Как найти отрицательный вектор

Если вектор умножить на ноль, он станет нулевым.

Обязательно нужно ставить значок вектора над нулем! Нельзя говорить, что векторная величина просто равна скалярной:

Рассмотрим некоторые свойства нулевого вектора.

А это значит, что его начало совпадает с концом, это просто какая-то точка.

Нулевой вектор принято считать сонаправленным любому вектору.

Его мы можем получить не только путем умножения вектора на ноль, но и путем сложения противонаправленных векторов:

Если вектор умножают на отрицательное число, он изменит свое направление на противоположное. Такой вектор называется обратным данному.

Но такие векторы должны быть коллинеарны. Звучит как скороговорка, но ничего страшного. Главное – понять суть.

Векторы лежат на одной прямой: они коллинеарны. По направлению видно, что они противонаправлены, это обозначается так:

Векторы лежат на параллельных прямых, они коллинеарны. При этом они сонаправлены:

Эти двое тоже коллинеарны! Они ведь лежат на параллельных прямых. При этом они противонаправлены:

Коллинеарные векторы, имеющие одинаковую длину и противоположные направления, называются обратными друг другу.

Параллельный перенос векторов

Одно из важных свойств вектора, которое очень часто помогает в операциях над ним, – параллельный перенос.

Если передвинуть вектор, не меняя его направления и длины, он будет идентичен начальному. Это свойство – параллельный перенос.

Сложение векторов по правилу треугольника

Сложение векторов – одна из самых легких и приятных вещей. Предположим, у нас есть два вектора:

Наша цель – найти такой вектор, который будет являться суммой двух данных:

Для начала нужно сделать так, чтобы конец одного вектора был началом другого. Для этого воспользуемся параллельным переносом:

Теперь достроим до треугольника.

Но как узнать направление нужного нам вектора?

Все просто: вектор суммы идет от начала первого слагаемого к концу второго, мы словно «идём» по векторам:

Это называется правилом треугольника.

Больше двух слагаемых векторов. Сложение по правилу многоугольника

Но что делать, нам нужно сложить не два, а три, пять векторов или даже больше?

Мы руководствуемся той же логикой: соединяем векторы и «идём» по ним:

Это называется правилом многоугольника.

Вычитание векторов через сложение

Вычитание векторов не сложнее. Это даже можно сделать через сумму! Для этого нам понадобится понятие обратного вектора. Запишем разность так:

Тогда нам лишь остается найти сумму с обратным вектором:

А сделать это очень легко по правилу треугольника:

Всегда помни, что вычитание можно представлять сложением, а деление — умножением на дробь.

Вычитание векторов через треугольник

Вычитать векторы можно через треугольник. Основная задача будет состоять в том, чтобы определить направление вектора разности.

Итак, векторы должны выходить из одной точки. Далее мы достраиваем рисунок до треугольника и определяем положение. Рассмотрим два случая:

Направление вектора разности зависит от того, из какого вектора мы вычитаем. У них совпадают концы.

Универсальное правило параллелограмма

Есть еще один способ сложения и вычитания векторов.

Способ параллелограмма наиболее востребован в физике и сейчас ты поймешь, почему. Основа в том, чтобы векторы выходили из одной точки, имели одинаковое начало.

Ничего не напоминает?

Именно! Когда мы делаем чертеж к задачам по физике, все силы, приложенные к телу, мы рисуем из одной точки.

В чем же заключается правило параллелограмма? С помощью параллельного переноса достроим до параллелограмма:

Тогда вектор суммы будет диагональю этой фигуры. Это легко проверяется правилом треугольника. Начало этого вектора совпадает с началом двух слагаемых векторов:

Другая диагональ будет являться разностью этих векторов. Направление определяем так же, как делали раньше.

Скалярное произведение векторов

Еще одной важной операцией является произведение векторов. Рассмотрим скалярное произведение. Его результатом является скаляр.

Уравнение очень простое: произведение длин этих векторов на косинус угла между ними.

Векторное произведение векторов

Векторное произведение векторов пригодится нам в электродинамике.

Его формула лишь немного отличается от предыдущей:

В отличие от скалярного произведения, результатом его является вектор и его даже можно изобразить!

После параллельного переноса векторов и нахождения угла между ними достроим их до параллелограмма и найдем его площадь. Площадь параллелограмма равна длине вектора произведения:

Этот вектор одновременно перпендикулярен двум другим. Его направление зависит от условного порядка векторов, который либо определен какими-то фактами (когда мы будем изучать силу Лоренца), либо является свободным.

Об этом мы поговорим подробнее, когда будем изучать электродинамику.

Итак, мы разобрали операции с векторами, рассмотрев даже самые сложные из них. Это было не так тяжело, верно? Так происходит не только с векторами, но и со многими другими темами. Идя от легкого к сложному, мы даже не заметили трудностей.

Ведь всегда стоит помнить о том, что даже самое длинное путешествие начинается с первого шага.

Проекции векторов

Что такое проекция вектора и с чем ее едят?

Мы уже выяснили, что над векторами можно проводить множество операций. Здорово, когда можешь начертить векторы, достроить их до треугольника и измерить результат линейкой.

Но зачастую физика не дает нам легких цифр. Наша задача – не отчаиваться и быть умнее, упрощая себе задачи.

Для того, чтобы работать с векторами как с числами и не переживать об их положении и о точности рисунков, были придуманы проекции.

Проекция вектора – словно тень, которую он отбрасывает на ось координат. И эта тень может о многом рассказать.

Ось координат — прямая с указанными на ней направлением, началом отсчёта и выбранной единицей масштаба.

Ось можно выбрать произвольно. В зависимости от ее выбора можно либо значительно упростить решение задачи, либо сделать его очень сложным.

Именно поэтому необходимо научиться работать с проекциями и осями.

Построение проекции. Определение знака

Возьмем вектор и начертим рядом с ним произвольную ось. Назвать ее тоже можно как угодно, но мы назовем ее осью Х.

Теперь опустим из начала и конца вектора перпендикуляры на эту ось. Отметим координаты начала (Х0) и конца (Х). Рассмотрим отрезок, заключенный между этими точками.

Казалось бы, мы нашли проекцию. Однако думать, что проекция является простым отрезком, – большое заблуждение.

Не все так просто: проекция может быть не только положительной. Чтобы найти проекцию, нужно из координаты конца вычесть координату начала:

Проекция вектора на ось — разность между координатами проекций точек конца и начала вектора на ось.

В случае выше определить знак довольно легко. Сразу видим, что координата конца численно больше координаты начала и делаем вывод о том, что проекция положительна:

Порой работать с буквами трудно. Поэтому предлагаю взять конкретный пример:

Рассмотрим другой случай. В этот раз координата начала больше координаты конца, следовательно, проекция отрицательна:

Рассмотрим еще один интересный случай.

Давай разместим ось так, чтобы вектор был ей перпендикулярен. Проекции точек начала и конца совпадут и проекция вектора будет равна нулю!

Анализ углов

Рассматривая эти ситуации, можно заметить, что знак, который принимает проекция вектора напрямую зависит от угла между вектором и осью, то есть от его направления!

Из начала вектора проведем луч, параллельный оси и направленный в ту же сторону, что и ось. Получим угол между вектором и осью.

Если угол острый, проекция положительна:

Если угол тупой, проекция отрицательна:

Обрати особое внимание на то, какой именно угол является углом между вектором и осью!

Частные случаи проекции

Настоящий подарок судьбы – тот момент, когда вектор параллелен оси. Это сохраняет драгоценное время при решении множества задач. Рассмотрим эти случаи.

Если вектор параллелен оси, угол между ними либо равен нулю, либо является развернутым (180 О ). Это зависит от направления.

При этом длина проекции совпадает с длиной вектора! Смотри!

Как и прежде, если вектор направлен туда же, куда и ось, проекция положительна:

Если вектор направлен в другую сторону, проекция отрицательна:

Если вектор направлен туда же, куда и ось, его проекция положительна. Если вектор направлен в другую сторону, его проекция отрицательна.

Эти утверждения применимы не только к векторам, которые параллельны оси. Это особенно удобно использовать в тех случаях, когда ось направлена под углом.

