Как найти падение напряжения на источнике тока

Электродвижущая
сила источника тока (сокращенно, ЭДС)
измеряется работой, совершаемой
сторонними силами при перемещении
единичного положения заряда внутри
источника тока, и выражается в вольтах
и обозначается символом E
:

E

(1.1)

Для данного
источника тока значение ЭДС
величина
постоянная
,
не зависящая от сопротивления цепи, в
которую данный источник включается.

Для поддержания
постоянного тока в электрической цепи
необходимо, чтобы разность потенциалов
(напряжение) на ее концах была неизменной.
Для этого используют источник электрической
энергии. Разность потенциалов на ее
полюсах образуется вследствие разделения
зарядов на положительные и отрицательные
сторонними силами (не электрического
происхождения). Когда цепь замыкается,
разделенные в источнике тока заряды
образуют электрическое поле, которое
перемещает заряды во внешней цепи
(внутри источника заряды движутся
навстречу полю под действием сторонних
сил).

Таким образом,
энергия,
запасенная в источнике тока, расходуется
на работу по перемещению заряда во
внешней цепи с сопротивлением
R
и во внутренней цепи с сопротивлением
r
(закон Ома
для полной цепи):

E

(1.2)

или

E

(1.3)

тогда


E

(1.4)

где

E
– ЭДС
данного источника, В;

Uвнеш
= I·R
– падение напряжения во внешней
цепи, В;

Uвнутр
= I·r
– падение напряжения во внешней
цепи, В;

R
– сопротивление внешней цепи, Ом;

r
– сопротивление внутренней цепи
(внутри источника энергии), Ом;

Тогда сопротивление
внутренней цепи:

(1.5)

или с учетом (1.4):

E

(1.6)

Внутреннее
сопротивление цепи r
данного источника (как и ЭДС), можно
считать величиной постоянной. Чем меньше
r,
т.е. чем меньше Uвнутр,
тем эффективнее работает источник
электрической энергии. Чем больше
внешнее сопротивление R,
тем меньше сила тока в цепи. (Падение
напряжения во внешней цепи равно ЭДС
в предельном случае, если внутреннее
сопротивление r
= 0)

2 Оборудование

2.1 Источник
электрической энергии (выпрямитель
селеновый ВС-1)

2.2 Амперметр

2.3 Вольтметр

2.4 Реостат

2.5 Ключ

2.6 Соединительные
провода.

3 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Общие положения

В данной работе
определяют следующие величины:

Определяются
экспериментально (с помощью приборов):

  1. ЭДС
    — измеряется вольтметром — при
    разомкнутой цепи
    .

  2. Uвнеш
    – падение напряжения во внешней цепи
    (напряжение на зажимах источника)
    измеряется тем же вольтметром — при
    замкнутой цепи
    .

  3. I
    – сила тока, измеряется амперметром

Рассчитываются по формулам:

  1. Uвнутр
    — падение напряжения во внутренней
    цепи (внутри источника) вычисляется
    из закона Ома (1.4):

E

  1. r
    – внутреннее сопротивление источника
    тока, рассчитывается по формуле (1.5)
    или (1.6):

E

(1.6)

Внимание! Амперметр
рассчитан на измерения токов, не
превышающих 3 ампера. Поэтому категорически
запрещено устанавливать значения тока
превышающие
3
А! Это приводит к порче прибора.

Нарушение техники
безопасности при выполнении лабораторной
работы не допустимо!

Выполнение экспериментальной части:

1 Собрать электрическую схему (рисунок
1) / Начертить в своем отчете о лабораторной
работе/.


V

K

E



A

R

Рисунок
1 – Схема опыта по определению ЭДС и
внутреннего сопротивления источника
тока электрической энергии

/Ф.И.О. студента,
группа/

Таблица
3.1 — Экспериментальная часть

№ опыта

Экспериментальные
значения

Расчетные
значения

ЭДС

Напряжение

на
внешней части цепи

Сила
тока в цепи

Внутреннее
сопротивление

Напряжение

на
внутренней части цепи

Относительная
погрешность

Абсолютная
погрешность

Показания
вольтметра при разомкнутой цепи

Показания
вольтметра при замкнутой цепи

Показания
амперметра

E

Uвнеш

I

r

Uвнутр

δ

Δr

В

В

А

Ом

В

%

Ом

1

2

3

4

5

6

7

8

1

2

3

Среднее
значение

——

——

——

——

Цена
деления: амперметра ΔI
= ….. A

вольтметра
ΔU
= ….. B

3.2 Получить
разрешение преподавателя на продолжение
работы!

