле падения соотношение синусов
этих углов будет оставаться неизменным для данных двух сред.

Если
луч переходит в какую-либо среду из вакуума, то отношение синуса угла падения к
синусу угла преломления будет называться абсолютным показателем преломления второй
среды
, так как показатель преломления вакуума принято считать равным единице.

Закон
преломления света был открыт опытным путем голландским ученым Виллебордом Снеллиусом
в 1621 году. Однако результаты многочисленных экспериментов по оптике опубликованы
не были. Позже, после смерти ученого, они были обнаружены в архивах Рене ДекАртом,
который использовал их при написании своих «Рассуждений о методе…» в приложении
«Диоптрика» (1637год).

После
открытия Снеллиуса несколькими учеными была выдвинута гипотеза о том, что преломление
света обусловлено изменением его скорости при переходе через границу двух сред.
Справедливость этой гипотезы была подтверждена теоретическими доказательствами,
выполненными независимо друг от друга французским математиком Пьером Ферма в 1662году)
и голландским физиком Христианом Гюйгенсом (в 1690году).

Разными
путями они пришли к одному и тому же результату, доказав, что отношение синуса угла
падения к синусу угла преломления есть величина постоянная для данных двух сред,
равная отношению скоростей света в этих средах.

Из
данного утверждения следует, что относительный показатель преломления показывает,
во сколько раз скорость света в первой по ходу луча среде отличается от скорости
распространения света во второй среде.

Тогда,
абсолютный показатель преломления будет показывать, во сколько раз скорость света
в вакууме больше, чем в данном веществе.

Существуют
таблицы значений абсолютных показателей преломления для твердых, жидких и газообразных
веществ.

Из
таблицы видно, что из двух сред оптически более плотной считается та, у которой
показатель преломления больше (или та, в которой скорость света меньше).

Отсюда
следует, что при переходе света из среды оптически менее плотной в среду оптически
более плотную угол преломления меньше угла падения
.

Это
значит, что, попадая в среду оптически более плотную, луч отклоняется в сторону
перпендикуляра к границе двух сред. И наоборот, если происходит переход луча
из среды оптически более плотной в среду менее плотную, угол преломления оказывается
больше угла падения
и луч прижимается к границе раздела двух сред.

Обратимся теперь к рисун­ку, который поясняет, почему на границе двух сред с изменением скорости
меняется и направление распространения световой волны.

На рисунке изображена све­товая волна, переходящая из воздуха в воду и падающая на границу раздела этих сред под углом
a. В воздухе свет рас­пространяется со скоростью
,
а в воде — с меньшей скоростью .

Первой до границы доходит точка А волны.
За промежуток вре­мени  точка B, перемещаясь
в воздухе с прежней скоростью до­стигнет точки B’. За то
же время точка А перемещаясь
в воде с мень­шей скоростью, пройдет
меньшее расстояние, достигнув только точки A’. При этом
так называемый фронт волны A’B’ в воде
окажет­ся повернутым па некоторый угол по отношению к фронту AB волны в воздухе. А вектор скорости (который всегда перпендикулярен
к фронту волны и совпадает с направлением ее распространения) поворачивается, приближаясь
к прямой ОО’, перпендикулярной
к границе раздела сред. При этом угол преломления оказывается меньше угла падения. Так и происходит преломление света.

Из рисунка видно также, что при переходе в
другую среду и поворо­те волнового фронта, меняется и длина волны:
при переходе в оптически более плотную среду уменьшается скорость,
длина волны то же умень­шается. Это согласуется
и с известной формулой, из которой следует,
что при неизменной частоте (которая не зависит от плотности среды и поэтому не меняется
при переходе луча из одной среды в другую) уменьшение скорости распространения вол­ны
сопровождается пропорциональным уменьшением длины волны.

Из-за
преломления наблюдается кажущееся изменение размеров, формы и расположения предметов.
В этом можно убедиться на простых примерах. Положим на дно пустого стакана кольцо
или другой небольшой предмет. Подвинем стакан так, чтобы центр кольца, край стакана
и глаз находились на одной прямой. Неменяя положения головы, станем наливать в стакан
воду. Заметим, что по мере повышения уровня воды дно стакана с кольцом как бы приподнимается.
Кольцо,котороеранеебыловиднолишьчастично,теперьстановитсявидимымполностью. Этот
опыт был описан в свое время еще Евклидом.

Возьмем
теперь прозрачный стакан с водой и установим в нем наклонно линейку. Рассматривая
стакан сбоку, замечаем, что часть линейки, находящаяся в воде, кажется сдвинутой
в сторону.

Преломлением
света объясняется и тот факт, что глубина водоема кажется меньше, чем на самом
деле, а предмет, рассматриваемый через плоскопараллельную стеклянную пластинку
или призму, будет казаться смещенным относительно своего истинного положения.
Все дело в том, что мы видим не сам предмет, а его мнимое изображение.

Основные
выводы:


Преломление — это изменение направления распространения света при его переходе
через границу раздела двух сред.


Угол между падающим лучом и перпендикуляром, восстановленным в точке падения луча,
называется углом падения.


Угол между перпендикуляром, проведенным к границе раздела двух сред, восстановленным
в точке падения луча, и преломленным лучом называется углом преломления.


Закон преломления света гласит:

Луч
падающий, луч преломленный и перпендикуляр к границе раздела двух сред, восставленный
в точке падения луча, лежат в одной плоскости;

отношение
синуса угла падения к синусу угла преломления есть величина постоянная для данных
двух сред, не зависящая от угла падения.


Относительный показатель преломления показывает, во сколько
раз скорость света в первой по ходу луча среде отличается от скорости распространения
света во второй среде.


Абсолютный показатель преломления показывает, во сколько раз
скорость света в вакууме больше, чем в данном веществе.


Из двух сред оптически более плотной считается та, у которой показатель преломления
больше (или та, в которой скорость света меньше).


Т.е., если луч попадает в среду оптически более плотную, то он отклоняется в сторону
перпендикуляра к границе двух сред. И наоборот, если происходит переход луча из
среды оптически более плотной в среду менее плотную, луч прижимается к границе
раздела.

Что такое показатель преломления?

Показатель преломления вещества — это отношение скоростей света (электромагнитных волн) в вакууме и в данной среде. Показатель преломления — безразмерная величина, которая зависит от температуры и длины волны света. Показатель преломления характеризует скорость распространения света в среде и рассчитывается по формуле:

n = c / v,

где:

n — показатель преломления;
c — скорость света в вакууме (или воздухе);
v — скорость света в среде (например, воде, оливковом масле и т. п.).

На этой странице приведена необходимая информация о методах измерения показателя преломления.

Узнайте больше о показателе преломления, его применении, способах измерения, а также о законе преломления света и многом другом.

Перейдите в один из следующих разделов, чтобы узнать больше о показателе преломления:

  • Преломление света: практический пример
  • Закон преломления света (закон Снеллиуса)
  • Полное внутреннее отражение и критический угол
  • Закон преломления света и устройство рефрактометра
  • Измерение показателя преломления: что измеряет рефрактометр?
  • Факторы, влияющие на величину показателя преломления
  • Показатель преломления: применение на практике
  • Абсолютный и относительный показатель преломления
  • Рекомендации по измерению показателя преломления
  • Совершенствуйте методику измерения показателя преломления
  • Приблизительные значения показателя преломления стандартных и эталонных веществ
  • Часто задаваемые вопросы

Преломление света: практический пример

Прежде чем углубиться в теоретическое обоснование показателя преломления, рассмотрим наглядный пример распространения света в различных средах.

На иллюстрации изображены три стакана с опущенными в них стеклянными палочками. Стаканы заполнены разными жидкостями:

Жидкость в стакане
1 Вода.
2 Вода и кедровое масло.
3 Кедровое масло.

Что мы видим в этих стаканах?

Показатель преломления воды (n = 1,333) ниже, чем стекла (n = 1,517). По этой причине стеклянную палочку видно в стакане 1 и отчасти — в стакане 2.

Зато у стеклянной палочки (n = 1,517) и кедрового масла (n = 1,516) показатели преломления почти одинаковые, поэтому кажется, что палочка при погружении в кедровое масло исчезает (частично в стакане 2 и полностью в стакане 3).

Закон преломления света (закон Снеллиуса)

Закон преломления света (закон Снеллиуса)

Закон преломления света, известный также как закон Снеллиуса, описывает взаимосвязь углов падения и преломления с показателями преломления граничащих сред. Как показано на иллюстрации, согласно этому закону отношение синуса угла падения α к синусу угла преломления β (и показателей преломления n1 и n2) — это величина, постоянная для двух данных сред:

n1   sin α = n2   sin ⁡β.

На иллюстрации показано, как отклоняется световой луч (1, синяя стрелка), проходящий под определенным углом из оптически менее плотной (n1) в оптически более плотную среду (n2), например из воздуха в воду.

Но когда луч проходит из одной среды в другую перпендикулярно границе раздела, никакого преломления не происходит (зеленая стрелка).

