Как найти падение потенциала формула

Любой заряженный проводник имеет определенный потенциал и во всех точках его поверхности этот по­тенциал одинаковый.

Если в проводнике существует ток, то потенциал в его разных точках не будет одинаковым — он уменьша­ется (падает) в направлении тока.

Если известна сила тока I в каком-либо проводнике и известно его сопротивление R, то по закону Ома для однородного участка цепи можно легко определить разность потен­циалов на его концах φ1φ2 = IR. Эту раз­ность потенциалов иногда называют паде­нием потенциала вдоль данного проводника. Поскольку сила тока во всем проводнике одинакова, то падение потенциала в разных частях цепи будет прямо пропорциональ­ным сопротивлению этих частей.

Рис. 5.1. Падение потенциала в провод­нике

Падение потенциала можно увидеть на опыте (рис. 5.1). Полюса электростатической машины соединяют проводником с очень большим сопротивлением, например чуть влажной нитью или деревянной линейкой, к которой прикреплены легкие и легко­подвижные полоски бумаги. Если один из полюсов машины, например отрицательно заряженный, соединить с землей, потенциал которой считаем равным нулю, то бумажки покажут возрастание потенциала от отрицательного полюса машины к поло­жительному, где потенциал окажется на­иболее высоким.

Потенциал земли считается равным нулю.

Если есть довольно чувствительный элект­рометр, то можно измерять потенциал в разных точках проводника относительно зем­ли (рис. 5.2). Падение потенциала в провод­нике аналогично падению давления жидкос­ти, которая движется в трубе (рис. 5.3). Здесь манометрические трубки показывают, как изменяется давление в жидкости, равно­мерно протекающей от входа в трубку A к ее выходу B.

На практике почти всегда в проводниках необходимо поддерживать ток на протяже­нии продолжительного времени, то есть на их концах разность потенциалов не должна уменьшаться. Материал с сайта http://worldofschool.ru

Рис. 5.2. Как изменяется потенциал в проводнике с током
Рис. 5.3. Изменение давления в жид­кости, равномерно протекающей в трубе

Устройства, в которых проис­ходит разделение заряженных частиц за счет сил неэлектростатического происхождения, называются источниками тока.

В гальвани­ческих элементах и аккумуляторах в элект­рическую энергию превращается энергия хи­мических взаимодействий, в термогенерато­рах — тепловая энергия и т. п.

В состав электрических цепей, в которых поддерживается ток и используются его свой­ства, входят источники тока, потребители (нагреватели, осветительные приборы, элект­родвигатели и т. п.), измерительные и регу­лировочные приборы, выключатели и про­чие элементы, соединенные проводниками.


На этой странице материал по темам:

  • Падения потенциал в физике

  • Падение потенциала формула

Voltage Drop is defined as the decrease in the electric potential along the path of current that is flowing in an electric circuit. Voltage drop can be assigned at each point in the electric circuit that is proportional to the electrical elevation. The amount of energy delivered per second to any component in the circuit is equal to the voltage drop from each point of the component’s terminal. It can be measured across the circuit using a voltmeter.

Formula of Voltage Drop

V = IR

where, 

V = voltage

I = current in amperes (A)

R = Resistance in ohms (Ω)

Potential Difference is defined as the difference between two points in an electric circuit. In other words, it is the arithmetical difference between a higher voltage and a lower voltage. It is the amount of work done in moving a unit charge from one point to another point. It can be measured across the circuit using a voltmeter. Potential Differences between two points in an electric circuit can be known with help of a cell or battery.

Formula of Potential Difference

V = W/Q 

Where, 

W = Work done in (Joules)

Q = Charge in (Coulombs)

1 Volt = 1 Joule/1 Coulomb.

One volt is the potential difference between two points in an electric circuit carrying current when 1 Joule of work is done to move a 1Coulomb of charge from one point to another point.                                              

voltage-drop-vs-PD

Difference between Voltage Drop and Potential Difference

 

Voltage Drop

Potential Difference

1. Voltage Drop is defined as the decrease in the electric potential along the path of current that is flowing in an electric circuit Potential Difference is defined as the difference between two points in an electric circuit. In other words, it is the arithmetical difference between a higher voltage and a lower voltage.
2. Formula: V = IR Formula: V = W/Q
3. It is the drop across a particular electrical circuit. It is the difference between two points in a circuit.
4. It occurs due to an impeding element like resistors, capacitors and inductors. It does not depend on resistors, capacitor or inductors
5. Voltage drop is the loss in the voltage due to impedance  Potential difference is the difference between voltage values at two different places.
6. Voltage drop occurs due to when there is a flow of electric current through the element. Potential difference occurs due to there is no flow of current in the circuit.
7. Voltage drop means the amount of voltage by which the voltage across load resistor is less than the source voltage. Potential difference means the difference in the amount of energy which carries the charge between two points of a circuit.

Sample Questions

Question 1: A current of 6 A flies through a circuit that carries a resistance of 10 Ω. Find the voltage drop across the circuit? 

Answer: 

Given that, 

I = 6 A. 