Определите цену
деления амперметра и вольтметра и
запишите эти значения в
таблицу 3.1

3.3 Опыт № 1

3.4 Проверьте, что
ключ разомкнут!

Включить источник
электрической энергии.

3.5 замкнуть ключ

Убедиться, что
при замыкании ключа показания
вольтметра уменьшаются по сравнению
с разомкнутым состоянием. Почему?

Ответ:

  • при
    разомкнутой
    внешней цепи вольтметр показывает
    значение ЭДС;

  • при
    замкнутой
    внешней цепи вольтметр показывает
    падение
    напряжения во внешней цепи
    Uвнеш
    – и это значение меньше, чем ЭДС
    потому, что часть напряжения
    расходуется внутри источника – на
    внутреннее сопротивление (это
    нежелательные потери, чем выше класс
    источника электрической энергии,
    тем меньше эти потери):

E

  • Измерить
    ЭДС
    E
    — вольтметром, при
    разомкнутой цепи
    .

3.6 Плавно передвигая
движок реостата R,
установить первое значение тока (по
амперметру) в пределах : I1
~ 1,5÷ 1,8 А.

Измерить следующие
величины:

  • силу
    тока
    I
    — амперметром;

  • падение
    напряжения во внешней цепи
    Uвнеш
    — вольтметром, при
    замкнутой цепи;

Результаты
измерений занести в таблицу 3.1.

Опыт № 2

  • Измерить
    ЭДС источника
    E
    — вольтметром, при
    разомкнутой цепи
    .

  • Убедитесь,
    что ЭДС источника
    E
    осталась прежней (в пределах
    экспериментальной погрешности)

Плавно передвигая
движок реостата R,
установить второе значение тока (по
амперметру) в пределах : I2
~ 2,0÷
2,5 А.

При передвижении
движка реостата — изменяется
сопротивление внешней цепи
R.

Измерить следующие
величины:

  • силу
    тока
    I
    — амперметром;

  • падение
    напряжения во внешней цепи
    Uвнеш
    — вольтметром, при
    замкнутой цепи;

Результаты
измерений занести в таблицу 3.1.

Опыт № 3

  • Измерить
    ЭДС источника
    E
    — вольтметром, при
    разомкнутой цепи
    .

  • Убедитесь,
    что ЭДС источника
    E
    осталась прежней (в пределах
    экспериментальной погрешности)

Плавно передвигая
движок реостата R,
установить второе значение тока (по
амперметру) в пределах : I3
~ 2,5÷
2,9 А.

При передвижении
движка реостата — изменяется
сопротивление цепи
R.

Измерить следующие
величины:

  • силу
    тока
    I
    — амперметром;

  • падение
    напряжения во внешней цепи
    Uвнеш
    — вольтметром, при
    замкнутой цепи;

Результаты
измерений занести в таблицу 3.1.

Напоминание!
Амперметр рассчитан на измерения
токов, не превышающих 3 ампера. Поэтому
категорически запрещено устанавливать
значения тока превышающие
3
А! Это приводит к порче прибора.

3.7 Повторить опыт
3 раза, устанавливая значения тока

в пределах от
2,5 до 3 А.

A simple electrical circuit contains a source of voltage (a power supply, such as a battery, generator or the utility wires coming into your building), a wire to carry current in the form of electrons, and a source of electrical resistance. In reality, such circuits are rarely simple and include a number of branching and re-joining points.

  • Voltage (V) is measured in volts (the symbol is also V); current (I) is measured in amperes or «amps» (A); and resistance (R) is measured in ohms (Ω).