Согласно закону преломления света, отношение показателей преломления граничащих сред пропорционально отношению угла падения и угла преломления светового луча. То есть:
 

Полное внутреннее отражение и критический угол

Полное внутреннее отражение и критический угол

Полное внутреннее отражение возникает, когда весь свет, направленный из оптически более плотной среды в оптически менее плотную, отражается обратно в оптически более плотную среду. Для понимания этого явления рассмотрим иллюстрацию слева.

Синяя стрелка: луч света преломляется, проходя из оптически более плотной среды (n2) в оптически менее плотную (n1).

Угол падения α увеличивается (зеленая стрелка): когда угол падения α возрастает (1), он может достигнуть критической величины, после которой свет не проходит в оптически менее плотную среду (n1), а отражается вдоль раздела двух сред. Такой угол падения называют критическим углом полного внутреннего отражения. Заметим, что при этом угол отражения β = 90°.

Угол падения больше критической величины: если угол падения превышает критическую величину, свет полностью отражается обратно в оптически более плотную среду (n2). Это явление называют полным внутренним отражением (2).

Показатель преломления n1 рассчитывается по величине критического угла α, когда
β = 90° —> sin β = 1. 

Внимание! Луч в случае 1 (зеленая стрелка) падает под критическим углом, а полное внутренне отражение происходит в случае 2 (голубая стрелка).

Закон преломления света и устройство рефрактометра

На основе описанного выше закона преломления света созданы рефрактометры — приборы для измерения показателя преломления жидкостей и высоковязких веществ.

На иллюстрации схематически показано устройство измерительной ячейки цифрового рефрактометра, в котором использован закон преломления света. Процедура измерения связана с полным внутренним отражением и критической величиной угла падения света. Принцип действия:

Источник света (1) — светодиод (LED). Луч света от светодиода проходит через поляризационный фильтр (2), интерференционный фильтр (3) и фокусирующие линзы (4), а затем через сапфировую призму (5) на образец.

Когда угол падения превышает критическую величину, отраженный свет попадает через линзу (6) на оптический датчик с зарядовой связью (7), который фиксирует критический угол. Кроме того, современные цифровые рефрактометры автоматически контролируют температуру на поверхности раздела призма/образец для повышения точности измерения.

Измерение показателя преломления: что измеряет рефрактометр?

Цифровой рефрактометр предназначен для измерения показателя преломления и связанных с ним характеристик жидкостей по методу полного внутреннего отражения. Процедура измерения автоматизирована, благодаря чему точность результатов не зависит от оператора. Измерение выполняется в течение нескольких секунд с высокой точностью на небольших образцах (объемом от 0,5 до 1 мл).

Также для измерения показателя преломления используются ручные рефрактометры, например оптический настольный рефрактометр Аббе или обычный переносной рефрактометр. Подробнее об их достоинствах и недостатках.

Факторы, влияющие на величину показателя преломления

Влияние температуры на измерение показателя преломления

Как зависит величина показателя преломления от температуры?

Сначала узнаем, как влияет температура на жидкости. С ростом температуры увеличивается пространство, которое занимают атомы, связанные между собой в одной молекуле. При нагревании усиливаются колебания атомов, атомы отодвигаются друг от друга раздвигаются, что приводит к снижению оптической плотности среды.

Как сказано выше, показатель преломления связан со скоростью распространения света в среде. Когда температура растет, оптическая плотность среды снижается, а скорость света в ней увеличивается, что приводит к небольшому изменению угла преломления. Другими словами, чем выше температура, тем меньше показатель преломления, как показано на графике ниже на примере воды.

Из графика видно, что температура образца существенно влияет на измеряемую величину. Это означает, что температуру следует точно измерять и по возможности регулировать.

Приборы старой конструкции, например рефрактометры Аббе, приходится помещать в жидкостный термостат. В большинстве современных цифровых рефрактометров температура оптической системы регулируется с помощью элемента Пельтье. Такая конструкция обеспечивает быстрое и точное измерение показателя преломления.

Влияние температуры на измерение показателя преломления

Влияние длины волны на измерение показателя преломления

Вследствие различной дисперсии света (дисперсионного соотношения) в разных веществах показатели преломления также почти всегда различаются в зависимости от длины волны света, используемого для измерения. Дисперсионное соотношение можно рассчитать следующим образом.

Мы знаем, что скорость распространения света в среде равна:

v = c/n,

где:
n — показатель преломления;
c — скорость света в вакууме (или воздухе);
v — скорость света в данной среде.

Длина волны в этой же среде:

λ = λ0/n,

где: λ0 — длина световой волны в вакууме (или воздухе).

Следовательно, величина показателя преломления (n) обратно пропорциональна как длине волны, так и скорости распространения света в среде. Это означает, что при большей длине волны показатель преломления уменьшается. Такое соотношение можно представить в виде уравнения:

v(λ) = c/n(λ).

В то же время для контроля качества в промышленности необходимо иметь определенную точную длину волны, чтобы сравнивать значения показателя преломления различных образцов, измеренные в одинаковых условиях.

Чаще всего в рефрактометрах используется желтая линия спектра натрия с длиной волны 589,3 нм. Желтая линия натрия уже давно используется для измерения показателя преломления. Это широко доступный, надежный и стабильный стандарт оптического излучения.

n = показатель преломления.

t = температура (°C).

D = желтая линия натрия.

Значение показателя преломления, измеренное по желтой линии натрия, обозначается символом nD.

Показатель преломления: применение на практике

Любой материал, который взаимодействует со светом, можно характеризовать показателем преломления. Во многих отраслях промышленности измерение показателя преломления используется для проверки чистоты и концентрации жидких, высоковязких и твердых образцов. Показатель преломления жидких и высоковязких материалов измеряется с высокой точностью (погрешность от ± 0,00002).

Кроме того, показатель преломления можно сопоставлять с широким диапазоном концентраций. Эту зависимость используют для анализа многих материалов в разных отраслях, например:

  • Производство пищевых продуктов и напитков: плотность (содержание сахара) по шкале Брикса для безалкогольных напитков или плотность виноградного сусла по шкале Эксле.
  • Химическая промышленность: температура замерзания (°C или °F), концентрация кислоты/щелочи, содержание органических растворителей или неорганических солей в объемных или весовых процентах.
  • Производство и клинические исследования лекарств: содержание перекиси или метилового спирта, концентрация различных веществ в моче.

В некоторых случаях измерение показателя преломления сочетают с измерением плотности, получая простой и эффективный метод контроля. Такой анализ можно полностью автоматизировать.

Требуется более подробная информация о показателях Брикса, Плато, Баллинга и Боме?

Наряду с плотностью по шкале Брикса, существуют другие сопоставимые единицы для измерения содержания сахарозы, например градусы Плато, Боме, Эксле и Баллинга. Узнайте больше об их различиях, применении, способах измерения и расчета.

Абсолютный и относительный показатель преломления

Абсолютный показатель преломления

Абсолютный показатель преломления рассчитывается относительно вакуума, в котором свет распространяется с максимально возможной скоростью 299 792 458 метров в секунду (скорость света). На практике воздух, которым мы дышим, также считается эталонной средой, хотя свет распространяется в нем с чуть меньшей скоростью (в 1,0003 раза медленнее, чем в вакууме).

Можно сказать, что абсолютный показатель преломления указывает, во сколько раз скорость света в вакууме (или воздухе) больше, чем в другой среде.

В качестве примера рассчитаем абсолютный показатель преломления воды, в которой, как известно, свет при 20 °C распространяется со скоростью 2,25 × 108 м/с.

Получается, что в воде свет распространяется в 1,33333 раза медленнее, чем в вакууме (или воздухе).

Относительный показатель преломления

Относительный показатель преломления — это отношение скоростей распространения света в любых двух средах, кроме вакуума (или воздуха). Можно, например, измерить показатель преломления оливкового масла относительно показателя преломления воды. Однако в производственной практике пользоваться относительными величинами неудобно.

Рекомендации по измерению показателя преломления

Современные цифровые приборы легко определяют показатели преломления жидкостей с высокой точностью. Тем не менее сами приборы с высоким разрешением еще не гарантируют получения точных результатов. Необходимо придерживаться правильной методики измерения.

Например, если плохо очистить призму или просто стереть предыдущий образец салфеткой, в следующем измерении может возникнуть существенная ошибка.

Поскольку рефрактометр измеряет угол полного отражения от поверхности призмы, даже самый тонкий слой оставшегося вещества сильно повлияет на измерение показателя преломления любого нового образца.

Скачайте руководство по измерению показателя преломления и изучите рекомендации, чтобы избежать ошибок в определении показателя преломления жидкостей.

Совершенствуйте методику измерения показателя преломления

Есть важные правила, которые необходимо соблюдать, чтобы измерять показатель преломления более точно, независимо от того, работаете вы с химическими реактивами, пищевыми продуктами, напитками или другими материалами, которые могут быть и пастообразными, и жидкими. Необходимо уделить внимание следующим вопросам:

  • Как часто следует калибровать прибор?
  • Какой растворитель использовать для очистки измерительной ячейки и призмы?
  • Образец пастообразный или вязкий. Какой должна быть процедура его подготовки и измерения?

