Как найти паралельную линию


Загрузить PDF


Загрузить PDF

Параллельными прямыми называются прямые, которые лежат в одной плоскости и никогда не пересекаются (на протяжении бесконечности).[1]
У параллельных прямых одинаковый угловой коэффициент.[2]
Угловой коэффициент равен тангенсу угла наклона прямой к оси абсцисс, а именно отношению изменения координаты y к изменению координаты х.[3]
Зачастую параллельные прямые обозначаются значком «ll». Например, запись ABllCD означает, что прямая АВ параллельна прямой CD.

  1. Изображение с названием Figure out if Two Lines Are Parallel Step 1

    1

    Запишите формулу для вычисления углового коэффициента. Формула имеет вид k = (y2 — y1)/(x2 — x1), где x и y — координаты двух точек (любых), лежащих на прямой. Координаты первой точки, которая находится ближе к началу координат, обозначьте как (x1, y1); координаты второй точки, которая находится дальше от начала координат, обозначьте как (x2, y2).[4]

    • Приведенную формулу можно сформулировать так: отношение вертикального расстояния (между двумя точками) к горизонтальному расстоянию (между двумя точками).
    • Если прямая возрастает (направлена вверх), ее угловой коэффициент положительный.
    • Если прямая убывает (направлена вниз), ее угловой коэффициент отрицательный.
  2. Изображение с названием Figure out if Two Lines Are Parallel Step 2

    2

    Определите координаты двух точек, которые лежат на каждой прямой. Координаты точек записываются в виде (х,у), где х — координата по оси Х (оси абсцисс), y — координата по оси Y (оси ординат). Чтобы вычислить угловой коэффициент, отметьте по две точки на каждой прямой.[5]

    • Точки легко отметить, если прямые нарисовать на координатной плоскости.
    • Чтобы определить координаты точки, проведите от нее перпендикуляры (пунктиром) к каждой оси. Точка пересечения пунктирной линии с осью Х — это координата х, а точка пересечения с осью Y — координата у.
    • Например: на прямой l лежат точки с координатами (1, 5) и (-2, 4), а на прямой r — точки с координатами (3, 3) и (1,-4).
  3. Изображение с названием Figure out if Two Lines Are Parallel Step 3

    3

    Подставьте координаты точек в формулу. Затем вычтите соответствующие координаты и найдите отношение полученных результатов. При подстановке координат в формулу не перепутайте их порядок.

    • Вычисление углового коэффициента прямой l: k = (5 — (-4))/(1 — (-2))
    • Вычитание: k = 9/3
    • Деление: k = 3
    • Вычисление углового коэффициента прямой r: k = (3 — (-4))/(3 — 1) = 7/2
  4. Изображение с названием Figure out if Two Lines Are Parallel Step 4

    4

    Сравните угловые коэффициенты. Помните, что у параллельных прямых угловые коэффициенты равны. На рисунке прямые могут казаться параллельными, но если угловые коэффициента не равны, такие прямые не параллельны друг другу.[6]

    • В нашем примере 3 не равно 7/2, поэтому данные прямые не являются параллельными.

    Реклама

  1. Изображение с названием Figure out if Two Lines Are Parallel Step 5

    1

    Запишите линейное уравнение. Линейное уравнение имеет вид y = kx + b, где k — угловой коэффициент, b — координата у точки пересечения прямой с осью Y, х и у — переменные, определяемые координатами точек, которые лежат на прямой. По этой формуле можно с легкостью вычислить угловой коэффициент k.[7]

    • Например: представьте уравнения 4y — 12x = 20 и у = 3x -1 в форме линейного уравнения. Уравнение 4y — 12x = 20 нужно представить в требуемой форме, а вот уравнение у = 3x — 1 уже записано как линейное уравнение.
  2. Изображение с названием Figure out if Two Lines Are Parallel Step 6

    2

    Перепишите уравнение в виде линейного уравнения. Иногда дается уравнение, которое не представлено в форме линейного уравнения. Чтобы переписать такое уравнение, нужно выполнить ряд несложных математических операций.