Along the branches, and sometimes along the main trunk of the circuit, items such as household appliances (lamps, refrigerators, television sets) are placed, each drawing current to keep itself going. But what exactly happens to the voltage and current within a given electrical circuit set-up from a physics standpoint when each resistor is encountered and the voltage «drops»?

Electrical Circuit Basics

Ohm’s law states that current flow is voltage divided by resistance. This can apply to a circuit as a whole, an isolated set of branches or to a single resistor, as you’ll see. The most common form of this law is written:

V = IR

Circuits can be arranged in two basic ways.

Series circuit: Here, current flows entirely along one path, through a single wire. Whatever resistances current encounters along the way simply add up to give the total resistance of the circuit as a whole:

RS = R1 + R2 + … + RN (series circuit)

Parallel circuit: In this case, a primary wire branches (shown as right angles) into two or more other wires, each with its own resistor. In this case, the total resistance is given by:

1/RP = 1/R1 + 1/R2 + … + 1/RN (parallel circuit)

If you explore this equation, you find that by adding the resistances of the same magnitude, you decrease the resistance of the circuit as a whole. (Picking 1 ohm, or 1 Ω, makes the math easier.) By Ohm’s law, this actually increases the current!

If this seems counterintuitive, imagine the flow of cars on a busy highway served by a single tollbooth that backs up traffic for a mile, and then imagine the same scenario with four more tollbooths identical to the first. This will plainly increase the flow of cars despite technically adding resistance.

Voltage Drop: Series Circuit

If you want to find voltage drops across individual resistors in a series, you proceed as follows:

  1. Calculate the total resistance by adding the individual R values.
  2. Calculate the current in the circuit, which is the same across each resistor since there is only one wire in the circuit.
  3. Calculate the voltage drop across each resistor using Ohm’s law.

Example: A 24-V power source and three resistors are connected in series with R1= 4 Ω, R2= 2 Ω and R3 = 6 Ω. What is the voltage drop across each resistor?

First, calculate total resistance: 4 + 2 + 6 = 12 Ω

Next, calculate the current: 24 V/12 Ω = 2 A

Now, use the current to calculate the voltage drop across each resistor. Using V = IR for each, the values of R1, R2 and R3 are 8 V, 4 V and 12 V.

Voltage Drop: Parallel Circuit

Example: A 24-V power source and three resistors are connected in parallel with R1= 4 Ω, R2= 2 Ω and R3 = 6 Ω, as before. What is the voltage drop across each resistor?

In this case, the story is simpler: Regardless of the resistance value, the voltage drop across each resistor is the same, making the current the variable that differs across resistors in this case. This means that the voltage drop across each is just the total voltage of the circuit divided by the number of resistors in the circuit, or 24 V/3 = 8 V.

Resistor Voltage Drop Calculator

See the Resources for an example of an instance in which you can use an automatic tool to calculate the voltage drop in a kind of circuit arrangement called a voltage divider.

В этой статье объясняется, что такое падение напряжения и как рассчитать падение напряжения в последовательной цепи. Когда напряжение встречается с резистивным элементом в цепи, значение уменьшается или «падает».

В последовательной цепи имеется несколько сопротивлений или импедансов. Каждый раз, когда через них проходит ток, напряжение падает. Итак, нам нужно знать значение конкретного сопротивления и ток, проходящий через него, чтобы вычислить падение напряжения на нем. Падение напряжения — это ток, умноженный на сопротивление.

Что такое падение напряжения?

Допустим, мы соединяем батарею с резистором через провод. Электроны имеют тенденцию течь от отрицательной стороны батареи к положительной. Это похоже на электрический заряд, идущий от положительной клеммы к отрицательной. 

Когда одна единица заряда встречает резистор, она на время останавливается. Когда он проходит мимо резистора, появляется другая единица заряда и останавливается. В любой момент количество заряда на конце резистора меньше заряда в начале резистора. Это явление создает «падение потенциала или напряжения».

Подробнее… ..Постоянно ли напряжение в серии: полная информация и ответы на часто задаваемые вопросы

Как рассчитать полное падение напряжения в последовательной цепи?

Общее падение напряжения в последовательной цепи — это сложение всех отдельных падений напряжения, вызванных параметрами импеданса. Кроме того, сумма равна общему напряжению, подаваемому в цепь, или напряжению до любого «падения».

