Как найти отрезок треугольника вписанного в окружность

Треугольник вписанный в окружность

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус вписанной окружности в треугольник,
если известны площадь и периметр:

Радиус вписанной окружности в треугольник,
если известны полупериметр и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Радиус описанной окружности около треугольника,
если известны все стороны и площадь:

Радиус описанной окружности около треугольника,
если известны все стороны и полупериметр:

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

Площадь треугольника вписанного в окружность,
если известен полупериметр:

Площадь треугольника вписанного в окружность,
если известен высота и основание:

Площадь треугольника вписанного в окружность,
если известна сторона и два прилежащих к ней угла:

Площадь треугольника вписанного в окружность,
если известны две стороны и синус угла между ними:

[ S = frac<1><2>ab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Периметр треугольника вписанного в окружность,
если известна площадь и радиус вписанной окружности:

Периметр треугольника вписанного в окружность,
если известны две стороны и угол между ними:

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Сторона треугольника вписанного в
окружность, если известна сторона и два угла:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Средняя линия треугольника вписанного в окружность,
если известныдве стороны, ни одна из них не является
основанием, и косинус угламежду ними:

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

Высота треугольника вписанного в окружность,
если известен сторона и синус угла прилежащего
к этой стороне, и находящегося напротив высоты:

[ h = b cdot sin alpha ]

Высота треугольника вписанного в окружность,
если известен радиус описанной окружности и
две стороны, ни одна из которых не является основанием:

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

По теореме синусов,

Получаем, что . Угол — тупой. Значит, он равен .

. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .

Формула площади и радиуса: свойства треугольника, вписанного в окружность

В современном машиностроении используется масса элементов и запчастей, которые имеют в своей структуре как внешние окружности, так и внутренние. Самым ярким примером могут служить корпус подшипника, детали моторов, узлы ступицы и многое другое. При их изготовлении применяются не только высокотехнологичные приспособления, но и знания из геометрии, в частности информация об окружностях треугольника. Более детально с подобным знаниями познакомимся ниже….

Какая окружность вписана, а какая описана

Прежде всего вспомним, что окружностью называется бесконечное множество точек, удаленных на одинаковом расстоянии от центра. Если внутри многоугольника допускается построить окружность, которая с каждой стороной будет иметь только одну общую точку пересечения, то она будет называться вписанной. Описанной окружностью (не круг, это разные понятия) называется такое геометрическое место точек, при котором у построенной фигуры с заданным многоугольником общими точками будут только вершины многоугольника. Ознакомимся с этими двумя понятиями на более наглядном примере (см. рис 1.).

Рисунок 1. Вписанная и описанная окружности треугольника

На изображении построены две фигуры большого и малого диаметров, центры которых находятся G и I. Окружность большего значения называется описанной окр-тью Δ ABC, а малого – наоборот, вписанной в Δ ABC.

Для того чтобы описать вокруг треугольника окр-ть, требуется провести через середину каждой стороны перпендикулярную прямую (т.е. под углом 90°) – это точка пересечения, она играет ключевую роль. Именно она будет представлять собой центр описанной окружности. Перед тем как найти окружность, ее центр в треугольнике, требуется построить для каждого угла биссектрису, после чего выделить точку пересечения прямых. Она в свою очередь будет центром вписанной окр-ти, а ее радиус при любых условиях будет перпендикулярен любой из сторон.

На вопрос:«Какое количество окружностей вписанных может быть для многоугольника с тремя углами?» ответим сразу, что в любой треугольник можно вписать окружность и притом только одну. Потому что существует только одна точка пересечения всех биссектрис и одна точка пересечения перпендикуляров, исходящих из середин сторон.

Свойство окружности, которой принадлежат вершины треугольника

Описанная окружность, которая зависит от длин сторон при основании, имеет свои свойства. Укажем свойства описанной окружности:

  1. Центр описанной окружности для прямоугольного треугольника находится на середине гипотенузы, у острого – внутри самого треугольника, а для тупоугольного – за ее пределами.
  2. Диаметр любой описанной окр-сти равен половине отношения стороны и синуса угла, который принадлежит ей, в виде формулы можно представить следующим образом:
  3. Зная радиус описанной окружности и значения углов, можно найти значение площади, не прибегая к использованию длин сторон, по следующей формуле:

Для того чтобы более наглядно понять принцип описанной окружности, решим простую задачу. Допустим, что дан треугольник Δ ABC, стороны которого равны 10, 15 и 8,5 см. Радиус описанной окружности около треугольника (FB) составляет 7,9 см. Найти значение градусной меры каждого угла и через них площадь треугольника.

Рисунок 2. Поиск радиуса окружности через отношение сторон и синусов углов

Решение: опираясь на ранее указанную теорему синусов, найдем значение синуса каждого угла в отдельности. По условию известно, что сторона АВ равна 10 см. Вычислим значение С:

Используя значения таблицы Брадиса, узнаем, что градусная мера угла С равна 39°. Таким же методом найдем и остальные меры углов:

Откуда узнаем, что CAB = 33°, а ABC = 108°. Теперь, зная значения синусов каждого из углов и радиус, найдем площадь, подставляя найденные значения:

Ответ: площадь треугольника равна 40,31 см², а углы равны соответственно 33°, 108° и 39°.

Важно! Решая задачи подобного плана, будет нелишним всегда иметь таблицы Брадиса либо соответствующее приложение на смартфоне, так как вручную процесс может затянуться на длительное время. Также для большей экономии времени не требуется обязательно строить все три середины перпендикуляра либо три биссектрисы. Любая третья из них всегда будет пересекаться в точке пересечения первых двух. А для ортодоксального построения обычно третью дорисовывают. Может, это неправильно в вопросе алгоритма, но на ЕГЭ или других экзаменах это здорово экономит время.

Исчисление радиуса вписанной окружности

Все точки окружности одинаково удалены от ее центра на одинаковом расстоянии. Длину этого отрезка (от и до) называют радиусом. В зависимости от того, какую окр-ть мы имеем, различают два вида – внутренний и внешний. Каждый из них вычисляется по собственной формуле и имеет прямое отношение к вычислению таких параметров, как:

  • площадь,
  • градусная мера каждого угла,
  • длины сторон и периметр.