Ответы на эти вопросы напрямую влияют на качество результатов. Изучите интерактивную брошюру, посвященную основным проблемам измерения показателя преломления, градусов Брикса и плотности.

Приблизительные значения показателя преломления стандартных и эталонных веществ

Часто задаваемые вопросы

О чем говорит высокое значение показателя преломления?

Высокое значение показателя преломления означает, что лучи света распространяются в среде медленно. На практике высокий показатель преломления указывает на высокую концентрацию раствора.
 

Как примеси влияют на показатель преломления?

Влияние примесей на показатель преломления может быть двояким:

  1. Если показатель преломления примеси выше показателя преломления среды: скорость света в среде уменьшается, и показатель преломления увеличивается.
  2. Если показатель преломления примеси ниже показателя преломления среды: скорость света в среде увеличивается, и показатель преломления уменьшается.
     

Как твердые частицы влияют на показатель преломления?

Если жидкий образец содержит взвесь твердых частиц, рекомендуется после нанесения образца на предметный столик микроскопа подождать немного (например, 10 секунд), прежде чем приступить к измерению.
 

Можно ли с помощью рефрактометра измерять показатель преломления черных или цветных образцов?

Да, с помощью цифрового рефрактометра можно измерять показатель преломления темных, черных и окрашенных материалов.
 

Как показатель преломления можно использовать для идентификации веществ?

Показатель преломления удобно использовать для идентификации чистых образцов, поскольку каждое вещество имеет собственное значение этой величины. По измеренному значению показателя преломления можно, пользуясь справочником, определить соответствующее вещество. Кроме того, автоматические рефрактометры пересчитывают значение показателя преломления в единицы измерения концентрации (например, градусы Брикса, весовые или объемные проценты и т. д.).
 

Содержание:

  • § 1  Преломление света на границе раздела двух сред
  • § 2  Относительный показатель преломления
  • § 3  Законы преломления света

§ 1  Преломление света на границе раздела двух сред

Познакомимся теперь с явлением, при котором лучи меняют направление своего распространения при переходе из одной среды в другую. Явление называется, преломление света на границе раздела двух сред. Взгляните на рисунки.

Если посмотреть на сосуд сбоку, то можно заметить, что часть карандаша, находящаяся в воде, кажется сдвинутой в сторону.

Луч, выходящий из лазера, преломляется, дойдя до стеклянной стенки аквариума, то есть изменил направление при переходе из воздуха через стекло в воду.

Преломлением света – это явление изменения направления световой волны при переходе из одной среды в другую.

Рассмотрим по рисункам примеры преломления светового луча на границах воздуха и воды, воздуха и стекла, воды и стекла.

При сравнении видно, что пара сред «воздух-стекло» преломляет свет сильнее, чем пара сред «воздух-вода». Почему свет преломляется по-разному при прохождении различных сред? Стоит выяснить каковы причины преломления света. Этой причиной является разная скорость света в средах (веществах).

Введем новую величину:

nабс = n – абсолютный показатель преломления светав данной среде.

Эта величина характеризует во сколько раз скорость света в данной среде меньше, чем в воздухе (в вакууме, скорость света в вакууме равна 3∙108м/с), т.е.:

(абсолютный показатель преломления равен отношению скорости света в вакууме к скорости света в среде).

Чем больше абсолютный показатель вещества, тем меньше скорость света в среде, то есть тем более плотная среда, и наоборот. Сравним значения показателей преломления по таблице. Эти значения измерены при 20 °С для жёлтого света. При другой температуре или другом цвете света показатели будут иными.

Показатель преломления в воздухе равен 1,0003; в воде – 1,33; в стекле – 1,5 –2.

Вывод: чем больше показатель преломления отличается от единицы, тем больше угол, на который отклоняется луч, переходя из вакуума в среду. Как раз на рисунке показаны разные углы преломления.

§ 2  Относительный показатель преломления

Почему в разных средах свое значение показателя преломления? Потому что абсолютный показатель преломления зависит: от температуры среды, от плотности среды, от наличия в ней деформаций, от магнитных и электрических свойств среды.

Исходя из сказанного, можно отметить, что пары сред, прозрачные для оптических излучений, обладают различной преломляющей способностью,

Характеризующейся относительным показателем преломления.Он вычисляется по формуле, которую укажем позже.

Выяснив причину преломления света, перейдем к закону его преломления. Для этого рассмотрим характеристики светового луча, падающего на границу раздела двух прозрачных сред I и II. Обратимся к рисунку, пусть луч света падает на первую среду, а затем изменяет направление и переходит во вторую среду, или как говорят, преломляется.

Где OZ – преломленный луч, указывающий направления распространения световой волны во II-ой среде.

АВ – граница раздела двух сред.

т.О – точка падения луча на границу раздел.

∠ β – угол преломления – угол между преломлённым лучом и продолжением перпендикуляра, восстановленного в точке падения луча на данную поверхность.

∠ α – угол между падающим лучом СО и перпендикуляром, восстановленным в точку О.

Теперь соберем в едино сказанные утверждения и обобщим. Итак, световой луч, падающий на АВ под любым углом падения неравным нулю:

a) частично отражается

b) частично переходит в другую среду

c) при изменении угла падения, изменяется угол преломления, но при переходе луча света в среду с большей оптической плотностью угол преломления меньше угла падения; при переходе луча света из оптически более плотной среды в среду менее плотную угол преломления больше угла падения

d) падающий луч и преломленный луч взаимно обратимы, то есть их можно поменять местами и ход лучей не поменяется. (см. рисунок).

e) падающий световой луч на АВ не преломляется, если: луч падает пол углом 90°, если абсолютные показатели прозрачных сред одинаковы, то угол преломления равен углу падения.

f) при любом угле падения, неравным нулю, выполняется законы преломления света.

§ 3  Законы преломления света

1. Отношение синуса угла падения к синусу угла преломления величина постоянная для двух прозрачных сред и называется относительным показателем преломления второй среды, относительно первой.

(отношение синуса альфа к синусу бета равно относительному показателю второй среды относительно первой), где

(относительный показатель преломления двух сред равен отношению абсолютного показателя второй среды к абсолютному показателю первой среды) или

(относительный показатель преломления двух сред равен отношению скорости света в первой среде к скорости света второй среды)

2. Луч, падающий и луч преломлённый, а также перпендикуляр к границе раздела сред в точке излома луча лежат в одной плоскости.

Список использованной литературы:

  1. Физика. 8 класс: Учебник для общеобразовательных учреждений/А.В. Перышкин. – М.: Дрофа, 2010.
  2. Физика 7-9 Учебник И.В.Кривченко
  3. Физика Справочник О.Ф. Кабардин – М.: АСТ-ПРЕСС, 2010.
  4. Физика. 9 класс. Пинский А.А., Разумовский В.Г. и др. 4-е изд. — М.: 2003.

Использованные изображения:

Содержание:

Преломление света:

Почему ложка, опущенная в стакан с водой, кажется нам сломанной на границе воздуха и воды? Что такое оптическая плотность среды? Как ведет себя свет, переходя из одной среды в другую? Обо всем этом вы узнаете из этого параграфа.

Опыты по преломлению света

Проведем такой эксперимент. Направим на поверхность воды в широком сосуде узкий пучок света под некоторым углом к поверхности. Мы заметим, что в точках падения лучи не только отражаются от поверхности воды, но и частично проходят в воду, изменяя при этом свое направление (рис. 3.33).

Изменение направления распространения света в случае его прохождения через границу раздела двух сред называют преломлением света.

Первое упоминание о преломлении света можно найти в работах древнегреческого философа Аристотеля, который задавался вопросом: почему палка в воде кажется сломанной? А в одном из древнегреческих трактатов описан такой опыт: «Нужно встать так, чтобы плоское кольцо, положенное на дно сосуда, спряталось за его краем.
Преломление света в физике - формулы и определения с примерами

Потом, не изменяя положения глаз, налить в сосуд воду. Луч света преломится на поверхности воды, и кольцо станет видимым». Аналогичный опыт проиллюстрирован на рис. 3.34.

Причина преломления света

Так почему же свет, переходя из одной среды в другую, изменяет свое направление?

Мы уже знаем, что свет в вакууме распространяется хотя и с огромной, но тем не менее конечной скоростью — около 300 000 км/с. В любой другой среде скорость света меньше, чем в вакууме.

Преломление света в физике - формулы и определения с примерами

Например, в воде скорость све-та в 1,33 раза меньше, чем в вакууме; когда свет переходит из воды в алмаз, его скорость уменьшается еще в 1,8 раза; в воздухе скорость распространения света в 2,4 раза больше, чем в алмазе, и лишь немного ( = 1,0003 раза) меньше скорости света в вакууме. Именно изменение скорости света в случае перехода из одной прозрачной среды в другую является причиной преломления света.

Принято говорить об оптической плотности среды: чем меньше скорость распространения света в среде, тем большей является оптическая плотность среды.

Так, воздух имеет большую оптическую плотность, чем вакуум, поскольку в воздухе скорость света несколько меньше, чем в вакууме. Оптическая плотность воды меньше, чем оптическая плотность алмаза, поскольку скорость света в воде больше, чем в алмазе.