Разберем явления с помощью схемы. В схеме ниже два резистора R1 100 Ом и R2 200 Ом, подключенный к источнику питания V 30 вольт. Ток i = В/(R1 + R2) = 30/(100+200) = 0.1 А. Следовательно, падение напряжения на резисторе R1 = икс р1 = 0.1 x 100 = 10 В и через R2 = икс р2 = 0.1 х 200 = 20 В. 

Как рассчитать падение напряжения в последовательной цепи - пример

Как рассчитать падение напряжения в последовательной цепи переменного тока?

переменного тока или переменный ток цепи – это электрические цепи с переменным напряжением питания. AC последовательная схема состоит из любой комбинации резистора, катушки индуктивности и конденсатора, соединенных последовательно.

Как и в случае с постоянным током, мы можем вычислить чистый импеданс последовательной цепи переменного тока, сложив их. Аналогичным образом можно найти и падения напряжения. Падение напряжения на любом элементе в последовательной цепи переменного тока равно V = iZ, где Z — полное сопротивление цепи, а i — полный ток, протекающий через нее.

Файл: AC Source-RC.svg

«Файл: AC Source-RC.svg» by Pierre5018 под лицензией CC BY-SA 4.0

Подробнее… ..Как рассчитать напряжение в последовательной цепи: подробные факты

Падение напряжения в последовательной цепи RLC:

Цепь RLC является частным случаем цепей переменного тока. Цепь RLC состоит из резисторов, конденсаторов и катушек индуктивности, соединенных последовательно. Давайте поймем падение напряжения в последовательной цепи RLC на примере.

Схема состоит из трех компонентов, показанных ниже: резистора R Ом, индуктивности L Генри и конденсатора C Фарад. Ранее мы знали, что падение напряжения на любом из них = импеданс × ток. Так,

Падение напряжения на резисторе = iR, катушка индуктивности = iXL и конденсатор = iXC, где XL = 2πfL и XC = 1/2πfC

Как рассчитать падение напряжения в последовательной цепи — численные примеры

Q1. Три резистора подключены последовательно со значениями R1= 4 Ом, R2= 5 Ом, а R3 = 6 Ом. Схема подключена к источнику питания 15 В. Узнайте падение напряжения на резисторах.

Для расчета капель потенциала на R1, R2и R3, нам сначала нужно получить ток в цепи. Мы знаем, ток = чистое напряжение/эквивалентное сопротивление

Эквивалентное сопротивление Req = R1 + R2 + R3 = 4 + 5 + 6 = 15 Ом

Следовательно, общий ток = 15 В / 15 Ом = 1 А.

Теперь мы можем использовать закон Ома (V = IR) для каждого резистора и найти падение напряжения на них.

Итак, V1 = я х р1 = 1 х 4 = 4 В

V2 = я х р2 = 1 х 5 = 5 В

V3 = я х р3 = 1 х 6 = 6 В

Q2. Для приведенной ниже схемы падение напряжения на резисторе 6 Ом составляет 12 В. Определите другие падения напряжения и вычислите общее падение напряжения или напряжение питания.

Мы знаем, что падение напряжения на любом резисторе в последовательная цепь = сопротивление × общий ток

Если в цепи протекает ток i, падение напряжения на резисторе 6 Ом составляет 6i.

6i = 12 или i = 2 ампер

Следовательно, падение напряжения на резисторе 2 Ом = 2 x 2 = 4 В.

Падение напряжения на резисторе 4 Ом = 2 x 4 = 8 В

Итак, сеть падение напряжения или напряжение питания = (12 + 4 + 8) = 24 В

Q3. На изображении ниже изображена последовательная цепь RLC со следующими компонентами: Источник переменного тока 120 В, 50 Гц, Резистор на 100 Ом, Конденсатор 20 мкФ, Индуктор 420 мГн. Рассчитайте падение напряжения на всех трех импедансах.

Раньше мы умели рассчитать падение напряжения для последовательной цепи RLC. Ток, умноженный на импеданс ( R или XL или XC) дает нам падение напряжения. Давайте узнаем XL и ХC первый.