Рисунок 3. Расположение вписанной окружности внутри треугольника

Вычислить длину расстояния от центра до точки соприкосновения с любой из сторон можно такими способами: через стороны, высоты, боковые стороны и углы (для равнобокого треугольника).

Использование полупериметра

Полупериметром называется половина суммы длин всех сторон. Такой способ считается самым популярным и универсальным, потому как независимо от того, какой тип треугольника дан по условию, он подходит для всех. Порядок вычисления имеет следующий вид:

Если дан «правильный»

Одним из малых преимуществ «идеального» треугольника является то, что вписанная и описанная окружности имеют центр в одной точке. Это удобно при построении фигур. Однако в 80% случаев ответ получается «некрасивым». Тут имеется ввиду, что очень редко радиус вписанной окр-ти будет целым натуральным числом, скорее наоборот. Для упрощенного исчисления используется формула радиуса вписанной окружности в треугольник:

Если боковины одинаковой длины

Одним из подтипов задач на гос. экзаменах будет нахождение радиуса вписанной окружности треугольника, две стороны которого равны между собой, а третья нет. В таком случае рекомендуем использовать этот алгоритм, который даст ощутимую экономию времени на поиск диаметра вписанной окр-ти. Радиус вписанной окружности в треугольник с равными «боковыми» вычисляется по формуле:

Более наглядное применение указанных формул продемонстрируем на следующей задаче. Пускай имеем треугольник (Δ HJI), в который вписана окр-ть в точке K. Длина стороны HJ = 16 см, JI = 9,5 см и сторона HI равна 19 см (рисунок 4). Найти радиус вписанной окр-ти, зная стороны.

Рисунок 4. Поиск значения радиуса вписанной окружности

Решение: для нахождения радиуса вписанной окр-ти найдем полупериметр:

Отсюда, зная механизм вычисления, узнаем следующее значение. Для этого понадобятся длины каждой из сторон (дано по условию), а также половину периметра, получается:

Отсюда следует, что искомый радиус равен 3,63 см. Согласно условию, все стороны равны, тогда искомый радиус будет равен:

При условии, если многоугольник равнобокий (например, i = h = 10 см, j = 8 см), диаметр внутренней окр-ти с центром в точке K будет равен:

В условии задачи может даваться треугольник с углом 90°, в таком случае запоминать формулу нет необходимости. Гипотенуза треугольника будет равна диаметру. Более наглядно это выглядит так:

Важно! Если задана задача на поиск внутреннего радиуса, не рекомендуем проводить вычисления через значения синусов и косинусов углов, табличное значение которых точно не известно. В случае, если иначе узнать длину невозможно, не пытайтесь «вытащить» значение из-под корня. В 40% задач полученное значение будет трансцендентным (т.е. бесконечным), а комиссия может не засчитать ответ (даже если он будет правильным) из-за его неточности или неправильной формы подачи. Особое внимание уделите тому, как может видоизменяться формула радиуса описанной окружности треугольника в зависимости от предложенных данных. Такие «заготовки» позволяют заранее «видеть» сценарий решения задачи и выбрать наиболее экономное решение.

Радиус внутренней окружности и площадь

Для того чтобы вычислить площадь треугольника, вписанного в окружность, используют лишь радиус и длины сторон многоугольника:

Если в условии задачи напрямую не дано значение радиуса, а только площадь, то указанная формула площади трансформируется в следующую:

Рассмотрим действие последней формулы на более конкретном примере. Предположим, что дан треугольник, в который вписана окр-ть. Площадь окр-ти составляет 4π, а стороны равны соответственно 4, 5 и 6 см. Вычислим площадь заданного многоугольника при помощи вычисления полупериметра.

Используя вышеуказанный алгоритм, вычислим площадь треугольника через радиус вписанной окружности:

В силу того, что в любой треугольник можно вписать окружность, число вариаций нахождения площади значительно увеличивается. Т.е. поиск площади треугольника, включает в себя обязательное знание длины каждой стороны, а также значение радиуса.

Треугольник, вписанный в окружность геометрия 7 класс

Прямоугольные треугольники, вписанные в окружность

Вывод

Из указанных формул можно убедиться, что сложность любой задачи с использованием вписанной и описанной окружностей заключается только в дополнительных действия по поиску требуемых значений. Задачи подобного типа требуют только досконально понимания сути формул, а также рациональности их применения. Из практики решения отметим, что в будущем центр описанной окружности будет фигурировать и в дальнейших темах геометрии, поэтому запускать ее не следует. В противном случае решение может затянуться с использованием лишних ходов и логических выводов.

источники:

http://ege-study.ru/ru/ege/materialy/matematika/vpisannyj-i-opisannyj-treugolnik-vpisannaya-i-opisannaya-okruzhnost/

http://tvercult.ru/nauka/formula-ploshhadi-i-radiusa-svoystva-treugolnika-vpisannogo-v-okruzhnost

Содержание

  1. Определение
  2. Формулы
  3. Радиус вписанной окружности в треугольник
  4. Радиус описанной окружности около треугольника
  5. Площадь треугольника
  6. Периметр треугольника
  7. Сторона треугольника
  8. Средняя линия треугольника
  9. Высота треугольника
  10. Свойства
  11. Доказательство

Определение

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — не диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Треугольник вписанный в окружность

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

    [ r = frac{S}{(a+b+c)/2} ]

  2. Радиус вписанной окружности в треугольник,
    если известны площадь и периметр:

    [ r = frac{S}{frac{1}{2}P} ]

  3. Радиус вписанной окружности в треугольник,
    если известны полупериметр и все стороны:

    [ r = sqrt{frac{(p-a)(p-b)(p-c)}{p}} ]

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

    [ R = frac{AC}{2 sin angle B} ]

  2. Радиус описанной окружности около треугольника,
    если известны все стороны и площадь:

    [ R = frac{abc}{4S} ]

  3. Радиус описанной окружности около треугольника,
    если известны
    все стороны и полупериметр:

    [ R = frac{abc}{4sqrt{p(p-a)(p-b)(p-c)}} ]

Площадь треугольника

S — площадь треугольника.

