Как найти параметры электрической цепи

Любая электрическая цепь и каждый ее элемент в отдельности обладают тремя параметрами: сопротивлением R, индуктивностью L и емкостью С.

Сопротивление R характеризует способность цепи преобразовывать электромагнитную энергию в тепловую. Количество тепловой энергии WТ , выделяющееся в сопротивлении R при протекании тока i в течение времени t, определяется соотношением (1.3) и измеряется в джоулях (Дж):

Величина сопротивления любого элемента цепи определяется как отношение постоянного напряжения на этом элементе к постоянному току в нем и измеряется в омах (Ом):

Индуктивность L характеризует способность цепи накапливать энергию магнитного поля. Такой способностью обладает любой проводник с током или система проводов. Количество этой энергии WM , накопленной в цепи, зависит от величины тока i и измеряется в джоулях (Дж):

WM

Li 2

.

(1.5)

2

Эта энергия не преобразуется в тепло, а существует в цепи в виде некоторого запаса. Когда ток в цепи равен нулю, запаса энергии магнитного поля в ней нет.

Величина индуктивности определяется как отношение потокосцепления цепик току i и измеряется в генри (Гн):

Потокосцеплением называется сумма магнитных потоков всех витков катушки. В простейшем случае для катушки на замкнутом стальном сердечнике можно считать, что ее потокосцепление есть магнитный поток Ф, умноженный на число витков w: = Ф w.

38

Емкость С характеризует способность цепи накапливать энергию электрического поля. Такой способностью обладают любые два провода, разделенные диэлектриком, например провод, висящий над землей, любые два провода линии передачи.

Количество энергии электрического поля WЭ , накопленной в цепи с емкостью С, зависит от величины напряжения между проводами и измеряется в джоулях (Дж):

W

Сu2

.

(1.7)

Э

2

Эта энергия не может преобразовываться в тепловую, а существует в цепи в виде некоторого запаса. Если напряжение между проводами отсутствует, то и запаса энергии электрического поля в цепи нет.

Величина емкости С определяется как отношение электрического заряда q одного из проводов к напряжению u между ними и измеряется в фарадах (Ф):

С qu .

Если R, L и С являются постоянными величинами и не зависят от напряжения), то такие элементы называются линейными, а цепи, содержащие, называются линейными цепями.

Элементы, параметры которых зависят от тока или напряжения, называются нелинейными, а цепи, их содержащие, также называются нелинейными цепями.

Свойства нелинейного элемента электрической цепи не могут быть выражены одним постоянным числом и поэтому описываются его характеристикой. Для сопротивлений это зависимости напряжения от тока (вольтамперные характеристики); для индуктивностей это зависимости потокосцепления от тока (веберамперные характеристики); для емкостей это зависимости электрического заряда от напряжения (кулонвольтные характеристики). На рис. 1.5 показаны примеры характеристик некоторых линейных (ЛЭ) и нелинейных (НЭ) элементов цепи.

Заметим, что характеристики всех линейных элементов цепи являются прямыми линиями, а нелинейных элементов – кривыми.

39

1.6. Идеальные элементы электрической цепи

Любое электротехническое устройство содержит все три параметра: сопротивление R , индуктивность L и емкость С. Рассмотрим (рис. 1.6) катушку, выполненную из провода с конечной проводимостью (это может быть и нить лампы накаливания, и обмотка трансформатора или электродвигателя).

i

R

L

C

q

нэ

лэ

лэ

нэ

лэ

нэ

u

0

i

u

0

0

вольтамперная

веберамперная

кулонвольтная

характеристика

характеристика

характеристика

сопротивления

индуктивности

емкости

Рис. 1.5

При подаче на ее зажимы напряжения u на концах катушки появляются разноименные заряды (+)q и ( )q и в обмотке начинает протекать ток i. При этом вокруг витков обмотки возникает магнитное поле, характеризуемое потокосцеплением . Таким образом, в соответствии с формулами (1.4), (1.6) и (1.8) рассматриваемая катушка обладает всеми тремя вышеуказанными параметрами.

R L C

Рис. 1.6

40

Для удобства анализа и расчета электрических цепей вводят в рассмотрение такие элементы, которые при всех условиях обладают только одним параметром: только сопротивлением, только индуктивностью, только емкостью. Они называются идеальными.