Что? Почему раньше не сказал? А… Ну…

Хватит вопросов! Вот тебе пример:

(vec) направлен противоположно оси. Его проекция отрицательна.

Еще один частный случай – работа с обратными векторами.

Давай выясним, как связаны проекции данного вектора и вектора, который является ему обратным. Начертим их и обозначим координаты начал и концов:

Проведем дополнительные линии и рассмотрим два получившихся треугольника. Они прямоугольны, так как проекция строится с помощью перпендикуляра к оси.

Наши векторы отличаются лишь направлением. При этом, если мы просто посмотрим на них как на прямые, мы можем сказать, что они параллельны. Их длины тоже одинаковы.

Прямоугольные треугольники равны по углу и гипотенузе. Это значит, что численно равны и их катеты, в том числе те, которые равны проекциям:

Мы помним, что обратные векторы всегда коллинеарны. Это значит, что прямые, на которых они расположены, находятся под одним углом к оси:

Остается лишь определиться со знаками. Данный вектор направлен по оси Х, а обратный ему – против. Значит, первый положителен, а второй отрицателен. Но модули их равны, так как равны их длины.

Проекции обратных векторов равны по модулю и противоположны по знаку.

Давайте еще раз уточним.

Вектор сам по себе не может быть отрицательным (обратный вектор есть вектор, умноженный на минус единицу).

Длина вектора так же не может быть отрицательной. Длина есть модуль вектора, а модуль всегда положителен.

Проекция вектора бывает отрицательной. Это зависит от направления вектора.

Способы нахождения проекций и векторов с помощью тригонометрии

Зная угол между вектором и осью, можно не прибегать к координатам. Углы, прямоугольные треугольники… Всегда стоит помнить, что, если ты видишь прямоугольный трегольник, тригонометрия протянет тебе руку помощи.

Именно тригонометрия чаще всего применяется в задачах, где требуется работать с проекциями. Особенно она помогает в задачах на второй закон Ньютона.

Рассмотрим вектор и его проекции на оси:

Можем заметить, что проекции вектора соответствуют катетам прямоугольного треугольника, который легко можно достроить:

Тогда обозначим прямой угол и угол между вектором и осью:

Зная, что проекции соответствуют катетам, мы можем записать, чему равны синус и косинус угла. Они равны отношению проекций к гипотенузе. За гипотенузу считаем длину данного вектора.

Из этих уравнений легко выражаются проекции.

А еще следует помнить, что из проекций мы можем найти длину данного вектора с помощью теоремы Пифагора:

Зная, как работать с проекциями векторов и часто практикуясь, можно довести свои навыки решения большинства задач механики до совершенства.

Действия над проекциями векторов. Решение задач

Умение применять свои знания на практике невероятно важны. Это касается не только физики.

Мы знаем, что проекции были придуманы для того, чтобы работать не с векторами, а с числами.

Сложение проекций. Доказательство главного свойства

Предположим, у нас есть два вектора и нам нужно найти их сумму. Посчитать по клеткам нам вряд ли удастся:

Спроецируем оба вектора на ось Х. Заметим, что конец одного вектора есть начало второго, то есть их координаты совпадают:

Давай посчитаем проекции векторов и проекцию вектора их суммы:

Мы можем заметить, что сумма проекций двух данных векторов оказалась равна проекции вектора их суммы!

Намного важнее уметь доказывать гипотезы в общем виде.

Тогда никто не сможет упрекнуть тебя в том, что твои утверждения – просто результат совпадения!

Согласно определению проекции, запишем уравнения проекций для двух данных векторов и вектора их суммы:

Затем запишем, чему равна сумма этих векторов.

Мы доказали нашу гипотезу.

Но что насчет разности?

Все очень просто! Помнишь, как мы считали разность через сумму? Здесь это делается аналогично!

Проекция суммы векторов равна сумме проекций векторов.

Проекция разности векторов равна разности проекций векторов.

Или можно записать так:

Простейшие задачи на нахождение проекций

Простейшие задачи на нахождение проекций чаще представлены в виде различных графиков или рисунков.

Давай научимся с ними работать.

Нам даны оси и векторы. Задача: найти проекции каждого из них на обе оси.

Будем делать все по порядку. Для каждого вектора предлагаю сначала определить знак проекций, а затем посчитать их.

В первом случае вектор направлен против оси Х.

Значит, его проекция на эту ось будет отрицательна. Мы убедимся в этом с помощью вычислений.

Сразу бросается в глаза то, что вектор расположен перпендикулярно оси Y. Его проекция на эту ось будет равна нулю, ведь расстояние между проекциями точек начала и конца равно нулю!

Рассмотрим второй вектор.

Он «сонаправлен» оси Y и «противонаправлен» оси Х. Значит, проекция на ось будет положительна, а на ось Х – отрицательна.

Убедимся в этом.

На осях для удобства отметим проекции точек начала и конца вектора, проведя перпендикуляры. Затем проведем вычисления:

Рассмотрим (vec). Заметим, что он является обратным для (vec): их длины равны, а направления противоположны.

Мы помним, что в таком случае их проекции отличаются лишь знаками. И это действительно так:

Поступаем с (vec) так же, как поступали с первым вектором.

Он перпендикулярен оси Х, а значит его проекция (что есть разность между проекциями точки конца и начала!) на эту ось равна нулю.

Проведя перпендикуляры, считаем проекцию на ось Y:

С (vec) работать приятно: он расположен по направлению обеих осей. Обе его проекции будут положительны, остается лишь посчитать их:

Задачи на нахождение вектора и его угла с осью

С помощью проекций можно найти длину вектора и его направление, а также угол, под которым он находится относительно оси.

Давай попробуем это сделать.

Даны проекции вектора на две оси. Для начала нарисуем оси:

Расположить вектор можно как угодно, поэтому произвольно отметим на осях его проекции. Мы помним, что проекции и вектор образуют прямоугольный треугольник. Давай попробуем его составить.

С проекцией на ось Х все понятно, просто поднимаем ее. Но куда поставить проекцию оси Y?

Для этого нам нужно определить направление вектора. Проекция на ось Х отрицательна, значит вектор направлен в другую сторону от оси.

Проекция на ось Y положительна. Вектор смотрит в ту же сторону, что и ось.

Исходя из этого, мы можем нарисовать вектор и получить прямоугольный треугольник:

Теперь нужно найти длину этого вектора. Используем старую добрую теорему Пифагора:

Обозначим угол (alpha ), который необходимо найти, мы учились это делать в начале изучения проекций. Он расположен вне треугольника. Мы ведь не ищем легких путей, верно?

Рассмотрим смежный ему угол (beta ). Его найти гораздо проще, а в сумме они дадут 180 градусов.

Чтобы сделать это, абстрагируемся от векторов, проекций и просто поработаем с треугольником, стороны которого равны 3, 4 и 5. Найдем синус угла (beta ) и по таблице Брадиса (либо с помощью инженерного калькулятора) определим его значение.

Вычитанием угла (beta ) из 180 градусов найдем угол (alpha ):

Главный метод работы с осями и проекциями в решении физических задач

В большинстве задач по физике, когда в условиях нам дают значения векторных величин, например, скорости, нам дают длину вектора.

Поэтому важно научиться искать проекции вектора и связывать их с ней.

Рассмотрим следующий рисунок (вектор F2 перпендикулярен вектору F3):

Чаще всего с подобным расположением векторов мы встречаемся в задачах, где необходимо обозначить все силы, действующие на тело.

Одним из важных этапов решение «векторной части» этих задач является правильный выбор расположения осей. Он заключается в том, чтобы расположить оси так, чтобы как можно большее число векторов оказались им параллельны.

Как правило, оси располагаются под прямым углом друг к другу, чтобы не получить лишней работы с углами.

Сделаем это для данного рисунка:

Мы видим, что остальные векторы расположены к осям под каким-то углом.

Пунктиром проведем горизонтальную линию и отметим этот угол, а затем отметим другие равные ему углы:

Пришло время искать проекции. У нас две оси, поэтому сделаем для удобства табличку:

Мы располагали оси так, чтобы некоторые векторы были расположены параллельно осям, значит их проекции будут равняться их длинам.

Оси перпендикулярны друг другу, поэтому некоторые проекции будут равняться нулю. Запишем это:

Переходим к векторам, которые расположены под углом.

