Как найти падение напряжения на диоде

В этой статье мы обсудим падение напряжения на диоде, почему оно возникает и как его рассчитать. Диод — это полупроводниковый прибор, который позволяет протекать току в одном направлении и ограничивает протекание тока с другой стороны.

Падение напряжения на диоде в основном относится к падению напряжения прямого смещения. Это происходит в диоде, присутствующем в электрической цепи, когда через него проходит ток. Это прямое падение напряжения смещения является результатом действия обедненной области, образованной PN-переходом под действием приложенного напряжения.

Что такое падение напряжения на диоде?

Падение напряжения на диоде является результатом протекания тока от анода к катоду. Когда диод находится в прямом смещении, падение потенциала на нем известно как падение напряжения на диоде или прямое падение напряжения. 

В идеале не должно быть никакого падения напряжения на диоде, когда он пропускает ток и работает, чтобы генерировать выходное напряжение постоянного тока. В реальной жизни небольшое падение напряжения происходит из-за прямого сопротивления и прямого напряжения пробоя. Для кремния падение напряжения на диоде составляет около 0.7 Вольт. 

Сколько падает напряжение на диоде?

Любой диод падает определенное количество напряжения на своих клеммах. Падение напряжения на диоде 0.7 В означает, что напряжение через резистор или нагрузку, присутствующую в цепи, составляет (напряжение питания — 0.7) вольт.

Падение напряжения на разных диодах разное. Обычно оно колеблется от 0.6 до 0.7 вольт для небольшого кремниевого диода. Для диодов Шоттки значение падения напряжения составляет 0.2 Вольта. Для светоизлучающих диодов или светодиодов падение напряжения колеблется в пределах 1.4-4 Вольта. Германиевые диоды имеют падение напряжения 0.25-0.3 вольта.

Подробнее….Падение напряжения на кабеле: как рассчитать и подробные факты

Почему на диоде падает напряжение?

Диод в прямом смещении выбирает подходящий уровень напряжения, чтобы он мог подтолкнуть электронные заряды к PN-переходу. Это можно сказать аналогично «поднятию» каждого шара с пола на верхнюю часть стола.

Разница в уровне энергии, необходимой для перемещения электронных зарядов через PN-переход, вызывает падение напряжения. Кроме того, в диоде есть некоторое сопротивление, ответственное за определенное падение напряжения. Падение напряжения из-за сопротивления зависит от допустимой скорости тока на PN-переходе.

Как рассчитать падение напряжения на диоде?

Падение напряжения на разных диодах разное. Для кремниевого диода оно составляет примерно 0.7 Вольта, для германиевого диода — 0.3 Вольта, а для диод шоттки это около 0.2 вольта. Светодиоды имеют различные значения падения напряжения. 

Теперь, если мы хотим рассчитать падение напряжения на любом другом элементе в цепи, нам нужно вычесть падение напряжения на диодах между этим элементом и источником из напряжения источника. Таким образом, падение напряжения на этом элементе равно (напряжение источника — сумма падений напряжения на диоде).

Как понизить напряжение с помощью диода?

Стабилитроны хороши для снижения напряжения. Тем не менее, тривиальный метод снижения напряжения с помощью диодов заключается в последовательном подключении нескольких диодов к источнику питания. Каждый диод вызывает падение напряжения почти на 0.7 Вольта.

Диоды допускают только однонаправленный поток электричества, но диод будет проводить электричество только тогда, когда питание достигает порога. Стандартный порог кремниевого диода составляет 0.6 вольта. … После последовательного включения каждого диода напряжение падает на 0.6 вольта. Используя эту технику, мы можем понизить напряжение в цепи с помощью диодов.

Также Читать дальше…Как рассчитать падение напряжения в последовательной цепи: подробные факты

Часто задаваемые вопросы

Как понизить напряжение стабилитроном?

Диод Зенера — это особый случай диодов, который позволяет току течь в обратном направлении при определенном напряжении, известном как напряжение Зенера. Это также может уменьшить обратное напряжения и работать как эффективный регулятор напряжения.

Чтобы использовать стабилитрон для снижения напряжения, мы должны подключить его параллельно нагрузке в цепи. Напряжение питания должно быть выше напряжения стабилитрона, а диод должен иметь обратное смещение. Это соединение помогает снизить обратное напряжение до определенного значения и действует как регулятор напряжения.

Формула падения напряжения на диоде

Для простоты прямое падение напряжения на диоде принято равным 0.7 В. Теперь, если в цепи имеется только один диод вместе с нагрузкой, падение напряжения на нагрузке равно (напряжение питания — 0.7) Вольт. 

В случае последовательного включения в цепь нескольких диодов падение напряжения на нагрузке равно (напряжение питания — количество диодов * 0.7). Например, на рисунке 1 падение напряжения на диоде D1= (5-0.7) = 4.3 В. Падение напряжения на диоде D2= (5-2 * 0.7) = 3.6 В. Падение напряжения на диоде D3 = (5-3 * 0.7) = 2.9 В. 

падение напряжения на диоде
изображение 1

Подробнее….Падение напряжения для одной фазы: как рассчитать и подробные факты

График падения напряжения на диоде

В таблице ниже показаны пределы падения напряжения для различных типов диодов.

Тип диода Падение напряжения
Кремниевый диод 0.6-0.7 Вольт
Германиевый диод 0.25-0.3 Вольт
Диод шоттки 0.15-0.45 Вольт
Красный светодиод 1.7-2.2 Вольт
Синий светодиод 3.5-4 Вольт
Желтый светодиод 2.1-2.3 Вольт
Зеленый светодиод 2.1-4 Вольт
Белый светодиод 3.3-4 Вольт
Оранжевый светодиод 2.03-2.20 Вольт
Фиолетовый светодиод 2.76-4 Вольт

Падение напряжения на диоде в зависимости от температуры

Падение напряжения на диоде – это разность потенциалов на выводах рабочего диода. Падение напряжения зависит от температурного коэффициента диода и поведения других элементов в цепи.

Положительный или отрицательный температурный коэффициент соответственно увеличивает или уменьшает падение напряжения на диоде. Большинство кремниевых диодов имеют отрицательный температурный коэффициент, что означает, что падение напряжения уменьшается с повышением температуры. Стабилитрон имеет положительный температурный коэффициент, что увеличивает падение напряжения.