    • Например: перепишите уравнение 4y — 12x = 20 в форме линейного уравнения.
    • К обеим сторонам уравнения прибавьте 12x: 4y — 12x + 12x = 20 + 12x
    • Обе стороны уравнения разделите на 4, чтобы обособить у: 4y/4 = 12х/4 +20/4
    • Уравнение в виде линейного: у = 3x + 5
  3. Изображение с названием Figure out if Two Lines Are Parallel Step 7

    3

    Сравните угловые коэффициенты. Помните, что у параллельных прямых угловые коэффициенты равны. При помощи уравнения y = kx + b, где k — угловой коэффициент, можно найти и сравнить угловые коэффициенты двух прямых.

    • В нашем примере первая прямая описывается уравнением у = 3x + 5, поэтому угловой коэффициент равен 3. Вторая прямая описывается уравнением у = 3x — 1, поэтому угловой коэффициент тоже равен 3. Так как угловые коэффициенты равны, данные прямые параллельны.
    • Обратите внимание, что если у прямых с равным угловым коэффициентом коэффициент b (координата у точки пересечения прямой с осью Y) тоже одинаковый, такие прямые совпадают, а не являются параллельными.[8]

    Реклама

  1. Изображение с названием Figure out if Two Lines Are Parallel Step 8

    1

    Запишите уравнение. Следующее уравнение позволит найти уравнение параллельной (второй) прямой, если дано уравнение первой прямой и координаты точки, которая лежит на искомой параллельной (второй) прямой: y — y1= k(x — x1), где k — угловой коэффициент, x1 и y1 — координаты точки, лежащей на искомой прямой, х и у — переменные, определяемые координатами точек, которые лежат на первой прямой.[9]

    • Например: найдите уравнение прямой, которая параллельна прямой у = -4x + 3 и которая проходит через точку с координатами (1, -2).
  2. Изображение с названием Figure out if Two Lines Are Parallel Step 9

    2

    Определите угловой коэффициент данной (первой) прямой. Чтобы найти уравнение параллельной (второй) прямой, сначала нужно определить ее угловой коэффициент. Убедитесь, что уравнение дано в форме линейного уравнения, а затем найдите значение углового коэффициента k.

    • Вторая прямая должна быть параллельной данной прямой, которая описывается уравнением у = -4x + 3. В этом уравнении k = -4, поэтому у второй прямой будет такой же угловой коэффициент.
  3. Изображение с названием Figure out if Two Lines Are Parallel Step 10

    3

    В представленное уравнение подставьте координаты точки, которая лежит на второй прямой. Этот метод применим только в том случае, если даны координаты точки, лежащая на второй прямой, уравнение которой нужно найти. Не перепутайте координаты такой точки с координатами точки, которая лежит на данной (первой) прямой. Помните, что если у прямых с равным угловым коэффициентом коэффициент b (координата у точки пересечения прямой с осью Y) тоже одинаковый, такие прямые совпадают, а не являются параллельными.

    • В нашем примере точка, лежащая на второй прямой, имеет координаты (1, -2).
  4. Изображение с названием Figure out if Two Lines Are Parallel Step 11

    4

    Запишите уравнение второй прямой. Для этого известные значения подставьте в уравнение y — y1= k(x — x1). Подставьте найденный угловой коэффициент и координаты точки, лежащей на второй прямой.

    • В нашем примере k = -4, а координаты точки (1, -2): у — (-2) = -4(х — 1)
  5. Изображение с названием Figure out if Two Lines Are Parallel Step 12

    5

    Упростите уравнение. Упростите уравнение и запишите его в виде линейного уравнения. Если нарисовать вторую прямую на координатной плоскости, она будет параллельна данной (первой) прямой.

    • Например: у — (-2) = -4(х — 1)
    • Два минуса дают плюс: ‘у + 2 = -4(х -1)’
    • Раскройте скобки: у + 2 = -4x + 4
    • Из обеих сторон уравнения вычтите -2: у + 2 — 2 = -4x + 4 — 2
    • Упрощенное уравнение: у = -4x + 2

    Реклама

Об этой статье

Эту страницу просматривали 53 106 раз.

Была ли эта статья полезной?

Parallel lines are defined as those lines that lie on the same plane and are always equidistant from each other and hence, never intersect each other are called parallel lines. Parallel lines are non-intersecting lines, and they meet at infinity. Broadly lines can be divided into Parallel Lines, Intersecting Lines, and Perpendicular lines. Let’s learn about parallel lines, their properties, axioms, theorems, and examples in detail.

