Как найти параметр треугольник

Информация по назначению калькулятора

Треугольник — это одна из основных геометрических фигур: многоугольник с тремя углами (или вершинами) и тремя сторонами (или ребрами), которые являются прямыми отрезками.

В евклидовой геометрии любые три неколлинеарные точки определяют треугольник и единственную плоскость, то есть двумерное декартово пространство.

Сумма длин любых двух сторон треугольника всегда превышает длину третьей стороны. Это и есть неравенство треугольника.

Треугольники могут быть классифицированы в соответствии с относительной длиной их сторон:

В равностороннем треугольнике все стороны имеют одинаковую длину. Равносторонний треугольник также является равноугольным многоугольником, т.е. все его внутренние углы равны, а именно 60° — это правильный многоугольник.

В равнобедренном треугольнике две стороны имеют одинаковую длину. Равнобедренный треугольник также имеет два совпадающих угла (а именно, углы, противоположные совпадающим сторонам). Равносторонний треугольник — это равнобедренный треугольник, но не все равнобедренные треугольники являются равносторонними треугольниками.

В скалярном треугольнике все стороны имеют разную длину. Внутренние углы в скалярном треугольнике все разные.

Треугольники также могут быть классифицированы в соответствии с их внутренними углами:

Прямоугольный треугольник имеет один внутренний угол 90° (прямой угол). Сторона, противоположная прямому углу, является гипотенузой; это самая длинная сторона в прямоугольном треугольнике. Две другие стороны — катеты треугольника.

Тупой треугольник имеет один внутренний угол, больший 90° (тупой угол).

Острый треугольник имеет внутренние углы, которые все меньше 90° (три острых угла). Равносторонний треугольник — это острый треугольник, но не все острые треугольники являются равносторонними треугольниками.

Наклонный треугольник имеет только углы, которые меньше или больше 90°. Следовательно, это любой треугольник, который не является прямоугольным треугольником.

Онлайн калькулятор поможет найти параметры треугольника, такие как:

  • Длины сторон
  • — равны в равностороннем треугольнике

  • Углы
  • — также равны в равностороннем треугольнике

  • Высота
  • — это прямая линия, проходящая через вершину и перпендикулярная противоположной стороне (т. е. образующая прямой угол с ней)

  • Периметр
  • — равен сумме всех 3х сторон (P=AB+BC+AC)

  • Площадь
  • — равна половине произведения высоты и стороны к которой построена высота (S=1/2 * H * AC)

  • Медианы
  • Биссектрисы
  • Радиус Вписанной и Описанной окружностей
  • Диаметр Вписанной и Описанной окружностей
  • Длина Вписанной и Описанной окружностей
  • Площадь Вписанной и Описанной окружностей

Как найти периметр треугольника

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение

Периметром принято называть длину всех сторон многоугольника. Периметр обозначается заглавной латинской буквой P. Под «P» удобно писать маленькими буквами название фигуры, чтобы не запутаться в задачах и ходе решении.

Важно, чтобы все параметры были переданы в одной единице длины, иначе мы не сможем подсчитать результат. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

В чем измеряется периметр:

Как узнать периметр треугольника

Рассмотрим какие существуют формулы, и при каких известных исходных данных их можно применять.

Если известны три стороны, то периметр треугольника равен их сумме. Этот способ проходят во втором классе.

P = a + b + c, где a, b, c — длина стороны.

Если известна площадь и радиус вписанной окружности:

P = 2 * S : r, где S — площадь, r — радиус вписанной окружности.

Если известны две стороны и угол между ними, вычислить периметр треугольника можно так:

P = √ b 2 + с 2 — 2 * b * с * cosα + (b + с), где b, с — известные стороны, α — угол между известными сторонами.

Если известна одна сторона в равностороннем треугольнике:

P = 3 * a, где a — длина стороны.

Все стороны в равносторонней фигуре равны.

Если известна боковая сторона и основание в равнобедренном треугольнике:

P = 2 * a + b, где a — боковая сторона, b — основание.

Боковые стороны в равнобедренной фигуре равны.

Если известна боковая сторона и высота в равнобедренном треугольнике:

P = 2 * (√ a 2 + h 2 ) + 2 * a, где a — боковая сторона, h — высота.

Высотой принято называть отрезок, который вышел из вершины и опустился на основание. В равнобедренной фигуре высота делит основание пополам.