XL= 2πfL (f — частота сети переменного тока)

Итак, ХL = 2 x π x 50 x 420 x 10^{-3} = 131.95 Ом

XC = 1/2 x π x 50 x 20 x 10^{-6} }= 159.15 Ом

Следовательно, полное сопротивление,

Теперь для цепей переменного тока существует объект, называемый фазовым углом. Он дает меру угла, на который ток отстает или опережает напряжение. Фазовый угол φ = arctan (XC — ИКСL/Р)

φ = арктангенс (27.2/100) = 15.22°

Итак, текущий

Следовательно,

Здесь ток опережает напряжение как XC > XL.

Подробнее….Что такое напряжение в последовательной цепи: подробные факты

Если закон Ома для участка цепи знают почти все, то  закон Ома для полной цепи вызывает затруднения у школьников и студентов. Оказывается, все до боли просто!

Идеальный источник ЭДС

Имеем источник ЭДС

источник ЭДС

Давайте вспомним, что такое ЭДС. ЭДС — это что-то такое, что создает электрический ток. Если к такому источнику напряжения подцепить любую нагрузку (хоть миллиард галогенных ламп, включенных параллельно), то он все равно будет выдавать такое же напряжение, какое-бы он выдавал, если бы мы вообще не цепляли никакую нагрузку.

идеальный источник ЭДС

Или проще:

Закон Ома для полной цепи

Короче говоря, какая бы сила тока не проходила через цепь резистора, напряжение на концах источника ЭДС будет всегда одно и тоже. Такой источник ЭДС называют идеальным источником ЭДС.

Но как вы знаете, в нашем мире нет ничего идеального. То есть если бы в нашем аккумуляторе был идеальный источник ЭДС, тогда бы напряжение на клеммах аккумулятора никогда бы не проседало. Но оно проседает и тем больше, чем больше силы тока потребляет нагрузка. Что-то здесь не так. Но почему так происходит?

Внутреннее сопротивление источника ЭДС

Дело все в том, что в аккумуляторе «спрятано» сопротивление, которое условно говоря, цепляется последовательно с источником ЭДС аккумулятора. Называется оно внутренним сопротивлением или выходным сопротивлением. Обозначается маленькой буковкой «r «.

Выглядит все это в аккумуляторе примерно вот так:

закон Ома для полной цепи

Цепляем лампочку

замкнутная цепь закон Ома для полной цепи

Итак, что у нас получается в чистом виде?

Закон Ома для полной цепи

Лампочка — это нагрузка, которая обладает сопротивлением. Значит, еще больше упрощаем схему и получаем:

Закон Ома для полной цепи

Имеем идеальный источник ЭДС, внутреннее сопротивление r и сопротивление нагрузки R. Вспоминаем статью  делитель напряжения. Там говорится, что напряжение источника ЭДС равняется сумме падений напряжения на каждом сопротивлении.

падение напряжения закон Ома для полной цепи

На резисторе R падает напряжение UR , а на внутреннем резисторе r падает напряжение Ur .

Теперь вспоминаем статью делитель тока. Сила тока, протекающая  через последовательно соединенные сопротивления везде одинакова.

Вспоминаем алгебру за 5-ый класс и записываем все то, о чем мы с вами сейчас говорили. Из закона Ома для участка цепи получаем, что

Закон Ома для полной цепи

Далее

Закон Ома для полной цепи

Закон Ома для полной цепи

формула закон Ома для полной цепи

Закон Ома для полной цепи

Итак, последнее выражение носит название «закон Ома для полной цепи»

закон Ома для полной цепи формула

где

Е — ЭДС источника питания, В

R — сопротивление всех внешних элементов в цепи, Ом

I — сила ток в цепи, А

r — внутреннее сопротивление источника питания, Ом

Просадка напряжения

Итак, знакомьтесь, автомобильный аккумулятор!

автомобильный аккумулятор

Для дальнейшего его использования, припаяем к нему два провода: красный на плюс, черный на минус

Закон Ома для полной цепи

Наш подопечный готов к бою.

Теперь берем автомобильную лампочку-галогенку и тоже припаяем к ней два проводка с крокодилами. Я припаялся к клеммам на «ближний» свет.