Чем больше отличаются оптические плотности двух сред, тем более преломляется свет на границе их раздела. Другими словами, чем больше изменяется скорость света на границе раздела двух сред, тем сильнее он преломляется.

Закономерности преломления света

Рассмотрим явление преломления света подробнее. Для этого снова воспользуемся оптической шайбой. Установив в центре диска стеклянный полуцилиндр, направим на него узкий пучок света (рис. 3.35). Часть пучка отразится от поверхности полуцилиндра, а часть пройдет сквозь него, изменив свое направление (преломится).

На схеме по правую сторону луч SO задает направление падающего пучка света, луч ОК — направление отраженного пучка, луч ОВ — направление
Преломление света в физике - формулы и определения с примерами

Преломление света в физике - формулы и определения с примерами

Рис. 3.36. Установление закономерности преломления света Преломление света в физике - формулы и определения с примерами— углы падения, Преломление света в физике - формулы и определения с примерами— углы преломления).

В случае увеличения угла падения света увеличивается и угол его преломления. Если свет падает из среды с меньшей оптической плотностью в среду с большей оптической плотностью (из воздуха в стекло) (а), то угол падения больше угла преломления. Если наоборот (из стекла в воздух) (б), то угол преломления больше угла падения преломленного пучка; MN — перпендикуляр, восставленный в точке падения луча SO. Все указанные лучи лежат в одной плоскости — в плоскости поверхности диска.

Угол, образованный преломленным лучом и перпендикуляром к границе деления двух сред, восставленным в точке падения луча, называется углом преломления.

Если теперь увеличить угол падения, то мы увидим, что увеличится и угол преломления. Уменьшая угол падения, мы заметим уменьшение угла преломления (рис. 3.36).

Соотношение значений угла падения и угла преломления в случае перехода пучка света из одной среды в другую зависит от оптической плотности каждой из сред. Если, например, свет падает из воздуха в стекло (рис. 3.36, а), то угол преломления всегда будет меньшим, чем угол падения (Преломление света в физике - формулы и определения с примерами). Если же луч света направить из стекла в воздух (рис. 3.36, б),

то угол преломления всегда будет большим, чем  угол падения (Преломление света в физике - формулы и определения с примерами).

Напомним, что оптическая плотность стекла больше оптической плотности воздуха, и сформулируем закономерности преломления света.

  1. Луч падающий, луч преломленный и перпендикуляр к границе раздела двух сред, восставленный в точке падения луча, лежат в одной плоскости.
  2. Существуют такие соотношения между углом падения и углом преломления
  • а)    в случае увеличения угла падения увеличивается и угол преломления
  • б)    если луч света переходит из среды с меньшей оптической плотностью в среду с большей оптической плотностью, то угол преломления будет меньше, чем угол падения
  • в)    если луч света переходит из среды с большей оптической плотностью в среду с меньшей оптической плотностью, то угол преломления будет большим, чем угол падения.

(Следует отметить, что в старших классах, после изучения курса тригонометрии, вы глубже познакомитесь с преломлением света и узнаете о нем на уровне законов.)
 

Объясняем преломлением света некоторые оптические явления

Когда мы, стоя на берегу водоема, стараемся на глаз определить его глубину, она всегда кажется меньшей, чем есть на самом деле. Это явление объясняется преломлением света (рис. 3.37).

Следствием преломления света в атмосфере Земли является тот факт, что мы видим Солнце и звезды немного выше их реального положения (рис. 3.38). Преломлением света можно объяснить еще много природных явлений: возникновение миражей, радуги и др.

Явление преломления света является основой работы многочисленных оптических устройств (рис. 3.39). С некоторыми из них мы познакомимся в следующих параграфах, с некоторыми — в ходе дальнейшего изучения физики.
Преломление света в физике - формулы и определения с примерами

Преломление света в физике - формулы и определения с примерами

Итоги:

Световой пучок, падая на границу раздела двух сред, имеющих разную оптическую плотность, делится на два пучка. Один из них — отраженный — отражается от поверхности, подчиняясь законам отражения света. Второй — преломленный — проходит через границу раздела в другую среду, изменяя свое направление.

Причина преломления света — изменение скорости света в случае перехода из одной среды в другую. Если во время перехода света из одной среды в другую скорость света уменьшилась, то говорят, что свет перешел из среды с меньшей оптической плотностью в среду с большей оптической плотностью, и наоборот.

Преломление света происходит по определенным законам.

Преломление света в физике - формулы и определения с примерами

Преломление света

Преломление света в физике - формулы и определения с примерамиПреломление света в физике - формулы и определения с примерами
Почему ноги человека, зашедшего в воду, кажутся короче (рис. 250)? Дно бассейна мы видим ближе к поверхности, чем есть в действительности. Ложка в стакане на уровне поверхности воды (рис. 251) кажется переломленной. Как объяснить эти явления?

Когда пучок света падает на границу раздела двух прозрачных сред, часть его отражается, а часть переходит в другую среду, изменяя свое направление (рис. 252).

Преломление света в физике - формулы и определения с примерами

Изменение направления распространения света при переходе его через границу раздела двух сред называется преломлением.

Каким законам подчиняется преломление света?

Рассмотрим опыт. В центре оптического диска закрепим стеклянный полудиск (рис. 253), направим на него узкий пучок света (луч 1). Луч 3 — преломленный луч.

Угол Преломление света в физике - формулы и определения с примерами между перпендикуляром, проведенным в точку падения к границе раздела двух сред, и преломленным лучом называется углом преломления.

Сравнив углы Преломление света в физике - формулы и определения с примерами (см. рис. 253), мы видим, что угол преломления Преломление света в физике - формулы и определения с примерами меньше угла падения Преломление света в физике - формулы и определения с примерами

Увеличим угол падения (рис. 254). Угол преломления тоже увеличивается, но он по-прежнему меньше угла падения.

Преломление света в физике - формулы и определения с примерами

Если стекло заменить водой и пустить световой луч и под тем же углом Преломление света в физике - формулы и определения с примерами (рис. 255, а), что и на стеклянный полудиск, то угол преломления Преломление света в физике - формулы и определения с примерами в воде будет несколько больше, чем в стекле, но меньше угла падения: Преломление света в физике - формулы и определения с примерами Сравним скорости света в воздухе, воде и стекле: Преломление света в физике - формулы и определения с примерами т. е. стекло оптически более плотная среда, чем вода, а вода — чем воздух. Следовательно, при переходе луча из оптически менее плотной в оптически более плотную среду угол преломления меньше угла падения.

А если луч переходит из воды в воздух?

Из опыта (рис. 255, б) видно, что угол Преломление света в физике - формулы и определения с примерами больше угла Преломление света в физике - формулы и определения с примерами Значит, если свет переходит из среды оптически более плотной в оптически менее плотную, то угол преломления больше угла падения. Этот вывод логически следует из свойства обратимости, которое характерно не только для падающего и отраженного лучей, но и для падающего и преломленного лучей.

Из результатов проведенных опытов следует.

  1. Луч падающий и луч преломленный лежат в одной плоскости с перпендикуляром, проведенным в точку падения луча к границе раздела двух сред.
  2. Угол преломления меньше утла падения при переходе луча из оптически менее плотной среды в оптически более плотную среду. Угол преломления больше угла падения, если луч переходит из оптически более плотной среды в оптически менее плотную.

Эти два главных положения выражают суть явления преломления света. Однако, когда луч надает перпендикулярно на границу раздела двух сред Преломление света в физике - формулы и определения с примерамион не испытывает преломления, что можно подтвердить опытом (рис. 256).
Преломление света в физике - формулы и определения с примерами

Главные выводы:

  1. При переходе из одной среды в другую световой луч на границе раздела сред в большинстве случаев испытывает преломление (изменяет направление).
  2. Луч, падающий перпендикулярно к границе раздела двух сред, не испытывает преломления.
  3. Если луч переходит из оптически менее плотной среды в оптически более плотную, угол преломления меньше угла падения Преломление света в физике - формулы и определения с примерами При переходе луча из оптически более плотной среды в менее плотную угол преломления больше угла падения Преломление света в физике - формулы и определения с примерами

Преломление света на границе разделения двух сред. Закон преломления света

Еще в древние времена люди утверждали, что палка, опущенная в воду, на границе воздух-вода будто сломана. Вынув из воды, она оказывается целой. Так человек впервые столкнулся с явлением преломления света.

Первым это явление начал изучать древнегреческий естествоиспытатель Клеомед (I в. н. э.). Он установил, что луч света, распространяющийся под углом с менее плотной оптической среды в более плотную, например из воздуха в воду, изменяет свое направление, то есть преломляется. Клеомед говорил, что под определенным углом мы не будем видеть предмет, лежащий на дне сосуда (рис. 135), но если налить в сосуд воды, предмет будет видно.

Преломление света в физике - формулы и определения с примерами

Таким образом, по мнению Клеомеда, благодаря преломлению лучей можно видеть Солнце, зашедшее за горизонт.

Другой древнегреческий ученый Клавдий Птоломей (II в. н. э.) опытным путем определил величину, характеризующую преломление лучей света при переходе их из воздуха в воду, из воздуха в стекло и из воды в стекло.