R = 10 Ω. 

Formula, V = IR 

V = 6 × 10 

V = 60 V 

Therefore, voltage required for the circuit is 60 V. 

Question 2: The bulbs of 30 Ω and 20Ω are connected in series and a current of 8A is flowing through the circuit. Find the voltage drop across the circuit. 

Answer: 

Given that R = 30 + 20 = 50Ω .

I = 8A 

Formula, V = IR 

V = 8 × 50 = 400 V

Therefore, voltage required for the circuit is 400 V.  

Question 3: What is the device that is used to maintain a potential difference across a conductor. 

Answer: 

The device that is used to maintain the potential difference across the conductor is a cell or a battery. 

Question 4: How much energy is consumed for 2coulombs of charge passing through a 10v battery. 

Answer: 

Given that, Q = 2C 

V = 10V 

Formula, V = W/Q 

10 = W/2 

W = 10 × 2 = 20 J 

Therefore, the energy required is 20 J.

Question 5: On moving a charge of 25 coulombs, 5 J of work is done. Then calculate the potential difference between the two points. 

Answer: 

Given that, 

Q = 25 C 

W = 5 J  

Formula, V = W/Q  

V = 25/5 = 5 

Therefore, the potential difference required is 5 V.

Question 6: Calculate the work done to move a charge of 6C between two points A and B if the points have a potential difference of 4 V. 

Answer: 

Given that. 

Q = 6 C 

V = 4 V 

Formula, V = W/Q  

4 = W/6 

⇒W = 4 × 6 = 24J

Therefore, the work required to move the charge is 24J.

Last Updated :
14 Dec, 2022

Like Article

Save Article

Работа электростатического поля

Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.

Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными

, а само поле называется
потенциальным
.

Движение заряда в электрическом поле

Когда носитель электрического заряда оказывается в электростатическом поле, на него неизбежно начинает действовать кулоновская сила. Это приводит к тому, что носитель заряда начинает перемещаться в пространстве, если, конечно, кулоновские силы не скомпенсированы другими, противодействующими силами. Рассмотрим случай, когда в электрическом поле оказался пробный заряд
q
совершенно свободный от действия других сил. Как только этот заряд окажется в зоне действия силовых линий электрического поля, то на него будет действовать сила в соответствии с Законом Кулона.

Как известно, механическая сила является векторной величиной, а значит имеет и величину, и направление. Носитель заряда в электрическом поле начнет менять свое энергетическое состояние. Как это проявляется? Одноименные заряды отталкиваются, а разноименные притягиваются. Наш заряд в зависимости от знака начнет сближаться с противоположным ему знаком заряда, которое и образует электрическое поле. Легче всего это увидеть, посмотрев на силовые линии напряженности поля. Согласно правилам они имеют направление от заряда +Q

к заряду
-Q
, иначе говоря выходят из
положительных
зарядов (источника) и заходят в
отрицательные
заряды (источника).

Советуем изучить Аккумулятор для шуруповерта: новые возможности для эффективной работы

Направление силы действия на пробный заряд q

определить очень легко, если он положительный, то сила будет направлена по силовым линиям поля, а если отрицательный, то против силовых линий. Траектория движения будет зависеть от начальной скорости заряда, ее величины и направления. Действующая сила будет ускорять заряд, то есть его скорость по величине и направлению будет меняться в сторону действия кулоновской силы.

Движение заряда q

в электрическом поле

На рисунке изображена примерная траектория движения заряда +q

, имеющего некоторую начальную скорость
V
. Если бы заряд имел противоположный знак, то траектория движения была бы зеркально отражена от оси X, и заряд бы двигался в сторону пластины (+). По оси Y можно изобразить шкалу потенциала, которая так же будет иметь полярность.

Спрашивается. Что это за шкала и как определить где больший, а где меньший потенциал? Учитывая, что по определению и по действующим правилам силовые линии выходят из зарядов (+) и уходят в бесконечность, где потенциал равен нулю, то максимальный положительный потенциал будет в начале силовых линий от источника, а максимальный отрицательный потенциал там, где линии заходят в источник поля. Наш заряд +q

, изображенный на рисунке выше будет двигаться от большего потенциала к меньшему, тем самым уменьшая потенциальную энергию поля, а точнее, преобразуя ее в кинетическую энергию. Если же в нашем случае был заряд
-q
, то для него потенциалы поменяли бы знак, арифметически, за счет умножения на -1, он всё также бы двигался в сторону уменьшения энергии поля.

Потенциал

Система «заряд — электростатическое поле» или «заряд — заряд» обладает потенциальной энергией, подобно тому, как система «гравитационное поле — тело» обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом

данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал — это характеристика электростатического поля.

Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело — наоборот.