What are Parallel Lines?

Parallel lines are two or more than two lines that are always parallel to each other, and they lie on the same plane. No matter how long parallel lines are extended, they never meet each other. Parallel lines and intersecting lines are opposite each other. Parallel Lines are the lines that in no case meet or have any chance of meeting. In the below-given diagram, parallel lines are shown in two ways, line a is parallel to line b, and line x is parallel to line y.

Parallel Lines and Transversal

When a line intersects two parallel lines or lines that are not parallel, it is called a transversal. Due to the transversal line, many relations among the pair of angles are created. They can be supplementary or congruent angles. Suppose the given diagram is creating angles a, b, c, d, and p, q, r, s due to the transversal. These eight separate angles formed by the parallel lines and transversal reflect some properties.

Angles in Parallel Lines

Angles are created due to transversal and parallel lines 1 and 2. Let’s take a look at the properties these angles showcase:

  • Alternate Interior Angles: Alternate interior angles are created by the transversal on parallel lines, and they are equal in nature. For example, here, ∠c = ∠p and ∠d = ∠q. The best way to identify the alternate interior angles is by creating a ‘Z’ in mind. The angles formed by the Z are the alternate interior angles and are equal to each other.
  • Alternate Exterior Angles: Alternate exterior angles are also equal in nature. In the diagram above, the alternate exterior angles are ∠a = ∠r and ∠b = ∠s.
  • Consecutive Interior Angles: Consecutive interior angles are also known as co-interior angles. They are the angles formed by the transversal on the inside of parallel lines, and they are supplementary to each other. In the above diagram, ∠d + ∠p = 180° and ∠c + ∠q = 180°.
  • Vertically Opposite Angles: Vertically opposite angles are formed when two lines intersect each other. The opposite angles are called vertically opposite angles and are parallel to each other. In the above diagram, ∠a = ∠c, ∠b = ∠d, ∠p = ∠r, ∠q = ∠s.
  • Corresponding Angles: Corresponding angles in parallel lines are equal to each other. In the above diagram, ∠a = ∠p, ∠d = ∠s, ∠b = ∠q, and ∠c = ∠r.

Properties of Parallel Lines

Below are some of the important properties of parallel lines:

  • Two or more lines can be considered parallel if, even on extending the lines, there is no chance that the lines will meet or cut each other (intersect each other).
  • Parallel lines have the special property of maintaining the same slope.
  • The distance between Parallel lines always remains the same. Note: Here, the lines which are considered to be parallel need not be equal in their length, but a mandatory condition for lines to be considered parallel is the distance between the lines remains the same, even on the extension of the lines.
  • Parallel lines are denoted by the Pipe symbol (||). For example: If two lines A and B are parallel to each other. They can be represented to be parallel to each other by A || B.

How Do You Know If Lines are Parallel?

When two or more parallel lines are cut by a transversal, then the angle made by the transversal with the parallel lines shows some distinct properties:

  • Parallel lines, when cut by a transversal, have equal alternate interior angles.
  • Parallel lines, when cut by a transversal, have equal alternate exterior angles.
  • Parallel lines, when cut by a transversal, have equal corresponding angles.
  • Parallel lines, when cut by a transversal, have consecutive interior angles on the same side as supplementary.

Violation of any of the above properties will lead to the lines not being considered Parallel Lines.

Parallel Lines Equation

In the parallel line’s equation, the slope of the lines is always the same. The equation for a straight line is in slope-intercept form, that is, y = mx + c, where m is the slope. For parallel lines, m will be the same; however, the intercept is not the same. For example, y = 3x + 8 and y = 3x + 2 are parallel to each other. Therefore, in the parallel line’s equation, the intercept is different and has no points in common, but the slope is the same in order to make the lines parallel to each other.

Parallel Lines Axioms and Theorems

Below are the axioms and theorems of parallel lines:

Corresponding Angle Axiom: Corresponding angles are equal to each other. In corresponding angles axioms, it is said that if the reverse of the property is true, that is, if the reason of the property is true, the assertion must be true as well. The corresponding angles axiom states that if the corresponding angles are equal, it means that the lines on which the transversal is drawn are parallel to each other.

