Определение и свойства медианы равностороннего треугольника
В данной статье мы рассмотрим определение и свойства медианы равностороннего треугольника, а также разберем примеры решения задач для закрепления изложенного материала.
Определение медианы
Медиана – это отрезок, соединяющий вершину треугольника и середину противоположной стороны.
Треугольник называется равносторонним, если все его стороны равны (AB = BC = AC).
Свойства медианы равностороннего треугольника
Свойство 1
Любая медиана в равностороннем треугольнике одновременно является и высотой, и серединным перпендикуляром, и биссектрисой угла, из которого проведена.
-
BD – медиана, высота и серединный перпендикуляр к стороне AC, а также биссектриса угла ABC;
Свойство 2
Все три медианы в равностороннем треугольнике равны между собой. Т.е. AF = BD = CE.
Свойство 3
Медианы в равностороннем треугольнике пресекаются в одной точке, которая делит их в отношении 2:1.
Свойство 4
Любая медиана равностороннего треугольника делит его на два равных по площади (равновеликих) прямоугольных треугольника. Т.е. S1 = S2.
Свойство 5
Равносторонний треугольник делится тремя медианами на шесть равновеликих прямоугольных треугольников. Т.е. S1 = S2 = S3 = S4 = S5 = S6.
Свойство 6
Точка пересечения медиан в равностороннем треугольнике является центром описанной вокруг и вписанной окружностей.
- r – радиус вписанной окружности;
- R – радиус описанной окружности;
- R = 2r (следует из Свойства 3).
Свойство 7
Длину медианы равностороннего треугольника можно вычислить по формуле:
a – сторона треугольника.
Примеры задач
Задача 1
Вычислите длину медианы равностороннего треугольника, если известно, что его сторона равна 6 см.
Решение
Для нахождения требуемого значения применим формулу выше:
Задача 2
Самая большая сторона одного из треугольников, образованных в результате пересечения трех медиан в равностороннем треугольнике, равняется 8 см. Найдите длину стороны данного треугольника.
Решение
Нарисуем чертеж согласно условиям задачи.
Из Свойства 5 мы знаем, что в результате пересечения всех медиан образуются 6 прямоугольных треугольников.
- BG = 8 см (самая большая сторона, является гипотенузой △BFG);
- FG = 4 см (катет △BFG, в 2 раза меньше гипотенузы BG – следует из Свойства 3).
Применяем теорему Пифагора, чтобы найти длину второго катета BF:
BF 2 = BG 2 – FG 2 = 8 2 – 4 2 = 48 см 2 .
Следовательно, BF ≈ 6,93 см.
BF равняется половине стороны BC (т.к. медиана делит сторону треугольника пополам), следовательно, BC ≈ 13,86 см.
Медиана равностороннего треугольника
Какими свойствами обладает медиана равностороннего треугольника? Как выразить длину медианы через сторону треугольника? Через радиус вписанной и описанной окружностей?
(свойство медианы равностороннего треугольника)
В равностороннем треугольнике медиана, проведённая к любой стороне, является также его биссектрисой и высотой.
Пусть в треугольнике ABC AB=BC=AC.
Проведём медиану BF.
Так как AB=BC, треугольник ABC — равнобедренный с основанием AC.
По свойству медианы равнобедренного треугольника, BF является также его биссектрисой и высотой.
Аналогично, так как AB=AC, треугольник ABC — равнобедренный с основанием BC, AK — его медиана, биссектриса и высота;
так как AC=BC, треугольник ABC — равнобедренный с основанием AB, CD — его медиана, биссектриса и высота.
Что и требовалось доказать .
(свойство медиан равностороннего треугольника)
Все три медианы равностороннего треугольника равны между собой.
Пусть в треугольнике ABC AB=BC=AC,
AK, BF, CD — его медианы.
Следовательно, треугольники ABK, BCF и CAK равны (по двум сторонам и углу между ними).
Из равенства треугольников следует равенство соответствующих сторон:
Что и требовалось доказать .
Из 1 и 2 теоремы следует, что все медианы, биссектрисы и высоты равностороннего треугольника равны между собой.
1) Выразим длину медианы равностороннего треугольника через его сторону.
Так как медиана равностороннего треугольника является также его высотой, треугольник ABF- прямоугольный.
Обозначим AB=a, BF=m, тогда AF=a/2.
Таким образом, формула медианы равностороннего треугольника по его стороне:
2) Выразим медиану равностороннего треугольника через радиусы вписанной и описанной окружностей.
Центр правильного треугольника является центром его вписанной и описанной окружностей.
Так как центр вписанной окружности лежит в точке пересечения биссектрис треугольника, а медианы равностороннего треугольника являются также его биссектрисами, в равностороннем треугольнике ABC OF — радиус вписанной, BO — радиус описанной окружностей:
Так как медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то BO:OF=2:1. Таким образом,
Отсюда медиана равностороннего треугольника через радиус вписанной окружности равна
Найти медиану биссектрису высоту равностороннего треугольника
Формула для вычисления высоты = биссектрисы = медианы.