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

    [ S = pr ]

  2. Площадь треугольника вписанного в окружность,
    если известен полупериметр:

    [ S = sqrt{p(p-a)(p-b)(p-c)} ]

  3. Площадь треугольника вписанного в окружность,
    если известен высота и основание:

    [ S = frac{1}2 ah ]

  4. Площадь треугольника вписанного в окружность,
    если известна сторона и два прилежащих к ней угла:

    [ S = frac{a^2}{2cdot (sin(α)⋅sin(β)) : sin(180 — (α + β))} ]

  5. Площадь треугольника вписанного в окружность,
    если известны две стороны и синус угла между ними:

    [ S = frac{1}{2}ab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1.  Периметр треугольника вписанного в окружность,
    если известны все стороны:

    [ P = a + b + c ]

  2. Периметр треугольника вписанного в окружность,
    если известна площадь и радиус вписанной окружности:

    [ P = frac{2S}{r} ]

  3. Периметр треугольника вписанного в окружность,
    если известны две стороны и угол между ними:

    [ P = sqrt{ b2 + с2 — 2 * b * с * cosα} + (b + с) ]

Сторона треугольника

a — сторона треугольника.

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

    [ a = sqrt{b^2+c^2 -2bc cdot cos alpha} ]

  2. Сторона треугольника вписанного в
    окружность, если известна сторона и два угла:

    [ a = frac{b · sin alpha }{sin β} ]

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

    [ l = frac{AB}{2} ]

  2. Средняя линия треугольника вписанного в окружность,
    если известны две стороны, ни одна из них не является
    основанием, и косинус угла между ними:

    [ l = frac{sqrt{b^2+c^2-2bc cdot cos alpha}}{2} ]

Высота треугольника

h — высота треугольника.

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

    [ h = frac{2S}{a} ]

  2. Высота треугольника вписанного в окружность,
    если известен сторона и синус угла прилежащего
    к этой стороне, и находящегося напротив высоты:

    [ h = b cdot sin alpha ]

  3. Высота треугольника вписанного в окружность,
    если известен радиус описанной окружности и
    две стороны, ни одна из которых не является основанием:

    [ h = frac{bc}{2R} ]

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

около треугольника описана окружность

Дано: окружность и треугольник,
которые изображены на рисунке 2.

Доказать: окружность описана
около треугольника.

Доказательство:

  1.  Проведем серединные
    перпендикуляры — HO, FO, EO.
  2.  O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

Следовательно: окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Геометрия – это раздел математики, который занимается решением вопросов, связанных с размером, формой, относительным положением фигур и свойствами пространства. Человек постоянно сталкивается с ней в повседневной жизни, ведь все, что его окружает – это геометрические фигуры (стены, потолок, техника и прочее). Поэтому необходимо иметь хотя бы минимальное представление о ее ключевых законах и фигурах. Вписанный треугольник в окружность – это треугольник, все вершины которого располагаются на окружности. Его также можно встретить в жизни. Например, по типу этого геометрического элемента создаются детали для машин.

Геометрия как систематическая и точная наука появилась в Древней Греции. Ее первые аксиоматические построения описаны в «Началах» Евклида. В то время эта наука занималась преимущественно изучением простейших фигур в пространстве и на плоскости, определением их площади и объема.

В 1637 году Декарт представил свой координатный метод, который стал фундаментом для дифференциальной и аналитической геометрии. Несколько позже были созданы еще 2 вида – проективная и начертательная. Но существенных изменений или отклонений от аксиоматического подхода Евклида в это время не происходило. Лишь в 1829 году произошли коренные изменения. Ученый Лобачевский отказался от аксиомы параллельности и создал совершенно инновационную неевклидовую геометрию. Именно это послужило толчком к дальнейшему развитию геометрии как науки и созданию новых теорий. Одна из таких касается вписанного треугольника в окружность.

Какая окружность вписана, а какая описана

Прежде всего вспомним, что окружностью называется бесконечное множество точек, удаленных на одинаковом расстоянии от центра. Если внутри многоугольника допускается построить окружность, которая с каждой стороной будет иметь только одну общую точку пересечения, то она будет называться вписанной (ВО). Описанной окружностью (ОО) называется такое геометрическое место точек, при котором у построенной фигуры с заданным многоугольником общими точками будут только вершины многоугольника.

Вписанная и описанная окружности

Вписанная и описанная окружность треугольника

На изображении построены две фигуры большого и малого диаметров, центры которых находятся G и I. Окружность большего значения называется описанной окр-тью Δ ABC, а малого – наоборот, вписанной в Δ ABC. С помощью такого наглядного примера проще разобраться с данными геометрическими фигурами и их основными свойствами. В целом же, геометрия — это более наглядная наука. Это говорит о том, что намного легче воспринимать информацию, формулы, теоремы, если видеть их изображение или даже чертить самому. Все же зрительная память у большей части людей развита лучше, чем, например, слуховая.

Для того чтобы описать вокруг треугольника окр-ть, требуется провести через середину каждой стороны перпендикулярную прямую – это точка пересечения, она играет ключевую роль. Перед тем как найти окр-ть, ее центр в многоугольнике, требуется построить для каждого угла биссектрису, после чего выделить точку пересечения прямых. Она в свою очередь будет центром ВО, а ее радиус (R) при любых условиях будет перпендикулярен любой из сторон.

[warning]В любой треугольник можно вписать окр-ть, притом только одну. Потому что существует только одна точка пересечения всех биссектрис и перпендикуляров, исходящих из середин сторон.[/warning]

Свойство окружности, которой принадлежат вершины треугольника

Описанная окр-ть, которая зависит от длин сторон при основании, имеет свои свойства. Укажем свойства описанной окружности:

  1. Центр ОО для прямоугольного треугольника находится на середине гипотенузы, у острого – внутри самого треугольника, а для тупоугольного – за ее пределами.
  2. Диаметр любой ОО равен половине отношения стороны и синуса угла, который принадлежит ей, в виде формулы можно представить следующим образом:
    Свойства треугольника вписанного в окружность
  3. Зная радиус ОО и значения углов, можно найти площадь, не прибегая к использованию длин сторон:
    Свойства треугольника вписанного в окружность

Для того чтобы более наглядно понять принцип ОО, решим простое задание. Допустим, что дан Δ ABC, стороны которого 10, 15, 8,5 см. Радиус ОО около треугольника (FB) составляет 7,9 см. Найти градусные меры каждого угла и через них площадь (S) фигуры.