Выглядит страшно, но это не так!

Дальше идет чистая геометрия. Чтобы не запутаться, рассмотрим лишь часть рисунка. А лучше и вовсе перерисовать его часть, могут открыться много новых вещей.

Из конца вектора F1 проведем перпендикуляр к оси Y. Мы получим прямоугольный треугольник, где нам известен угол (альфа) и гипотенуза (вектор).

Обозначим, что является проекцией. Это катет:

Здесь на помощь придет тригонометрия. Этот катет прилежащий к известному углу. Синус угла есть проекция катета, деленная на гипотенузу. Отсюда можно выразить катет (проекцию) и записать ее в таблицу.

Вспомни, когда мы первый раз встретились с тригонометрией, изучая векторы. Мы тоже рассматривали прямоугольный треугольник.

Найдем проекцию на ось Х. Это, кажется, сложнее, ведь мы не знаем угол…

Знаем! Ведь проекция вектора на ось Х – то же самое, что противолежащий катет уже рассмотренного треугольника, смотри:

Значит, проекцию на ось Х можно найти через косинус.

Не забываем смотреть на направления векторов!

Попробуй найти проекции четвертого вектора самостоятельно и сверься с таблицей.

Значит, проекцию на ось Х можно найти через косинус.

Не забываем смотреть на направления векторов!

Попробуй найти проекции четвертого вектора самостоятельно и сверься с таблицей.

Заключение

Итак, теперь мы знаем о векторах очень много! Мы выяснили, зачем они нужны и как с ними работать, а еще разобрали их роль в решении различных задач. Теперь векторы — наша прочная опора.

Именно из таких знаний складывается порой нечто более сложное и комплексное, что-то, что безусловно нам однажды поможет.

источники:

http://fizmat.by/kursy/jelementy_mat/vektor

Векторы — основные понятия и формулы

Нулевой вектор

Любой одномерный вектор равен 0, например [0, 0, 0], трехмерный нулевой вектор.
Нулевой вектор — это единственный вектор с нулевым размером и единственный вектор без направления. Но это не точка, а смещения нет.

Отрицательный вектор

Чтобы получить отрицательный вектор любого вектора, вам нужно просто сделать каждый компонент вектора отрицательным. Например — [x, y, z] = [- x, ​​-y, -z].
Когда вектор становится отрицательным, будет получен вектор того же размера и противоположного направления, что и исходный вектор.

Обратите внимание, что положение вектора на рисунке не имеет значения, только размер и направление являются наиболее важными.

Размер вектора (длина или модуль)

Вывод: для любого вектора v в 2D может быть построен прямоугольный треугольник с v в качестве гипотенузы. Согласно теореме Пифагора для любого прямоугольного треугольника квадрат длины гипотенузы равен сумме квадратов длин двух прямых углов, тогда:

Таким образом, можно получить формулу вычисления размера n-мерного вектора:

Скалярное и векторное умножение

Метод работы:

  1. Скаляр и вектор нельзя складывать, но можно умножать, и в результате получается новый вектор, параллельный исходному вектору, но имеющий другую длину или противоположное направление.
  2. Результатом умножения вектора на скаляр k является масштабирование длины вектора на коэффициент | k |.
  3. Вектор также можно разделить на ненулевой скаляр, эффект эквивалентен умножению на обратное к скаляру.
  4. Метод расчета заключается в умножении каждого измерения n-мерного вектора на скаляр k, например: k [x, y, z] = [kx, ky, kz]

Меры предосторожности:

  1. При умножении скаляра и вектора знак умножения писать не нужно. Запись двух величин рядом друг с другом означает умножение (обычно скаляр пишется слева)
  2. Скалярное и векторное умножение и деление имеют более высокий приоритет, чем сложение и вычитание. Например: 3a + b = (3a) + b
  3. Скаляр нельзя разделить на вектор, и вектор нельзя разделить на другой вектор.
  4. Отрицательные векторы можно рассматривать как частные случаи умножения, умноженного на скаляр -1.

Нормализованный вектор

То есть единичный вектор (или нормаль): вектор, направление которого такое же, как у исходного вектора, и размер которого равен 1.
Формула вычисления: разделите вектор на размер вектора (модуль) v (норма) = v / || v ||
Нулевой вектор нельзя нормализовать, поскольку нулевой вектор не имеет направления.

Сложение и вычитание векторов

Формула расчета: сложить и вычесть соответствующие размерности двух векторов, например
[x,y,z] + [a,b,c] = [x+a,y+b,z+c]
[x,y,z] — [a,b,c] = [x-a,y-b,z-c]
[x,y,z] — [a,b,c] = [x,y,z] + (- [a,b,c])

Вектор из точки a в точку b равен b-a.

Меры предосторожности:

  1. Векторы нельзя складывать или вычитать из скаляров или векторов разных размеров.
  2. Как и скалярное сложение, векторное сложение удовлетворяет коммутативному закону, но векторное вычитание не удовлетворяет коммутативному закону. Всегда есть a + b = b + a, но a-b = — (b-a), только когда a = b, a-b = b-a

Геометрическая интерпретация сложения векторов a и b: переместите вектор так, чтобы голова вектора a соединялась с хвостом вектора b, а затем нарисуйте вектор от хвоста a к голове b. Это «Правило треугольника» сложения векторов. Как показано:

Векторное точечное произведение (внутренний продукт)

Алгоритм:
[a1, a2, a3…, an] Умножение точек [b1, b2, b3…, bn] = a1b1+a2b2+a3b3…+anbn

Объяснение геометрии:
Результат умножения точек описывает схожесть двух векторов. Чем больше результат умножения точек, тем ближе два вектора.


Точечное произведение равно произведению размера вектора и значения cos угла между вектором:



Результат умножения точек для определения диапазона углов:

Векторная проекция


Диаграмма:



Согласно тригонометрической функции:

Подставьте исходную формулу, чтобы получить:

Другой компонент:

Векторное произведение крестовины

Его можно использовать только для трехмерных векторов. Он отличается от умножения точек. Умножение точек получает скаляр и удовлетворяет закону коммутативности. Векторное произведение векторов получает вектор и не удовлетворяет закону коммутативности, но удовлетворяет закону антикоммутативности, то есть a x b = — (b x a).

Алгоритм:

Объяснение геометрии:
Вектор, полученный в результате перекрестного произведения, перпендикулярен двум исходным векторам.


Если a и b параллельны или любой из них равен 0, тогда a x b = 0. Интерпретация векторного произведения нулевого вектора состоит в том, что он параллелен любому другому вектору. Обратите внимание, что это отличается от интерпретации скалярного произведения, которое перпендикулярно любому другому вектору. (Конечно, неправильно определять нулевой вектор как параллельный или перпендикулярный любому вектору, потому что нулевой вектор не имеет направления.)

Доказано, что a x b перпендикулярно a и b. Но есть два направления, перпендикулярных a и b. В каком направлении указывает a x b? Соединив головку a с хвостом b и проверив направление от a к b по часовой стрелке или против часовой стрелки, можно определить направление a x b. В левой системе координат, если a и b повернуты по часовой стрелке, то a x b указывает на вас. Если a x b против часовой стрелки, a x b находится далеко от вас. В правой системе координат все наоборот. Если a и b повернуты по часовой стрелке, a x b находится далеко от вас, если a и b повернуты против часовой стрелки, a x b указывает на вас.
Диаграмма по часовой стрелке:

Диаграмма против часовой стрелки:

Примечание. Сквозное соединение используется для определения угла между векторами, а сквозное соединение определяет направление по часовой стрелке или против часовой стрелки.

Формула линейной алгебры







Векторы — основные понятия и формулы

На прошлом занятии мы разобрались с основными определениями кинематики.

И ты наверняка обратил внимание, что некоторые величины имеют только значение (число) – например, путь ((L)).

А некоторые имеют и число, и направление — например, перемещение ((vec{S})).

И сейчас ты узнаешь, почему это настолько важно.