Падение напряжения на диоде в зависимости от тока

Компания падение напряжения через диод увеличивается с током нелинейным образом. Но поскольку дифференциальное сопротивление меньше, увеличение происходит очень медленно. Мы можем рассмотреть характеристики прямого напряжения и тока. 

Из кривой ВАХ видно, что большое увеличение тока первоначально приводит к пренебрежимо малому увеличению напряжения. Затем напряжение повышается быстрее и, в конце концов, очень быстро возрастает. Кривая IV показывает экспоненциальный рост напряжения с током. К тому времени, когда Vd пересекает 0.6/0.7 В, оно быстро увеличивается.

При падении напряжения на диоде с PN-переходом?

Когда ток проходит через любой компонент, присутствующий в цепи, происходит падение напряжения. Точно так же, когда ток проходит через диод при прямом смещении, возникает падение напряжения, известное как прямое падение напряжения.

Диод с p-n переходом не может послать ток от перехода в обратное смещение из-за очень высокого сопротивления. P-n-переход действует как разомкнутая цепь, поэтому падение напряжения на этом идеальном диоде с p-n-переходом остается прежним. Оно равно напряжению аккумулятора.

Кроме того, пожалуйста, нажмите, чтобы узнать о Органические светодиоды.

В связи с глобальным развитием технологий широкое применение в электронике получили светодиоды. Они обладают множеством особенностей, из которых можно выделить компактность и яркое свечение. Помимо номинального тока, который является их главным параметром, нужно знать рабочее напряжение светодиодов. Этот параметр часто используют для проведения расчетов. Если правильно подобрать параметры устройства, можно продлить срок его службы. Напряжение для светодиода является разницей потенциалов на p-n-переходе, что отмечается в паспортных данных прибора. Бывают случаи, когда нет информации о конкретном изделии, тогда возникает вопрос: «Как определить падение напряжения на светодиоде?».

Содержание

  1. Определение тока
  2. Как узнать падение напряжения?
  3. Теоретический метод
  4. Практический метод

Определение тока

Для осуществления этого есть несколько методов. Рассмотрим наиболее простой из них. Чтобы определить номинальный ток светодиода, потребуется наличие тестера, называемого мультиметром. Такой метод также применяется для обычных диодов.

Измерение силы тока светодиода

Измерение силы тока светодиода

Тестирование проводится следующим образом:

  • Щупы мультиметра подключаются плюсовым выводом к аноду, а минусовым к катоду.
  • Анодный вывод у светодиода делается длиннее, чем катодный.
  • Прозванивать можно светодиоды, у которых небольшое напряжение питания. Если у них большая мощность, применять такой метод нельзя.

Лучше воспользоваться проверенным способом измерения характеристик устройства. Для этого понадобятся:

  • блок питания, рассчитанный на 12 В;
  • мультиамперметр;
  • постоянные резисторы – 2,2 и 1 кОм, а также 560 Ом;
  • переменный резистор – 470–680 Ом;
  • вольтметр, желательно цифровой;
  • провода для коммутации схемы.

Как и в предыдущем случае, потребуется узнать полярность диода. Если по его выводам непонятно, где «+» и «-», тогда придется к одному из выводов подсоединить резистор 2,2 кОм. После этого нужно подключить светодиод к блоку питания. При его свечении нужно отключить питание и промаркировать нужный выход «+».

Теперь нужно заменить резистор 2,2 кОм на 560 Ом. В эту цепь последовательно подсоединяется переменный резистор, а также миллиамперметр для проведения замера. Вольтметр, у которого разрешение 0,1 В, подключается параллельно светодиоду. После этого необходимо установить максимальное сопротивление у переменного резистора.

Мультиметр для замера силы тока и напряжения светодиода

Мультиметр для замера силы тока и напряжения светодиода

Можно подсоединить собранную схему к блоку питания, соблюдая полярность. После включения у светодиода будет блеклое свечение. Сопротивление постепенно снижают и следят за вольтметром. Определенное время напряжение будет расти до 0,5 В, расти будет и ток, что влияет на увеличение яркости светодиода. Необходимо фиксировать показания каждые 0,1 В. Оптимальный рабочий ток будет достигнут, когда величина напряжения станет расти медленнее силы тока, а яркость перестанет увеличиваться.

Как узнать падение напряжения?

Для того чтобы определить, на сколько вольт светодиод, можно воспользоваться теоретическим и практическим методами. Они оба хороши и применяются в зависимости от ситуации и сложности испытуемого прибора.

Теоретический метод

Для анализа характеристик светодиода таким способом большую подсказку дают габариты прибора, цвет и форма его корпуса. Примеси различных химических элементов вызывают свечение кристаллов от красного до желтого цвета. Конечно, если видна расцветка корпуса, тогда можно определить некоторые параметры светодиода по внешнему виду. Но при его прозрачности придется воспользоваться мультиметром. Выставляем тестер на «обрыв» и щупами прикасаемся к выводам светодиода. Ток, проходящий через светодиод, вызывает слабое свечение кристалла.

Типы и виды светодиодов

Типы и виды светодиодов

В состав этих изделий входят различные полупроводниковые металлы. Этот фактор и влияет на падение напряжения на p-n-переходе. Чтобы обозначить такие характеристики, независимо от марок и производителей светодиода, их окрашивают в различные цвета. Но стоит знать, что конкретно утверждать, на сколько вольт светодиод, опираясь только на его окраску, будет неверно. Цвета этих приборов дают приблизительные значения для проведения измерений. Примерные параметры по цветовому признаку приведены в таблице.

Цвет прибора Напряжение, В
Красный 1,63–2,03
Желтый 2,1–2,18
Зеленый 1,9–4,0
Синий 2,48–3,7
Оранжевый 2,03–2,1
Инфракрасный до 1,9
Фиолетовый 2,76–4
Белый 3,5
Ультрафиолетовый 3,1–4,4

Примерные характеристики светодиода можно определить по цвету его корпуса и размерам

Примерные характеристики светодиода можно определить по цвету его корпуса и размерам

На прямое напряжение светодиода не воздействуют габариты или вариации корпуса, однако может проглядываться количество кристаллов, которые излучают свет и соединяются последовательно. Бывают виды элементов SMD, где люминофор прячет цепочку кристаллов.