Theorem 1: If a transversal is drawn on two parallel lines, the vertically opposite angles will be equal. From the figure given below:

To Prove ∠3 = ∠5, ∠4 = ∠6

Proof: ∠1 = ∠3 and ∠5 = ∠7 (Vertically opposite angles)

∠1 = ∠5 (Corresponding angles)

Therefore, ∠3 = ∠5.

Similarly, ∠4 = ∠6.

The converse of the theorem is also true; that is, if the vertically opposite angles are equal to each other, the lines are parallel in nature.

Theorem 2: If two lines are parallel to each other and are intersected by a transversal, the interior angles’ pairs are supplementary to each other. 

To prove: ∠4 + ∠5 = 180° and ∠3 + ∠6 = 180°.

Proof: ∠4 = ∠6 (Alternate interior angles)

∠6 + ∠5 = 180° (Linear Pair)

Therefore, ∠4 + ∠5 = 180°

Similarly, ∠3 + ∠6 = 180°.

The converse of the theorem is also true; that is, if the interior angles are supplementary to each other, the lines are parallel in nature.

Parallel Lines Symbol

Parallel lines symbol is denoted as || as they never meet each other or intersect each other no matter how long they are extended. So, the symbol used to denote the parallel lines is ||. For instance, if AB is parallel to XY, we write it as AB || XY.

Applications of Parallel Lines in Real-Life

Parallel lines can easily be observed in real-life. One of the best examples of parallel lines is the railway tracks. These tracks are literally parallel lines in real life, as they are supposed to be always parallel to each other to grip the wheels of the train at all costs. Some other real-life examples of parallel lines are the edges of an almirah, scale (ruler), etc.

Solved Examples on Parallel Lines

Example 1: In the given figure, angle CMQ is given as 45. Find the rest of the angles.

Solution:

∠CMQ = 45°.

From vertically opposite angles,

∠PMD = 45°.

From linear pair:

∠PMD + ∠PMC = 180°.

∠PMC = 135°.

From linear pair:

∠CMQ + ∠DMQ = 180°

∠DMQ = 135°.

From Linear pair:

∠DMQ + ∠DMP = 180°.

∠DMP = 135°.

From linear pair:

∠CMP + ∠CMQ = 180°.

∠CMP = 135°

∠ANP = ∠CMP = 135°. (Corresponding angles)

∠BNP = ∠DMQ = 135°. (Corresponding angles)

Example 2: Check if the following lines are parallel.

Solution: 

Since the distance between the two lines is continuously decreasing, the lines can’t be called parallel lines.

Example 3: Check if the following lines are parallel.

Solution: 

Since on extending, the two lines don’t meet each other and the distance between the two lines remains the same. So, yes the lines can be called Parallel Lines.

Example 4: Find the value of x and y in the given figure where AB is parallel to CD. 

Solution:

In the above figure:

2x + 5y + 3x = 180 (Linear pair)

5x + 5y = 180

x + y = 36

x + y = 3x (Corresponding angles)

36 = 3x

x = 12

x + y = 36

12 + y = 36

y = 24

FAQs on Parallel Lines

Question 1: What is the parallel lines definition?

Answer:

Parallel lines are the lines that are always at equal distances from each other, and they meet at infinity. That is, they do not meet when extended. The symbol for parallel lines is ||. AB || CD means that line AB is parallel to line CD.

Question 2: What is the distance between parallel lines?

Answer:

The distance between two parallel lines can be anything, but they remain the same throughout. Parallel lines always have equal distance between them.

Question 3: What is the slope of the parallel lines?

Answer:

If two lines are parallel, they will have the same slope. For example, say the slope of 1 line is y = 3x + 8. Now, the slope of this line is 3; if there is another line having a slope of 3, that line will be parallel to the given line.

Question 4: Where do two parallel lines intersect?

Answer:

Two parallel lines intersect at infinity. The parallel lines never intersect each other, no matter how much the lines are extended. Therefore, it is said that parallel lines meet at infinity.

Question 5: What are the types of angles in parallel lines?

Answer:

When a pair of parallel lines intersected by a transversal, it forms many pairs of angles. They are corresponding angles, alternate interior angles, alternate exterior angles, vertically opposite angles, and linear pair angles.

Question 6: What is the equation of the line parallel to the x-axis?

Answer:

The equation of the line parallel to the x-axis is y = k, where k is the distance from the x-axis at which the line is placed.