Векторы — коротко о главном

  • Существуют скалярные величины: они имеют значение, но не имеют направления;
  • Существуют векторные величины. Они имеют как значение, так и направление;
  • Значение вектора есть его длина;
  • Для большинства операций над векторами необходим пареллельный перенос;
  • Вектор можно умножать на скаляр;
  • Нулевой вектор – вектор, начало которого совпадает с концом;
  • Коллинеарные векторы – векторы, лежащие на одной прямой или на параллельных прямых;
  • Коллинеарные векторы, имеющие одинаковую длину и противоположные направления, называются обратными друг другу;
  • Векторы можно складывать и вычитать разными методами;
  • Правило параллелограмма действует как для сложения, так и для вычитания векторов;
  • Векторы можно умножать друг на друга двумя различными способами: скалярным и векторным;
  • Проекция вектора на ось — разность между координатами проекций точек конца и начала вектора на ось;
  • Если вектор направлен туда же, куда и ось, его проекция положительна. Если вектор направлен в другую сторону, его проекция отрицательна;
  • Вектор сам по себе не может быть отрицательным;
  • Длина вектора так же не может быть отрицательной;
  • Проекция вектора бывает отрицательной;
  • Над проекциями тоже можно совершать действия, и это удобнее, чем работать с векторами;
  • Проекция суммы векторов равна сумме проекций векторов;
  • Проекция разности векторов равна разности проекций векторов;
  • С проекцией вектора можно работать как с числом;

Решать задачи с векторами — легко!

Векторы и… Колумб

В 1492 году Колумб приказал кораблям изменить курс на запад-юго-запад, полагая, что он и его команда уже прошли мимо Японии, не заметив ее островов.

Вскоре его экспедиция наткнулась на множество архипелагов, которые ошибочно принимали за земли Восточной Азии. И теперь, спустя века, американцы в октябре отмечают высадку Колумба в Новом Свете.

Кто знает, как повернулась бы история, если бы его корабли не поменяли свое направление?

О направлении

Направление – одна из важнейших характеристик движения.

Подумай, какие из этих величин являются просто числами, а какие тоже являются числами, но имеют еще и направление.

  • сила;
  • время;
  • скорость;
  • длина;
  • перемещение;
  • масса;
  • температура;

Наверное, ты без труда заметил, что направление имеют сила, скорость, перемещение, а время, длина, масса и температура – это просто числа.

Так вот, «просто числа» — это скалярные величины (их также называют скалярами).

А «числа с направлением» — это векторные величины (их иногда называют векторы).

В физике существует множество скалярных и векторных величин.

Что такое скалярная величина?

Скалярная величина, в отличие от вектора, не имеет направления и определяется лишь значением (числом)

Это, например, время, длина, масса, температура (продолжи сам!)

Что такое векторная величина?

Векторная величина – это величина, которая определяется и значением, и направлением.

В случае с векторами нам важно, куда мы, например, тянем груз или в какую сторону движемся.

Например, как на этом рисунке изображен вектор силы (нам важно не только с какой силой, но и куда мы тянем груз):

Как обозначаются векторы?

Векторы принято обозначать специальным символом – стрелочкой над названием. Вот, например, вектор перемещения: (vec{S})

Значение вектора – это модуль вектора, то есть его длина.

Обозначить это можно двумя способами: (left| {vec{S}} right|) или (S)

Операции над векторами

Для решения задач необходимо уметь работать с векторами: складывать, вычитать, умножать их.

Давай научимся это делать. Мы пойдем от простого к сложному, но это вовсе не значит, что будет трудно!

Умножение вектора на число

Если вектор умножить на какое-либо число (скаляр), мы просто «растягиваем» вектор, сохраняя его направление. Получившийся вектор сонаправлен начальному, то есть они имеют одинаковое направление.

Это обозначается так: (vec{a}uparrow uparrow vec{b})

(Если направление противоположно, обозначаем так: (vec{a}uparrow downarrow vec{b}))

Рассмотрим на примере, используя клетку для точности построений:

Если вектор умножить на ноль, он станет нулевым.

Обязательно нужно ставить значок вектора над нулем! Нельзя говорить, что векторная величина просто равна скалярной:

(vec{c}=0cdot vec{a}Rightarrow vec{c}=vec{0})

Рассмотрим некоторые свойства нулевого вектора.

Если он нулевой, то его длина равна нулю! Логично, не правда ли?

А это значит, что его начало совпадает с концом, это просто какая-то точка.

Нулевой вектор – вектор, начало которого совпадает с концом.

Нулевой вектор принято считать сонаправленным любому вектору.

Его мы можем получить не только путем умножения вектора на ноль, но и путем сложения противонаправленных векторов:

(vec{a}+(-vec{a})=vec{0})

А если к любому вектору прибавит нулевой, ничего не изменится:

(vec{a}+vec{0}=vec{a})

Если вектор умножают на отрицательное число, он изменит свое направление на противоположное. Такой вектор называется обратным данному.

Но такие векторы должны быть коллинеарны. Звучит как скороговорка, но ничего страшного. Главное – понять суть.

Коллинеарные векторы – векторы, лежащие на одной прямой или на параллельных прямых.

Две прямые параллельны: (qparallel p)

Векторы лежат на одной прямой: они коллинеарны. По направлению видно, что они противонаправлены, это обозначается так:

(vec{a}uparrow downarrow vec{c})

Векторы лежат на параллельных прямых, они коллинеарны. При этом они сонаправлены:

(vec{a}uparrow uparrow vec{b})

Эти двое тоже коллинеарны! Они ведь лежат на параллельных прямых. При этом они противонаправлены:

(vec{b}uparrow downarrow vec{c})

Коллинеарные векторы, имеющие одинаковую длину и противоположные направления, называются обратными друг другу.

Параллельный перенос векторов

Одно из важных свойств вектора, которое очень часто помогает в операциях над ним, – параллельный перенос.

Если передвинуть вектор, не меняя его направления и длины, он будет идентичен начальному. Это свойство –  параллельный перенос.

Сложение векторов по правилу треугольника

Сложение векторов – одна из самых легких и приятных вещей. Предположим, у нас есть два вектора:

Наша цель – найти такой вектор, который будет являться суммой двух данных:

(vec{c}=vec{a}+vec{b})

Для начала нужно сделать так, чтобы конец одного вектора был началом другого. Для этого воспользуемся параллельным переносом:

Теперь достроим до треугольника.

Но как узнать направление нужного нам вектора?

Все просто: вектор суммы идет от начала первого слагаемого к концу второго, мы словно «идём» по векторам:

Это называется правилом треугольника.

Больше двух слагаемых векторов. Сложение по правилу многоугольника

Но что делать, нам нужно сложить не два, а три, пять векторов или даже больше?

Мы руководствуемся той же логикой: соединяем векторы и «идём» по ним:

(vec{e}=vec{a}+vec{b}+vec{c}+vec{d})

Это называется правилом многоугольника.

Вычитание векторов через сложение

Вычитание векторов не сложнее. Это даже можно сделать через сумму! Для этого нам понадобится понятие обратного вектора. Запишем разность так:

(vec{c}=vec{a}-vec{b}=vec{a}+(-vec{b}))

Тогда нам лишь остается найти сумму с обратным вектором:

А сделать это очень легко по правилу треугольника:

Всегда помни, что вычитание можно представлять сложением, а деление — умножением на дробь.

Вычитание векторов через треугольник

Вычитать векторы можно через треугольник. Основная задача будет состоять в том, чтобы определить направление вектора разности.

Итак, векторы должны выходить из одной точки. Далее мы достраиваем рисунок до треугольника и определяем положение. Рассмотрим два случая:

(vec{c}=vec{a}-vec{b})

(vec{c}=vec{b}-vec{a})

Направление вектора разности зависит от того, из какого вектора мы вычитаем. У них совпадают концы.

Универсальное правило параллелограмма

Есть еще один способ сложения и вычитания векторов.

Способ параллелограмма наиболее востребован в физике и сейчас ты поймешь, почему. Основа в том, чтобы векторы выходили из одной точки, имели одинаковое начало.

Вот так:

Ничего не напоминает?

Именно! Когда мы делаем чертеж к задачам по физике, все силы, приложенные к телу, мы рисуем из одной точки.