В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.
L — высота=биссектриса=медиана
a — сторона треугольника
Формула длины высоты, биссектрисы и медианы равностороннего треугольника, ( L ):
Калькулятор — вычислить, найти медиану, биссектрису, высоту
http://www-formula.ru/bisectormedianheightequipotentialtriangles
Длина медианы правильного треугольника
3.9
Средняя оценка: 3.9
Всего получено оценок: 132.
3.9
Средняя оценка: 3.9
Всего получено оценок: 132.
Медиана – это один из характеризующих отрезков треугольника, наравне с биссектрисой и высотой. Особую сложность у учеников часто вызывают задачи на нахождение медианы. В обычном случае приходится применять формулу, но для правильного треугольника можно вывести упрощенную версию нахождения медианы.
Необходимые данные
Для вывода формул потребуется вспомнить несколько теоретических выкладок:
- Медиана это отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Три медианы треугольника пересекаются в одной точке.
- В равнобедренном треугольнике, медиана, проведенная к основанию, является биссектрисой и высотой. А правильный треугольник это частный случай равнобедренного треугольника, у которого основанием может выступать любая из сторон. Значит каждая медиана равностороннего треугольника будет совпадать с соответствующей биссектрисой и высотой.
- В правильном треугольнике все стороны равны, а каждый из углов равен 60 градусам.
Нахождение медианы по общей формуле
Для начала воспользуемся общей формулой. Вспомним формулу длины медианы через длины сторон треугольника:
$$m_c={{sqrt{2a^2+2b^2-c^2}}over{2}}$$
Но в правильном треугольнике все стороны равны между собой:
a=b=c
Подставим условия равенства в формулу и приведем подобные слагаемые:
$$m_c={{sqrt{2a^2+2а^2-а^2}}over{2}}$$
$$m_c={{sqrt{3a^2}}over{2}}$$
Значение $ {a^2} $ можно вынести за пределы корня. Тогда:
$$m_c={{sqrt{3a^2}}over{2}}$$
$$m_c={{sqrt{3}}over{2}*а}$$
Нахождением медианы через теорему Пифагора
Теперь попробуем вывести ту же формулу через теорему Пифагора.
В имеющемся правильном треугольнике АВС проведем медиану АМ. Она совпадет с биссектрисой и высотой. Тогда по теореме Пифагора из треугольника АВМ найдем сторону АМ, которая и будет являться медианой большого треугольника.
$$АМ=sqrt{AB^2-BM^2}$$
Но все стороны треугольника равны, а точка М является серединой стороны ВС. Значит:
$$АВ=а$$
$$ВМ={1over2}BC={1over2}a$$
Подставим эти значения в начальную формулу:
$$АМ={sqrt{AB^2-BM^2}}= {sqrt{а^2-{{а}over{2}}^2}}= sqrt{а^2-{{а^2}over{4}}}=sqrt{{3a^2}over{4}}$$
Вынесем значения $a^2$ и 4 за знак корня.
$$АМ=sqrt{{3a^2}over{4}}=a*{{3}over{sqrt{2}}}$$
Получилась та же формула длины медианы правильного треугольника. Значит, вывод первым способом был осуществлен верно и можно использовать любой из двух способов, если вы вдруг забыли формулу нахождения медианы правильного треугольника.
Последний метод очень часто используется не только для вывода формул правильного треугольника, но и для решения задач.
Что мы узнали?
Мы несколькими методами вывели формулу длины медианы правильного треугольника. Указали на метод решения простых задач на нахождение характеристик правильного треугольника, а так же вспомнили основные свойства медианы.
Тест по теме
Доска почёта
Чтобы попасть сюда — пройдите тест.
-
Милана Швецова
3/5
-
Оксана Шмидт
3/5
Оценка статьи
3.9
Средняя оценка: 3.9
Всего получено оценок: 132.
А какая ваша оценка?
Какими свойствами обладает медиана равностороннего треугольника? Как выразить длину медианы через сторону треугольника? Через радиус вписанной и описанной окружностей?
Теорема 1
(свойство медианы равностороннего треугольника)
В равностороннем треугольнике медиана, проведённая к любой стороне, является также его биссектрисой и высотой.
Доказательство:
Пусть в треугольнике ABC AB=BC=AC.
Проведём медиану BF.
Так как AB=BC, треугольник ABC — равнобедренный с основанием AC.
По свойству медианы равнобедренного треугольника, BF является также его биссектрисой и высотой.
Аналогично, так как AB=AC, треугольник ABC — равнобедренный с основанием BC, AK — его медиана, биссектриса и высота;
так как AC=BC, треугольник ABC — равнобедренный с основанием AB, CD — его медиана, биссектриса и высота.
Что и требовалось доказать.
Теорема 2
(свойство медиан равностороннего треугольника)
Все три медианы равностороннего треугольника равны между собой.
Доказательство:
Пусть в треугольнике ABC AB=BC=AC,
AK, BF, CD — его медианы.
Тогда AF=FC=BK=CK=AD=BD.