Question 7: What are the parallel lines examples in real life?

Answer:

There are many different examples of parallel lines in real life. Some of them are mentioned below:

  • The railway tracks are parallel to each other.
  • The zebra crossings have parallel white lines.
  • The edges of a ruler/scale are parallel to each other.

Related Articles

  • Parallel Lines Formula
  • Properties of Parallel Lines

где k и b – произвольные (вещественные) числа.

При любых значениях k и b графиком линейной функции является прямая линия .

Число k называют угловым коэффициентом прямой линии (1), а число b – свободным членом .

При k > 0 линейная функция (1) возрастает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 1, 2 и 3.

При k = 0 линейная функция (1) принимает одно и тоже значение y = b при всех значениях x , а её график представляет собой прямую линию, параллельную оси абсцисс, и изображен на рис. 4, 5 и 6.

При k линейная функция (1) убывает на всей числовой прямой, а её график ( прямая линия ) имеет вид, изображенный на рис. 7, 8 и 9.

k y = kx + b1 и y = kx + b2 ,

имеющие одинаковые угловые коэффициенты и разные свободные члены , параллельны .

имеющие разные угловые коэффициенты , пересекаются при любых значениях свободных членов.

y = kx + b1 и

перпендикулярны при любых значениях свободных членов.

Угловой коэффициент прямой линии

равен тангенсу угла φ , образованному (рис. 10) при повороте положительной полуоси абсцисс против часовой стрелки вокруг начала координат до прямой (2).

Рис.10
Рис.11
Рис.12

Прямая (1) пересекает ось Oy в точке, ордината которой (рис. 11) равна b .

При прямая (1) пересекает ось Ox в точке, абсцисса которой (рис. 12) вычисляется по формуле

Прямые, параллельные оси ординат

Прямые, параллельные оси Oy , задаются формулой

где c – произвольное число, и изображены на рис. 13, 14, 15.

Рис.13
Рис.14
Рис.15

Замечание 1 . Из рис. 13, 14, 15 вытекает, что зависимость, заданная формулой (3), функцией не является, поскольку значению аргумента x = c соответствует бесконечное множество значений y .;

Уравнение вида px + qy = r . Параллельные прямые. Перпендикулярные прямые

где p, q, r – произвольные числа.

В случае, когда уравнение (4) можно переписать в виде (1), откуда вытекает, что оно задаёт прямую линию .

что и требовалось.

В случае, когда получаем:

откуда вытекает, что уравнение (4) задает прямую линию вида (3).

В случае, когда q = 0, p = 0, уравнение (4) имеет вид

и при r = 0 его решением являются точки всей плоскости:

В случае, когда уравнение (5) решений вообще не имеет.

Замечание 2 . При любом значении r1 , не совпадающем с r прямая линия, заданная уравнением

параллельна прямой, заданной уравнением (4) .

Замечание 3 . При любом значении r2 прямая линия, заданная уравнением

перпендикулярна прямой, заданной уравнением (4) .

Пример . Составить уравнение прямой, проходящей через точку с координатами (2; – 3) и

  1. параллельной к прямой
  2. перпендикулярной к прямой (8).

В соответствии с формулой (6), будем искать уравнение прямой, параллельной прямой (8), в виде

где r1 – некоторое число. Поскольку прямая (9) проходит через точку с координатами (2; – 3), то справедливо равенство

Итак, уравнение прямой, параллельной к прямой

В соответствии с формулой (7), будем искать уравнение прямой, перпендикулярной прямой (8), в виде

где r2 – некоторое число. Поскольку прямая (10) проходит через точку с координатами (2; – 3), то справедливо равенство

График линейной функции, его свойства и формулы

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие функции

Функция — это зависимость «y» от «x», где «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек, когда вместо «x» можно подставить произвольные значения и найти координаты этих точек.

Понятие линейной функции

Линейная функция — это функция вида y = kx + b, где х — независимая переменная, k, b — некоторые числа. При этом k — угловой коэффициент, b — свободный коэффициент.

Геометрический смысл коэффициента b — длина отрезка, который отсекает прямая по оси OY, считая от начала координат.

Геометрический смысл коэффициента k — угол наклона прямой к положительному направлению оси OX, считается против часовой стрелки.

Если известно конкретное значение х, можно вычислить соответствующее значение у.