В корпусе SMD-светодиода последовательно соединяются три кристалла белого цвета. Наиболее часто они применяются в лампах на 220 В китайского производства. Из-за того, что такие светодиоды начинают реагировать только от 9,6 вольт, протестировать их мультиметром не удастся, так как его батарейка питания рассчитана на 9,5 В.

Теоретически можно воспользоваться интернетом, скачав специальную программу datasheet, в поисковике которой вписать известные параметры светодиода, его цвет. Это позволит найти приблизительные характеристики, где падение напряжения и значения тока могут быть неточными.

Практический метод

Проведение тестирования практическим способом позволяет получить наиболее точные значения силы тока и падения напряжения. Рассчитанная таким образом характеристика прибора позволяет безопасно и долговременно использовать его по назначению. Для получения неизвестных параметров потребуется вольтметр, мультиметр, блок питания, рассчитанный на 12 В, резистор от 510 Ом.

Принцип измерений аналогичен описанному выше для тестирования светодиода на номинальный ток. Необходимо собрать схему с резистором и вольтметром, после чего увеличивать постепенно напряжение до начала свечения кристалла. При достижении яркости высшей точки показания замедляют рост. Можно снимать с экрана номинальное напряжение светодиода.

При 1,9 вольт может отсутствовать свечение. В этом случае часто проверяется инфракрасный диод. Чтобы это уточнить, необходимо перевести излучатель в телефонную камеру. Если будет видно на экране белое пятно, то это и есть инфракрасный диод.

Схема проверки падения напряжения на светодиоде

Схема проверки падения напряжения на светодиоде

Если нет возможности применить блок питания на постоянные 12 В, можно использовать батарейку «Крона», рассчитанную на 9 вольт. При отсутствии вышеперечисленных источников питания отлично подойдет стабилизатор сетевого напряжения, который может выдавать необходимое выпрямленное напряжение, только потребуется заново рассчитать номинал сопротивления резистора, задействованного в схеме. В этом случае также нужно повышать напряжение до засвечивания светодиода. Напряжение, при котором произойдет свечение, и будет номинальным, на которое он рассчитан.

При неизвестных характеристиках светодиода обязательно необходимо рассчитывать его значения номинального тока и падения напряжения, чтобы предотвратить быстрый выход из строя.

Вольтамперная характеристика и основные параметры полупроводниковых диодов

Вольт
— амперная характеристика это зависимость
тока I,
протекающего через диод, от напряжения
U,
приложенного к диоду. Вольт — амперной
характеристикой называют и график этой
зависимости (рис. 6.5).

Рис.
6.5. ВАХ реального и идеального диодов

Вольтамперная
характеристика реального диода про­ходит
ниже, чем у идеального p-n
перехода: сказывается влияние сопротивления
базы (рис. 6.5).

После
точки А вольтамперная характеристика
будет представлять собой прямую линию,
так как при напряже­нии Ua
потенциальный барьер полностью
компенсируется внешним полем. Кривая
обратного тока ВАХ имеет на­клон, так
как за счет возрастания обратного
напряжения увеличивается генерация
собственных носителей заряда (рис. 6.6).

Рис.
6.6. Участки ВАХ диода

На
рис. 6.6 показаны следующие участки:

  1. максимально
    допустимый прямой ток Iпр.mах

    постоянный ток через диод в прямом
    направлении. Если через диод пропускать
    ток не постоянно, а порциями, такой
    режим называется импульсным. Максимальный
    импульсный ток через диод обыч­но
    всегда больше прямого максимального
    тока, не
    приводящего
    к разрушению кристалла полупро­водника;

  2. максимальное
    прямое падение напряжения Uпр.mах
    на
    диоде при максимально прямом токе;

  3. максимально
    допустимое обратное напряжение Uобр.mах
    =
    (3/4)
    Uэл.проб


    такое обратное напряжение, которое
    будучи приложенным к диоду не вызовет
    в нем необратимого пробоя;

  4. обратный
    ток Iобр.mах
    при
    максимально допусти­мом обратном
    напряжении.

Обычно
чем мощнее диод, тем больше обратный
ток через него.

Прямое
и обратное статические сопротивления
диода при заданных прямом и обратном
напряжениях опреде­ляют по формулам

Rст
пр
=
Uпр/Iпр,
Rст
обр
=
Uобр/Iобр.

Прямое
динамическое сопротивление диода
вычисля­ют по формулам

Riпр
= ΔUпр/ΔIпр
= (Uпр
– U’пр)/(Iпр
– I’пр).

Обратное
динамическое сопротивление диода
вычисля­ют по формулам

Riобр
= ΔUобр/ΔIобр
= (Uобр
– U’обр)/(Iобр
– I’обр).

Диоды
обычно характеризуются следующими
параметрами:

  1. обратный
    ток при некоторой величине обратного
    напряжения Iобр,
    мкА;

  2. падение
    напряжения на диоде при некотором
    значении прямого тока через диод Uпр,
    В;

  3. емкость
    диода при подаче на него обратного
    напряжения некоторой величины С, пФ;

  4. диапазон
    частот, в котором возможна работа без
    снижения выпрямленного тока fгр,
    кГц;

  5. рабочий
    диапазон температур.

Техническими
условиями задаются обычно максимальные
(или минимальные) значения параметров
для диодов каждого типа. Так, например,
задается максимально возможное значение
обратного тока, прямого падения напряжения
и емкости диода. Диапазон частот задается
минимальным значением граничной частоты
fгр.
Это значит, что параметры всех диодов
не превышает (а в случае частоты – не
ниже) заданного техническими условиями
значения. На рис.6.7 показано УГО диодов.

Рис.
6.7. УГО диодов:

а
— выпрямительные, высокочастотные, СВЧ,
импульсные и диоды Ганна; б — стабилитроны;
в — варикапы; г — туннельные диоды; д —
диоды Шоттки; е — светодиоды; ж — фотодиоды;
з — выпрями­тельные блоки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Что такое диод Шоттки

Диод Шоттки относится к семейству диодов. Выглядит он почти также, как и его собратья, но есть небольшие отличия.