Если известны катеты в прямоугольном треугольнике:

P = √ a 2 + b 2 + (a + b), где a, b — катеты.

Катет — одна из двух сторон, которые образуют прямой угол.

Если известны катет и гипотенуза в прямоугольном треугольнике:

P = √ c 2 — a 2 + (a + c), где a — любой катет, c — гипотенуза.

Гипотенуза — сторона, которая лежит напротив прямого угла.

Скачать онлайн таблицу

У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.

Треугольник. Формулы и свойства треугольников.

Типы треугольников

По величине углов

По числу равных сторон

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin α sin β sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 — 2 bc · cos α

b 2 = a 2 + c 2 — 2 ac · cos β

c 2 = a 2 + b 2 — 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 — a 2

mb = 1 2 √ 2 a 2 +2 c 2 — b 2

mc = 1 2 √ 2 a 2 +2 b 2 — c 2

Биссектрисы треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p — a ) b + c

lb = 2√ acp ( p — b ) a + c

lc = 2√ abp ( p — c ) a + b

где p = a + b + c 2 — полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Высоты треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b — c )( b + c — a )( c + a — b ) 4( a + b + c )

Окружность описанная вокруг треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Периметр треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Формула Герона

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k — коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Все формулы для треугольника

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Формулы для катета, ( b ):

Формулы для гипотенузы, ( c ):

Формулы сторон по теореме Пифагора, ( a , b ):

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины равных сторон , (a):

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

H — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через стороны и радиус, ( H ):

источники:

http://ru.onlinemschool.com/math/formula/triangle/

http://www-formula.ru/2011-10-09-11-08-41

Фигура треугольник

Общие сведения

Произвольное множество точек называют геометрической фигурой. На плоскости они соединены замкнутыми линиями, образующими контур тела. В трёхмерном пространстве многоугольник, состоящий из трёх отрезков, не принадлежащих одной прямой, носит имя треугольник. Его линии называют сторонами или боковыми гранями, а место их пересечения — вершинами.

Треугольник — замкнутое геометрическое тело, состоящее из трёх сторон и такого же количества углов. Боковые грани принято обозначать маленькими латинскими буквами. Углы на рисунке показывают маленькой дугой, а в записи — символом ∠ с указанием соответствующей вершины. Точки же пересечения линий подписывают большими буквами.

Например, если имеется треугольник ABC, у него есть углы A, B, C и стороны a, b, c. Боковые грани могут обозначать и как отрезки, тогда в их имени учитываются ограничивающие точки. Например, AB, BC, CA. Строгого требования в виде обозначений нет, но существуют негласные правила, которых всё же рекомендуется придерживаться.

Хотя определение треугольника и его элементов одинаковое, выделяют 3 класса фигур:

Остроугольный треугольник

  • остроугольный — любой из углов тела не превышает 90 градусов;
  • тупоугольный — форма одного из разворотов тупоугольная;
  • прямоугольный — размер одного из трёх углов составляет 90 градусов.

Кроме этого, многоугольник классифицируют по числу равных сторон. Разносторонним он считается в том случае, если все они разной длины, равнобедренным — треугольник, имеющий 2 равные стороны, а равносторонним — у которого все стороны равны. Последний в литературе может ещё называться правильным.

На основании классификационных групп треугольники можно сравнивать между собой. Они считаются подобными, если 2 угла одного соответственно равны двум углам другого, или когда 2 стороны одного пропорциональны двум сторонам другого, а углы, заключённые между этими сторонами, равны. Эти правила называют признаками подобия. Они особенно популярны среди физиков. Их часто используют при вычислении элементов прямоугольников, квадратов, трапеций.

Элементы треугольника

Кроме сторон и вершин, фигура имеет различные точки и линии, называемые замечательными. Такое имя они получили из-за своих свойств. Но перед тем как их перечислить, нелишним будет привести основные величины, характеризующие фигуру, способы их нахождения и теоремы.

Периметр многоугольника можно определить, сложив все стороны: P = a + b + c. Площадь треугольника находится как половина произведения двух граней, умноженных на синус угла между ними: S = (a * b * sinC) / 2. Сумма углов равна 180 градусов, при этом напротив равных сторон лежат одинаковые углы.