Нам дана функция: у = 0,5х — 2. Значит:

  • если х = 0, то у = -2;
  • если х = 2, то у = -1;
  • если х = 4, то у = 0;
  • и т. д.

Для удобства результаты можно оформлять в виде таблицы:

Графиком линейной функции является прямая линия. Для его построения достаточно двух точек, координаты которых удовлетворяют уравнению функции.

Угловой коэффициент отвечает за угол наклона прямой, свободный коэффициент — за точку пересечения графика с осью ординат.

Буквенные множители «k» и «b» — это числовые коэффициенты функции. На их месте могут стоять любые числа: положительные, отрицательные или дроби.

Давайте потренируемся и определим для каждой функций, чему равны числовые коэффициенты «k» и «b».

Функция Коэффициент «k» Коэффициент «b»
y = 2x + 8 k = 2 b = 8
y = −x + 3 k = −1 b = 3
y = 1/8x − 1 k = 1/8 b = −1
y = 0,2x k = 0,2 b = 0

Может показаться, что в функции «y = 0,2x» нет числового коэффициента «b», но это не так. В данном случае он равен нулю. Чтобы не поддаваться сомнениям, нужно запомнить: в каждой функции типа «y = kx + b» есть коэффициенты «k» и «b».

Еще не устали? Изучать математику веселее с опытным преподавателем на курсах по математике в Skysmart!

Свойства линейной функции

  1. Область определения функции — множество всех действительных чисел.
  2. Множеством значений функции является множество всех действительных чисел.
  3. График линейной функции — прямая. Для построения прямой достаточно знать две точки. Положение прямой на координатной плоскости зависит от значений коэффициентов k и b.
  4. Функция не имеет ни наибольшего, ни наименьшего значений.
  5. Четность и нечетность линейной функции зависят от значений коэффициентов k и b:
    b ≠ 0, k = 0, значит y = b — четная;
    b = 0, k ≠ 0, значит y = kx — нечетная;
    b ≠ 0, k ≠ 0, значит y = kx + b — функция общего вида;
    b = 0, k = 0, значит y = 0 — как четная, так и нечетная функция.
  6. Свойством периодичности линейная функция не обладает, потому что ее спектр непрерывен.
  7. График функции пересекает оси координат:
    ось абсцисс ОХ — в точке (-b/k, 0);
    ось ординат OY — в точке (0; b).
  8. x=-b/k — является нулем функции.
  9. Если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х.
    Если b ≠ 0 и k = 0, то функция y = b не обращается в нуль ни при каких значениях переменной х.
  10. Функция монотонно возрастает на области определения при k > 0 и монотонно убывает при k 0: функция принимает отрицательные значения на промежутке (-∞, — b /k) и положительные значения на промежутке (- b /k, +∞)
    При k b /k, +∞) и положительные значения на промежутке (-∞, — b /k).
  11. Коэффициент k характеризует угол, который образует прямая с положительным направлением Ох. Поэтому k называют угловым коэффициентом.
    Если k > 0, то этот угол острый, если k

Построение линейной функции

В геометрии есть аксиома: через любые две точки можно провести прямую и притом только одну. Исходя из этой аксиомы следует: чтобы построить график функции вида «у = kx + b», достаточно найти всего две точки. А для этого нужно определить два значения х, подставить их в уравнение функции и вычислить соответствующие значения y.

Например, чтобы построить график функции y = 1 /3x + 2, можно взять х = 0 и х = 3, тогда ординаты этих точек будут равны у = 2 и у = 3. Получим точки А (0; 2) и В (3; 3). Соединим их и получим такой график:

В уравнении функции y = kx + b коэффициент k отвечает за наклон графика функции:

  • если k > 0, то график наклонен вправо;
  • если k 0, то график функции y = kx + b получается из y = kx со сдвигом на b единиц вверх вдоль оси OY;
  • если b 1 /2x + 3, y = x + 3.

Проанализируем рисунок. Все графики наклонены вправо, потому что во всех функциях коэффициент k больше нуля. Причем, чем больше значение k, тем круче идет прямая.

В каждой функции b = 3, поэтому все графики пересекают ось OY в точке (0; 3).

Теперь рассмотрим графики функций y = -2x + 3, y = — 1 /2x + 3, y = -x + 3.