Диод Шоттки

Простой диод выглядит на схемах вот так:

диод

обозначение диода на схеме

Стабилитрон уже обозначается, как диод с «кепочкой»

стабилитрон

обозначение стабилитрона на схеме

Диод Шоттки имеет две «кепочки»

шоттки

обозначение диода шоттки на схеме

Чтобы проще запомнить, можно добавить голову и ножки и представить себе человечка, танцующего ламбаду)

Диод Шоттки

Обратное напряжение диода Шоттки

Итак, как вы помните, диод пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока до какого-то критического значения, называемым обратным напряжением диода.

работа диода

Это значение можно найти в даташите

обратное напряжение диода

обратное напряжение диода

Для каждой марки диода оно разное

таблица обратных напряжений

Если превысить это значение, то произойдет пробой, и диод выйдет из строя.

Падение напряжения на диоде Шоттки

Если же подать прямой ток на диод, то на диоде будет «оседать» напряжение. Это падение напряжения называется прямым падением напряжения на диоде. В даташитах обозначается как Vf , то есть Voltage drop.

падение напряжения на диоде

прямое падение напряжения на диоде

Если пропустить через такой диод прямой ток, то мощность, которая будет на нем рассеиваться, будет определяться формулой:

рассеиваемая мощность

где

P — мощность, Вт

Vf — прямое падение напряжение на диоде, В

I — сила тока через диод, А

диод рассеивает мощность

Поэтому, одним из главных преимуществ диода Шоттки является то, что его прямое падение напряжения намного меньше, чем у простого диода. Следовательно, он будет меньше рассеивать тепло, или простым языком, меньше нагреваться.

Давайте рассмотрим один из примеров. Возьмем диод 1N4007. Его прямое падение напряжения составляет 0,83 Вольт, что типично для простого полупроводникового диода.

падение напряжения на диоде

падение напряжение на диоде в прямом включении

В настоящий момент через него проходит сила тока, равная 0,5 А. Давайте рассчитаем его рассеиваемую мощность в данный момент. P=0,83 x 0,5 = 0,415 Вт.

Если рассмотреть этот случай через тепловизор, то можно увидеть, что его температура корпуса составила 54,4 градуса по Цельсию.

Диод Шоттки

Теперь давайте проведем тот же самый эксперимент с диодом Шоттки 1N5817. Как вы видите, его прямое падение напряжения составило примерно 0,35 В.

шоттки падение напряжения

падение напряжения на диоде Шоттки при прямом включении

При прохождении силы тока через диод Шоттки в 0,5 А, мы получим рассеиваемую мощность P=0,5 x 0,35 = 0,175 Вт. При этом тепловизор нам покажет, что температура корпуса уже будет 38,2 градуса.

Диод Шоттки

Следовательно, Шоттки намного эффективнее, чем простой полупроводниковый диод в плане пропускания через себя прямого тока, так как он обладает меньшим падением напряжения, а следовательно, меньше рассеивает тепло в окружающее пространство и меньше нагревается.

Прямое падение напряжения можно также посмотреть и в даташитах. Например, прямое падение напряжения на диоде Шоттки 1N5817 можно найти из графика зависимости прямого тока от падения напряжения на диоде Шоттки

Диод Шоттки

график зависимости прямого тока от напряжения

В нашем случае если следовать графо-аналитическому способу, то мы как раз получаем значение 0,35 В

Диод Шоттки

Диод Шоттки в ВЧ цепях

Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.

Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц

генератор частоты Agilent

Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя

Диод ШотткиДиод Шоттки

и будем снимать с них показания

однополупериодный выпрямитель

Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.

Но что будет, если мы увеличим частоту до 300 кГц?

Диод Шоттки

Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс

Диод Шоттки

Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.

Обратный ток утечки

Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?

Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод. В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки. На английский манер это звучит как reverse leakage current.

обратный ток утечки

Он очень мал, но имеет место быть.

Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении

Диод Шоттки

Замеряем ток утечки

ток утечки

обратный ток утечки диода

Как вы видите, его значение составляет 0,1 мкА.

Давайте теперь повторим этот же самый опыт с диодом Шоттки

Диод Шоттки

Диод Шоттки

обратный ток утечки диода Шоттки

Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора

пик детектор

схема пик детектора

В этом случае эти 20 мкА будут весьма значительны.

Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!

характеристики Шоттки

зависимость обратного тока утечки от температуры корпуса диода Шоттки

Поэтому, вы не можете использовать Шоттки везде в схемах.

Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В

Диод Шоттки

То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В

Диод Шоттки

Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:

сгоревший диод Шоттки

Применение диодов Шоттки

Диоды Шоттки находят достаточно широкое применение. Их можно найти везде, где требуется минимальное прямое падение напряжения, а также в цепях ВЧ. Чаще всего их можно увидеть в компьютерных блоках питания, а также в импульсных стабилизаторах напряжения.

Также эти диоды нашли применение в солнечных панелях, так как солнечные панели генерируют электрический ток только в светлое время суток. Чтобы в темное время суток не было обратного процесса потребления тока от аккумуляторов, в панели монтируют диоды Шоттки

Шоттки в солнечных панелях

Шоттки в солнечных панелях

В компьютерной технике чаще всего можно увидеть два диода в одном корпусе

сдвоенный диод Шоттки

Купить дешево можно на китайской площадке али по ссылке. 

При написании данной статьи использовался материал с этого видео

Некоторые популярные диоды

Определение и типы диодов

Упрощенно диод можно понимать как активный электрический элемент проводящий ток только в одном направлении.
Как клапан в гидравлике. Существует несколько типов диодов отличающихся как по физическому принципу работы,
так и по базовому материалу. В очень общих чертах они делятся на полупроводниковые и вакуумные. Итак, диоды
бывают:

— вакуумные (они же кенотроны);

— на основе p-n перехода между полупроводниками различных типов проводимости: кремниевые (Si) и
карбидокремниевые (SiC) диоды;

— на основе контакта Шоттки между металлом и полупроводником.

Вакуумные диоды используются крайне редко, только в спецприложениях, например высоковольтной и
высокочастотной технике. Наиболее популярными диодами являются кремниевые диоды и диоды Шоттки.