В чем же заключается правило параллелограмма? С помощью параллельного переноса достроим до параллелограмма:

Тогда вектор суммы будет диагональю этой фигуры. Это легко проверяется правилом треугольника. Начало этого вектора совпадает с началом двух слагаемых векторов:

Другая диагональ будет являться разностью этих векторов. Направление определяем так же, как делали раньше.

(vec{c}=vec{a}+vec{b})

(vec{d}=vec{a}-vec{b})

Векторное произведение векторов

Векторное произведение векторов пригодится нам в электродинамике.

Его формула лишь немного отличается от предыдущей:

(vec{a}times vec{b}=left| {vec{a}} right|cdot left| {vec{b}} right|cdot sin varphi )

В отличие от скалярного произведения, результатом его является вектор и его даже можно изобразить!

После параллельного переноса векторов и нахождения угла между ними достроим их до параллелограмма и найдем его площадь. Площадь параллелограмма равна длине вектора произведения:

Этот вектор одновременно перпендикулярен двум другим. Его направление зависит от условного порядка векторов, который либо определен какими-то фактами (когда мы будем изучать силу Лоренца), либо является свободным.

Об этом мы поговорим подробнее, когда будем изучать электродинамику.

Итак, мы разобрали операции с векторами, рассмотрев даже самые сложные из них. Это было не так тяжело, верно? Так происходит не только с векторами, но и со многими другими темами. Идя от легкого к сложному, мы даже не заметили трудностей.

Ведь всегда стоит помнить о том, что даже самое длинное путешествие начинается с первого шага.

Проекции векторов

Что такое проекция вектора и с чем ее едят?

Мы уже выяснили, что над векторами можно проводить множество операций. Здорово, когда можешь начертить векторы, достроить их до треугольника и измерить результат линейкой.

Но зачастую физика не дает нам легких цифр. Наша задача – не отчаиваться и быть умнее, упрощая себе задачи.

Для того, чтобы работать с векторами как с числами и не переживать об их положении и о точности рисунков, были придуманы проекции.

Проекция вектора –  словно тень, которую он отбрасывает на ось координат. И эта тень может о многом рассказать.

Ось координат — прямая с указанными на ней направлением, началом отсчёта и выбранной единицей масштаба.

Ось можно выбрать произвольно. В зависимости от ее выбора можно либо значительно упростить решение задачи, либо сделать его очень сложным.

Именно поэтому необходимо научиться работать с проекциями и осями.

Построение проекции. Определение знака

Возьмем вектор и начертим рядом с ним произвольную ось. Назвать ее тоже можно как угодно, но мы назовем ее осью Х.

Теперь опустим из начала и конца вектора перпендикуляры на эту ось. Отметим координаты начала (Х0) и конца (Х). Рассмотрим отрезок, заключенный между этими точками.

Казалось бы, мы нашли проекцию. Однако думать, что проекция является простым отрезком, –  большое заблуждение.

Не все так просто: проекция может быть не только положительной. Чтобы найти проекцию, нужно из координаты конца вычесть координату начала:

({{a}_{x}}=x-{{x}_{0}})

Проекция вектора на ось — разность между координатами проекций точек конца и начала вектора на ось.

Проекция обозначается так:
({{a}_{x}}), где a – название вектора, х – название оси, на которую проецируется вектор.

В случае выше определить знак довольно легко. Сразу видим, что координата конца численно больше координаты начала и делаем вывод о том, что проекция положительна:

(x>{{x}_{0}}Rightarrow {{a}_{x}}>0)

Порой работать с буквами трудно. Поэтому предлагаю взять конкретный пример:

Рассмотрим другой случай. В этот раз координата начала больше координаты конца, следовательно, проекция отрицательна:

(x<{{x}_{0}}Rightarrow {{b}_{x}}<0)

Пример на конкретных числах:

Рассмотрим еще один интересный случай.

Давай разместим ось так, чтобы вектор был ей перпендикулярен. Проекции точек начала и конца совпадут и проекция вектора будет равна нулю!

(x={{x}_{0}}Rightarrow {{c}_{x}}=0)

Анализ углов

Рассматривая эти ситуации, можно заметить, что знак, который принимает проекция вектора напрямую зависит от угла между вектором и осью, то есть от его направления!

Из начала вектора проведем луч, параллельный оси и направленный в ту же сторону, что и ось. Получим угол между вектором и осью.

Если угол острый, проекция положительна:

(alpha <{{90}^{o}}Rightarrow {{a}_{x}}>0)

Если угол тупой, проекция отрицательна:

(beta >{{90}^{o}}Rightarrow {{b}_{x}}<0)

Если угол прямой, она равна нулю:

(gamma ={{90}^{o}}Rightarrow {{c}_{x}}>0)

Обрати особое внимание на то, какой именно угол является углом между вектором и осью!

Частные случаи проекции

Настоящий подарок судьбы – тот момент, когда вектор параллелен оси. Это сохраняет драгоценное время при решении множества задач. Рассмотрим эти случаи.

Если вектор параллелен оси, угол между ними либо равен нулю, либо является развернутым (180О). Это зависит от направления.

При этом длина проекции совпадает с длиной вектора! Смотри!

Как и прежде, если вектор направлен туда же, куда и ось, проекция положительна:

(alpha ={{0}^{o}}Rightarrow {{a}_{x}}=a)

Если вектор направлен в другую сторону, проекция отрицательна:

(alpha ={{180}^{o}}Rightarrow {{a}_{x}}=-a)

Если вектор направлен туда же, куда и ось, его проекция положительна. Если вектор направлен в другую сторону, его проекция отрицательна.

Эти утверждения применимы не только к векторам, которые параллельны оси. Это особенно удобно использовать в тех случаях, когда ось направлена под углом.

Что? Почему раньше не сказал? А… Ну…

Хватит вопросов! Вот тебе пример:

(vec{a}) направлен в ту же сторону, что и ось. Его проекция положительна.

(vec{b}) направлен противоположно оси. Его проекция отрицательна.

Еще один частный случай – работа с обратными векторами.

Давай выясним, как связаны проекции данного вектора и вектора, который является ему обратным. Начертим их и обозначим координаты начал и концов:

Проведем дополнительные линии и рассмотрим два получившихся треугольника. Они прямоугольны, так как проекция строится с помощью перпендикуляра к оси.

Наши векторы отличаются лишь направлением. При этом, если мы просто посмотрим на них как на прямые, мы можем сказать, что они параллельны. Их длины тоже одинаковы.

Прямоугольные треугольники равны по углу и гипотенузе. Это значит, что численно равны и их катеты, в том числе те, которые равны проекциям:

(vec{a}’=-vec{a}) — векторы обратны друг другу;

(left| {vec{a}} right|=left| vec{a}’ right|) — равенство длин векторов;

Мы помним, что обратные векторы всегда коллинеарны. Это значит, что прямые, на которых они расположены, находятся под одним углом к оси:

(alpha =alpha ‘)

Остается лишь определиться со знаками. Данный вектор направлен по оси Х, а обратный ему – против. Значит, первый положителен, а второй отрицателен. Но модули их равны, так как равны их длины.

({{a}_{x}}=-a_{x}^{‘})

Проекции обратных векторов равны по модулю и противоположны по знаку.

Давайте еще раз уточним.

Вектор сам по себе не может быть отрицательным (обратный вектор есть вектор, умноженный на минус единицу).

Длина вектора так же не может быть отрицательной. Длина есть модуль вектора, а модуль всегда положителен.

Проекция вектора бывает отрицательной. Это зависит от направления вектора.

Способы нахождения проекций и векторов с помощью тригонометрии

Зная угол между вектором и осью, можно не прибегать к координатам. Углы, прямоугольные треугольники… Всегда стоит помнить, что, если ты видишь прямоугольный трегольник, тригонометрия протянет тебе руку помощи.

Именно тригонометрия чаще всего применяется в задачах, где требуется работать с проекциями. Особенно она помогает в задачах на второй закон Ньютона.

Рассмотрим вектор и его проекции на оси:

Можем заметить, что проекции вектора соответствуют катетам прямоугольного треугольника, который легко можно достроить:

Тогда обозначим прямой угол и угол между вектором и осью:

Зная, что проекции соответствуют катетам, мы можем записать, чему равны синус и косинус угла. Они равны отношению проекций к гипотенузе. За гипотенузу считаем длину данного вектора.