Медиана треугольника

К замечательным линиям относят:

Вписанная окружность в треугольник

  1. Медиану — линию, проходящую через вершину к середине противолежащей стороны. Всего в треугольнике можно провести 3 таких отрезка. Точка их пересечения является центром массы. Если считать от вершины, в ней она делится в отношении 2 к 1. Каждая медиана разделяет фигуру на 2 объекта с одинаковой площадью.
  2. Биссектрису — отрезок, построенный к стороне из угла и делящий его на 2 равные части. Она делит грань на 2 замкнутые линии, пропорциональные прилежащим сторонам. Точка, в которой пересекаются биссектрисы, является началом диаметра вписанной в треугольник окружности.
  3. Высоту — перпендикуляр, опущенный из угла на противоположную сторону. Все они пересекаются в одной точке.
  4. Срединную линию — проходит всегда параллельно одной из граней и соединяет середины двух оставшихся сторон. 3 таких линии разделят многоугольник на 4 равных треугольника.

При измерениях используют и «особенные» точки фигуры. Если в треугольник вписать окружность, её центр совпадёт с местом скрещивания перпендикуляров. А если поместить в круг, середина будет совпадать с пересечением биссектрис. Для других замечательных линий точки их соприкосновения также имеют свои названия: ортоцентр (высот) и центроид (медиан). Первая может принадлежать как внутренней площади фигуры, так и внешней (тупоугольный треугольник).

В равнобедренном треугольнике медиана, высота и биссектриса совпадают. При этом их центр является серединой как вписанной окружности, так и описанного круга. А угол, из которого построен один из таких отрезков, будет разделён на 2 одинаковых разворота равных 30 градусам.

Основные формулы

Найти любой элемент треугольника можно по специальным формулам. Чаще всего приходится искать стороны фигуры. Зная их, можно найти практически любые параметры, просто подставив в выражения значения размеров граней.

Основные формулы для треугольника

Найти длину отрезка, формирующего контур фигуры, можно, зная длины двух сторон и угла или значения двух углов и одной стороны. Для первого случая формула имеет вид a = b * sin (a) / sin (b) = b * sin (a) / sin (a + c), а второго: a = √(b2 + c2 — 2bc * cos (a)). Если имеется тупой угол, косинус будет отрицательный. Это необходимо учитывать при расчётах.

Это общие формулы, подходящие для любого типа треугольника. Но в то же время для прямоугольного существует своё правило, связывающее все 3 грани в одну формулу: c = √(b2 + a2). Называется оно теоремой Пифагора. В равнобедренном вычислить сторону можно, зная любую другую и угол. Для основания используют равенство b = 2a * cos (a), а для равных граней: a = b / 2 * cos (a).

Из множества других существующих формул для определения различных элементов фигуры, можно указать на те, что чаще всего используются при решении примеров:

Формулы для треугольника

  1. Высота: h = (2 / a) * √(p * (p — a) * (p — b) * (p — c)) или h = b * sin© = c * sin (b). Отрезок можно найти, зная площадь и сторону h = 2 * S / a или радиус описанной окружности: h = (b * c) / 2 * R.
  2. Биссектриса: L = √(a * b * (a + b + c) * (a + b — c)) / (a + b). Формулу можно упростить, используя периметр: L = 2 * √ (a * b * P) * (P — c)) / (a + b), где P = p /2 (полупериметр).
  3. Медиана: М = √(2 * a2 + 2b2 — c2) / 2. Линию можно определить, зная только 2 стороны и лежащий между ними угол: М = √(a2 + b2 — 2 * a * b * cos (с)) / 2. В прямоугольном треугольнике она равняется радиусу описанного круга или половине гипотенузы: М = R = c / 2.

Существуют и упрощённые выражения. Формула Герона позволяет высчитать площадь, используя полупериметр и длины сторон: S = √(P * (P — a) * (P — b) * (P — c)). Также величину можно определить, зная высоту и длину основания: S = (a * H) / 2.

Для нахождения элементов треугольника в 7 классе ученикам дают ещё 2 фундаментальные теоремы: косинусов и синусов. Первая сообщает, что квадрат грани фигуры равен удвоенному произведению двух сторон и косинуса угла между ними, вычтенному из сумы квадратов: a2 = b2 + c2 — 2 * b * c * cos (a). Согласно же второй, стороны пропорциональны синусам противолежащих углов: a / sin (a) = b / sin (b) = c / sin©.