Кроме физической природы диоды классифицируются по функциональному назначению:

выпрямительные диоды, используемые, как правило, для
выпрямления сетевого напряжения низкой частоты (50 Гц). Как правило, это кремниевые, дешевые диоды. Они
ставятся как непосредственно на входе безтрансформаторных импульсных источников питания, так и после
трансформатора в трансформаторных источниках.

быстродействующие кремниевые диоды — используются в составе
импульсных источников питания при высоких значениях обратного напряжения (100-1000 вольт). Отличаются малым
временем восстановления обратной проводимости, составляющим величину менее 200 нс. Внутри класса имеют
условную подклассификацию Fast (500-150 нс), UltraFast (70-50 нс), HiperFast (35-20 нс).

кремниевые импульсные диоды – используются в составе
функциональных (не силовых) цепей. Типичный пример – диод 1N4148; Отличаются малыми рабочими токами
(миллиамперы) и большим быстродействием (время обратного восстановления 1N4148 – 4 нс).

высоковольтные диоды – представляют собой последовательное
соединение нескольких (5-20 штук) кристаллов кремниевых диодов в одном корпусе. При этом максимальное
обратное напряжение составляет единицы-десятки киловольт, а ток как правило – небольшой и не превышает 1
ампера. Используются в ряде специальных приложений. Быстродействие этих диодов, как правило, невысокое.

Отдельно следует выделить диоды Шоттки – которые используются
и как функциональные (сигнальные) диоды и как силовые. Их отличительными чертами являются высокое
быстродействие, малое падение напряжения (0,3-0,5 В) по сравнению с кремниевыми диодами (1-1,2 В). К
недостаткам относят сравнительно малое обратное напряжение (20-100 В) чувствительность к перенапряжению,
значительный обратный ток. Диоды Шоттки часто используются в качестве выпрямительных диодов высокочастотных
преобразователей с малым выходным напряжением.

Здесь не рассматриваются диоды чисто радиочастотных применений СВЧ, варикапы, смесительные и т.д. поскольку
это вы ходит за рамки данного повествования.

Условное обозначение диода представлено на рисунке VD.1

Рисунок-схема

Рисунок VD.1 – Условное обозначение диода на основе p-n перехода и диода Шоттки

Электрод, в который втекает ток, называется анодом, а электрод из которого ток вытекает – катодом.
Исторические названия эти связаны с вакуумными диодами, в которых электроны эмитировались накальным катодом
и принимались анодом. Символически диод обозначает собой направление протекания тока.

Функциональные применения диода

— выпрямление переменного тока в составе тех или иных выпрямителей (включая умножители напряжения);

— защита от превышения напряжения в схемах ограничения уровня и снабберах;

— в пиковых детекторах на операционных усилителях;

— в низковольтных стабилизаторах напряжения (используется прямое падение напряжения);

— в схемах на переключаемых конденсаторах, включая схемы бустрепного питания;

— схемах реализации логических операций ИЛИ (рисунок VD.3 ).

Ниже представлено несколько примеров использования диодов.

Рисунок-схема

Рисунок VD.2 — Схема двухполупериодного выпрямителя

Рисунок-схема

Рисунок VD.3 — Схема реализации логических операций ИЛИ

— схемах ограничения амплитуды сигнала (рисунок VD.4).

Рисунок-схема

Рисунок VD.4 — Схема ограничения амплитуды сигнала

Характеристики диодов

Основной характеристикой диода является его ВАХ – вольтамперная характеристика – зависимость тока
пропускаемого диодом от напряжения на нем. Она не линейна и имеет фактически экспоненциальный характер.

Форма кривой ВАХ диода (рисунок VD.5) зависит от температуры: при нагреве уменьшается прямое падение
напряжения и возрастает обратный ток, снижается напряжение пробоя.

Рисунок-схема

Рисунок VD.5. Форма вольтамперной характеристики диода

Из вольтамперной характеристики следуют её производные:

— прямое падение напряжение на диоде VF (при заданных токе и температуре);

— обратный ток утечки IRM (при заданном обратном напряжении и температуре);

— максимальное обратное напряжение VR (при заданной температуре).

Площадь p-n перехода, размер кристалла, конструкция теплоотвода определяют мощностные характеристики
диода:

— максимальный постоянный рабочий ток;

— максимальный импульсный ток (при заданной длительности импульса);

— максимальная отводимая (рассеиваемая мощность);

— тепловое сопротивление корпуса.

Динамическими характеристиками диода, определяющими его быстродействие, являются:

— время восстановления при резкой смене напряжения с прямого на обратное;

— емкость перехода.

На рисунках VD.6 — VD.8 представлены экспериментально измеренные ВАХ распространенных типов диодов (для
сравнения представлены ВАХ кремниевых диодов и диода Шоттки).

Рисунок-схема

Рисунок VD.6 — Экспериментально измеренная вольтамперная характеристика кремниевого диода 1N4148

Рисунок-схема

Рисунок VD.7 Экспериментально измеренная вольтамперная характеристика кремниевого диода FR157

Рисунок-схема

Рисунок VD.8 Экспериментально измеренная вольтамперная характеристика диода Шоттки 1N5819

Основные параметры реальных диодов

1. Максимальное импульсное обратное напряжение (Peak Repetitive Reverse Voltage) VRRM
максимальная величина прикладываемого к диоду импульсного обратного напряжения.

2. Максимальное рабочее обратное напряжение (Working Peak Reverse Voltage)
VRWM
– максимальная величина прикладываемого к диоду обратного напряжения в рабочем режиме.

3. Максимальное блокирующее напряжение (DC Blocking Voltage) VR – максимальная величина
прикладываемого к диоду постоянного напряжения. Выше этого напряжения начинается пробой. Соответствует
началу пробоя на обратной ветви ВАХ.

NB: На практике все перечисленные типы напряжения равны между собой и при проектировании схем необходимо,
не допускать превышения напряжения на диоде данной величины.

4. Максимальное среднеквадратичное обратное напряжение (RMS Reverse Voltage)
VR(RMS) – максимальная величина действующего
(среднеквадратичного) напряжения в цепи переменного тока, превышение которой приводит к пробою диода.
Фактически подразумевается переменное напряжение синусоидальной формы.