Поиск радиуса окружности через отношение сторон и синусов углов

Решение: опираясь на ранее указанную теорему синусов, найдем синус каждого угла. По условию известно, что сторона АВ равна 10 см. Определяем значение С:

Свойства треугольника вписанного в окружность

Используя таблицу Брадиса, узнаем, что градусная мера С равна 39°. Таким же методом найдем и остальные меры:

Свойства треугольника вписанного в окружность

Откуда узнаем, что CAB = 33°, а ABC = 108°. Теперь, зная значения синусов каждого из углов и R, найдем S:

Свойства треугольника вписанного в окружность

Ответ: S фигуры равна 40,31 см², а углы равны соответственно 33°, 108° и 39°.

[stop]Решая задачи подобного плана, будет нелишним всегда иметь таблицы Брадиса либо соответствующее приложение на смартфоне, так как вручную процесс может затянуться на длительное время. Также для большей экономии времени не требуется обязательно строить все три середины перпендикуляра либо три биссектрисы. Любая третья из них всегда будет пересекаться в месте пересечения первых двух. Этот совет можно взять на вооружение школьникам и студентам.[/stop]

Исчисление радиуса вписанной окружности

Все точки окружности одинаково удалены от ее центра на одинаковом расстоянии. Длину этого отрезка называют радиусом (R). В зависимости от того, какую окружность мы имеем, различают два вида – внутренний и внешний. Каждый из них вычисляется по собственной формуле, имеет прямое отношение к вычислению таких параметров, как:

  • площадь (S);
  • градусная мера каждого угла;
  • длины сторон, периметр.

Расположение вписанной окружности внутри треугольника

Вычислить длину расстояния от центра до точки соприкосновения с любой из сторон можно такими способами: через стороны, высоты, боковые стороны, углы (для равнобокого треугольника).

Использование полупериметра

Полупериметром называется половина суммы длин всех сторон. Такой способ считается самым популярным и универсальным, потому как независимо от того, какой тип треугольника дан по условию, он подходит для всех. К тому же, формулу запомнить легко. Порядок вычисления имеет следующий вид:

Свойства треугольника вписанного в окружность

Если дан «правильный»

У равностороннего треугольника есть одна интересная особенность – у него совпадают медианы, высоты и биссектрисы. То есть, именно те отрезки, которые выступают также серединными перпендикулярами. Это означает, что центры, как вписанной, так и описанной окружности совпадают.  Это удобно при построении фигур и проведении вычислений. Однако в 80% случаев ответ получается «некрасивым». Тут имеется ввиду, что очень редко радиус ВО будет целым натуральным числом, скорее наоборот. Для упрощенного исчисления используется формула R ВО в треугольник:

Если боковины одинаковой длины

Одним из подтипов задач на гос. экзаменах будет нахождение радиуса ВО треугольника, две стороны которого равны между собой, а третья нет. В таком случае рекомендуем использовать этот алгоритм, который даст ощутимую экономию времени на поиск диаметра. R вписанной окружности в треугольник с равными «боковыми» вычисляется так:

м

Более наглядное применение указанных формул продемонстрируем на следующем задании. Пускай имеем треугольник (Δ HJI), в который вписана окр-ть в точке K. Длина HJ = 16 см, JI = 9,5 см и HI равна 19 см (рисунок ниже). Определить R вписанной окр-ти, зная стороны.

Свойства треугольника вписанного в окружность

Поиск значения радиуса вписанной окружности

Решение: для нахождения R найдем полупериметр:

Свойства треугольника вписанного в окружность

Отсюда, зная механизм вычисления, узнаем следующий показатель. Для этого понадобятся длины каждой из сторон (дано по условию), а также половину периметра, получается:

Свойства треугольника вписанного в окружность

Отсюда следует, что искомый R равен 3,63 см. Согласно условию, все стороны равны, тогда искомый R будет:

Свойства треугольника вписанного в окружность

При условии, если многоугольник равнобокий (например, i = h = 10 см, j = 8 см), диаметр внутренней окр-ти с центром в точке K будет:

Свойства треугольника вписанного в окружность

В условии задачи может даваться треугольник с углом 90°, в таком случае гипотенуза фигуры будет равна диаметру. Более наглядно это выглядит так:

Свойства треугольника вписанного в окружность

[stop] Если задано задание на поиск внутреннего R, не рекомендуем проводить вычисления через значения синусов и косинусов углов, табличное значение которых точно не известно. В случае, если иначе узнать длину невозможно, не пытайтесь «вытащить» значение из-под корня. В 40% заданий полученное значение будет трансцендентным (т. е. бесконечным), а комиссия может не засчитать ответ (даже если он будет правильным) из-за его неточности или неправильной формы подачи. Особое внимание уделите тому, как может видоизменяться формула R описанной окружности многоугольника в зависимости от предложенных данных.[/stop]

Радиус внутренней окружности и площадь

Для того чтобы вычислить S треугольника, вписанного в окружность, используют лишь R и длины сторон многоугольника:

Свойства треугольника вписанного в окружность

Если в условии напрямую не дана величина радиуса, а только S, то указанная формула трансформируется в следующую:

Свойства треугольника вписанного в окружность

Рассмотрим действие последней формулы на более конкретном примере. Предположим, что дан треугольник, в который вписана окр-ть. Площадь вписанной окр-ти составляет 4π, а стороны равны соответственно 4, 5 и 6 см. Вычислим S заданного многоугольника при помощи полупериметра.

Используя вышеуказанный алгоритм, определим S через R вписанной окр-ти:

Свойства треугольника вписанного в окружность

В силу того, что в любой многоугольник можно вписать окружность, число вариаций нахождения площади значительно увеличивается. Т.е. поиск его S, включает в себя обязательное знание длины каждой стороны, а также величину радиуса.