Из этих уравнений легко выражаются проекции.

(sin alpha =frac{{{a}_{y}}}{a})

(cos alpha =frac{{{a}_{x}}}{a})

А еще следует помнить, что из проекций мы можем найти длину данного вектора с помощью теоремы Пифагора:

({{a}^{2}}=a_{x}^{2}+a_{y}^{2})

Зная, как работать с проекциями векторов и часто практикуясь, можно довести свои навыки решения большинства задач механики до совершенства.

Действия над проекциями векторов. Решение задач

Умение применять свои знания на практике невероятно важны. Это касается не только физики.

Мы знаем, что проекции были придуманы для того, чтобы работать не с векторами, а с числами.

Давай попробуем.

Сложение проекций. Доказательство главного свойства

Предположим, у нас есть два вектора и нам нужно найти их сумму. Посчитать по клеткам нам вряд ли удастся:

Спроецируем оба вектора на ось Х. Заметим, что конец одного вектора есть начало второго, то есть их координаты совпадают:

Давай посчитаем проекции векторов и проекцию вектора их суммы:

Мы можем заметить, что сумма проекций двух данных векторов оказалась равна проекции вектора их суммы!

Намного важнее уметь доказывать гипотезы в общем виде.

Тогда никто не сможет упрекнуть тебя в том, что твои утверждения – просто результат совпадения!

Согласно определению проекции, запишем уравнения проекций для двух данных векторов и вектора их суммы:

Заметим, что некоторые точки совпадают. Начало (vec{a}) совпадает с началом (vec{c}). Как мы заметили ранее, конец (vec{a}) совпадает с началом (vec{b}). А конец (vec{b}) совпадает с концом (vec{c}).

Затем запишем, чему равна сумма этих векторов.

Видим, что конец (vec{a}) и начало (vec{b}) одинаковы. Поэтому избавимся от повторов:

У нас остались лишь начало (vec{a}) и конец (vec{b}). А это в свою очередь начало и конец (vec{c})!

Мы доказали нашу гипотезу.

Но что насчет разности?

Все очень просто! Помнишь, как мы считали разность через сумму? Здесь это делается аналогично!

Таким образом,

Проекция суммы векторов равна сумме проекций векторов.

Проекция разности векторов равна разности проекций векторов.

Или можно записать так:

(vec{c}=vec{a}pm vec{b}Rightarrow {{c}_{x}}={{a}_{x}}pm {{b}_{x}})

Простейшие задачи на нахождение проекций

Простейшие задачи на нахождение проекций чаще представлены в виде различных графиков или рисунков.

Давай научимся с ними работать.

Нам даны оси и векторы. Задача: найти проекции каждого из них на обе оси.

Будем делать все по порядку. Для каждого вектора предлагаю сначала определить знак проекций, а затем посчитать их.

В первом случае вектор направлен против оси Х.

Значит, его проекция на эту ось будет отрицательна. Мы убедимся в этом с помощью вычислений.

Сразу бросается в глаза то, что вектор расположен перпендикулярно оси Y. Его проекция на эту ось будет равна нулю, ведь расстояние между проекциями точек начала и конца равно нулю!

Рассмотрим второй вектор.

Он «сонаправлен» оси Y и «противонаправлен» оси Х. Значит, проекция на ось будет положительна, а на ось Х – отрицательна.

Убедимся в этом.

На осях для удобства отметим проекции точек начала и конца вектора, проведя перпендикуляры. Затем проведем вычисления:

Рассмотрим (vec{c}). Заметим, что он является обратным для (vec{b}): их длины равны, а направления противоположны.

Мы помним, что в таком случае их проекции отличаются лишь знаками. И это действительно так:

Поступаем с (vec{d}) так же, как поступали с первым вектором.

Он перпендикулярен оси Х, а значит его проекция (что есть разность между проекциями точки конца и начала!) на эту ось равна нулю.

Проведя перпендикуляры, считаем проекцию на ось Y:

С (vec{e}) работать приятно: он расположен по направлению обеих осей. Обе его проекции будут положительны, остается лишь посчитать их:

Задачи на нахождение вектора и его угла с осью

С помощью проекций можно найти длину вектора и его направление, а также угол, под которым он находится относительно оси.

Давай попробуем это сделать.

Даны проекции вектора на две оси. Для начала нарисуем оси:

Расположить вектор можно как угодно, поэтому произвольно отметим на осях его проекции. Мы помним, что проекции и вектор образуют прямоугольный треугольник. Давай попробуем его составить.

С проекцией на ось Х все понятно, просто поднимаем ее. Но куда поставить проекцию оси Y?

Для этого нам нужно определить направление вектора. Проекция на ось Х отрицательна, значит вектор направлен в другую сторону от оси.

Проекция на ось Y положительна. Вектор смотрит в ту же сторону, что и ось.

Исходя из этого, мы можем нарисовать вектор и получить прямоугольный треугольник:

Теперь нужно найти длину этого вектора. Используем старую добрую теорему Пифагора:

Обозначим угол (alpha ), который необходимо найти, мы учились это делать в начале изучения проекций. Он расположен вне треугольника. Мы ведь не ищем легких путей, верно?

Рассмотрим смежный ему угол (beta ). Его найти гораздо проще, а в сумме они дадут 180 градусов.

Чтобы сделать это, абстрагируемся от векторов, проекций и просто поработаем с треугольником, стороны которого равны 3, 4 и 5. Найдем синус угла (beta ) и по таблице Брадиса (либо с помощью инженерного калькулятора) определим его значение.

Вычитанием угла (beta ) из 180 градусов найдем угол (alpha ):

Главный метод работы с осями и проекциями в решении физических задач

В большинстве задач по физике, когда в условиях нам дают значения векторных величин, например, скорости, нам дают длину вектора.

Поэтому важно научиться искать проекции вектора и связывать их с ней.

Рассмотрим следующий рисунок (вектор F2 перпендикулярен вектору F3):

Чаще всего с подобным расположением векторов мы встречаемся в задачах, где необходимо обозначить все силы, действующие на тело.

Одним из важных этапов решение «векторной части» этих задач является правильный выбор расположения осей. Он заключается в том, чтобы расположить оси так, чтобы как можно большее число векторов оказались им параллельны.

Как правило, оси располагаются под прямым углом друг к другу, чтобы не получить лишней работы с углами.

Сделаем это для данного рисунка:

Мы видим, что остальные векторы расположены к осям под каким-то углом.

Пунктиром проведем горизонтальную линию и отметим этот угол, а затем отметим другие равные ему углы:

Пришло время искать проекции. У нас две оси, поэтому сделаем для удобства табличку:

Мы располагали оси так, чтобы некоторые векторы были расположены параллельно осям, значит их проекции будут равняться их длинам.

Оси перпендикулярны друг другу, поэтому некоторые проекции будут равняться нулю. Запишем это:

Переходим к векторам, которые расположены под углом.

Выглядит страшно, но это не так!

Дальше идет чистая геометрия. Чтобы не запутаться, рассмотрим лишь часть рисунка. А лучше и вовсе перерисовать его часть, могут открыться много новых вещей.

Из конца вектора F1 проведем перпендикуляр к оси Y. Мы получим прямоугольный треугольник, где нам известен угол (альфа) и гипотенуза (вектор).

Обозначим, что является проекцией. Это катет:

Здесь на помощь придет тригонометрия. Этот катет прилежащий к известному углу. Синус угла есть проекция катета, деленная на гипотенузу. Отсюда можно выразить катет (проекцию) и записать ее в таблицу.

Вспомни, когда мы первый раз встретились с тригонометрией, изучая векторы. Мы тоже рассматривали прямоугольный треугольник.

Найдем проекцию на ось Х. Это, кажется, сложнее, ведь мы не знаем угол…

Знаем! Ведь проекция вектора на ось Х – то же самое, что противолежащий катет уже рассмотренного треугольника, смотри:

Значит, проекцию на ось Х можно найти через косинус.

Не забываем смотреть на направления векторов!

Попробуй найти проекции четвертого вектора самостоятельно и сверься с таблицей.

Значит, проекцию на ось Х можно найти через косинус.

Не забываем смотреть на направления векторов!

Попробуй найти проекции четвертого вектора самостоятельно и сверься с таблицей.