Потенциальная энергия поля — это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Падение потенциала вдоль проводника

На концах проводника, помещенного в электрическое поле, начинает наблюдаться разность потенциалов. Вследствие этого электроны начинают перемещаться в сторону увеличения разности. В проводнике возникает электрический ток. Свободные электроны продвигаются вдоль проводника до тех пор, пока разница ни будет равна нулю. На практике для поддержания заданной величины тока цепи запитываются от источников напряжения или тока. Разница заключается в следующем:

Советуем изучить Мощные магниты

  • Источник тока поддерживает в цепи постоянный ток вне зависимости от сопротивления нагрузки;
  • Источник напряжения поддерживает на своих зажимах строго постоянную ЭДС, независимо от величины потребляемого тока.

Разница потенциалов (падение напряжения) пропорциональна расстоянию от концов проводника, то есть обладает линейной зависимостью.

Как определить знак потенциала

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ — точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком «минус». Чем дальше от отрицательного заряда, тем потенциал поля больше.

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак «+», работа имеет знак «-«.

Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.

Основные формулы электричества

Изучение основ электродинамики, электрики невозможно без определения электрического поля, точных зарядов, сопротивления и прочих явлений.

Поэтому важно рассмотреть все основные формулы электричества и примеры решения задач с их использованием.

Закон Кулона

Согласно короткому описанию, это физический закон, который говорит о взаимодействии между прямо стоящими точечными электрозарядами в зависимости от того, на каком расстоянии они находятся. Согласно полному определению, формулировка обозначает, что между двумя точками в виде электрических зарядов формируется вакуум. Там появляется конкретная сила, которая пропорциональна умножению их модульных частиц, поделенных на квадратный показатель расстояния.

Расстояние — длина, которая соединяет заряды. Сила взаимодействия направлена по отрезку. Кулоновская сила — сила, отталкивающая при зарядах минус-минус и плюс-плюс и притягательная при минус-плюс и плюс-минус.

Обратите внимание! Электрическая сила формула выглядит так: F=k⋅|q1|⋅|q2|/r2, где F — сила заряда, q — величина заряда, r — вектор или расстояние между зарядами, а k — коэффициент пропорциональности. Последний равен c2·10−7 Гн/м.

Решение задачи с законом Кулона. При наличии заряженных шариков, которые находятся на расстоянии 15 см и отталкиваются с силой 1 Н в поиске начального заряда, выявить неизвестное можно, переведя основные единицы в систему СИ и подставив величины в указанную формулу. Выйдет значение 2 * 5 * 10 (-8) = 10 (-7).

Напряженность поля уединенного точечного заряда

Электрическое поле будучи материей, создаваемой электрическими точечными зарядами, характеризуется разными величинами, в том числе напряженностью. Напряженность выступает векторной величиной или силовой характеристикой поля, которая направлена в сторону электростатического взаимодействия зарядов. Чтобы получить ее, нужно использовать формулу E = k (q / r (2)), где Е — векторное поле.

Согласно данной формулировке, напряженность поля заряда имеет обратную пропорциональность квадратному значению расстояния от заряда. То есть если промежуток увеличивается в несколько раз, показатель напряжения снижается в четыре.

Применить закон можно для решения задач. Например, неизвестен радиус. Тогда нужно преобразовать константу. Нужно решить уравнение E / r (2) = kq, подставив известные числа.

Потенциал точки в поле точечного заряда

Потенциалом в электростатическом поле называется скалярная величина, которая равна делению потенциального показателя энергии заряда на него. Он не зависит от величины q, которая помещена в область. Так как потенциальный показатель энергии зависит от того, какая выбрана система координат, то потенциал определяется с точностью до постоянной. Он равен работе поле, которое смещает единичный положительный заряд в бесконечность. Выражается через ф = W / q =const.

Вам это будет интересно Особенности люменов и люксов

Обратите внимание! В задачах можно преобразовывать константу. Если неизвестно W, то можно поделить q на ф, а если q — то, W на ф.

Потенциальная энергия заряда в электростатическом поле

Потенциальная энергия заряда q1 в поле точечного заряда

Во время перемещения заряженных частиц по полю из одной точки в другую они совершают некую работу за определенный временной промежуток. Потенциальная энергия в этих точках не зависит от того, какой путь держат заряженные частицы. Энергия первого заряда пропорциональна его модулю. Выражается это все в формуле, представленной на картинке ниже. Задачи решать можно, используя представленную константу и вставляя известные значения.

Теорема Гаусса

Основной закон в электродинамике, входящий в уравнения Максвелла. Это следствие из кулоновского умозаключения и принципа суперпозиции. По ней вектор напряжения поля движется сквозь произвольное значение замкнутой поверхности, окруженной зарядами. Он имеет пропорциональность сумме заряженных частиц, которые находятся внутри этого замкнутого пространства. Указанный вектор поделен на е0. Все это выражается формулой, указанной ниже.

Напряженность электрического поля вблизи от поверхности проводника

Напряженность суммарного пространства заряженных частиц имеет прямую пропорциональность поверхностному показателю их плотности. Если в задаче требуется найти напряженность, а поверхностная заряженная плотность это сигма, то нужно нарисовать цилиндр и обозначить, что поток сквозь его боковую поверхность равен 0. В таком случае линии напряженности будут параллельны боковой поверхности. Получится, что ф = 2ф, осн =2еs, а 2es =q / 2ε0.