В этот раз во всех функциях коэффициент k меньше нуля, и графики функций наклонены влево. Чем больше k, тем круче идет прямая.

Коэффициент b равен трем, и графики также пересекают ось OY в точке (0; 3).

Рассмотрим графики функций y = 2x + 3, y = 2x, y = 2x — 2.

Теперь во всех уравнениях функций коэффициенты k равны. Получили три параллельные прямые.

При этом коэффициенты b различны, и эти графики пересекают ось OY в различных точках:

  • график функции y = 2x + 3 (b = 3) пересекает ось OY в точке (0; 3);
  • график функции y = 2x (b = 0) пересекает ось OY в точке начала координат (0; 0);
  • график функции y = 2x — 2 (b = -2) пересекает ось OY в точке (0; -2).

Прямые будут параллельными тогда, когда у них совпадают угловые коэффициенты.

Подытожим. Если мы знаем знаки коэффициентов k и b, то можем представить, как выглядит график функции y = kx + b.

Если k 0, то график функции y = kx + b выглядит так:

0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc1049363f94987951092.png» style=»height: 600px;»>

Если k > 0 и b > 0, то график функции y = kx + b выглядит так:

0 и b > 0″ src=»https://user84060.clients-cdnnow.ru/uploads/5fc104b2640e6151326286.png» style=»height: 600px;»>

Точки пересечения графика функции y = kx + b с осями координат:

  • С осью ОY. Абсцисса любой точки, которая принадлежит оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY, нужно в уравнение функции вместо х подставить ноль. Тогда получим y = b.
    Координаты точки пересечения с осью OY: (0; b).
  • С осью ОХ. Ордината любой точки, которая принадлежит оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ, нужно в уравнение функции вместо y подставить ноль. И получим 0 = kx + b. Значит x = — b /k.
    Координаты точки пересечения с осью OX: (- b /k; 0)

Решение задач на линейную функцию

Чтобы решать задачи и строить графики линейных функций, нужно рассуждать и использовать свойства и правила выше. Давайте потренируемся!

Пример 1. Построить график функции y = kx + b, если известно, что он проходит через точку А (-3; 2) и параллелен прямой y = -4x.

  • В уравнении функции y = kx + b два неизвестных параметра: k и b. Поэтому в тексте задачи нужно найти два условия, которые характеризуют график функции.
    Из того, что график функции y = kx + b параллелен прямой y = -4x, следует, что k = -4. То есть уравнение функции имеет вид y = -4x + b.
    Осталось найти b. Известно, что график функции y = -4x + b проходит через точку А (-3; 2). Подставим координаты точки в уравнение функции и мы получим верное равенство:
    2 = -4(-3) + b
    b = -10
  • Таким образом, нам надо построить график функции y = -4x — 10
    Мы уже знаем точку А (-3; 2), возьмем точку B (0; -10).
    Поставим эти точки в координатной плоскости и соединим прямой:

Пример 2. Написать уравнение прямой, которая проходит через точки A (1; 1); B (2; 4).

  1. Если прямая проходит через точки с заданными координатами, значит координаты точек удовлетворяют уравнению прямой y = kx + b.
    Следовательно, если координаты точек подставить в уравнение прямой, то получим верное равенство.
  2. Подставим координаты каждой точки в уравнение y = kx + b и получим систему линейных уравнений.
  3. Вычтем из второго уравнения системы первое, и получим k = 3.
    Подставим значение k в первое уравнение системы, и получим b = -2.

Линейная функция

Линейная функция – функция вида , где и – некоторые числа.

Число называется угловым коэффициентом прямой (и равняется тангенсу угла наклона прямой к положительному направлению оси абсцисс). Число называется свободным членом . График линейной функции является прямой линией, откуда и вытекает название.

Графики линейных функций, имеющие один и тот же угловой коэффициент , параллельны друг другу ( см. рис. слева (ниже)).

Графики функций, коэффициенты и которых связаны следующим образом: , перпендикулярны друг другу (рис. справа).

Частные случаи:

1)
Тогда , графиком является прямая, параллельная оси абсцисс, проходящая, в частности, через точку (рис. слева (ниже))
2)
Тогда (прямая пропорциональность), графиком является прямая, проходящая через начало координат (рис. справа).