галогенная лампочка

Первым делом давайте замеряем напряжение на клеммах аккумулятора

Закон Ома для полной цепи

12,09 вольт. Вполне нормально, так как наш аккумулятор выдает именно 12 вольт. Забегу чуток вперед и скажу, что сейчас мы замерили именно ЭДС.

Подключаем  галогенную лампу к аккумулятору и снова замеряем напряжение:

закон Ома для полной цепи на практике

Видели да? Напряжение на клеммах аккумулятора просело до 11,79 Вольт!

А давайте замеряем, сколько потребляет тока наша лампа в Амперах. Для этого составляем вот такую схемку:

схема закон Ома для полной цепи

Желтый мультиметр у нас будет замерять напряжение, а красный мультиметр — силу тока. Как замерять с помощью мультиметра силу тока и напряжение, можно прочитать в этой статье.

[quads id=1]

Смотрим на показания приборов:

закон Ома для полной цепи

Как мы видим, наша лампа потребляет 4,35 Ампер. Напряжение просело до 11,79 Вольт.

Давайте вместо галогенной лампы поставим простую лампочку накаливания на 12 Вольт от мотоцикла

Закон Ома для полной цепи

Смотрим показания:

Закон Ома для полной цепи

Лампочка потребляет силу тока в 0,69 Ампер. Напряжение просело до 12 Вольт ровно.

Какие выводы можно сделать? Чем больше нагрузка потребляет силу тока, тем больше просаживается напряжение на аккумуляторе.

Как найти внутреннее сопротивление источника ЭДС

Давайте снова вернемся к этой фотографии

ЭДС аккумулятора закон Ома для полной цепи

Так как у нас в этом случае цепь разомкнута (нет внешней нагрузки), следовательно сила тока в цепи I равняется нулю. Значит, и падение напряжение на внутреннем резисторе Ur тоже будет равняться нулю. В итоге, у нас остается только источник ЭДС, у которого мы и замеряем напряжение. В нашем случае ЭДС=12,09 Вольт.

Как только мы подсоединили нагрузку, то у нас сразу же упало напряжение на внутреннем сопротивлении и на нагрузке, в данном случае на лампочке:

закон Ома для полной цепи

Сейчас на нагрузке (на галогенке) у нас упало напряжение UR=11,79 Вольт, следовательно, на внутреннем сопротивлении падение напряжения составило Ur=E-UR=12,09-11,79=0,3 Вольта. Сила тока в цепи равняется I=4,35 Ампер. Как я уже сказал, ЭДС у нас равняется E=12,09 Вольт. Следовательно, из закона Ома для полной цепи высчитываем, чему у нас будет равняться внутреннее сопротивление r

как найти внутреннее сопротивление

Закон Ома для полной цепи

Вывод

Внутреннее сопротивление бывает не только у различных химических источников напряжения. Внутренним сопротивлением также обладают и различные измерительные приборы. Это в основном вольтметры и осциллографы.

Дело все в том, что если подключить нагрузку R, сопротивление у которой будет меньше или даже равно r, то у нас очень сильно просядет напряжение. Это можно увидеть, если замкнуть клеммы аккумулятора толстым медным проводом и замерять в это время напряжение на клеммах. Но я не рекомендую этого делать ни в коем случае! Поэтому, чем высокоомнее нагрузка (ну то есть чем выше сопротивление нагрузки R ), тем меньшее влияние оказывает эта нагрузка на источник электрической энергии.

Вольтметр и осциллограф при замере напряжения тоже чуть-чуть просаживают напряжение замеряемого источника напряжения, потому как являются нагрузкой с большим сопротивлением. Именно поэтому самый точный вольтметр и осциллограф имеют ну очень большое сопротивление между своими щупами.

Как рассчитать падение напряжения на резисторах?

На чтение 3 мин Просмотров 13к. Опубликовано 15.12.2020 Обновлено 16.12.2020

Простая электрическая цепь состоит из источника питания, проводников и сопротивлений. На практике же электроцепи редко бывают простыми и включают в себя несколько различных ответвлений и повторных соединений.