Емкость плоского конденсатора

Емкостью называется проводниковая характеристика, по которой электрический заряд может накапливать энергию. Плоским конденсатором называются несколько противоположно заряженных пластин, разделенных диэлектрическим тонким слоем. Емкостью плоского конденсатора считается его характеристика, способность к накоплению электрической энергии.

Обратите внимание! Это физическая величина, которая равна делению заряда на разность потенциалов его обкладки. Зарядом при этом служит заряженная одна пластина.

Если в задаче требуется узнать емкость конденсатора из двух пластин с площадью в 10(-2) квадратных метров и в них находится 2*10(-3) метровый лист, ε0 электрическая постоянная с 8,85×10-12 фарад на метр и ε=6 — диэлектрическая проницаемость слюды. В таком случае нужно вставить значения в формулу C= ε* ε* S/d.

Энергия плоского конденсатора

Поскольку любая частица конденсатора имеет способность запаса энергии, который сохранен на конденсаторной обкладке, вычислить эту самую Е просто, поскольку чтобы элемент зарядился, ему нужно совершить работу. Работа совершается полем. В результате была выведена следующая формула: Еp = А = qEd, где А является работой, d — расстоянием.

Формулы для постоянного электрического тока

Постоянный электрический ток не изменяется в величине и направлении. Он используется для расчета замкнутой, однородной цепи, мощности и прочих параметров. Поэтому важно знать формулы для него и основные законы, связанные с ним.

Вам это будет интересно Описание распределительной коробки

Закон Ома для участка однородной цепи

Чтобы электрический ток существовал, нужно поле. Для его образования, нужны потенциалы или разность их, выраженная напряжением. Ток будет направлен на снижение потенциалов, а электроны начнут свое передвижение в обратном направлении. В 1826 г. Г. Ом провел исследование и сделал заключение: чем больше показатель напряжения, тем больше ток, который проходит через участок.

К сведению! Смежные проводники при этом проводят электричество по-разному. То есть каждый элемент имеет свою проводимость, электрическое сопротивление.

В результате, согласно теореме Ома, сила тока для участка однородной цепи будет иметь прямую пропорциональность показателю напряжения на нем и обратную пропорциональность проводниковому сопротивлению.

По формуле I = U / R, где I считается силой тока, U — напряжением, а R — электрическим сопротивлением, последнее значение можно найти, если p * l / S, где p является удельным проводниковым сопротивлением, l — длиной проводника, а S — площадью поперечного проводникового сечения.

Закон Ома для замкнутой цепи с источником тока

Ом сделал формулу и для замкнутой цепи. По ней ток на этом участке из токового источника, имеющего внутреннее и внешнее нагрузочное сопротивление, равен делению электродвижущей силы источника на сумму внутреннего и внешнего сопротивления. Она выглядит так: I = e / R + r, где I является токовой силой, е — ЭДС, R — сопротивлением, а r — внутренней сопротивляемостью источника напряжения.

Обратите внимание! В физическом смысле по этому закону, чем выше показатель ЭДС, тем выше источник энергии, больше скорость движения зарядов. Чем выше сопротивляемость, тем ниже величина тока.

Работа постоянного тока

Энергия, когда проходит через проводник, упорядоченно двигается в носитель. Во время движения она совершает работу. В результате работой постоянного тока называется деятельность поля, направленная на перенос электрических зарядов по проводнику. Она равна умножению I на совершаемое работой напряжение и время.

Закон Джоуля-Ленца

Когда электричество проходит через какой-то проводник с сопротивляемостью, всегда высвобождается теплота. Количество тепла, которое высвободилось за определенный промежуток времени, определяет закон Джоуля-Ленца. По формуле мощность тепла равняется умножению плотности электричества на напряжение — w =j * E = oE(2).

Обратите внимание! В практическом понимании закон имеет значение для снижения потери электроэнергии, выбора проводника для электроцепи, подбора электронагревательного прибора и использования плавкого предохранителя для защиты сети.

Полная мощность, развиваемая источником тока

Мощность — работа, которая совершается за одну секунду времени. Электрическая мощность является физической величиной, которая характеризует скорость передачи с преобразованием электроэнергии.

Работа, которая развивается источником электроэнергии по всей цепи, это полная мощность. Ее можно определить по формуле Р = El, где E считается ЭДС, а I — величиной токовой характеристики.

К сведению! Если есть линейная нагрузка, то полный мощностный показатель равен квадратному корню из квадратов активной и реактивной работы источника. Если есть нелинейная нагрузка, то она равна квадратному корню из квадратов активной и неактивной работы источника.

В практических измерениях такая работа выражается в киловаттах в час. Используется, чтобы измерять потребление электричества в бытовых и производственных условиях, определять выработанную электрическую энергию в электрическом оборудовании.

Полезная мощность

Максимальная или полезная мощность — та, что выделяется во внешнем промежутке цепи, то есть во время нагрузки резистора. Она может быть применена для выполнения каких-либо задач. Подобное понятие можно применить, чтобы рассчитать, как работает электрический двигатель или трансформатор, который способен на потребление активной и реактивной составляющей.