Преломление света в физике - формулы и определения с примерами

Опыт 1. Направим луч света на тонкостенный сосуд с подкрашенной водой, который имеет форму прямоугольного параллелепипеда. Мы видим, что на границе двух сред луч света изменяет свое направление: отражается и преломляется (рис. 136, а).

Изменение направления распространения света при его переходе через границы разделения двух оптически прозрачных сред называют преломлением света.

Выполним чертеж (рис. 136, б). Опыт показывает, что угол отражения света Преломление света в физике - формулы и определения с примерами равен углу падения света а, а при переходе луча из воздуха в воду угол преломления света Преломление света в физике - формулы и определения с примерами(гамма) меньше угла падения света а. Кроме того, видим, что падающий и преломленный лучи света лежат в одной плоскости с перпендикуляром, проведенным к поверхности разделения двух сред в точку падения света. При переходе луча света из воды в воздух угол преломления света Преломление света в физике - формулы и определения с примерамибольше угла падения света Преломление света в физике - формулы и определения с примерами.

Этот опыт показывает, что при переходе светового луча с одной среды в другую: падающий и преломленный лучи света лежат в одной плоскости с перпендикуляром, проведенным к плоскости разделения двух сред в точку падения луча света; в зависимости от того, с какой среды в какую переходит луч света, угол преломления луча света может быть больше или меньше угла падения света.

Разные среды по-разному преломляют световые лучи. Например, алмаз преломляет лучи света больше, чем вода или стекло.

Среда, преломляющая свет, должна быть прозрачной, то есть такой, чтобы сквозь нее проходили лучи света.

Световые лучи преломляются, поскольку они распространяются в разных средах (телах) с неодинаковой скоростью. В воздухе скорость распространения света больше, чем в воде, в воде больше, чем в стекле.

Опыт 2. Поместим в сосуд с водой специальный источник света, от которого в разные стороны распространяются лучи света (рис. 137). Луч света, падающий перпендикулярно к границе вода-воздух, не преломляется.

Преломление света в физике - формулы и определения с примерами

Лучи света, падающие под разными углами к поверхности воды, преломляются по-разному. Но есть лучи света, которые вообще не переходят из воды в воздух, а полностью отражаются от ее поверхности. Явление, когда лучи света не выходят из среды и полностью отражаются внутрь, называют полным внутренним отражением света.

Явление полного внутреннего отражения света используют в специальных приборах — световодах. Световоды (рис. 138) широко применяют для передачи изображений предметов с любого места на любые расстояния.
Преломление света в физике - формулы и определения с примерами

Пример №1

1.    Какой из углов больше — угол падения или угол преломления, если свет переходит: а) из воды в воздух; б) из воздуха в стекло; в) из воды в стекло?

Ответ: а) угол падения; б) угол падения; в) угол преломления.

Пример №2

2.    В стакан с водой вставили трубку для сока. Как объяснить явление, изображенное на рисунке 145?

Преломление света в физике - формулы и определения с примерами

Ответ: если смотреть на рисунок, то видим, что трубка для сока кажется сломанной. Это объясняется законами преломления света.

Закон преломления света и показатель преломления

Геометрической оптикой называют раздел оптики, в которой изучаются законы распространения света в прозрачных средах на основе представления о нем как о совокупности световых лучей.

Под лучом понимают линию, вдоль которой переносится энергия электромагнитной волны. Условимся изображать оптические лучи графически с помощью геометрических лучей со стрелками. В геометрической оптике волновая природа света не учитывается.

Уже в начальные периоды оптических исследований были экспериментально установлены четыре основных закона геометрической оптики:

  • закон прямолинейного распространения света;
  • закон независимости световых лучей;
  • закон отражения световых лучей;
  • закон преломления световых лучей.

В этих законах использовались понятия световой пучок и световой луч, т. е. предполагалось, что пучок и луч бесконечно тонкие.

Световые пучки получают при пропускании светового излучения, идущего от удаленного источника, через отверстие (диафрагму) в экране I (рис. 52). Эксперименты показывают, что если диаметр D гораздо больше длины световой волны Преломление света в физике - формулы и определения с примерами и расстояние l от отверстия до экрана велико по сравнению с размером диафрагмы (l Преломление света в физике - формулы и определения с примерами D), то выходящий из диафрагмы пучок является параллельным. Для него на не слишком больших расстояниях l от экрана выполняется неравенство Преломление света в физике - формулы и определения с примерами

Преломление света в физике - формулы и определения с примерами

Если же диаметр диафрагмы или размеры предмета оказываются сравнимы с длиной световой волны, то выходящий световой пучок становится расходящимся, свет проникает в область геометрической тени, происходит дифракция света, т. е. проявляется волновой характер светового излучения. Следует отметить, что дифракция будет наблюдаться на очень больших расстояниях от экрана (Преломление света в физике - формулы и определения с примерами) даже при диаметре светового отверстия Преломление света в физике - формулы и определения с примерами.

Таким образом, луч — это направление, перпендикулярное фронту волны, в котором она переносит энергию.

Лучи, выходящие из одной точки, называют расходящимися, а собирающиеся в одной точке, — сходящимися. Примером расходящихся лучей может служить наблюдаемый свет далеких звезд, а примером сходящихся — совокупность лучей, попадающих в зрачок нашего глаза от различных предметов.

Для изучения свойств световых волн необходимо знать как закономерности их распространения в однородной среде, так и закономерности отражения и преломления на границе раздела двух сред.

Преломление света в физике - формулы и определения с примерами

Рассмотрим процессы, происходящие при падении плоской световой волны на плоскую поверхность раздела однородных изотропных и прозрачных сред при условии, что размеры поверхности раздела намного больше длины волны падающего излучения.

Пусть на плоскую поверхность раздела LM двух сред падает плоская световая волна, фронт которой АВ (рис. 53). Если угол падения а отличен от нуля, то различные точки фронта АВ волны достигнут границы раздела LM не одновременно.

Согласно принципу Гюйгенса точка Преломление света в физике - формулы и определения с примерами которой фронт волны достигнет раньше всего (см. рис. 53), станет источником вторичных волн. Вторичные волны будут распространяться со скоростью v и за промежуток времени Преломление света в физике - формулы и определения с примерами за который точка фронта Преломление света в физике - формулы и определения с примерами, достигнет границы раздела двух сред (точки Преломление света в физике - формулы и определения с примерами), вторичные волны из точки Преломление света в физике - формулы и определения с примерами пройдут расстояние Преломление света в физике - формулы и определения с примерами Падающая и возникающие вторичные волны распространяются в одной и той же среде, поэтому их скорости одинаковы, и они пройдут одинаковые расстояния Преломление света в физике - формулы и определения с примерами

Касательная, проведенная из точки Преломление света в физике - формулы и определения с примерами к полуокружности радиусом Преломление света в физике - формулы и определения с примерамиявляется огибающей вторичных волн и дает положение фронта волны через промежуток времени Преломление света в физике - формулы и определения с примерами. Затем он перемещается в направлении Преломление света в физике - формулы и определения с примерами.

Из построения следует, что Преломление света в физике - формулы и определения с примерами С учетом определений угла падения Преломление света в физике - формулы и определения с примерамии угла отражения Преломление света в физике - формулы и определения с примерами находим, что Преломление света в физике - формулы и определения с примерами как углы с взаимно перпендикулярными сторонами. Следовательно, угол отражения равен углу падения (Преломление света в физике - формулы и определения с примерами = Преломление света в физике - формулы и определения с примерами). Таким образом, исходя из волновой теории света на основании принципа Гюйгенса получен закон отражения света.

Преломление света в физике - формулы и определения с примерами

Рассмотрим, что будет происходить во второй среде (рис. 54), считая, что скорость Преломление света в физике - формулы и определения с примерами распространения света в ней меньше, чем в первой (Преломление света в физике - формулы и определения с примерами<Преломление света в физике - формулы и определения с примерами)-Фронт падающей волны АВ будет перемещаться со скоростью у, по направлению Преломление света в физике - формулы и определения с примерами. К моменту времени Преломление света в физике - формулы и определения с примерами когда точка В фронта достигнет границы раздела двух сред (точка Преломление света в физике - формулы и определения с примерами), вторичная волна из точки Преломление света в физике - формулы и определения с примерами (согласно принципу Гюйгенса) пройдет расстояние Преломление света в физике - формулы и определения с примерами Фронт волны, распространяющейся во второй среде, можно получить, проводя прямую линию, касательную к полуокружности с центром в точке Преломление света в физике - формулы и определения с примерами.

Из построения видно, что Преломление света в физике - формулы и определения с примерами как углы с взаимно перпендикулярными сторонами.