Подготовка к ЕГЭ на 90+ в мини-группах

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

Векторы

ОСНОВНЫЕ ПОНЯТИЯ И ОБОЗНАЧЕНИЯ

Вектор – отрезок, у которого есть начало и конец, то есть указано его направление.

Вектор обозначается через точки начала и конца вектора, например (overrightarrow{АВ}) (первая буква – начало вектора, вторая – конец) или, если мы хотим обозначить вектор без указания точек, пишем просто (overrightarrow{a}).

Точка тоже может быть вектором, в таком случае вектор называют нулевым, т.к. его началом и концом является одна и та же точка. Обозначаем нулевой вектор как, например, (overrightarrow{text{MM}}) или (overrightarrow{0}).

Длина или модуль вектора – это длина отрезка (как если бы у него не было направления).

Длина вектора (overrightarrow{АВ}) обозначается как (left| overrightarrow{АВ} right|), длина вектора (overrightarrow{a} )как (left| overrightarrow{a} right|), а длина нулевого вектора всегда равна нулю:

(left| overrightarrow{АВ} right| = 7)

(left| overrightarrow{a} right| = 3)

(left| overrightarrow{text{MM}} right| = left| overrightarrow{0} right| = 0)

РАСПОЛОЖЕНИЕ ВЕКТОРОВ

Коллинеарные векторы – это векторы, которые лежат на параллельных прямых или на одной прямой. Нулевой вектор коллинеарен любому вектору.

Сонаправленные векторы – это коллинеарные векторы, которые направлены в одну сторону.

Обозначается как (overrightarrow{a} upuparrows overrightarrow{b}) (вектор (overrightarrow{a}) сонаправлен вектору (overrightarrow{b}))

Противоположно направленные векторы – это коллинеарные векторы, которые направлены в противоположные стороны.

Обозначаются как (overrightarrow{a} uparrow downarrow overrightarrow{b}) (вектор (overrightarrow{a}) противоположно напрвлен вектору (overrightarrow{b}))

Равные векторы – это сонаправленные векторы, у которых равны длины, т.е. у них одинаковые и направление, и длина.

Например:

  1. (overrightarrow{АВ}) и (overrightarrow{a}) – коллинеарны, при этом противоположно направлены, т.к. лежат параллельных прямых и направлены в разные стороны:

(overrightarrow{АВ} uparrow downarrow overrightarrow{a})

  1. (overrightarrow{text{CD}}) и (overrightarrow{b}) – коллинеарны, при этом сонаправлены, т.к. лежат параллельных прямых и направлены в одну сторону:

(overrightarrow{text{CD}} upuparrows overrightarrow{b})

  1. (overrightarrow{text{CD}}) и (overrightarrow{b}) – равны, т.к. сонаправлены (из п.2) и равны по модулю:

(left. frac{overrightarrow{text{CD}} upuparrows overrightarrow{b}}{overrightarrow{left| text{CD} right|} = 5 = left| overrightarrow{b} right|} right} Longrightarrow overrightarrow{text{CD}} = overrightarrow{b})

  1. (overrightarrow{М}) коллинеарен всем векторам, и может являться им как сонаправленным, так и противоположно направленным, т.к. (overrightarrow{М} = overrightarrow{0}).

СВОЙСТВА НЕНУЛЕВЫХ КОЛЛИНЕАРНЫХ ВЕКТОРОВ:

(left. frac{overrightarrow{a} upuparrows overrightarrow{b}}{overrightarrow{b} upuparrows c} right} Longrightarrow overrightarrow{a} upuparrows overrightarrow{c})

Если (overrightarrow{a} upuparrows overrightarrow{b}) и (overrightarrow{b} upuparrows c), то (overrightarrow{a} upuparrows overrightarrow{c})

(left. frac{overrightarrow{a} uparrow downarrow overrightarrow{b}}{overrightarrow{b} uparrow downarrow c} right} Longrightarrow overrightarrow{a} upuparrows overrightarrow{c})

Если (overrightarrow{a} uparrow downarrow overrightarrow{b}) и (overrightarrow{b} uparrow downarrow c), то (overrightarrow{a} upuparrows overrightarrow{c})

(left. frac{overrightarrow{a} upuparrows overrightarrow{b}}{overrightarrow{a} uparrow downarrow overrightarrow{c}} right} Longrightarrow overrightarrow{b} uparrow downarrow overrightarrow{c})

Если (overrightarrow{a} upuparrows overrightarrow{b}) и (overrightarrow{a} uparrow downarrow overrightarrow{c}), то (overrightarrow{b} uparrow downarrow overrightarrow{c})

ОТКЛАДЫВАЕНИЕ ВЕКТОРА ОТ ТОЧКИ:

Говорят, что вектор отложен от точки, если она является его началом. Например, (overrightarrow{АВ}) отложен от точки А, (left| text{CD} right|) отложен от точки С и так далее. Можно откладывать абсолютно любые векторы абсолютно из любых точек. Это описывается следующим правилом:

От любой точки можно отложить вектор, равный данному и при том только один.

Например, возьмем точку М и два вектора (overrightarrow{a}) и (overrightarrow{b}). Мы можем отложить от точки М вектора, равные (overrightarrow{a}) и (overrightarrow{b}) всего один раз. Делается это параллельным переносом:

Таким образом (overrightarrow{a} = overrightarrow{a’}), и (overrightarrow{b} = overrightarrow{b’}), при этом (overrightarrow{a’} и overrightarrow{b’}) отложены от точки М.

СЛОЖЕНИЕ ВЕКТОРОВ:

При сложении векторов нужно учитывать их направления, поэтому проще всего складывать вектора визуально. Существуют два самых простых способа сложить два вектора – это правило треугольника и правило параллелограмма.

ПРАВИЛО ТРЕУГОЛЬНИКА

Если нужно найти сумму двух векторов, по правилу треугольника нужно:

  1. Параллельным переносом перенести начало одного вектора в конец другого.

  2. Пусть эти векторы будут сторонами треугольника, тогда третья его сторона – их сумма.

  3. Обозначить направление получившегося вектора суммы – от начала первого вектора в конец второго (стрелка к стрелке).

Пример №1:

Найдите сумму векторов (overrightarrow{a}) и (overrightarrow{b}) по правилу треугольника:

  1. Перенесем вектор (overrightarrow{b}) так, чтобы он начинался там, где заканчивается вектор (overrightarrow{a}).

  1. Соединим эти векторы в треугольник, третьей стороной которой будет вектор (overrightarrow{c} = overrightarrow{a} + overrightarrow{b}).

  1. Направление вектора (overrightarrow{c}) будет идти от начала (overrightarrow{a}) до конца (overrightarrow{b}) (стрелка к стрелке)

ПРАВИЛО ПАРАЛЛЕЛОГРАММА:

Если нужно найти сумму двух векторов, по правилу параллелограмма нужно:

  1. Параллельным переносом перенести начала этих векторов в одну точку.

  2. Пусть эти векторы будут сторонами параллелограмма, тогда диагональ этого параллелограмма – их сумма.

  3. Обозначить направление получившегося вектора суммы – от начала векторов в противоположный конец параллелограмма (по диагонали).

Пример №2:

Найдите сумму векторов (overrightarrow{a}) и (overrightarrow{b}) по правилу параллелограмма:

  1. Перенесем оба вектора параллельным переносом так, чтобы они начинались из одной точки.

  1. Представим, что они являются сторонами параллелограмма.

  1. Диагональ этого параллелограмма, которая начинается в точке начала векторов (overrightarrow{a}) и (overrightarrow{b}) – это вектор (overrightarrow{c} = overrightarrow{a} + overrightarrow{b}).

СВОЙСТВА СЛОЖЕНИЯ ВЕКТОРОВ:

  1. Переместительное свойство:

(overrightarrow{a} + overrightarrow{b} = overrightarrow{b} + overrightarrow{a})

  1. Сочетательное свойство:

((overrightarrow{a} + overrightarrow{b}) + overrightarrow{c} = overrightarrow{a} + (overrightarrow{b} + overrightarrow{c}))

СЛОЖЕНИЕ НЕСКОЛЬКИХ ВЕКТОРОВ:

Чтобы сложить несколько векторов, нужно ставить их друг за другом, сохраняя их направление (используя параллельный перенос), тогда их суммой будет являться вектор, начала которого – это начало первого вектора, а конец – конец последнего вектора (как в правиле треугольника).