∠BAF=∠BFC=∠ABC (как углы равностороннего треугольника).
Следовательно, треугольники ABK, BCF и CAK равны (по двум сторонам и углу между ними).
Из равенства треугольников следует равенство соответствующих сторон:
AK=BF=CD.
Что и требовалось доказать.
Из 1 и 2 теоремы следует, что все медианы, биссектрисы и высоты равностороннего треугольника равны между собой.
1) Выразим длину медианы равностороннего треугольника через его сторону.
Так как медиана равностороннего треугольника является также его высотой, треугольник ABF- прямоугольный.
Обозначим AB=a, BF=m, тогда AF=a/2.
По теореме Пифагора
Таким образом, формула медианы равностороннего треугольника по его стороне:
2) Выразим медиану равностороннего треугольника через радиусы вписанной и описанной окружностей.
Центр правильного треугольника является центром его вписанной и описанной окружностей.
Так как центр вписанной окружности лежит в точке пересечения биссектрис треугольника, а медианы равностороннего треугольника являются также его биссектрисами, в равностороннем треугольнике ABC OF — радиус вписанной, BO — радиус описанной окружностей:
OF=r, BO=R.
Так как медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, то BO:OF=2:1. Таким образом,
Отсюда медиана равностороннего треугольника через радиус вписанной окружности равна
через радиус описанной окружности —
В данной статье мы рассмотрим определение и свойства медианы равностороннего треугольника, а также разберем примеры решения задач для закрепления изложенного материала.
- Определение медианы
-
Свойства медианы равностороннего треугольника
- Свойство 1
- Свойство 2
- Свойство 3
- Свойство 4
- Свойство 5
- Свойство 6
- Свойство 7
- Примеры задач
Определение медианы
Медиана – это отрезок, соединяющий вершину треугольника и середину противоположной стороны.
- BD – медиана, проведенная к стороне AC;
- AD = DC.
Треугольник называется равносторонним, если все его стороны равны (AB = BC = AC).
Свойства медианы равностороннего треугольника
Свойство 1
Любая медиана в равностороннем треугольнике одновременно является и высотой, и серединным перпендикуляром, и биссектрисой угла, из которого проведена.
- BD – медиана, высота и серединный перпендикуляр к стороне AC, а также биссектриса угла ABC;
- ∠ABD = ∠CBD.
Свойство 2
Все три медианы в равностороннем треугольнике равны между собой. Т.е. AF = BD = CE.
Свойство 3
Медианы в равностороннем треугольнике пресекаются в одной точке, которая делит их в отношении 2:1.
- G – центр тяжести (центроид) треугольника;
- AG = 2GF;
- BG = 2GD;
- CG = 2GE.
Свойство 4
Любая медиана равностороннего треугольника делит его на два равных по площади (равновеликих) прямоугольных треугольника. Т.е. S1 = S2.
Свойство 5
Равносторонний треугольник делится тремя медианами на шесть равновеликих прямоугольных треугольников. Т.е. S1 = S2 = S3 = S4 = S5 = S6.
Свойство 6
Точка пересечения медиан в равностороннем треугольнике является центром описанной вокруг и вписанной окружностей.
- r – радиус вписанной окружности;
- R – радиус описанной окружности;
- R = 2r (следует из Свойства 3).
Свойство 7
Длину медианы равностороннего треугольника можно вычислить по формуле:
a – сторона треугольника.
Примеры задач
Задача 1
Вычислите длину медианы равностороннего треугольника, если известно, что его сторона равна 6 см.
Решение
Для нахождения требуемого значения применим формулу выше:
Задача 2
Самая большая сторона одного из треугольников, образованных в результате пересечения трех медиан в равностороннем треугольнике, равняется 8 см. Найдите длину стороны данного треугольника.
Решение
Нарисуем чертеж согласно условиям задачи.
Из Свойства 5 мы знаем, что в результате пересечения всех медиан образуются 6 прямоугольных треугольников.
- BG = 8 см (самая большая сторона, является гипотенузой △BFG);
- FG = 4 см (катет △BFG, в 2 раза меньше гипотенузы BG – следует из Свойства 3).
Применяем теорему Пифагора, чтобы найти длину второго катета BF:
BF2 = BG2 – FG2 = 82 – 42 = 48 см2.
Следовательно, BF ≈ 6,93 см.
BF равняется половине стороны BC (т.к. медиана делит сторону треугольника пополам), следовательно, BC ≈ 13,86 см.
Найти медиану биссектрису высоту равностороннего треугольника
Формула для вычисления высоты = биссектрисы = медианы.
В равностороннем треугольнике: все высоты, биссектрисы и медианы, равны. Точка их пересечения, является центром вписанной окружности.
L — высота=биссектриса=медиана
a — сторона треугольника
Формула длины высоты, биссектрисы и медианы равностороннего треугольника, (L):
Калькулятор — вычислить, найти медиану, биссектрису, высоту
- Подробности
-
Автор: Administrator
-
Опубликовано: 07 октября 2011
-
Обновлено: 13 августа 2021