Из треугольника Преломление света в физике - формулы и определения с примерами находим Преломление света в физике - формулы и определения с примерами и из треугольника Преломление света в физике - формулы и определения с примерами — Преломление света в физике - формулы и определения с примерамиоткуда получаем соотношение

Преломление света в физике - формулы и определения с примерами

Из него следует закон преломления

Преломление света в физике - формулы и определения с примерами

Вспомним, что абсолютным показателем преломления называется отношение скорости распространения световой волны в вакууме с к ее скорости распространения в данной среде v:

Преломление света в физике - формулы и определения с примерами

С учетом этого соотношения закон преломления принимает вид:

Преломление света в физике - формулы и определения с примерами

Таким образом, исходя из волновой теории света, получен закон преломления световых волн:

Можно записать закон преломления и в другом виде:

Преломление света в физике - формулы и определения с примерами

Для наблюдения явления преломления света достаточно поместить карандаш в стакан с водой и посмотреть на него со стороны — карандаш будет казаться «надломленным» (преломленным) (рис. 55).

Преломление света в физике - формулы и определения с примерами

Первые упоминания о преломлении света в воде и стекле встречаются в труде Клавдия Птолемея «Оптика», вышедшем в свет во II в. н. э. Закон преломления света был экспериментально установлен в 1620 г. голландским ученым Виллебродом Снеллиусом. Независимо от Снеллиуса закон преломления был также открыт Рене Декартом.

Отметим, что причиной преломления волн, т. е. изменения направления распространения волн на границе раздела двух сред, является изменение скорости распространения электромагнитных волн при переходе излучения из одной среды в другую.

Как следует из закона преломления, при переходе света из оптически более плотной среды I (с большим абсолютным показателем преломления Преломление света в физике - формулы и определения с примерами) (рис. 56) в оптически менее плотную среду II (с меньшим показателем преломления Преломление света в физике - формулы и определения с примерами) угол преломления у становится больше угла падения Преломление света в физике - формулы и определения с примерами.

Преломление света в физике - формулы и определения с примерами

По мере увеличения угла падения при некотором его значении Преломление света в физике - формулы и определения с примерами угол преломления станет Преломление света в физике - формулы и определения с примерами = 90°, т. е. свет не будет попадать во вторую среду.

Энергия преломленной волны при этом станет равной нулю, а энергия отраженной волны будет равна энергии падающей. Следовательно, начиная с этого угла падения, вся световая энергия отражается от границы раздела этих сред в среду I.

Это явление называется полным отражением (см. рис. 56). Угол Преломление света в физике - формулы и определения с примерами, при котором начинается полное отражение, называется предельным углом полного отражения. Он определяется из закона преломления при условии, что угол преломления Преломление света в физике - формулы и определения с примерами = 90°:

Преломление света в физике - формулы и определения с примерами

Таким образом, при углах падения больших Преломление света в физике - формулы и определения с примерами преломленная волна отсутствует.

В 1954 г. белорусским физиком, академиком Федором Ивановичем Федоровым было теоретически предсказано новое физическое явление — боковое смещение светового пучка при полном отражении. В 1969 г. французским физиком К- Эмбером оно было подтверждено экспериментально и получило название «сдвиг Федорова». Федоровым был развит новый бескоординатный метод описания оптических свойств кристаллов. На его основе разработана общая теория оптических свойств поглощающих кристаллов.

Полное отражение

Изменение направления распространения луча света при прохождении через границу раздела двух сред называется преломлением света.

Геометрической оптикой называют раздел оптики, в котором изучаются законы распространения оптического излучения на основе представления о световых лучах.

Под лучом понимают линию, вдоль которой переносится энергия электромагнитной волны. Условимся изображать световые лучи графически с помощью геометрических линий со стрелками. В геометрической оптике волновая природа света не учитывается.

Геометрическому лучу на практике соответствует тонкий световой пучок, получаемый при пропускании светового излучения, идущего от удаленного источника, через отверстие (диафрагму) в экране (рис. 69).

Преломление света в физике - формулы и определения с примерами

Таким образом, следует различать геометрический луч (математическое понятие) и световой пучок (материальный объект), получаемый от источника света.

Уже в начальные периоды оптических исследований были экспериментально установлены четыре основных закона геометрической оптики:

  • закон прямолинейного распространения света;
  • закон независимости световых лучей;
  • закон отражения световых лучей;
  • закон преломления световых лучей.

Световой поток можно разделить на отдельные световые пучки, выделяя их при помощи диафрагм. Действие выделенных световых пучков оказывается независимым друг от друга, т. е. эффект, производимый отдельным пучком, не зависит от того, действуют одновременно с ним другие пучки или нет.

Световые пучки получают при пропускании светового излучения, идущего от удаленного источника, через отверстие (диафрагму) в экране Преломление света в физике - формулы и определения с примерами (рис. 70). Для того чтобы можно было пренебречь дифракционным расширением пучка, должно выполняться условие:

Преломление света в физике - формулы и определения с примерами

Преломление света в физике - формулы и определения с примерами

где Преломление света в физике - формулы и определения с примерами — размер препятствия или отверстия, на котором свет дифрагирует, Преломление света в физике - формулы и определения с примерами — длина световой волны, Преломление света в физике - формулы и определения с примерами — расстояние от препятствия до места наблюдения дифракционной картины.

В этом случае выходящий из диафрагмы пучок будет оставаться неизменным, и он называется параллельным.

Соотношение (1) выполняется, когда длина световой волны стремиться к нулю Преломление света в физике - формулы и определения с примерами Поэтому геометрическая оптика является предельным приближенным случаем волновой оптики.

gtftf Если диаметр диафрагмы или размеры предмета оказываются сравнимы  с длиной световой волны Преломление света в физике - формулы и определения с примерами то выходящий световой пучок становится расходящимся, свет проникает в область геометрической тени, происходит дифракция света, т. е. проявляется волновой характер светового излучения.

Лучи, выходящие из одной точки, называют расходящимися, а собирающиеся в одной точке — сходящимися. Примером расходящихся лучей может служить наблюдаемый свет далеких звезд, а примером сходящихся — совокупность лучей, попадающих в зрачок нашего глаза от различных предметов.

Для изучения свойств световых волн необходимо знать закономерности их распространения в однородной среде, а также закономерности отражения и преломления на границе раздела двух сред.

Рассмотрим падение плоской световой волны на плоскую поверхность раздела однородных изотропных и прозрачных сред при условии, что размеры поверхности раздела намного больше длины волны падающего излучения.

Пусть на плоскую поверхность раздела Преломление света в физике - формулы и определения с примерами двух сред падает плоская световая волна, фронт которой Преломление света в физике - формулы и определения с примерами (рис. 71). Если угол падения Преломление света в физике - формулы и определения с примерами отличен от нуля, то различные точки фронта Преломление света в физике - формулы и определения с примерами волны достигнут границы раздела Преломление света в физике - формулы и определения с примерами не одновременно.

Рассмотрим, что будет происходить во второй среде, считая, что модуль скорости Преломление света в физике - формулы и определения с примерами распространения света в ней меньше, чем в первой Преломление света в физике - формулы и определения с примерами (см. рис. 71).

Фронт падающей волны Преломление света в физике - формулы и определения с примерами будет перемещаться со скоростью, модуль которой Преломление света в физике - формулы и определения с примерами по направлению Преломление света в физике - формулы и определения с примерами К моменту времени (за промежуток времени Преломление света в физике - формулы и определения с примерами

когда точка Преломление света в физике - формулы и определения с примерами фронта достигнет границы раздела двух сред (точка Преломление света в физике - формулы и определения с примерами вторичная волна из точки Преломление света в физике - формулы и определения с примерами (согласно принципу Гюйгенса) пройдет расстояние Преломление света в физике - формулы и определения с примерами Фронт волны, распространяющейся во второй среде, можно получить, проводя прямую линию, касательную к полуокружности с центром в точке Преломление света в физике - формулы и определения с примерами

Из построения видно, что Преломление света в физике - формулы и определения с примерами как углы с взаимно перпендикулярными сторонами. Из Преломление света в физике - формулы и определения с примерами находим: Преломление света в физике - формулы и определения с примерамиПреломление света в физике - формулы и определения с примерами
Отсюда:
Преломление света в физике - формулы и определения с примерами
Из этого выражения следует закон преломления:

Преломление света в физике - формулы и определения с примерами

Напомним, что абсолютным показателем преломления называется отношение модуля скорости распространения световой волны в вакууме с к модулю скорости распространения в данной среде Преломление света в физике - формулы и определения с примерами

С учетом этого соотношения закон преломления принимает вид:

Преломление света в физике - формулы и определения с примерами

Величина

Преломление света в физике - формулы и определения с примерами

равная отношению абсолютных показателей преломления Преломление света в физике - формулы и определения с примерами второй и Преломление света в физике - формулы и определения с примерами первой сред, называется относительным показателем преломления второй среды относительно первой. В отличие от абсолютного показателя преломления относительный показатель преломления может быть и меньше единицы, если Преломление света в физике - формулы и определения с примерами

Таким образом, исходя из волновой теории света, получен закон преломления световых волн:

отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред и равная относительному показателю преломления второй среды относительно первой;

лучи, падающий и преломленный, лежат в одной плоскости с перпендикуляром, проведенным в точке падения луча к плоскости границы раздела двух сред.

Перепишем закон преломления в следующем виде:

Преломление света в физике - формулы и определения с примерами

При такой записи закона преломления не надо запоминать абсолютный показатель преломления какой среды стоит в числителе, а какой — в знаменателе.

