Как найти параметрическое уравнение прямой онлайн

Онлайн калькулятор. Уравнение прямой проходящей через две точки

Этот онлайн калькулятор позволит вам очень просто найти параметрическое и каноническое уравнение прямой проходящей через две точки.

Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения прямой и закрепить пройденный материал.

Найти уравнение прямой

Прямая проходящая через две точки

Выберите необходимую вам размерность:

Размерность:

Введите координаты точек.

Вводить можно числа или дроби (-2.4, 5/7, …). Более подробно читайте в правилах ввода чисел.

На этой странице вы найдете два калькулятора, которые строят уравнение прямой по координатам двух точек, принадлежащих этой прямой.

Первый калькулятор находит уравнение прямой с угловым коэффициентом, то есть уравнение в форме y=ax+b. Также он строит график и отдельно выводит угловой коэффициент и значение y в месте пересечения прямой с осью ординат.

Второй калькулятор находит параметрические уравнения прямой, то есть систему уравнений вида x=at+x_0\y=bt+y_0. Он также строит график и отдельно выводит направляющий вектор.

Формулы расчета можно найти под калькуляторами.

PLANETCALC, Уравнение прямой с угловым коэффициентом по двум точкам

Уравнение прямой с угловым коэффициентом по двум точкам

Первая точка

Вторая точка

Значение y в точке пересечения с осью ординат

Точность вычисления

Знаков после запятой: 2

PLANETCALC, Параметрическое уравнение прямой

Параметрическое уравнение прямой

Первая точка

Вторая точка

Параметрическое уравнение для x

Параметрическое уравнение для y

Точность вычисления

Знаков после запятой: 2

Уравнение прямой с угловым коэффициентом

Найдем уравнение прямой с угловым коэффициентом по двум известным точкам (x_0, y_0) и (x_1, y_1).

Нам надо найти угловой коэффициент a и y координату точки пересечения прямой с осью ординат b.

Мы можем составить следующие уравнения для двух точек относительно a и b
y_0=ax_0+b\y_1=ax_1+b

Вычитаем первое из второго
y_1 - y_0=ax_1 - ax_0+b - b\y_1 - y_0=ax_1 - ax_0\y_1 - y_0=a(x_1 -x_0)

Откуда
a=frac{y_1 - y_0}{x_1 -x_0}

b можно найти как
b=y-ax
Таким образом, как только мы нашли а, для расчета b достаточно только подставить значения x_0, y_0, a или x_1, y_1, a в выражение выше.

Параметрическое уравнение прямой

Найдем параметрическое уравнение прямой по двум известным точкам (x_0, y_0) и (x_1, y_1).

Нам надо найти компоненты направляющего вектора.
D=begin{vmatrix}d_1\d_2end{vmatrix}=begin{vmatrix}x_1-x_0\y_1-y_0end{vmatrix}
Этот вектор описывает величину и направление воображаемого движения по прямой от первой до второй точки.

Имея направляющий вектор, легко записать параметрические уравнения прямой
x=d_1t+x_0\y=d_2t+y_0
Обратите внимание, что если t = 0, то x = x_0, y = y_0 и если t = 1, то x = x_1, y = y_1

Получить уравнение прямой, проходящей через две точки помогут созданные нами калькуляторы. Предлагаем найти каноническое и параметрическое уравнение прямой, а также уравнение прямой с угловым коэффициентом как на плоскости, так и в пространстве.

Прямая — это бесконечная линия, по которой проходит кратчайший путь между любыми двумя её точками.

Уравнения прямой, проходящей через две точки могут быть следующих видов:

  • каноническое уравнение,
  • параметрическое уравнение,
  • общее уравнение прямой,
  • уравнение прямой с угловым коэффициентом,
  • уравнение прямой в полярных координатах и другие.

Для получения уравнений введите координаты двух точек прямой. Онлайн-калькулятор найдет уравнения и выдаст результат с подробным решением.

Каноническое уравнение прямой на плоскости

{dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a}}

xa и ya — координаты первой точки A,

xb и yb — координаты второй точки B

Параметрическое уравнение прямой на плоскости

{begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a end{cases}}

xa, ya — координаты точки, лежащей на прямой,

{l;m} — координаты направляющего вектора прямой,

t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении.