В больших масштабах в роли сопротивлений может выступать бытовая техника, осветительные приборы и другие потребители. Давайте разберемся, что происходит с током и напряжением на каждом таком потребителе или резисторе с точки зрения электротехники.

Содержание

  1. Основы электротехники
  2. Два типа схем в электротехнике
  3. Последовательная цепь
  4. Параллельная цепь
  5. Падение напряжения в последовательной цепи
  6. Падение напряжения в параллельной цепи

Основы электротехники

Закон Ома гласит, что напряжение равно силе тока умноженной на сопротивление. Это может относиться к цепи в целом, участку цепи или к конкретному резистору. Самая распространенная форма этого закона записывается:

U=IR

Два типа схем в электротехнике

Последовательная цепь

Здесь ток протекает по одному проводнику. Независимо от того, какие сопротивления встречаются на его пути, просто суммируйте их, чтобы получить общее сопротивление цепи в целом:

Rо = R1 + R2 + … + RN (последовательная цепь)

Как рассчитать падение напряжения на резисторах?

Последовательная цепь

Параллельная цепь

В этом случае проводник разветвляется на два или более других проводника, на каждом из которых имеется своё сопротивление. В этом случае полное сопротивление определяется как:

1/Rо = 1/R1 + 1/R2 + … + 1/R N (параллельная цепь)

Как рассчитать падение напряжения на резисторах?

Параллельная цепь

Если взглянуть на эту формулу, можно сделать вывод, что добавляя сопротивления одинаковой величины, вы уменьшаете сопротивление цепи в целом. Согласно закону Ома это фактически увеличивает ток!

Если это кажется нелогичным, представьте себе поток автомобилей, которые выезжают с парковки через один шлагбаум и тот же самый поток который выезжает со стоянки, которая имеет несколько выездов. Несколько выездов явно увеличит поток покидающих стоянку машин.

Падение напряжения в последовательной цепи

Если вы хотите найти падение напряжения на отдельных резисторах в цепи, выполните следующие действия:

  1. Рассчитайте общее сопротивление, сложив отдельные значения R.
  2. Рассчитайте ток в цепи, который одинаков для каждого резистора, поскольку в цепи только один проводник.
  3. Рассчитайте падение напряжения на каждом резисторе, используя закон Ома.

Пример: источник питания 24 В и три резистора подключены последовательно, где R1 = 4 Ом, R2 = 2 Ом и R3 = 6 Ом. Чему равно падение напряжения на каждом резисторе?

Как рассчитать падение напряжения на резисторах?

Схема для решения задачи на последовательно подключенное сопротивление
  • Сначала рассчитаем общее сопротивление: 4 + 2 + 6 = 12 Ом.
  • Далее рассчитываем ток: 24 В / 12 Ом = 2 А
  • Теперь используем ток, чтобы вычислить падение напряжения на каждом резисторе. Используя Закон Ома (U = IR) для каждого резистора, получим значения R1, R2 и R3 равными 8 В, 4 В и 12 В соответственно.

Падение напряжения в параллельной цепи

Пример: источник питания 24 В и три резистора подключены параллельно, где R1 = 4 Ом, R2 = 2 Ом и R3 = 6 Ом, как и в предыдущей схеме. Чему будет равно падение напряжения на каждом резисторе?

Как рассчитать падение напряжения на резисторах?

Схема для решения задачи на паралельно подключенное сопротивление

В этом случае все проще: независимо от значения сопротивления падение напряжения на каждом резисторе одинаково. Это означает, что падение напряжения на каждом из них — это просто общее напряжение цепи, деленное на количество резисторов в цепи, или 24 В / 3 = 8 В.

Применяя эти несложные правила вы сможете рассчитать падение напряжения даже в сложной цепи, достаточно лишь разделить её на простые участки.

Савельев Николай

Инженер по телевизионному оборудованию Электрика и электроника, это не только моё хобби, но и работа

Понравилась статья? Поделить с друзьями:
  • Как составить портфолио шаблоны
  • Как найти пункт приватность в вк
  • Видео как найти центр круга
  • Как найти телефон магазина пятерочка
  • Как найти рабочих на стройку в москве