5. Средний рабочий ток (Average Rectified Output Current) IO – максимальное среднеквадратичное
значение тока проходящего через диод в стационарном режиме.

6. Максимальный импульсный ток (Repetitive peak forward current) IFRM — максимальная амплитуда
импульсного периодического тока проходящего через кристалл диода. Как правило, указывается длительность
импульсов и частота повторения.

7. Максимальный импульсный непериодический ток (Non-Repetitive Peak Forward SurgeCurrent) IFSM
— максимальная амплитуда импульсного непериодического тока проходящего через кристалл диода. Как
правило, указывается длительность импульса.

8. Прямое падение напряжения на диоде (Forward Voltage) VFM – падение напряжения на диоде при
прямом смещении (в открытом состоянии). Как правило, указывается при конкретной величине прямого тока.

9. Максимальный обратный ток (Peak Reverse Current) IRM – максимальный обратный ток через
диод. Указывается при максимальном обратном напряжении на диоде и при конкретном значении температуры.

10. Ёмкость p-n перехода (Typical Junction Capacitance) Cj – паразитная емкость p-nперехода
диода. Сильно зависит от приложенного обратного напряжения, поэтому в datasheetкроме усредненной
величины, как правило, приводят зависимость емкости от обратного напряжения.

11. Тепловое сопротивление кристалл – воздух (Typical Thermal Resistance Junction toAmbient)
RθJA – тепловое сопротивление между кристаллом (p-n переходом) диода и окружающим
воздухом. Зависит от типа корпуса.

12. Максимальная рабочая температура (Maximum DC Blocking Voltage Temperature) TA
максимальная рабочая температура при которой сохраняется указанное значение максимального обратного
напряжения.

13. Максимальная рассеиваемая мощность (Total power dissipation) Ptot – максимальная мощность
рассеиваемая корпусом диода.

14. Параметр максимальной энергии поглощаемой кристаллом без разрушения (Rating for fusing) I2t
– произведение квадрата максимального импульсного тока через диод на его длительность. Это соотношение,
измеряемое в А2с (ампер в квадрате на секунду) используется при выборе защитных цепей от
перегрузки (предохранителей).

15. Время восстановления обратной проводимости (Reverse recovery time) trr – время за которое
диод после приложения обратного напряжения переходит в закрытое состояние (обратная проводимость).

Максимальные ток и мощность диода

Режим постоянного тока

Полупроводниковый диод – нелинейный элемент мощность, рассеиваемая на диоде равна произведению напряжения на
диоде VVD и тока через него IVD:

Формула

Для практических расчетов в качестве VVD можно брать падение напряжения при номинальном токе,
указываемое в справочных листках. Поскольку напряжение на диоде составляет величину порядка 1,0-1,5 В (для
кремниевого диода, для Шоттки меньше) и слабо изменяется с ростом тока, то в первом приближении можно
считать, что рассеиваемая на диоде мощность прямо пропорциональна току через него:

Формула

Это существенно отличает нелинейный диод от линейного резистора, мощность которого пропорциональна квадрату
тока. В справочных листках указывается максимальное значение постоянного тока через диод. Этот ток задает
максимальное значение отводимой от кристалла диода тепловой мощности.

Представленная формула описывает потери на кристалле диода при прямом смещении, то есть при протекании
прямого тока через диод. Потери при обратном смещении, то есть при реверсном токе обычно пренебрежимо малы,
однако в ряде случаев их необходимо учитывать (об этом ниже).

Режим импульсного тока

Импульсный ток через диод может в разы превышать максимальное значение для постоянного тока. В режиме
импульсных токов на первое место выходит максимальная энергия рассеивания кристалла диода, определяющая
предельные режимы импульсных нагрузок при которых еще не происходит термическое разрушение кристалла. В
справочных листках обычно приводят номограммы произведения длительности токового импульса на его
величину.

Динамические характеристики диода. Восстановление обратной проводимости. Барьерная емкость
диода

Быстродействие диода, то есть свойство быстро восстанавливать обратную проводимость, является важной
характеристикой для диодов, работающих в условиях быстрой смены полярностей напряжения прикладываемого к
диоду – в высокочастотных выпрямителях, схемах бустрепного питания, детекторных схемах и ряде других.

На рисунке VD.9 представлен один из типовых фрагментов электрических схем с диодами и полупроводниковыми
ключами. Эта схема описывает жесткий режим восстановления обратной проводимости диода. На примере этой схемы
поясним процесс восстановленияобратной проводимости диода [EE33D — Power Electronic Circuits ссылка], [2 Reasons Why
Soft-Recovery Trr is Important in High Voltage Diodes ссылка],
[Understanding Diode Reverse Recovery and its Effect on Switching Losses. Peter Haaf, Jon Harper. Fairchild
Power Seminar 2007]. Временные диаграммы токов и напряжений, описывающих процессы в представленной схеме
представлены на рисунке VD.10.

Рисунок-схема

Рисунок VD.9. Электрическая схема включения диода для пояснения эффекта обратного восстановления

Рисунок-схема

Рисунок VD.10. Временные диаграммы напряжений и токов схемы поясняющие процесс восстановления обратной
проводимости диода

Для упрощенного понимания процессов выключения диода примем индуктивность L в схеме достаточно большой, чтобы
она фактически играла роль источника тока. В начальный момент времени полупроводниковый ключ закрыт, и ток
индуктивности полностью замыкается через диод. После подачи управляющего импульса на затвор транзистора и
превышения им некоторого порогового напряжения происходит постепенный рост тока через ключ ISW,
начиная с момента времени tswitch. При этом ток, протекающий через диод IDпостепенно
уменьшается, поскольку ток индуктивности начинает частично «сливаться» через открывающийся ключ. В некоторый
момент времени (начало интервала tA) когда ток индуктивности полностью замкнется через ключ
(IL = ISW) ток через диод изменит свое направление. В первой половине импульса
реверсного тока (период tA) происходит разряд емкости p-n перехода при этом напряжение на диоде
некоторое время остается положительным а обратный ток достигает максимума. Далее обратный ток через диод
начинает снижаться (период tB), а обратное напряжение возрастает до напряжения источника
VDC.