Необходимо всегда умножать абсолютный показатель преломления на синус угла, относящийся к одной и той же среде.

Для наблюдения явления преломления света достаточно поместить карандаш в стакан с водой и посмотреть на него со стороны — карандаш будет казаться «надломленным» (преломленным) (рис. 72), оставаясь при этом совершенно целым.

Преломление света в физике - формулы и определения с примерами

Первые упоминания о преломлении света в воде и стекле встречаются в труде Клавдия Птолемея «Оптика», вышедшем в свет во II в. н. э.

Закон преломления света был экспериментально установлен в 1620 г. голландским ученым Виллебродом Снеллиусом. Заметим, что независимо от Снеллиуса закон преломления был также открыт Рене Декартом.

Причиной преломления волн, т. е. изменения направления распространения волн на границе раздела двух сред, является 
Преломление света в физике - формулы и определения с примерами

изменение модуля скорости распространения электромагнитных волн при переходе излучения из одной среды в другую.

Как следует из закона преломления, при переходе света из оптически более плотной среды 1 (с большим абсолютным показателем преломления Преломление света в физике - формулы и определения с примерами в оптически менее плотную среду II (с меньшим показателем преломления Преломление света в физике - формулы и определения с примерами угол преломления у становится больше угла падения Преломление света в физике - формулы и определения с примерами (рис. 73).

По мере увеличения угла падения, при некотором его значении Преломление света в физике - формулы и определения с примерами угол преломления станет Преломление света в физике - формулы и определения с примерами т. е. свет не будет попадать во вторую среду. Энергия преломленной волны при этом станет равной нулю, а энергия отраженного излучения будет равна энергии падающего. Следовательно, начиная с этого угла падения, вся световая энергия полностью отражается от границы раздела этих сред в среду Преломление света в физике - формулы и определения с примерами

Это явление называется полным отражением света (см. рис. 73). Угол Преломление света в физике - формулы и определения с примерами при котором возникает полное отражение, называется предельным углом полного отражения. Он определяется из закона преломления при условии, что угол преломления: Преломление света в физике - формулы и определения с примерами

Преломление света в физике - формулы и определения с примерами

Таким образом, преломленная волна отсутствует при углах падения, больших предельного угла Преломление света в физике - формулы и определения с примерами Например, для границы вода Преломление света в физике - формулы и определения с примерами — воздух предельный угол полного отражения Преломление света в физике - формулы и определения с примерами для границы алмаз Преломление света в физике - формулы и определения с примерами — воздух — Преломление света в физике - формулы и определения с примерами

Явление полного отражения используют в волоконной оптике для передачи света и изображения по пучкам прозрачных гибких световодов (рис. 74), а также в отражательных призмах различных оптических приборов. В волоконно-оптических устройствах, в которых свет распространяется по тонким световодам, стеклянная световедущая жила покрыта слоем вещества с меньшим показателем преломления.
Преломление света в физике - формулы и определения с примерами

В 2009 г. китайский ученый Чарльз Пао удостоен Нобелевской премии за выдающийся вклад в исследование световодов для оптической связи. В 1954 г. белорусским физиком, академиком Федором Ивановичем Федоровым было теоретически предсказано новое физическое явление — поперечное смещение (перпендикулярно плоскости падения) светового пучка при его полном отражении. Это смещение меньше длины волны, и для его наблюдения световой пучок должен быть ограниченным в поперечном направлении. В 1969 г. французским физиком К. Эмбером оно было подтверждено экспериментально и получило название «сдвиг Федорова».

  • Заказать решение задач по физике

Пример №3

Определите угол падения Преломление света в физике - формулы и определения с примерами луча на стеклянную пластинку с показателем преломления Преломление света в физике - формулы и определения с примерами если между отраженным и преломленным лучами угол Преломление света в физике - формулы и определения с примерами

Дано: 

Преломление света в физике - формулы и определения с примерами

Преломление света в физике - формулы и определения с примерами

Решение

Из закона преломления находим:

Преломление света в физике - формулы и определения с примерами

Из геометрического построения (рис. 75) следует, что углы отражения и преломления связаны соотношением: 

Преломление света в физике - формулы и определения с примерами

Преломление света в физике - формулы и определения с примерами

Отсюда: 

Преломление света в физике - формулы и определения с примерами

Подставляем найденный угол Преломление света в физике - формулы и определения с примерами в формулу закона преломления и с учетом закона отражения Преломление света в физике - формулы и определения с примерами определяем искомый угол падения:
Преломление света в физике - формулы и определения с примерами

 Отсюда

Преломление света в физике - формулы и определения с примерами

Ответ: Преломление света в физике - формулы и определения с примерами

Преломление света на границе раздела двух сред

В одном из древнегреческих трактатов описан опыт: «Надо встать так, чтобы плоское кольцо, расположенное на дне сосуда, спряталось за его краем. Затем, не меняя положения глаз, налить в сосуд воду. Свет преломится на поверхности воды, и кольцо станет видимым». Такой «фокус» вы можете показать своим друзьям и сейчас (см. рис. 12.1), а вот объяснить его сможете только после изучения данного параграфа.

Преломление света в физике - формулы и определения с примерами

Рис. 12.1. «Фокус» с монетой. Если в чашке нет воды, мы не видим монету, лежащую на ее дне (а); если же налить воду, дно чашки будто поднимется и монета станет видимой (б)

Законы преломления света

Направим узкий пучок света на плоскую поверхность прозрачного стеклянного полуцилиндра, закрепленного на оптической шайбе. Свет не только отразится от поверхности полуцилиндра, но и частично пройдет сквозь стекло. Это означает, что при переходе из воздуха в стекло направление распространения света изменяется (рис. 12.2).

Преломление света в физике - формулы и определения с примерами

Рис. 12.2. Наблюдение преломления света при его переходе из воздуха в стекло: Преломление света в физике - формулы и определения с примерами — угол падения; Преломление света в физике - формулы и определения с примерами — угол отражения; Преломление света в физике - формулы и определения с примерами — угол преломления

Изменение направления распространения света на границе раздела двух сред называют преломлением света.

Угол Преломление света в физике - формулы и определения с примерами (гамма), который образован преломленным лучом и перпендикуляром к границе раздела двух сред, проведенным через точку падения луча, называют углом преломления.

Проведя ряд опытов с оптической шайбой, заметим, что с увеличением угла падения угол преломления тоже увеличивается, а с уменьшением угла падения угол преломления уменьшается (рис. 12.3). Если же свет падает перпендикулярно границе раздела двух сред (угол падения Преломление света в физике - формулы и определения с примерами направление распространения света не изменяется.

Преломление света в физике - формулы и определения с примерами

Рис. 12.3. Установление законов преломления света: при уменьшении угла падения Преломление света в физике - формулы и определения с примерамиугол преломления тоже уменьшается Преломление света в физике - формулы и определения с примерами при этом Преломление света в физике - формулы и определения с примерами

Первое упоминание о преломлении света можно найти в трудах древнегреческого философа Аристотеля (IV в. до н. э.), который задавался вопросом: «Почему палка в воде кажется сломанной?» А вот закон, количественно описывающий преломление света, был установлен только в 1621 г. голландским ученым Виллебрордом Снеллиусом (1580-1626).

Законы преломления света:

  1. Луч падающий, луч преломленный и перпендикуляр к границе раздела двух сред, проведенный через точку падения луча, лежат в одной плоскости.
  2. Отношение синуса угла падения к синусу угла преломления для двух данных сред является неизменной величиной:

Преломление света в физике - формулы и определения с примерами

где Преломление света в физике - формулы и определения с примерами — физическая величина, которую называют относительным показателем преломления среды 2 (среды, в которой свет распространяется после преломления) относительно среды 1 (среды, из которой свет падает).

Причина преломления света

Так почему свет, переходя из одной среды в другую, изменяет свое направление?

Дело в том, что в разных средах свет распространяется с разной скоростью, но всегда медленнее, чем в вакууме. Например, в воде скорость света в 1,33 раза меньше, чем в вакууме; когда свет переходит из воды в стекло, его скорость уменьшается еще в 1,3 раза; в воздухе скорость распространения света в 1,7 раза больше, чем в стекле, и лишь немного меньше (примерно в 1,0003 раза), чем в вакууме.

Именно изменение скорости распространения света при переходе из одной прозрачной среды в другую является причиной преломления света.

Принято говорить об оптической плотности среды: чем меньше скорость распространения света в среде (чем больше показатель преломления), тем больше оптическая плотность среды.

Физический смысл показателя преломления

Относительный показатель преломления Преломление света в физике - формулы и определения с примерами показывает, во сколько раз скорость распространения света в среде 1 больше (или меньше) скорости распространения света в среде 2:

Преломление света в физике - формулы и определения с примерами

Вспомнив второй закон преломления света: Преломление света в физике - формулы и определения с примерами имеем:

Преломление света в физике - формулы и определения с примерами

Проанализировав последнюю формулу, делаем выводы:

  1. чем больше на границе раздела двух сред изменяется скорость распространения света, тем больше свет преломляется;
  2. если луч света переходит в среду с большей оптической плотностью (то есть скорость света уменьшается: Преломление света в физике - формулы и определения с примерами то угол преломления меньше угла падения: Преломление света в физике - формулы и определения с примерами (см., например, рис. 12.2, 12.3);
  3. если луч света переходит в среду с меньшей оптической плотностью (то есть скорость света увеличивается: Преломление света в физике - формулы и определения с примерами то угол преломления больше угла падения: Преломление света в физике - формулы и определения с примерами (рис. 12.4).