Треугольник, вписанный в окружность геометрия 7 класс:

Прямоугольные треугольники, вписанные в окружность:



Из указанных примеров можно убедиться, что сложность любого задания с использованием ВО и ОО заключается только в дополнительных действиях по поиску требуемых значений. Задачи подобного типа требуют только досконально понимания сути формул, а также рациональности их применения.

Итак, мы смогли доказать, что в любой треугольник можно вписать окружность, центр которой будет совпадать с точкой пересечения биссектрис этого самого треугольника. Также доказали, что около любого многоугольника также можно описать окружность и ее центр совпадет с точкой пересечения серединных перпендикуляров. В изучении такой точной науки, как геометрия, важно не просто следовать предоставленным формулам и заучивать теоремы. Безусловно, формулы важны и без них проводить правильные расчеты просто не будет никакой возможности. Но все же необходимо вникнуть и понять, как располагаются фигуры на плоскости и в пространстве, как к ним применима та или иная формула.

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Рассмотрим важные теоремы, которые помогут нам при решении задач.

Теорема 1. Вокруг любого треугольника можно описать окружность, причем только одну. Ее центр – это точка пересечения серединных перпендикуляров к сторонам треугольника.

Иногда говорят, что окружность описана около треугольника. Это означает то же самое – все вершины треугольника лежат на окружности.

Доказательство этой теоремы здесь: Свойство серединных перпендикуляров.

Теорема 2. В любой треугольник можно вписать окружность, причем только одну. Ее центром является точка пересечения биссектрис треугольника.

Доказательство теоремы здесь: Свойства биссектрис треугольника.

Теорема 3. Центр окружности, описанной вокруг прямоугольного треугольника, лежит на середине гипотенузы, а радиус этой окружности равен половине гипотенузы.

Доказательство:

Медиана, проведенная к гипотенузе, равна ее половине, по свойству медианы прямоугольного треугольника.
Его доказательство можно найти здесь: Свойство медианы прямоугольного треугольника.

Поэтому середина гипотенузы – это точка, равноудаленная от вершины прямого угла и от концов гипотенузы, то есть от всех вершин прямоугольного треугольника.

Теорема 4.

Центр окружности, описанной вокруг остроугольного треугольника, лежит внутри этого треугольника.

Центр окружности, описанной вокруг прямоугольного треугольника, лежит на середине гипотенузы.

Центр окружности, описанной вокруг тупоугольного треугольника, лежит вне этого треугольника.

Теорема 5. Радиус окружности r , вписанной в прямоугольный треугольник с катетами a и b и гипотенузой c, вычисляется по формуле: displaystyle r=frac{a+b-c}{2}.

Доказательство теоремы здесь: Радиус окружности, вписанной в прямоугольный треугольник.

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Напомним определение правильного многоугольника:

Правильным называется многоугольник, все стороны и все углы которого равны. Центры вписанной и описанной окружностей правильного многоугольника находятся в одной точке.

Из этого определения, понятно, что правильный треугольник – равносторонний. Для решения такого треугольника полезно уметь выводить формулы радиусов вписанной и описанной окружностей.

Теорема 6.

Для правильного треугольника со стороной а радиус описанной окружности равен displaystyle R=frac{asqrt{3}}{3}.

А радиус окружности, вписанной в правильный треугольник, равен displaystyle r=frac{asqrt{3}}{6}.

Докажем эту теорему.

У равностороннего треугольника медианы, биссектрисы, высоты и серединные перпендикуляры совпадают, и точка их пересечения является центром как вписанной, так и описанной окружностей.

Пусть в правильном треугольнике ABC стороны AB=BC=AC=a, точка О – центр вписанной и описанной окружностей, AM, BH, CN — медианы и высоты. По свойству медиан треугольника, отрезки AM, BH, CN в точке О делятся в отношении 2 : 1, считая от вершин. Тогда OA = OB = OC = R, OM = OH = ON = r.

Получаем, что displaystyle R=OB=frac{2}{3}BH, r=OH=frac{1}{3}BH.

Из треугольника АВН получаем, что длина стороны displaystyle BH=frac{asqrt{3}}{2}.

Тогда displaystyle R=frac{2}{3}cdot frac{asqrt{3}}{2}=frac{asqrt{3}}{3}, r=frac{1}{3}cdot frac{asqrt{3}}{2}=afrac{sqrt{3}}{6}.

Значит, формула радиуса окружности, описанной около правильного треугольника — displaystyle r=frac{asqrt{3}}{3}.

Формула радиуса окружности, вписанной в правильный треугольник displaystyle r=frac{asqrt{3}}{6}.

Как видим, часто геометрическая задача решается с помощью несложных формул, и помогает в этом алгебра.

Разберем задачи ОГЭ и ЕГЭ по теме: Вписанные и описанные треугольники.

Задача 1, тренировочная. Периметр правильного треугольника АВС равен 15. Найдите радиус вписанной и описанной окружностей.

Решение:

Длина стороны равностороннего треугольника ABC  равна 15 : 3 = 5.

Радиусы r – вписанной и R – описанной окружностей можно найти по формулам:

displaystyle r=frac{asqrt{3}}{6}, R=frac{asqrt{3}}{3}, где a — сторона треугольника.

Значит, displaystyle r=frac{5sqrt{3}}{6}, R=frac{5sqrt{3}}{3}.

Ответ: displaystyle r=frac{5sqrt{3}}{6}, R=frac{5sqrt{3}}{3}.

Решая задачи по теме «Вписанные и описанные треугольники», мы часто пользуемся формулами площади треугольника, а также теоремой синусов.

Вот две полезные формулы для площади треугольника.

Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

S=p cdot r,

где p=genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} left( a+b+c right) — полупериметр,

r — радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части 2:

S=genfrac{}{}{}{0}{abc}{4R},

где a, b, c — стороны треугольника, R — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Теорема синусов:

displaystylefrac{a}{sinangle A}=frac{b}{sinangle B}=frac{c}{sinangle C}=2R,

R — радиус описанной окружности

Задача 2, ЕГЭ. Найдите диаметр окружности, вписанной в треугольник со сторонами 13, 14 и 15.