Пример №3:

Найдите сумму векторов (overrightarrow{a}), (overrightarrow{b}), (overrightarrow{c}), (overrightarrow{d}) и (overrightarrow{e}):

  1. Поставим эти векторы как бы по порядку сохраняя их длину и направление. По переместительному свойству неважно, в каком порядке мы будем располагать вектора. Соединим их, например, в таком порядке — (overrightarrow{d}), (overrightarrow{e}), (overrightarrow{b}), (overrightarrow{c}), (overrightarrow{a}).

  2. Проведем вектор их суммы от начала первого вектора в конец второго:

ВЫЧИТАНИЕ ВЕКТОРОВ:

Вычесть вектор – это то же самое, что прибавить отрицательный вектор:

(overrightarrow{a} – overrightarrow{b} = overrightarrow{a} + (–overrightarrow{b}))

То есть и при вычитании можно использовать правила сложения. Главное – найти противоположный вектор.

Само словосочетание «противоположный вектор» говорит о том, что такие вектора направлены в разные стороны.

Значит вычесть вектор – значит прибавить вектор с противоположным ему направлением.

Мы можем проверить это свойство алгебраически. Мы знаем, что противоположные числа в сумме дают 0:

(a + (–a) = a – a = 0)

Тогда и сумма противоположных векторов дадут 0 (т.е. если мы «пойдем» от начала до конца (overrightarrow{a}) и обратно по –(overrightarrow{a}), то мы вернемся снова в начало (overrightarrow{a})):

Значит и для векторов справедливо это свойство:

(overrightarrow{a} + (– overrightarrow{a}) = 0)

Пример №4:

Найдите (overrightarrow{f} = overrightarrow{a} – overrightarrow{b} + overrightarrow{c} – overrightarrow{d} – overrightarrow{e}), если

  1. Можем использовать сложение векторов, если мы найдем отрицательные векторы. В данном случае отрицательны векторы (overrightarrow{b}), (overrightarrow{d}) и (overrightarrow{e}). Тогда (overrightarrow{–b}), (–overrightarrow{d}) и (–overrightarrow{e}) следующие:

  1. Теперь сложим все векторы, учитывая отрицательные:

ПРОИЗВЕДЕНИЕ ВЕКТОРА И ЧИСЛА:

Произведением ненулевого вектора и числа является вектор, коллинеарный данному, длина которого равна произведению длины данного вектора и числа:

(k bullet overrightarrow{a} = overrightarrow{text{ka}})

где k – это число, при этом:

(overrightarrow{a} upuparrows overrightarrow{text{ka}}) при (k > 0)

(overrightarrow{a} uparrow downarrow overrightarrow{text{ka}}) при (k < 0)

Произведением любого вектора на ноль является нулевой вектор.

Пример №5:

Найдите 5(overrightarrow{a}) и –2(overrightarrow{a}) , если:

1. Также можно представить произведение вектора и числа как сложение этого вектора несколько раз:

(5overrightarrow{a} = overrightarrow{a} + overrightarrow{a} + overrightarrow{a} + overrightarrow{a} + overrightarrow{a}):

(5overrightarrow{a} upuparrows overrightarrow{a}), т.к 5 > 0

2. Аналогично поступим и с отрицательным числом, только теперь уже складываем противоположные векторы:

(–2overrightarrow{a} uparrow downarrow overrightarrow{a}), т.к –2 < 0

СВОЙСТВА ПРОИЗВЕДЕНИЯ ВЕКТОРА И ЧИСЛА:

  1. Сочетательное свойство:

(kl bullet overrightarrow{a} = k(loverrightarrow{a}) )

  1. Распределительный закон:

(overrightarrow{a}(k + l) = koverrightarrow{a} + loverrightarrow{a})

и

(k(overrightarrow{a} + overrightarrow{b}) = koverrightarrow{a} + koverrightarrow{b})

ПРИМЕНЕНИЕ ВЕКТОРОВ К РЕШЕНИЮ ЗАДАЧ:

Используя векторы и связанные с ними свойства можно решать различные геометрические задачи.

Пример №6:

Точка С – середина отрезка АВ, О – произвольная точка на плоскости. Докажите, что

(ОС = frac{1}{2}(АО + ОВ))

  1. По правилу треугольника:

(overrightarrow{ОС} = overrightarrow{ОА} + overrightarrow{АС})

(overrightarrow{ОС} = overrightarrow{ОВ} + overrightarrow{ВС})

  1. Сложим два этих выражения, получим:

(2overrightarrow{ОС} = overrightarrow{ОА} + overrightarrow{ОВ} + overrightarrow{АС} + overrightarrow{ВС})

  1. При этом (overrightarrow{АС}) и (overrightarrow{ВС}) – противоположные векторы, т.к. равны по модулю (точка С середина АВ), и имеют противоположное направление, значит:

(2overrightarrow{ОС} = overrightarrow{ОА} + overrightarrow{ОВ} + overrightarrow{АС} + overrightarrow{ВС})

(2overrightarrow{ОС} = overrightarrow{ОА} + overrightarrow{ОВ} + 0)

(ОС = frac{1}{2}(АО + ОВ))

Что и требовалось доказать.

Пример №7:

ABCD трапеция. Точки M и N середины оснований BC и AD соответственно. Точка О – точка пересечения прямых AB и CD. Докажите, что О, M и N лежат на одной прямой.

  1. Треугольники OAD и OBC подобны по двум углам:

(left. frac{angletext{OBC} = angle OAD как соответствующие углы}{angle O — общий} right}Deltatext{OAD}simtext{ΔOBC})

(frac{text{OA}}{text{OB}} = frac{text{OD}}{text{OC}} = k)

  1. При этом соответствующие стороны коллинеарны, значит можем выразить их как произведение числа и вектора:

(overrightarrow{text{OA}} upuparrows overrightarrow{text{OB}} Longrightarrow overrightarrow{text{OA}} = koverrightarrow{text{OB}})

(overrightarrow{text{OD}} upuparrows overrightarrow{text{OC}} Longrightarrow overrightarrow{text{OD}} = koverrightarrow{text{OC}})

  1. В данной задаче можем выразить (overrightarrow{text{OM}}) и (overrightarrow{ON}) как

(overrightarrow{text{OM}} = frac{1}{2}left( overrightarrow{text{OB}} + overrightarrow{text{OC}} right))

(overrightarrow{text{ON}} = frac{1}{2}(overrightarrow{text{OA}} + overrightarrow{text{OD}}))

т.к. М – середина BC, а N – середина AD (аналогично вектору (overrightarrow{text{OC}}) из Примера №6).

  1. Соединим выразим вектор (overrightarrow{text{ON}}) через (overrightarrow{text{OA}}) и (overrightarrow{text{OD}}) из пункта 3:

(overrightarrow{text{ON}} = frac{1}{2}left( overrightarrow{text{OA}} + overrightarrow{text{OD}} right))

(overrightarrow{text{ON}} = frac{1}{2}left( koverrightarrow{text{OB}} + koverrightarrow{text{OC}} right))

(overrightarrow{text{ON}} = frac{1}{2}kleft( overrightarrow{text{OB}} + overrightarrow{text{OC}} right))

(overrightarrow{text{ON}} = k(frac{1}{2}left( overrightarrow{text{OB}} + overrightarrow{text{OC}} right)) = koverrightarrow{text{OM}})

  1. Если вектор (overrightarrow{text{ON}}) можно представить как произведение числа k с вектором (overrightarrow{text{OM}}), значит (overrightarrow{text{ON}}) и (overrightarrow{text{OM}}) коллинеарны, а значит лежат на одной прямой (они не могут быть параллельны, т.к. уже пересекаются в точке О).

Что и требовалось доказать.

Понравилась статья? Поделить с друзьями:
  • Как в телефоне найти загрузки с телеграмма
  • Как найти простату у мужчины для массажа
  • Как в маткаде по значениям составить функцию
  • Как найти нужный товар в simcity
  • Фильм как дочь нашла своего отца