Практически важной характеристикой является форма кривой обратного тока в момент восстановления обратной
проводимости (рисунок VD.10). По кривой определяется время восстановления и «мягкость восстановления».
Кривая реверсного тока имеет два характерных периода:

— период tA – время от начала импульса реверсного тока (пересечение током нулевой линии) до
максимального значения обратного тока IRRM . Соответствует разряду зарядов накопленных в так
называемой обеднённой области p-n перехода.

— период tB – время между моментом соответствующим максимуму обратного тока IRRM и
моментом когда ток уменьшится на 25% от максимального достигнутого значения.

Время восстановления обратной проводимости (reverse recovery
time) tRR определяется по осциллограмме обратного тока (рисунок VD.10) как время между
пересечением тока нулевой отметки (начало реверсного тока) и моментом когда величина реверсного тока спадает
на 25% от своего максимально достигнутого значения. Время восстановления – интуитивно понятный параметр,
характеризующий время, за которое диод восстанавливает свои непроводящие свойства. Время восстановления
обратной проводимости tRR равно сумме времен периодов tA и tB:

Формула

Максимальное значение реверсного тока IR связано с длительностью периода tA и скоростью
спада тока:

Формула

Критерий «мягкости восстановления» (softness factor) SF –
критерий определяющий скорость обрыва обратного тока. Если обрыв тока происходит слишком резко, то это может
стать причиной нежелательных перенапряжений обусловленных паразитными индуктивностями контуров. Иногда этот
эффект используют в генераторах импульсов на основе специализированных SOS-диодов. В качестве критерия
«мягкости» использую так называемы «фактор мягкости» SF определяемый как отношение длительностей периодов
tB к tA :

Формула

Для обычных диодов tA много больше tB , для импульсных «мягких» диодов наоборот
tBмного больше tA. «Фактор мягкости» SF можно определить из datasheet диодов исходя из
представленных временных осциллограмм восстановления обратной проводимости. Обычно для импульсных силовых
диодов класса «ultrafast» характерное значение SF равно 1, для обычных диодов величина SF может составлять
0,2-0,6.

Заряд обратного восстановления (Reverse Recovery Charge)
QRR – это реверсный заряд, который должен пройти через переход диода для перевода его из
состояния проводимости в закрытое состояние. Заряд обратного восстановления является базовым параметром
диода, определяющим его динамические характеристики. Исходя из формы импульса реверсного тока этот заряд
равен:

Формула

Откуда максимальный ток определяется из соотношения:

Формула

Приравнивая выражения для IR получаем:

Формула

Преобразуя это выражение получаем:

Формула

Учитывая, что tA и tB связаны через «фактор мягкости» SF:

Формула

Получаем:

Формула

Откуда выразим tA:

Формула

Тогда:

Формула

Откуда получаем практически важные соотношения:

— для расчета времени восстановления обратной проводимости tRR :

Формула

— и для расчета максимальной величины обратного тока IRRM :

Формула

Используя представленные выражения, рассчитываются динамические характеристики диода.

Барьерная емкость диодасобственное
значение емкости p-n перехода находящегося в обратном смещении (закрытом состоянии). В дополнение к выше
описанному инерционному процессу «переключения» диода в непроводящее состояние диод, когда к нему приложено
обратное напряжение он (диод) обладает собственным значением барьерной емкости, которая зависит от
напряжения, что важно также учитывать при расчете динамических режимов. Емкость пропорциональна площади p-n
перехода, на практике это означает, что более мощные диоды с большим номинальным током будут иметь и большее
значение емкости. Реально величина емкости не является постоянной и существенно зависит от приложенного
напряжения.

Расчет тепловых потерь в диоде на переключение

В момент восстановления проводимости к диоду приложено обратное напряжение и через него протекает некоторый
импульс тока длительностью trev. Таким образом, в кристалле диода выделяется некоторая энергия:

Формула

Общая выделяемая тепловая мощность пропорциональна частоте импульсов f.

Формула

Основное выделение энергии происходит в периода tB когда напряжение на диоде имеет величину
существенно большую по сравнению с прямым падением напряжения (как в период tA). Полагая линейную
форму спада тока и роста обратного напряжения получим:

Выражение для напряжения на диоде будет иметь вид:

Формула

Выражение для тока через диод будет иметь вид:

Формула

Выражение для выделяющейся мощности на диоде будет иметь вид:

Формула

Перемножая VVD(t) и IVD(t), получаем:

Формула

Упрощая которое получаем выражение для мощности динамических потерь
PVD_trans«на переключение»:

Формула

где:

VDC – обратное напряжение, (напряжения источника питания);

f — рабочая частота;

IRRM — максимальная величина обратного тока, вычисляемая по формуле:

Формула

здесь: QRR заряд обратного восстановления (Reverse Recovery Charge) – представлен в datasheet-ах,
скорость спада тока di/dt определяется характеристиками схемы, а «фактор мягкости» SF можно определить из
datasheet диодов исходя из представленных временных осциллограмм восстановления обратной проводимости.
Обычно для импульсных диодов характерное значение SF равно 1.

tB — время между моментом соответствующим максимуму обратного тока IRRM и моментом
когда ток уменьшится на 25% от максимального достигнутого значения. Учитывая связь tA и
tB через «фактор мягкости» SF получаем:

Формула

Формула

Отсюда tB может быть вычислено по соотношению:

Формула

Учитывая, что в большинстве случаев SF≈1, то в первом приближении tB может быть определено как:

Формула

Объединим в итоговое выражение для мощности динамических потерь диода
PVD_trans «на переключение»:

Формула

Упростим данное соотношение:

Формула

Результирующее выражение для мощности динамических потерь PVD_trans «на
переключение» имеет вид:

Формула

где:

QRR — заряд обратного восстановления;

VDC – обратное напряжение, (напряжения источника питания);

f — рабочая частота;

SF — «фактор мягкости» диода (в первом приближении может быть принят равным 1).

В ряде случаев в datasheet не приводится значение заряда обратного восстановления QRR, а
приводятся:

— зависимости тока восстановления обратной проводимости от IRRM от скорости спада тока di/dt;

— зависимости времени восстановления обратной проводимости tRR от скорости спада тока di/dt.