Вам это будет интересно Особенности дифференциального тока

Полезный мощностный показатель можно рассчитать по трем формулам: P = I 2R, P = U2 / r, P = IU, где I является силой тока на определенном участке цепи; U — напряжением на части клемм (зажимов) токового источника, а R — сопротивлением нагрузки или внешней цепью.

Коэффициент полезного действия источника тока

Коэффициентом полезного действия токового источника называется деление полезного мощностного показателя на полный. Если внутреннее сопротивление источника равно внешнему, то половина результатов всей работы будет утеряна в источнике, а другая половина будет выделена на нагрузке. В такой ситуации КПД будет равен 50 %.

Если рассматривать это понятие наиболее полно, то когда электрические заряды перемещаются по замкнутой электрической цепи, источник тока выполняет определенную полезную и полную работу. Совершая первую, он перемещает заряды во внешнюю цепь. Делая вторую работу, заряженные частицы перемещаются по всему участку.

Обратите внимание! Полезное действие достигается, когда сопротивление внешней электроцепи будет иметь определенное значение, зависящее от источника и нагрузки. Соотношения полезной работы на полную выражают формулой: η = Аполез / Аполн = Рполез / Рполн = U/ε = R / (R + r).

Первое правило Кирхгофа

Согласно первому закону Кирхгофу, токовая сумма в любом участке электрической цепи равняется нулевому значению. Направленный заряд к узлу положительный, а от него — отрицательный. Алгебраическая токовая сумма зарядов, которые направлены к узлу, равна сумме тех, которые направлены от него. Если перевести это правило, то можно получить следующее определение: сколько тока попадает в узел, столько и выходит из него. Это правило вытекает из закона о сохранности заряженных частиц.

Благодаря решению линейных уравнений на основе кирхгофских правил можно отыскать все токовые значения и напряжения на участках постоянного, переменного и квазистационарного электротоков.

Обратите внимание! В электотехнике правило Кирхгофа имеет особое значение, поскольку оно универсально для решения многих поставленных задач в теории электроцепи. С помощью него можно рассчитать сложные электрические цепи. Применяя его, можно получить систему линейных уравнений относительно токам или напряжениям на всех межузловых ветвях цепей.

Второе правило Кирхгофа

Второе кирхгофское правило вытекает из первого и третьего максвеллского уравнения. По нему алгебраическая сумма напряжений на резистивных элементах замкнутого участка равна сумме ЭДС, которая входит в него. Если на участке нет ЭДС, то суммарный показатель падения напряжения равен нулевому значению. Если еще проще, то во время полного обхода контура потенциал изменяется. Он возвращается на исходное значение.

Частый случай для участка одного контура — это закон Ома. Составляя уравнения напряжений для контура, требуется подобрать его положительный обход. Чтобы это сделать, нужно знать, что при подборе обхода показатель падения напряжения ветви будет положительным, если обходное направление в ветви совпадает с тем, которое было ранее выбрано. Если оно не совпадает, то показатель напряжения ветви будет отрицательным.

Важно! Второе правило Кирхгофа можно использовать в линейной или нелинейной линеаризованной цепи при любом изменении токов и напряжения.

В результате, чтобы понять основы физики явлений, электрики, электродинамики и с успехом использовать знания в процессе жизнедеятельности, необходимо знать выведенные теоремы, законы, формулы и правила в области электричества, которые представлены выше. Например, представляя, как выглядит та или иная формула, можно решить любую задачу в учебнике по физике или жизни.

Таким образом, на очень малой толщине (~ 10 нм) инверсионного слоя электрическое поле испытывает скачок, изменяясь в несколько раз. Поэтому часто пользуются эффективным (фактически, средним) значением прижимающего электрического поля в инверсионном слое

Eeff =

q

(NA xd +0.5nS ).

(3.3.10)

εS

Для контроля порогового напряжения и смягчения короткоканальных эффектов широко применяется неоднородное легирование подложки. Будем рассматривать упрощенную модель неоднородного легирования, когда от 0 до x1 уровень легирования составляет постоянную величину N1, а при x > x1 концентрация легирующей примеси – N2 (рис. 3.4).Величина x1 является технологическим параметром, а полная толщина обедненной области xd определяется условием электронейтральности.

N2

Рис. 3.4. Идеализированный профиль легирования и распределение ионизированной примеси в подложке

70

Если толщина обедненной области xd < x1, то это соответствует случаю однородного легирования. Нас будет интересовать случай xd > x1. В соответствии с общей формулой (3.2.8) имеем падение потенциала на слое 1 (a= 0, b = x1)

qN x2

ϕ

= E x +

1 1

,

1

1

1

2εS

и падение потенциала на слое 2 (a=x1, b=xd)

ϕ

2

= −E x +

qN2 (xd2 x12 )

.

1

1

2εS

Электрическое поле в точке x1 равно E1 = qN2 (xd x1 )εS ,

а полное падение потенциала на обедненном слое

ϕ

S

=

ϕ +

ϕ

2

=

qN1x12

+

qN2 (xd2 x12 )

.