Решение примеров

Формул для вычисления элементов треугольников можно насчитать несколько десятков. Запомнить их довольно сложно, поэтому нужно выучить основные определения и выражения, а сделать это лучше всего, решая практические примеры. Вот некоторые из них:

Ученик решает задачу

  1. В треугольнике проведено 2 высоты. Одна равняется 63 см, а другая 56 см. Найти истинный отрезок, если основание AC = 84 см, а размер медианы BK совпадает с длиной стороны BC. Так как точка K делит отрезок AC пополам, AK = KC = AC / 2 = 84 /2 = 42 см. В треугольнике BKC 2 стороны равны друг другу, согласно условию, значит, он равнобедренный. Следовательно, высота является одновременно и медианой. KH = HC = MC /2 = 42 / 2 = 21 см. Искомый отрезок будет равен: h = AK + KC = 42 + 21 = 63 см. Следовательно, правильный первый вариант.
  2. Пусть дан треугольник ABC. Найти возможный отрезок BN, на который биссектриса поделит сторону BC, если AB = 6 см, BC = 7 см, AC = 8 см. Для решения понадобится вспомнить свойство биссектрисы. Из него следует, что BN / NC = AB / AC = 6 / 8. Если искомый отрезок принять за икс, будет верным равенство KC = 7 — x. Значит: x / (7 — x) = 6 / 8. Отсюда можно выразить неизвестное: x = 42 / 14 = 3 см. Теперь останется подставить найденное число и найти искомое значение: KC = 7 — 3 = 4 см.
  3. Завод начал выпускать новую серию объёмных фигур. Определить, какой тип многоугольника лежит в их основании, если её стороны равны 3, 2 и √3. Чтобы найти ответ, нужно проанализировать исходные данные. Так как сумма двух меньших сторон больше третей боковой грани, в основании лежит треугольник. 3 в квадрате не равно 22 + (√3)2. Следовательно, геометрическое тело непрямоугольное. По теореме косинусов можно записать: a2 = b2 + c2 — 2 * b * c * cos (a). Исходя из того, что cos (a) = -1/ √ 3, то есть он отрицательный, можно утверждать, что разворот угла тупой. Значит, треугольник у основания тупоугольный.

Проверить правильность вычислений можно, воспользовавшись онлайн-калькуляторами. Это сервисы, предоставляющие услуги по расчёту различных математических величин. Воспользоваться ими сможет любой, даже тот, кто не знает ни одной формулы и теоремы. Всё, что требуется от пользователя — правильно ввести исходные данные в специальную форму и нажать кнопку «Рассчитать». Через несколько секунд ответ, а в некоторых случаях и решение, появится на экране.

Выбирайте формулу в зависимости от известных величин.

1. Как найти периметр треугольника, зная три стороны

Просто посчитайте сумму всех сторон.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a, b, c — стороны треугольника.

2. Как найти периметр треугольника, зная его площадь и радиус вписанной окружности

Умножьте площадь треугольника на 2.

Разделите результат на радиус вписанной окружности.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • S — площадь треугольника;
  • r — радиус вписанной окружности.

3. Как вычислить периметр треугольника, зная две стороны и угол между ними

Сначала найдите неизвестную сторону треугольника с помощью теоремы косинусов:

  • Умножьте одну сторону на вторую, на косинус угла между ними и на 2.
  • Посчитайте сумму квадратов известных сторон и отнимите от неё число, полученное в предыдущем действии.
  • Найдите корень из результата.

Теперь прибавьте к найденной стороне две ранее известные стороны.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • b, c — известные стороны треугольника;
  • ɑ — угол между известными сторонами;
  • a — неизвестная сторона треугольника.

4. Как найти периметр равностороннего треугольника, зная одну сторону

Умножьте сторону на 3.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — любая сторона треугольника (напомним, в равностороннем треугольнике все стороны равны).

5. Как вычислить периметр равнобедренного треугольника, зная боковую сторону и основание

Умножьте боковую сторону на 2.

Прибавьте к результату основание.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — боковая сторона треугольника (в равнобедренном треугольнике боковые стороны равны);
  • b — основание треугольника (это сторона, которая отличается длиной от остальных).