Обычно скорость распространения света в среде сравнивают со скоростью его распространения в вакууме. Когда свет попадает в среду из вакуума, показатель преломления Преломление света в физике - формулы и определения с примерами называют абсолютным показателем преломления.

Абсолютный показатель преломления показывает, во сколько раз скорость

распространения света в среде меньше, чем в вакууме:

Преломление света в физике - формулы и определения с примерами

где Преломление света в физике - формулы и определения с примерами — скорость распространения света в вакууме Преломление света в физике - формулы и определения с примерами — скорость распространения света в среде.

Преломление света в физике - формулы и определения с примерами

Рис. 12.4. При переходе света из среды с большей оптической плотностью в среду с меньшей оптической плотностью угол преломления больше угла падения Преломление света в физике - формулы и определения с примерами

Среда

Абсолютный показатель

преломления Преломление света в физике - формулы и определения с примерами

Воздух 1,0003
Лед 1,31
Вода 1,33
Бензин 1,50
Стекло 1,43-2,17
Кварц 1,54
Алмаз 2,42

Скорость распространения света в вакууме больше, чем в любой среде, поэтому абсолютный показатель преломления всегда больше единицы (см. таблицу).

Обратите внимание: Преломление света в физике - формулы и определения с примерами поэтому, рассматривая переход света из воздуха в среду, будем считать, что относительный показатель преломления среды равен абсолютному.

Явление преломления света используется в работе многих оптических устройств. О некоторых из них вы узнаете позже.

Явление полного внутреннего отражения света

Рассмотрим случай, когда свет переходит из среды с большей оптической плотностью в среду с меньшей оптической плотностью (рис. 12.5). Видим, что при увеличении угла падения Преломление света в физике - формулы и определения с примерами угол преломления Преломление света в физике - формулы и определения с примерами приближается к 90°, яркость преломленного пучка уменьшается, а яркость отраженного, наоборот, увеличивается. Понятно, что если и дальше увеличивать угол падения, то угол преломления достигнет 90°, преломленный пучок исчезнет, а падающий пучок полностью (без потерь энергии) вернется в первую среду — свет полностью отразится.

Преломление света в физике - формулы и определения с примерами

Рис. 12.5. Если свет попадает из стекла в воздух, то при увеличении угла падения угол преломления приближается к 90°, а яркость преломленного пучка уменьшается

Явление, при котором преломление света отсутствует (свет полностью отражается от среды с меньшей оптической плотностью), называют полным внутренним отражением света.

Явление полного внутреннего отражения света хорошо знакомо тем, кто плавал под водой с открытыми глазами (рис. 12.6).

Преломление света в физике - формулы и определения с примерами

Рис. 12.6. Наблюдателю, находящемуся под водой, часть поверхности воды кажется блестящей, будто зеркало

Ювелиры много веков используют явление полного внутреннего отражения, чтобы повысить привлекательность драгоценных камней. Естественные камни огранивают — придают им форму многогранников: грани камня выполняют роль «внутренних зеркал», и камень «играет» в лучах падающего на него света.

Полное внутреннее отражение широко используют в оптической технике (рис. 12.7). Но главное применение этого явления связано с волоконной оптикой. Если в торец сплошной тонкой «стеклянной» трубки направить пучок света, после многократного отражения свет выйдет на ее противоположном конце независимо от того, какой будет трубка — изогнутой или прямой. Такую трубку называют световодом (рис. 12.8).

Преломление света в физике - формулы и определения с примерами

Рис. 12.7. Во многих оптических приборах направление распространения света изменяют с помощью призм полного отражения: а — призма поворачивает изображение; б — призма переворачивает изображение

Преломление света в физике - формулы и определения с примерами

Рис. 12.8. Распространение светового пучка в световоде

Световоды применяют в медицине для исследования внутренних органов (эндоскопия); в технике, в частности для выявления неисправностей внутри двигателей без их разборки; для освещения солнечным светом закрытых помещений и т. п. (рис. 12.9).

Преломление света в физике - формулы и определения с примерами

Рис. 12.9. Декоративный светильник со световодами

Но чаще всего световоды используют в качестве кабелей для передачи информации (рис. 12.10). «Стеклянный кабель» намного дешевле и легче медного, он практически не изменяет свои свойства под воздействием окружающей среды, позволяет передавать сигналы на большие расстояния без усиления. Сегодня волоконно-оптические линии связи стремительно вытесняют традиционные. Когда вы будете смотреть телевизор или пользоваться Интернетом, вспомните, что значительную часть своего пути сигнал проходит по «стеклянной дороге».

Преломление света в физике - формулы и определения с примерами

Рис. 12.10. Оптоволоконный кабель

Пример №4

Световой луч переходит из среды 1 в среду 2 (рис. 12.11, а). Скорость распространения света в среде 1 равна Преломление света в физике - формулы и определения с примерами Определите абсолютный показатель преломления среды 2 и скорость распространения света в среде 2.

Преломление света в физике - формулы и определения с примерами

Рис. 12.11. К задаче

Анализ физической проблемы

Из рис. 12.11, а видим, что на границе раздела двух сред свет преломляется, значит, скорость его распространения изменяется.

Выполним пояснительный рисунок (рис. 12.11, б), на котором:

1) изобразим лучи, приведенные в условии задачи; 2) проведем через точку падения луча перпендикуляр к границе раздела двух сред; 3) обозначим Преломление света в физике - формулы и определения с примерами угол падения и Преломление света в физике - формулы и определения с примерами— угол преломления.

Абсолютный показатель преломления — это показатель преломления относительно вакуума. Поэтому для решения задачи следует вспомнить значение скорости распространения света в вакууме и найти скорость распространения света в среде Преломление света в физике - формулы и определения с примерами

Чтобы найти Преломление света в физике - формулы и определения с примерами определим синус угла падения и синус угла преломления.

Дано:

Преломление света в физике - формулы и определения с примерами

Найти:

Преломление света в физике - формулы и определения с примерами

Поиск математической модели, решение

По определению абсолютного показателя преломления:

Преломление света в физике - формулы и определения с примерами

Поскольку Преломление света в физике - формулы и определения с примерами то Преломление света в физике - формулы и определения с примерами

Из рис. 12.11, б видим, что Преломление света в физике - формулы и определения с примерами где Преломление света в физике - формулы и определения с примерами радиус окружности. Найдем значения искомых величин:

Преломление света в физике - формулы и определения с примерами

Анализ решения. По условию задачи угол падения больше угла преломления, и это значит, что скорость света в среде 2 меньше скорости света в среде 1. Следовательно, полученные результаты реальны.

Ответ: Преломление света в физике - формулы и определения с примерами

Подводим итоги:

Световой пучок, падая на границу раздела двух сред, разделяется на два пучка. Один из них — отраженный — отражается от поверхности, подчиняясь законам отражения света. Второй — преломленный — проходит во вторую среду, изменяя свое направление.

Законы преломления света:

  1. Луч падающий, луч преломленный и перпендикуляр к границе раздела двух сред, проведенный через точку падения луча, лежат в одной плоскости.
  2. Для двух данных сред отношение синуса угла падения Преломление света в физике - формулы и определения с примерами к синусу угла преломления Преломление света в физике - формулы и определения с примерами является неизменной величиной: Преломление света в физике - формулы и определения с примерами

Причина преломления света — изменение скорости его распространения при переходе из одной среды в другую. Относительный показатель преломления Преломление света в физике - формулы и определения с примерами показывает, во сколько раз скорость распространения света в среде 1 больше (или меньше), чем скорость распространения света в среде 2: Преломление света в физике - формулы и определения с примерами

Когда свет попадает в среду из вакуума, показатель преломления Преломление света в физике - формулы и определения с примерами называют абсолютным показателем преломления: Преломление света в физике - формулы и определения с примерами

Если при переходе света из среды 1 в среду 2 скорость распространения света уменьшилась (то есть показатель преломления среды 2 больше показателя преломления среды 1: Преломление света в физике - формулы и определения с примерами то говорят, что свет перешел из среды с меньшей оптической плотностью в среду с большей оптической плотностью (и наоборот).

  • Полное отражение
  • Дисперсия света
  • Электромагнитная природа света
  • Интерференция света
  • Освещенность в физике
  • Закон прямолинейного распространения света
  • Законы отражения света
  • Зеркальное и рассеянное отражение света

Понравилась статья? Поделить с друзьями:
  • Как найти своего косметолога в москве
  • Как найти угол в градусах зная катеты
  • Как с помощью векторной алгебры найти
  • Как найти кабана в форесте
  • Как составить соглашение об оплате квартиры