(3.4.1)

1

2εS

2εS

Отсюда находим толщину обедненного слоя

2ε

ϕ

S

(N

N

2

)x2

1/ 2

x

(ϕ

S

)=

S

1

1

.

(3.4.2)

d

qN2

N2

Таким образом, получаем все интересующие нас величины как функции, зависящие от поверхностного потенциала и технологических параметров. Например, полный заряд обедненной области выражается

Qd (ϕS )= qN1x1 + qN2 (xd (ϕS )x1 ).

(3.4.3)

Дифференцируя это выражение по потенциалу, можно получить емкость обедненной области. Оно будет иметь вид как в (3.3.8), где обедненная область определяется формулой (3.4.2).

3.5. Учет напряжения, приложенного к затвору

Рассмотрим ситуацию, когда относительно подложки к затвору приложено положительное напряжение VGB . Ток через структуру

71

блокируется подзатворным изолятором, но уровни Ферми в затворе и подложке отличаются:

qVGB = EF (gate)EF (Si).

(3.5.1)

NB. Запомните, что повышение потенциала для электрона означает понижение его полной энергии.

Рассмотрим два первых момента уравнения Пуассона. Поверхностная плотность положительного заряда на затворе должна быть в точности равна плотности отрицательного заряда в полупроводнике (электроны инверсионного слоя и ионизированные акцепторы)

NG nS + N A xd .

(3.5.2)

NB. В общем (трехмерном) случае нужно

приравнивать не

плотности, а полные заряды на электродах (затвор, подложка, исток, сток).

По закону Гаусса в окисле у границы раздела с металлом

Eox = qNG εi .

(3.5.3)

Если заряд в окисле отсутствует или расположен в тонком слое у границы раздела с кремнием (что является типичной ситуацией), то полное падение потенциала в окисле Vox = Eoxdox . Полное паде-

ние потенциалов на толщине структур складывается из падений потенциала в окисле Vox и полупроводнике ϕS :

VGB =ϕMS +ϕS + Eoxdox =

=ϕMS +ϕS + qNG dox

=ϕMS +ϕS + qNG , (3.5.4)

εi

CO

где CO = εi /dox – удельная емкость оксида. Выше было показано, что отрицательная контактная разность потенциалов ϕMS = −φBI

между материалами затвора и кремния эквивалентна положительному смещению на затворе

V

+φ

BI

=ϕ

S

+ E d

ox

=ϕ

S

+

NG

d

ox

GB

ox

ε

i

Eoxd

qN A xd2 (ϕS )

6444744448

+

qNA xd (ϕS )

+

qnS (ϕS )

. (3.5.5)

2εS

Co

Co

14243

ϕS

72

Обычно в окисле есть положительный заряд, захваченный на дефекты вблизи раздела Si-SiO2 (< 1 — 3 нм) и непосредственно на границе раздела. Дефекты такого рода могут обмениваться носителями с кремниевой подложкой, меняя свое зарядовое состояние. Заполнение и опустошение уровней дефектов контролируется положением их уровней относительно приповерхностного уровня Ферми. Поэтому полный заряд на поверхностных и приповерхностных дефектах также зависит от поверхностного потенциала.

VG(ϕS)

VT

ϕS

VMG

2ϕF

VFB

Рис. 3.5. Зависимость напряжения на затворе от поверхностного потенциала

При наличии таких заряженных дефектов имеем NG = nS + NAxd Nt (ϕS ), и соответственно, зависимость затворного

напряжения от поверхностного потенциала приобретает вид (см. также рис. 3.5)

V

(ϕ

S

)=ϕ

MS

+ϕ

S

+

q

(n

S

(ϕ

S

)+ N

A

x

D

(ϕ

S

)N

(ϕ

S

)). (3.5.6)

GB

Co

t

Обратите внимание, что в этом базовом уравнении все слагаемы в правой части являются функцией поверхностного потенциала. Схематически зависимость затворного напряжения представлена на рис. 3.5. При малых напряжениях на затворе, когда в кремнии еще не сформировался инверсионный слой электронов, зависимость VGB от поверхностного потенциала имеет линейный и суб-

линейный характер. Начало формирования инверсионного слоя (канала) сопровождается резким ростом функции VGB (ϕS ), обу-

73

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #

    15.02.20166.72 Mб20физика твердого тела.docx

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Электрический ток возникает, когда под воздействием электрического поля Е в проводящей среде происходит слаженное, однонаправленное перемещение заряженных частиц (чаще всего электронов). Электроны приобретают дополнительную энергию, то есть совершается работа. Для вычисления величины данной работы была введена физическая величина — электрическое напряжение U.

  • Что означает падение напряжения
  • Как рассчитать
  • К чему приводит потеря напряжения
  • От чего зависит
  • Допустимые значения
  • Как понизить напряжение с помощью резистора
  • Заключение

Под термином падение напряжения понимают снижение напряжения вдоль проводника, которое обусловлено наличием сопротивления проводника. Другое определение величины падения напряжения связано с характеристикой электростатического поля, называемой электростатическим потенциалом φ.