Строить график линейной функции можно двумя основными способами:

1) Через две точки

Одну из точек обычно берут . Эта точка сразу же видна, ведь свободный член в формуле задает ординату точки пересечения с осью (оy). Вторую точку выбираем любую (), лишь бы удобно было в ней считать соответствующее значение .

2) По угловому коэффициенту

Строим на координатной плоскости произвольную точку прямой. Проводим через эту точку прямую, образующую с осью (OX) угол, тангенс которого равен k

источники:

http://skysmart.ru/articles/mathematic/grafik-linejnoj-funkcii

Линейная функция

Чтобы найти прямую, параллельную данной прямой, вы должны знать, как написать уравнение прямой. Вы также должны знать, как представить уравнение прямой в форме пересечения наклона. Кроме того, вы должны знать, как определить наклон и точку пересечения оси Y в уравнении линии. Важно помнить, что параллельные линии имеют одинаковый уклон. Узнайте, как найти параллельную линию.

Посмотрите на уравнение линии. Скажем, «3x + y = 8» — это уравнение данной прямой. Приведите уравнение данной прямой в виде углового пересечения: y = mx + b. Используя «3x + y = 8» в качестве уравнения данной прямой, переведите уравнение в форму пересечения наклона, решив «y» (вычтя -3x из обеих частей). Вы получите «y = -3x + 8».

Определите уклон. Наклон — это буква «m» в «y = mx + b». Следовательно, наклон в «y = -3x + 8 (форма пересечения наклона данной прямой)» равен -3. Определите точку пересечения оси y. Y-точка пересечения — это буква b в «y = mx + b». Следовательно, точка пересечения по оси Y в «y = -3x + 8 (форма пересечения с наклоном данной линии)» равна 8.

Измените точку пересечения оси Y на любое постоянное число. В результате получится параллельная линия, поскольку вы не измените наклон или что-либо еще в уравнении. Наклоны параллельных прямых равны. Используя данное уравнение прямой «y = -3x + 8 (форма пересечения угла наклона)», измените точку пересечения оси y с 8 на 9. Вы получите «y = -3x + 9 (форма пересечения наклона)». Параллельная прямая: «y = -3x + 9 (наклон-пересечение форма).» Это означает, что «y = -3x + 9 (форма пересечения наклона)» параллельна «y = -3x + 8 (наклон-пересечение форма).»

Teachs.ru

Чтобы найти параллельную линию для данной линии, вы должны знать, как написать уравнение прямой. Вы также должны знать, как перевести уравнение линии в форму пересечения наклона. Кроме того, вы должны знать, как определить наклон и Y-точку пересечения в уравнении линии. Важно помнить, что параллельные линии имеют равные наклоны. Узнайте, как можно найти параллельную линию.

    Посмотрите на уравнение прямой. Допустим, «3x + y = 8» — это уравнение данной линии. Поместите уравнение данной линии в форму пересечения наклона: y = mx + b. Используя «3x + y = 8» в качестве уравнения заданной линии, поместите уравнение в форму пересечения с уклоном, решив для «y» (вычитая -3x с обеих сторон). Вы получите «y = -3x + 8».

    Определите склон. Наклон — это «m» в «y = mx + b». Следовательно, наклон в «y = -3x + 8 (форма перехвата наклона данной линии)» равен -3. Определить Y-перехват. Y-перехват — это b в «y = mx + b». Следовательно, y-перехват в «y = -3x + 8 (форма перехвата наклона данной линии)» равен 8.

    Измените y-перехват на любое постоянное число. Это приведет к параллельной линии, так как вы не будете изменять наклон или что-либо еще в уравнении. Наклоны параллельных линий равны. Используя заданное уравнение линии «y = -3x + 8 (форма перехвата наклона)», измените y-перехват от 8 до 9. Вы получите «y = -3x + 9 (форма перехвата наклона). «Параллельная линия имеет вид« y = -3x + 9 (форма пересечения с уклоном) ». Это означает, что« y = -3x + 9 (форма пересечения с уклоном) »параллельна« y = -3x + 8 (форма с уклоном- перехватить форму). »

Понравилась статья? Поделить с друзьями:
  • Как найти наличие товара в магазине
  • Как найти свой потерянный телефон дома
  • Как найти лайки друга в контакте
  • Как найти хорошего узиста
  • Как в виндовс 10 найти папку roaming