Каноническое уравнение прямой в пространстве

{dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a} = dfrac{z-z_a}{z_b-z_a}}

xa, ya и za — координаты первой точки A,

xb, yb и zb — координаты второй точки B

Параметрическое уравнение прямой в пространстве

{ begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a \ z=n cdot t + z_a end{cases} }

xa, ya и za — координаты точки, лежащей на прямой,

{l;m;n} — координаты направляющего вектора прямой,

t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении.

Пример нахождения уравнения прямой, проходящей через две точки

Найдем уравнения прямой, проходящей через точки A(1,2) и B(3,8).

Каноническое уравнение прямой

Каноническое уравнение прямой, проходящей через две точки имеет вид {dfrac{x-x_a}{x_b-x_a} = dfrac{y-y_a}{y_b-y_a}}

Подставим в формулу координаты точек A и B: {dfrac{x-1}{3-1} = dfrac{y-2}{8-2}}

Получаем каноническое уравнение прямой: {dfrac{x-1}{2} = dfrac{y-2}{4}}

Уравнение прямой с угловым коэффициентом

Из канонического уравнения получаем уравнение прямой с угловым коэффициентом: {y=3x-1}

Параметрическое уравнение прямой

Параметрическое уравнение прямой имеет вид:

{ begin{cases} x=l cdot t + x_a \ y=m cdot t + y_a end{cases} }

где {x_a, y_b} — координаты точки, лежащей на прямой, {{l;m}} — координаты направляющего вектора прямой, t — произвольный параметр, аналогичный параметру в векторно-параметрическом уравнении. В качестве координат используем координаты точки {A(x_a, y_b)}.

Найдем координаты направляющего вектора:

overline{AB} = {x_b — x_a; y_b — y_a} = {3-1; 8-2} = {2; 6}

Получаем параметрическое уравнение:

begin{cases} x=2 t + 1 \ y=6 t + 2 end{cases}

Используем калькулятор для проверки полученного ответа.

Составим уравнение прямой проходящей через две точки A(2; 1) и B(0; 2).

Составим каноническое уравнение прямой

Воспользуемся формулой канонического уравнения прямой

Подставим в формулу координаты точек:

В итоге получаем каноническое уравнение прямой:

Составим параметрическое уравнение прямой

Воспользуемся формулой параметрического уравнения прямой:

где:

— направляющий вектор прямой, в качестве которого можно взять вектор ;

— координаты точки лежащей на прямой, в качестве которых можно взять координаты точки A.

В итоге получим параметрическое уравнение прямой:

Уравнение прямой, проходящей через две точки онлайн

С помощю этого онлайн калькулятора можно построить уравнение прямой, проходящей через две точки. Дается подробное решение с пояснениями. Для построения уравнения прямой задайте размерность (2-если рассматривается прямая на плоскости, 3- если рассматривается прямая в пространстве), введите координаты точек в ячейки и нажимайте на кнопку «Решить».

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Уравнение прямой, проходящей через две точки − примеры и решения

Пример 1. Построить прямую, проходящую через точки A(2, 1, 1), B(3, 1, -2).

Решение.

Уравнение прямой, проходящей через точки A(x1, y1, z1) и B(x2, y2, z2) имеет следующий вид:

Подставив координаты точек A и B в уравнение (1), получим:

или

(Здесь 0 в знаменателе не означает деление на 0).

Составим параметрическое уравнение прямой:

Выразим переменные x, y, z через параметр t :

Ответ.

Каноническое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:

Параметрическое уравнение прямой, проходящей через точки A(2, 1, 1), B(3, 1, -2) имеет следующий вид:

Пример 2. Построить прямую, проходящую через точки A(1, 1/5, 1) и B(−2, 1/2, −2).

Решение.

Уравнение прямой, проходящей через точки A(x1, y1, z1) и B(x2, y2, z2) имеет следующий вид:

Подставив координаты точек A и B в уравнение (2), получим:

или

Составим параметрическое уравнение прямой:

Выразим переменные x, y, z через параметр t :

Ответ.

Каноническое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:

Параметрическое уравнение прямой, проходящей через точки A(1, 1/5, 1) и B(−2, 1/2, −2) имеет следующий вид:

Понравилась статья? Поделить с друзьями:
  • Как найти запросы на услуги
  • Как найти doi в scopus
  • Как найти вес человека на земле
  • Как девушке найти свое предназначение
  • Как через интернет найти сотовый телефон