6. Как найти периметр равнобедренного треугольника, зная боковую сторону и высоту

Найдите квадраты боковой стороны и высоты.

Отнимите от первого числа второе.

Найдите корень из результата и умножьте его на 2.

Прибавьте к полученному числу две боковые стороны.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — боковая сторона треугольника;
  • h — высота (перпендикуляр, опущенный на основание треугольника со стороны противоположной вершины; в равнобедренном треугольнике высота делит основание пополам).

7. Как вычислить периметр прямоугольного треугольника, зная катеты

Найдите квадраты катетов и посчитайте их сумму.

Извлеките корень из полученного числа.

Прибавьте к результату оба катета.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a, b — катеты треугольника (стороны, которые образуют прямой угол).

8. Как найти периметр прямоугольного треугольника, зная катет и гипотенузу

Посчитайте квадраты гипотенузы и катета.

Отнимите от первого числа второе.

Найдите корень из результата.

Прибавьте катет и гипотенузу.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — любой катет прямоугольника;
  • c — гипотенуза (сторона, которая лежит напротив прямого угла).

Калькулятор длин сторон треугольника онлайн умеет вычислять длину сторон 14 способами.
Калькулятор может:

  1. Найти все стороны треугольника.
  2. Найти все углы треугольника.
  3. Найти площадь (S) и периметр (P) треугольника.
  4. Найти радиус (r) вписанной окружности.
  5. Найти радиус (R) описанной окружности.
  6. Найти высоту (h) треугольника.

Просто введите любые имеюшиеся данные и, если их достаточно, то калькулятор сам подберет нужные формулы для вычислений и покажет подробный расчет с выводом формул.
 

Сторона треугольника (или длина сторон) может быть найдена различными методами. 
В большинстве случаев достаточно воспользоваться одной из ниже приведенных формул. Однако не редки случаи когда для нахождения искомой стороны понадобиться обратиться к дополнительным материалам или решения в два действия.

Как найти длину стороны треугольника?

Найти длину сторон треугольника очень просто на нашем онлайн калькуляторе. Так же длина может быть найдена самостоятельно по формулам. Выбор нужной формулы зависит от того какие данные известны.

Для прямоугольного треугольника:

1) Найти катет через гипотенузу и другой катет



где a и b — катеты, с — гипотенуза.

2) Найти гипотенузу по двум катетам



где a и b — катеты, с — гипотенуза.

3) Найти катет по гипотенузе и противолежащему углу



где a и b — катеты, с — гипотенуза,α° и β° — углы напротив катетов.

4) Найти гипотенузу через катет и противолежащий угол



где a и b — катеты, с — гипотенуза,α° и β°- углы напротив катетов.

Для равнобедренного треугольника:

1) Найти основание через боковые стороны и угол между ними



где a — искомое основание, b — известная боковая сторона,α° — угол между боковыми сторонами.

2) Найти основание через боковые стороны и угол при основании



где a — искомое основание,b — известная боковая сторона,β° — угол при осноавнии.

3) Найти боковые стороны по углу между ними



где b — искомая боковая сторона, a — основание,α° — угол между боковыми сторонами.

4) Найти боковые стороны по углу при основании



где b — искомая боковая сторона, a — основание,β° — угол при осноавнии.

​​​​​Для равностороннего треугольника:

1) Найти сторону через площадь



где a — искомая сторона, S — площадь треугольника.

2) Найти сторону через высоту



где a — искомая сторона,h — высота треугольника.

3) Найти сторону через радиус вписанной окружности



где a — искомая сторона,r — радиус вписанной окружности.

4) Найти сторону через радиус описанной окружности



где a — искомая сторона,R — радиус описанной окружности.

​​​​​Для произвольного треугольника:

1) Найти сторону через две известные стороны и один угол (теорема косинусов)



где a — искомая сторона, b и с — известные стороны, α° — угол напротив неизвестной стороны.

2) Найти сторону через одну известную сторону и два угла (теорема синусов)



где a — искомая сторона, b — известная сторона, α° и β° известные углы.

Скачать все формулы в формате Word

Понравилась статья? Поделить с друзьями:
  • Шаманы москвы как найти
  • Сделали ошибку при записи в трудовой книжке как исправить
  • Как найти длину проводника через напряжение
  • Как найти статистику на сайте росстата
  • Как найти номинальный процент от суммы