Что означает падение напряжения

Сила воздействия поля на заряды добавляет им порцию энергии, то есть производится работа. Частное от деления работы А, произведённой полем по перемещению заряженной частицы из начальной точки в конечную, к количеству заряда q и есть электрическое напряжение U между данными точками:

U=А/q

Из формулы следует, что электрическое напряжение — это работа по передвижению заряда размером в 1 кулон из начальной точки в конечную. Воспользовавшись предыдущей формулой, можно получить формулу для вычисления произведённой работы:

А=q*U

Потенциал

Силовой характеристикой поля Е является его напряжённость. Понятие потенциала было введено для количественной характеристики энергетических способностей поля. Потенциал поля — это потенциальная энергия Wp заряда, делённая на его величину:

φ=Wp/q

Тогда напряжение U равно:

U=φ12

Таким образом, напряжение — это разность потенциалов.

От уменьшения потенциала к падению напряжения

По мере протекания тока по цепи происходит изменение электрического потенциала в меньшую сторону и, как следствие, уменьшение напряжения, которое определяется термином «падение напряжения» (от англ. voltage drop). Для того чтобы падение напряжения на потребителях электроэнергии (элементах схем, бытовых приборах, электродвигателях и т.д.) было в пределах, обеспечивающих нормальную работу, необходимо минимизировать потери напряжения на сопротивлении источника, соединительных проводов, контактов и разъёмов, на которых бесполезно рассеивается энергия заряженных частиц.

Как рассчитать

Оценки и точные расчёты величины падения напряжения основаны на фундаментальном физическом законе Ома, названным в честь немецкого исследователя Георга Ома, открывшего этот закон в 1826 г.

Рис.1. Георг Симон Ом (1789-1854)

На основании серии многочисленных экспериментов, измеряя зависимость величины тока через различные проводники от прикладываемого напряжения, исследователь получил следующую математическую формулу:

I=U/R, где:

  • I — ток в цепи (измеряется в амперах, А);
  • U — падение напряжения (измеряется в вольтах, В);
  • R — сопротивление, единицей измерения которого является Ом, названная также в честь немецкого первооткрывателя.

Таким образом, значение силы тока I в электрической цепи находится в прямой пропорциональной зависимости от величины U и в обратной пропорциональной зависимости от величины сопротивления R. Формула является базовой для расчёта падения напряжения, при этом в зависимости от имеющихся справочных или измерительных данных могут быть два варианта вычислений.

Через силу тока и сопротивление

Воспользовавшись формулой выше, можно получить следующее выражение:

U=I*R

То есть, зная величину протекающего тока, которая может быть измерена прибором (амперметром), и величину сопротивления, получаем искомое значение U с помощью умножения величины тока I на значение сопротивления R. Если значение R заранее неизвестно, то основная формула, применяемая для вычисления R, выглядит следующим образом:

R=ρ*(L/S), где:

  • L — длина проводника, м;
  • S — площадь поперечного сечения, м2;
  • ρ — удельное сопротивление.

Длина и площадь легко измеряются доступными средствами. Величины удельных сопротивлений всех электротехнических материалов давно измерены, сведены в таблицы и находятся в открытом доступе. Величина ρ равна сопротивлению проводника длиной 1 м, имеющего площадь поперечного сечения 1 м2.

Через мощность и силу тока

Второй вариант вычисления основан на формуле, связывающей мощность P электрической энергии, выделяемой на нагрузке, с током I и падением напряжения U:

P=U*I

Формула является следствием закона Джоуля-Ленца, открытого почти одновременно двумя физиками (английским и русским) в 1841 г.

Рис. 2. Д.П. Джоуль и Э.Х. Ленц

Было замечено, что протекание тока через нагрузку всегда сопровождается выделением тепла Q. Исследователям удалось установить функциональную связь между количеством выделяемого тепла Q и другими измеряемыми (или вычисляемыми) величинами, выраженную формулой:

Q=I2*R*t, где:

  • I — ток, А;
  • R — сопротивление, Ом;
  • t — время измерения, с;
  • Q — количество тепла, Дж.

Мощность P, по определению — это энергия, в данном случае Q, выделяемая в единицу времени. То есть, поделив обе части уравнения на время t, получим выражение для мощности P:

P=I2*R

Воспользовавшись формулой, получаем выражение для P:

P=I*U

Следовательно, зная ток, протекающий через нагрузку и потребляемую ей мощность, можем рассчитать падение напряжения:

U=P/I

Формула верна для случая цепей постоянного тока. Для расчётов цепей переменного напряжения и тока справедлива следующая формула:

U=(P/I)*cosφ

В данном случае буквой φ обозначается коэффициент мощности, значение которого определяется свойствами нагрузки. Для электроприборов, имеющих исключительно активную нагрузку (нагревательные элементы, лампы накаливания), коэффициент cos φ практически равен единице. Для учёта возможной реактивной составляющей при работе таких устройств хорошим приближением считается значение cos φ равное 0,95. Для электрооборудования с существенным присутствием реактивной компоненты (трансформаторы, электродвигатели, конденсаторы) cos φ принимается равным 0,8.