В этом случае мощности динамических потерь PVD_trans вычисляется по
соотношению:

Формула

где:

VDC – обратное напряжение, (напряжения источника питания);

IRRM(di/dt) — ток восстановления обратной проводимости от IRRM при заданной скорости
спада тока di/dt;

tRR(di/dt) — зависимости времени восстановления обратной проводимости tRR при заданной
скорости спада тока di/dt.

SF — SF — «фактор мягкости» диода (в первом приближении может быть принят равным 1);

f — рабочая частота.

Обратная ветвь ВАХ – напряжение пробоя, обратный ток

По мере увеличения прикладываемого к диоду обратного напряжения монотонно возрастает и обратный ток. При этом
для каждого диода существует обратное напряжение, при достижении которого резко возрастает обратный ток и
напряжение на диоде быстро падает. При этом пороговом напряжении происходит пробой диода – в большинстве
случаем необратимое изменение внутренней структуры диода, сопровождаемое нарушением целостности p-n
перехода. Следствием пробоя является выход диода из строя. Исключением являются лавинные диоды, пробой
которых носит обратимый характер.

Обратный ток возрастает с увеличением температуры, также с увеличением температуры снижается напряжение
пробоя.

Для кремниевых диодов, эксплуатируемых при нормальной температуре тепловой мощностью, выделяемой при
приложенном обратном напряжении можно пренебречь. Однако при более жестком температурном режиме и больших
значениях обратного напряжения эта мощность может иметь значительную величину, сопоставимую с мощностью
потерь в проводящем состоянии.

Для диодов Шоттки обратный ток существенно больше, чем для кремниевых диодов и его необходимо учитывать в
расчетах в любом случае.

Мощность, рассеиваемая на диоде при обратном смещении равна произведению напряжения приложенного к диоду
VVD_rev и протекающего под действием этого напряжения обратного тока через
него IVD_rev:

Формула

Пример:

— для диода MUR1100E при температуре 100 °С обратный ток составляет величину порядка 600 мкА, если к диоду
приложено обратное напряжение 800 В то выделяющаяся тепловая мощность равна 0,48 Вт!

— для диода серии US1 максимальный обратный ток составляет 150 мкА (при температуре 100 °С) и при обратном
напряжении 1000 В выделяющаяся тепловая мощность составляет 0,15 Вт.

Важно то, что здесь работает принцип положительной обратной связи: с ростом температуры выделяемая мощность
увеличивается, что в свою очередь приводит к росту температуры.

Итак, тепловой режим диода работающего в условиях тока переменной полярности складывается из мощности,
выделяемой при прохождении прямого тока, мощности выделяемой в диоде при смене направления тока и мощности
выделяемой при обратном смещении:

Формула

где:

PVD_total – общая мощность, рассеиваемая на диоде;

PVD_stat+ – мощность, выделяемая при прохождении прямого тока;

PVD_stat- – мощность, выделяемая при прохождении обратного тока;

PVD_trans – мощность, выделяющаяся на диоде в результате переходных
процессов.

Последовательное и параллельное включение диодов

s

Последовательное включение

Последовательное включение диодов используют для увеличения максимального обратного напряжения VR
(рисунок VD.11). При этом необходимо помнить, что увеличивается прямое падение напряжения на диодной сборке.

Рисунок-схема

Рисунок VD.11 — Последовательное включение диодов для увеличения максимального обратного напряжения

При приложении обратного напряжения к сборке падения напряжения на диодах распределяются в соответчики с
обратной ВАХ каждого из диодов. Из за разброса ВАХ может возникнуть ситуация в которой к некоторым диодам
сборки будет приложено напряжение превышающее максимальное и возникнет пробой одного диода сборки. После
этого общее приложенное напряжение перераспределится между оставшимися диодами и при этом напряжение на
каждом из них возрастет. Это с высокой долей вероятности может привести к постепенному выгоранию всех диодов
сборки. Для повышения надежности применяют выравнивающие резисторы, сопротивление которых выбирается таким
образом, чтобы ток через резистор был в 2-5 раз больше максимального тока утечки диода:

Формула

где:

VR – максимальная величина прикладываемого к диоду постоянного напряжения.

IRM – максимальный обратный ток через диод. В расчетах необходимо учитывать ток при температуре
соответствующей рабочей температуре эксплуатации.

Рисунок-схема

Рисунок VD.12 — Последовательное включение диодов с резисторами, выравнивающими падение обратного
напряжения
на диодах

Параллельное включение

Параллельное включение диодов можно использовать для диодов с положительным (например на основе карбида
кремния SiC) или небольшим отрицательным температурным коэффициентом более 2 мВ/К, но при условии их
термического соединения (размещение на одном радиаторе). Это необходимо для того чтобы токи, протекающие
через диоды выравнивались. На практике при параллельном соединении двух кремниевых диодов или диодов Шоттки
максимальные рабочий ток не удваивается, а увеличивается на 50-70 %. Это обусловлено разницей хода ВАХ
диодов, так что один диод будет нагружен по максимуму, а второй будет ему «помогать». Физика этого эффекта
объясняется наличием положительной обратной связи: если через какой-либо из диодов протекает несколько
больший, чем через другой, то он нагревается больше. При нагреве кремниевых диодов ВАХ изменяется таким
образом, что при постоянном приложенном напряжении ток возрастает. Это приводит еще большему увеличению доли
общего тока через этот диод. Уменьшить эту положительную обратную связь можно путем организации термической
связи между диодами, то есть разместить их на одном радиаторе охлаждения. В этом случае «лидирующий» по току
диод будет подогревать «отстающий» и увеличивать долю тока через него. В целом на практике целесообразно
параллельно соединять лишь диоды, расположенные на одном кристалле в одном корпусе.

Рисунок-схема

Рисунок VD.13 — Параллельное включение диодов для увеличения максимального рабочего тока

Некоторые популярные диоды

1N4148

1N4007

HER108

US1M

1N5819

Понравилась статья? Поделить с друзьями:
  • Как составить название фирмы на прибыль
  • Как найти площадь зонта огэ
  • Как исправить режим сна у ребенка 2 года
  • Надоела мужчине как исправить
  • Как найди лишние файлы