Решение:

Выразим площадь треугольника двумя разными способами:

displaystyle S=pr,

displaystyle S=sqrt{p(p-a)(p-b)(p-c)}, где displaystyle p=frac{a+b+c}{2} – полупериметр треугольника, a a, b, c – его стороны.

displaystyle p=frac{13+14+15}{2}=21,

displaystyle S=sqrt{21(21-13)(21-14)(21-15)}=sqrt{21cdot 8cdot 7cdot 6}=84.

Тогда displaystyle r=frac{S}{p}=frac{84}{21}=4, а диаметр окружности равен 8.

Ответ: 8.

Задача 3, ЕГЭ. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу c этого треугольника. В ответе укажите cleft( sqrt{2}-1 right).

Рисунок к задаче 1

Решение:

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен a. Тогда гипотенуза равна asqrt{2}.

Запишем площадь треугольника АВС двумя способами:

S=genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} a^2.

S=genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2}left( 2a + asqrt{2}right)r.

Приравняв эти выражения, получим, что a=left( 2 + sqrt{2}right)r. Поскольку r=2, получаем, что a=4+2sqrt{2}.

Тогда c=asqrt{2}=4+4sqrt{2}=4left( 1+sqrt{2} right).

В ответ запишем cleft( sqrt{2}-1 right)=4.

Ответ: 4.

Задача 4, ЕГЭ. В треугольнике ABC сторона AB равна  7sqrt{3}, а угол B равен 120^{circ}. Найдите радиус описанной около этого треугольника окружности.

Решение:

По теореме синусов displaystyle frac{AC}{sin B}=2R.

Тогда displaystyle R=frac{7sqrt{3}}{2}:frac{sqrt{3}}{2}=7.

Ответ: 7.

Задача 5, ЕГЭ. В треугольнике ABC угол А равен 57^{circ}, а угол В – 93^{circ}. Найдите радиус окружности, описанной около треугольника ABC, если сторона AB равна 10.

Решение:

Зная, что сумма углов треугольника равна 180^{circ}, найдем угол С.

displaystyle angle C = 180^{circ }-(angle A+angle B)=180^{circ }-(53^{circ }+97^{circ })=30^{circ }.

По теореме синусов displaystyle frac{AB}{sinC}=frac{BC}{sinA}=frac{AC}{sinB}=2R.

Значит, displaystyle R=frac{AB}{2sinC}=10.

Ответ: 10.

Задача 6, ЕГЭ. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

Рисунок к задаче 2

По теореме синусов,

genfrac{}{}{}{0}{AC}{sin B}=2R.

Получаем, что sin B=genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2}. Угол B — тупой. Значит, он равен 150^{circ}.

Ответ: 150.

Задача 7, ЕГЭ. Боковые стороны равнобедренного треугольника равны 40, основание равно 48. Найдите радиус описанной окружности этого треугольника.

Рисунок к задаче 3

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

S=genfrac{}{}{}{0}{abc}{4R}.

S=genfrac{}{}{}{0}{displaystyle 1}{displaystyle 2} ah, где h — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону AB пополам. По теореме Пифагора найдем h=32.

Тогда R=25.

Ответ: 25.

Задача 8, ОГЭ. В равнобедренном треугольнике ABC основание AC равно 10 см, а высота, проведенная к основанию, 12 см. Найдите периметр треугольника и радиус вписанной окружности.

Решение:

Высота BH, проведенная к основанию AC, является медианой. Значит, AH = HC = 5.

AB находится по теореме Пифагора из треугольника ABH:

displaystyle AB=sqrt{AH^{2}+BH^{2}}=sqrt{5^{2}+12^{2}}=13.

Периметр треугольника ABC – это сумма длин сторон, т.е. P = 13 + 13 + 10 = 36.

Площадь треугольника displaystyle S=frac{1}{2}ACcdot BH=frac{1}{2}cdot 10cdot 12=60.

Радиус вписанной окружности r найдем по формуле S = p r:

displaystyle r=frac{S}{p}=frac{60}{18}=frac{10}{3}.

Ответ: displaystyle 30; frac{10}{3}.

Задача 9, ОГЭ. Стороны AB и BC треугольника ABC равны 6 и 3sqrt{2} соответственно, угол B- 45^{circ }. Найдите диаметр окружности, описанной около треугольника ABC.

Решение:

Найдем длину стороны AC по теореме косинусов, используя длины сторон AB, CB и косинус угла В, противолежащего стороне AC:

displaystyle AC^{2}=AB^{2}+BC^{2}-2cdot ABcdot BCcdot cosB=6^{2}+(3sqrt{2})^{2}-2cdot 6cdot 3sqrt{2}cdot frac{sqrt{2}}{2}=18,AC=3sqrt{2}.

Теперь воспользуемся теоремой синусов:

displaystyle frac{AC}{sin45^{circ }}=2R,

displaystyle 2R=3sqrt{2}:frac{sqrt{2}}{2}=6.

Значит, диаметр окружности, описанной около треугольника ABC, равен 6.

Ответ: 6.

Задача 10. Найдите площадь прямоугольного треугольника, если радиус описанной окружности равен 5, а вписанной 1.

Решение:

Пусть длина радиуса описанной окружности R = 5, а длина радиуса вписанной окружности r = 1.

Мы знаем, что displaystyle r=frac{a+b-c}{2}, R=frac{c}{2}, S=pcdot r, где displaystyle p=frac{a+b+c}{2} – полупериметр, a, b, c – стороны треугольника.

Значит, displaystyle r=frac{a+b-c}{2}=frac{a+b+c-2c}{2}=frac{a+b+c}{2}-frac{2c}{2}=

=p-c=p-2R.

Отсюда displaystyle r=p-2R, p=r+2R.

Тогда displaystyle S=(r+2R)cdot r=(1+2cdot 5)cdot 1=11.

Ответ: 11.

Задача 11. Найдите площадь прямоугольного треугольника, если радиус вписанной окружности равен 2, а гипотенуза 10.

Решение:

Пусть радиус вписанной окружности r = 2, а гипотенуза c = 10.