К чему приводит потеря напряжения

В силу различных причин, входное напряжение, подающееся для энергоёмких потребителей (здания, промышленные объекты), может быть ниже установленных нормативов. Например, падение по длине кабеля обусловлено протеканием больших токов, вызывающих рост сопротивления. Потери возрастают на протяжённых линиях электропередач. При отклонении входных напряжений ниже установленных нормативов возможны следующие негативные последствия:

  • Возможны сбои в работе промышленных установок и осветительного оборудования.
  • При низких значениях входного напряжения возникает большая вероятность выхода из строя электроприборов.
  • Падает вращающий момент, необходимый для запуска компрессорной техники и электродвигателей.
  • Возникает нежелательный дисбаланс в токовой нагрузке в начале линии и на её конце.
  • Осветительное оборудование начинает функционировать «вполнакала», что не допускается нормами СанПиНа и требованиями техники безопасности.
  • Деформируются выходные характеристики и режимы эксплуатации электрических приборов. Типичным примером является возрастание времени, требуемого для нагрева воды бойлером.
  • Резко повышается вероятность спонтанных сбоев в работе электроники.

От чего зависит

Потери электроэнергии, связанные с её транспортировкой по проводам, неизбежны в силу вышеизложенных физических причин. Основная причина связана с падением напряжения на сопротивлении проводов. Из закона Ома следует, что чем выше сопротивление провода, тем больше на нём падение напряжения (потери). Для низковольтных сетей с параметрами 220-380 В потери минимизируются с помощью выбора кабеля, имеющего оптимальную площадь сечения.

R=ρ*(L/S)

Из формулы следует, что сопротивление падает при увеличении площади сечения и, наоборот, растёт при увеличении длины провода. Очевидно также, что чем меньше удельное сопротивление металла, из которого изготовлен провод, тем меньше R. Всегда предпочтительнее выбор провода с медной жилой по сравнению с алюминиевой, т.к. ρмеди = 0,0175 Ом*мм2/м, в то время как ρалюминия = 0,028 Ом*мм2/м. Следует учитывать, что вариант использования медного провода дороже алюминиевого. Подводя итог этого раздела, можно сказать, что для уменьшения потерь электроэнергии следует:

  • Оптимизировать длину прокладываемых проводов — убрать «всё лишнее».
  • По возможности использовать провода с медной жилой.
  • Рассчитать оптимальное сечение используемого провода при максимально допустимой нагрузке.

Допустимые значения

Основным документом, устанавливающим рамки допустимых отклонений, является ГОСТ 29322-2014 «Межгосударственный стандарт. Напряжения стандартные». ГОСТ устанавливает понятия краткосрочного и длительного допустимого отклонения.

В соответствии с данным документом краткосрочно допустимы отклонения на 10% как в большую, так и в меньшую сторону. Например, для типичного напряжения 220 В значения в диапазоне 207-253 В на короткое время считаются допустимыми. Длительное допустимое отклонение должно быть не более 5%. Для 220 В диапазон сужается до 218-242 В.

При выходе напряжения из допустимых границ следует действовать следующим образом:

  • Обратиться с заявлением в энергосбытовую или управляющую компанию.
  • Присутствовать при проведении контрольных замеров, подтверждающих факт недопустимых отклонений.
  • Зафиксировать проведённые замеры и причину недопустимых отклонений.
  • При длительном бюрократическом пути решения данной проблемы самостоятельно задача решается путем установки за свой счёт необходимого количества источников бесперебойного питания.

Как понизить напряжение с помощью резистора

При использовании серийных источников питания в виде аккумуляторов или батарей часто возникает необходимость в понижении этого напряжения до значения, которое обеспечивает нормальную работоспособность схемы или устройства. Проще всего такие задачи решаются с помощью резисторов, выполняющих роль делителя напряжения. Типичная схема такого делителя приведена на Рис.3.

Рис.3. Принципиальная схема делителя напряжения (GND – «земля»)

Напряжение от источника U0 = +5 В подаётся на два последовательно подключённых резистора R1 и R2. При последовательном соединении через оба резистора протекает одинаковый ток I, следовательно, согласно закону Ома, падение напряжение на каждом резисторе будет составлять:

U1=I*R1 и U2=I*R2

При этом очевидно, что: U0=U1+U2.

Из соотношений следует, что: U2/U2=R1/R2

Формулы отражают суть делителя напряжения, а на Рис.3 показаны три варианта такого делителя.

Заключение

Падение напряжения, связанное с потерями электрической энергии, присутствует во всех электрических цепях и сетях. Минимизации этих потерь можно добиться правильным выбором проводов (материал жилы, длина и сечение), по которым идет трансфер электроэнергии. Допустимые отклонения напряжения регулируются нормативными документами.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.

Понравилась статья? Поделить с друзьями:
  • Как составить паттерн
  • Как найти папку на компьютере по названию
  • Как найти координату отмеченной точки a
  • Как найти дачу по фамилии
  • Как найти центр фигуры компас