Мы знаем, что в прямоугольном треугольнике displaystyle r=frac{a+b-c}{2}.

Значит, displaystyle r=frac{a+b-c}{2}=frac{a+b+c-2c}{2}=frac{a+b+c}{2}-frac{2c}{2}=p-c, отсюда p =r+c.

Площадь находится по формуле S =pr, где displaystyle p=frac{a+b+c}{2} – полупериметр, a, b, c – стороны треугольника.

displaystyle S=(r+c)cdot r=(2+10)cdot 2=24.

Ответ: 24.

Рассмотрим также задачу из 2 части ЕГЭ по математике.

Задача 12. Точка О – центр вписанной в треугольник ABC окружности. Прямая BO вторично пересекает описанную около треугольника ABC окружность в точке Р.

а) Докажите, что displaystyle angle POA=angle PAO.

б) Найдите площадь треугольника APO, если радиус окружности, описанной около треугольника ABC равен 10, displaystyle angle BAC=75^{circ }, angle ABC=60^{circ }.

Решение:

а) Пусть displaystyle angle ABC=2beta , angle BAC=2alpha . О – центр вписанной окружности, значит, AO и BO – биссектрисы углов ABC и BAC соответственно, и displaystyle angle ABO=angle OBC=beta , angle BAO=angle OAC=alpha .

displaystyle angle PAC=angle PBC=beta как вписанные углы, опирающиеся на одну и ту же дугу PC.
Тогда displaystyle angle PAO=alpha +beta .

displaystyle angle POA – внешний угол треугольника AOB, поэтому он равен сумме двух внутренних углов, не смежных с ним, т.е. displaystyle angle POA=angle OAB+angle OBA=alpha +beta .

Значит, displaystyle angle POA=angle PAO. Что и требовалось доказать.

б)  displaystyle angle POA=angle PAO, следовательно, треугольник POA – равнобедренный, AO – основание, PA = PO.

Угол ABC равен 60^{circ }, значит, displaystyle angle ABO=angle OBC=30^{circ }.

По теореме синусов для треугольника ABP:

displaystyle frac{AP}{sinB}=2R, AP=2cdot 10cdot sin30^{circ }=10.

Тогда отрезок OP равен отрезку AP, т.е. OP = 10.

Найдем угол С из треугольника ABC: displaystyle angle C= 180^{circ }-60^{circ }-75^{circ }=45^{circ }.

displaystyle angle APO=angle ACB=45^{circ } как вписанные углы, опирающиеся на дугу AB.

Площадь треугольника AOP находится по формуле: displaystyle S=frac{1}{2}abcdot sinalpha.

displaystyle S_{APO}=frac{1}{2}cdot APcdot POcdot sinAPO=frac{1}{2}cdot 10cdot 10cdot sin45^{circ }=frac{1}{2}cdot 10cdot 10cdot frac{sqrt{2}}{2}=
displaystyle =25sqrt{2}.

Ответ: displaystyle 25sqrt{2}.

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания 16.

Если вам понравился наш материал — записывайтесь на курсы подготовки к ЕГЭ по математике онлайн

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Окружность, описанная около треугольника.
Треугольник, вписанный в окружность. Теорема синусов

Определение 1 . Серединным перпендикуляром к отрезку называют, прямую, перпендикулярную к этому отрезку и проходящую через его середину (рис. 1).

Серединный перпендикуляр свойства

Теорема 1 . Каждая точка серединного перпендикуляра к отрезку находится на одном и том же расстоянии от концов этого отрезка.

Доказательство . Рассмотрим произвольную точку D , лежащую на серединном перпендикуляре к отрезку AB (рис.2), и докажем, что треугольники ADC и BDC равны.

Серединный перпендикуляр свойства

Действительно, эти треугольники являются прямоугольными треугольниками, у которых катеты AC и BC равны, а катет DC является общим. Из равенства треугольников ADC и BDC вытекает равенство отрезков AD и DB . Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если точка находится на одном и том же расстоянии от концов отрезка, то она лежит на серединном перпендикуляре к этому отрезку.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью предположим, что некоторая точка E находится на одном и том же расстоянии от концов отрезка, но не лежит на серединном перпендикуляре к этому отрезку. Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точки E и A лежат по разные стороны от серединного перпендикуляра (рис.3). В этом случае отрезок EA пересекает серединный перпендикуляр в некоторой точке, которую мы обозначим буквой D .

Серединный перпендикуляр свойства

Докажем, что отрезок AE длиннее отрезка EB . Действительно,

Таким образом, в случае, когда точки E и A лежат по разные стороны от серединного перпендикуляра, мы получили противоречие.

Серединный перпендикуляр свойства

Теперь рассмотрим случай, когда точки E и A лежат по одну сторону от серединного перпендикуляра (рис.4). Докажем, что отрезок EB длиннее отрезка AE . Действительно,

Полученное противоречие и завершает доказательство теоремы 2

Окружность, описанная около треугольника

Определение 2 . Окружностью, описанной около треугольника , называют окружность, проходящую через все три вершины треугольника (рис.5). В этом случае треугольник называют треугольником, вписанным в окружность, или вписанным треугольником .

Описанная около треугольника окружность треугольник вписанный в окружность

Свойства описанной около треугольника окружности. Теорема синусов

Для любого треугольника справедливы равенства (теорема синусов):

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Серединные перпендикуляры к сторонам треугольника
Серединный перпендикуляр свойства

Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Центр описанной около остроугольного треугольника окружности лежит внутри треугольника.

Центром описанной около прямоугольного треугольника окружности является середина гипотенузы.

Центр описанной около тупоугольного треугольника окружности лежит вне треугольника.

Для любого треугольника справедливы равенства (теорема синусов):

где a , b , c – стороны треугольника, A , B , С – углы треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где A , B , С – углы треугольника, S – площадь треугольника, R – радиус описанной окружности.

Для любого треугольника справедливо равенство:

где a , b , c – стороны треугольника, S – площадь треугольника, R – радиус описанной окружности.

Доказательства теорем о свойствах описанной около треугольника окружности

Теорема 3 . Все серединные перпендикуляры, проведённые к сторонам произвольного треугольника, пересекаются в одной точке.

Доказательство . Рассмотрим два серединных перпендикуляра, проведённых к сторонам AC и AB треугольника ABC , и обозначим точку их пересечения буквой O (рис. 6).

Описанная около треугольника окружность серединный перпендикуляр свойства доказательства

Поскольку точка O лежит на серединном перпендикуляре к отрезку AC , то в силу теоремы 1 справедливо равенство:

Поскольку точка O лежит на серединном перпендикуляре к отрезку AB , то в силу теоремы 1 справедливо равенство:

Следовательно, справедливо равенство:

откуда с помощью теоремы 2 заключаем, что точка O лежит на серединном перпендикуляре к отрезку BC. Таким образом, все три серединных перпендикуляра проходят через одну и ту же точку, что и требовалось доказать.

Следствие . Около любого треугольника можно описать окружность. Центром описанной около треугольника окружности является точка, в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника.

Доказательство . Рассмотрим точку O , в которой пересекаются все серединные перпендикуляры, проведённые к сторонам треугольника ABC (рис. 6).

При доказательстве теоремы 3 было получено равенство:

из которого вытекает, что окружность с центром в точке O и радиусами OA , OB , OC проходит через все три вершины треугольника ABC , что и требовалось доказать.

Теорема 4 (теорема синусов) . Для любого треугольника (рис. 7)

Теорема синусов

Доказательство . Докажем сначала, что длина хорды окружности радиуса R хорды окружности радиуса R , на которую опирается вписанный угол величины φ , вычисляется по формуле:

Рассмотрим сначала случай, когда одна из сторон вписанного угла является диаметром окружности (рис.8).

Описанная около треугольника окружность серединный перпендикуляр свойства доказательства

Поскольку все вписанные углы, опирающиеся на одну и ту же дугу, равны, то для произвольного вписанного угла всегда найдется равный ему вписанный угол, у которого одна из сторон является диаметром окружности.

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Вписанные и описанные треугольники

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.
Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

— радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части :

где — стороны треугольника, — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Теорема синусов

Ты нашел то, что искал? Поделись с друзьями!

. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен . Найдите гипотенузу c этого треугольника. В ответе укажите .

Рисунок к задаче 1

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен . Тогда гипотенуза равна .

Запишем площадь треугольника АВС двумя способами:

Приравняв эти выражения, получим, что . Поскольку , получаем, что . Тогда .

В ответ запишем .

. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

Рисунок к задаче 2

По теореме синусов,

Получаем, что . Угол — тупой. Значит, он равен .

. Боковые стороны равнобедренного треугольника равны , основание равно . Найдите радиус описанной окружности этого треугольника.

Рисунок к задаче 3

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

, где — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону пополам. По теореме Пифагора найдем . Тогда .

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания .

Треугольник вписанный в окружность

Треугольник, вписанный в окружность — это треугольник, который
находится внутри окружности и соприкасается с ней всеми тремя вершинами.

На рисунке 1 изображена окружность, описанная около
треугольника
и окружность, вписанная в треугольник.

ВD = FC = AE — не диаметры описанной около треугольника окружности.

O — центр вписанной в треугольник окружности.

Треугольник вписанный в окружность

Формулы

Радиус вписанной окружности в треугольник

r — радиус вписанной окружности.

  1. Радиус вписанной окружности в треугольник,
    если известна площадь и все стороны:

Радиус описанной окружности около треугольника

R — радиус описанной окружности.

  1. Радиус описанной окружности около треугольника,
    если известна одна из сторон и синус противолежащего стороне угла:

Площадь треугольника

  1. Площадь треугольника вписанного в окружность,
    если известен полупериметр и радиус вписанной окружности:

[ S = fracab cdot sin angle C ]

Периметр треугольника

P — периметр треугольника.

  1. Периметр треугольника вписанного в окружность,
    если известны все стороны:

Сторона треугольника

  1. Сторона треугольника вписанного в окружность,
    если известны две стороны и косинус угла между ними:

Средняя линия треугольника

l — средняя линия треугольника.

  1. Средняя линия треугольника вписанного
    в окружность, если известно основание:

Высота треугольника

  1. Высота треугольника вписанного в окружность,
    если известна площадь и основание:

[ h = b cdot sin alpha ]

Свойства

  • Центр вписанной в треугольник окружности
    находится на пересечении биссектрис.
  • В треугольник, вписанный в окружность,
    можно вписать окружность, причем только одну.
  • Для треугольника, вписанного в окружность,
    справедлива Теорема Синусов, Теорема Косинусов
    и Теорема Пифагора.
  • Центр описанной около треугольника окружности
    находится на пересечении серединных перпендикуляров.
  • Все вершины треугольника, вписанного
    в окружность, лежат на окружности.
  • Сумма всех углов треугольника — 180 градусов.
  • Площадь треугольника вокруг которого описана окружность, и
    треугольника, в который вписана окружность, можно найти по
    формуле Герона.

Доказательство

Около любого треугольника, можно
описать окружность притом только одну.

около треугольника описана окружность

окружность и треугольник,
которые изображены на рисунке 2.

окружность описана
около треугольника.

  1. Проведем серединные
    перпендикуляры — HO, FO, EO.
  2. O — точка пересечения серединных
    перпендикуляров равноудалена от
    всех вершин треугольника.
  3. Центр окружности — точка пересечения
    серединных перпендикуляров — около
    треугольника описана окружность — O,
    от центра окружности к вершинам можно
    провести равные отрезки — радиусы — OB, OA, OC.

окружность описана около треугольника,
что и требовалось доказать.

Подводя итог, можно сказать, что треугольник,
вписанный в окружность
— это треугольник,
в котором все серединные перпендикуляры
пересекаются в одной точке, и эта точка
равноудалена от всех вершин треугольника.

Понравилась статья? Поделить с друзьями:
  • Как можно исправить три двойки
  • Попробуйте отключить adblock или режим экономии трафика как исправить
  • Как найти рисунки для рисования
  • Как найти местонахождения человека через телефон бесплатно
  • Как исправить амортизацию в принятии к учету