Графическое изображение идеальных элементов электрической цепи показано на рис. 1.2 позициями 4, 5 и 6. В природе таких элементов не существует, но есть устройства, по своим свойствам близкие к идеальным. Реостат (резистор) при низких частотах обладает практически только сопротивлением R, а индуктивностью L и емкостью С этого устройства можно пренебречь. Катушка индуктивности на замкнутом ферромагнитном сердечнике с малыми тепловыми потерями в нем обладает на низких частотах практически только индуктивностью L, а сопротивлением R и емкостью С такой катушки можно пренебречь. Конденсатор с малыми внутренними тепловыми потерями обладает практически только емкостью С, а его активной проводимостью G и индуктивностью L можно пренебречь.

Любое реальное электротехническое устройство можно изобразить в виде электрической схемы, состоящей из комбинации идеальных элементов и, следовательно, произвести его электрический расчет.

1.7. Соотношение между током и напряжением в идеальных элементах

цепи

Прежде чем приступать к расчету сколько-нибудь сложных электрических цепей, следует выяснить, каким образом связаны между собой ток и напряжение в каждом из идеальных элементов цепи. Эти соотношения, называемые уравнения элементов, известные из курса физики, приведены

в табл. 1.1. Они имеют всеобщий характер и справедливы для цепей, у которых ток и напряжение изменяются во времени по любому закону.

Из табл. 1.1 видно, что только в сопротивлении R ток и напряжение связаны между собой алгебраическим соотношением. Между током и напряжением в индуктивности и емкости имеют место интегродифференциальные соотношения.

41

Таблица 1.1

Формулы для определения тока и напряжения в идеальных элементах

Идеальный элемент

Ток

Напряжение

п/п

i

R

i

u

u iR

1

u

R

2

i

L

1 udt

u L di

i

dt

u

L

3

i

C

i C du

u 1 idt

u

dt

C

Пример 1.3. В цепи с идеальной индуктивностью (рис. 1.7,а) действует пилообразный периодический ток (рис. 1.7,б). Требуется определить форму приложенного напряжения.

а)

L

б)

i,u

i

i

u

u

1

2

t

0

T

2T

3T

Рис. 1.7

Решение. Для нахождения графика напряжения используем соотношение u L didt , из которого следует, что форма кривой напряжения соответствует производной от тока по времени.

42

В нашем примере на участке от 0 до T/2 кривая тока представляет собой прямую, проходящую через начало координат под острым углом 1 90 к оси

t, и поэтому производная di / dt на этом участке есть постоянная и положительная конечная величина.

На участке от T/2 до Т ток представляет собой прямую, составляющую тупой угол с осью t 2 90 , и поэтому производная di / dt на этом участке есть постоянная и отрицательная величина. При этом tg 2 tg (180 1 ) tg 1 .

Таким образом, график искомого напряжения представляет собой отрезки прямых, меняющих каждую половину периода свой знак, как это показано на рис. 1.7,б.

Вопросы для самопроверки

1) Дана структурная схема цепи. Сколько ветвей в данной цепи?

5

4

3

6

7

1.

2.

3.

4.

5.

2) Найдите правильное уравнение:

1. i1 i2 i3 i4 0

i4

i1

i2

2. i i

i

i 0

1

2

3

4

i3

3. i1 i2 i3 i4 0

4.i1 i2 i3 i4 0

5.i1 i2 i3 i4 0

3)Выберите правильное уравнение:

1. e1 e2 u1 u2

e1

u2

2. e1 e2 u1 u2

u1

e2

3. e1 e2 u1 u2

4. e1 e2 u1 u2

6)Дано: С = 1000 мкФ; U = 100 В.

С

U

Определите заряд

конденсатора q Кл.

0,1

0,2

0,3

0,4

0,5

1.

2.

3.

4.

5.

7)Дано: L =10 мГн; I = 100 A.

L

Определите

I

потокосцепление

катушки

Вб.

4

3

2

1

0,5

1.

2.

3.

4.

5.

8) Дано: WЭ = 0,05 Дж; С = 10 мкФ.

С

Определите напряжение

U

на конденсаторе U В.

43

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь.  Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

Электрическая цепь

Электрическая цепь

Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

Обозначения элементов электрической цепи

 

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

Способы соединения элементов электрической цепи

 

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Схема электрической цепи

 

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.

Электрическая цепь

 

Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

решение электрических цепей

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

решение электрических цепей

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

Всем доброго времени суток. В прошлой статье я рассматривал типы соединений приемников энергии в электрических цепях, а так же законы Кирхгофа, которые определяют основные соотношения токов и напряжений в этих цепях. Но кроме знания основных законов электротехники необходимо уметь рассчитывать неизвестные параметры электрических цепей по заданным известным параметрам. Так, например, по известным напряжениям, ЭДС и сопротивлениям необходимо знать какую мощность будет потреблять тот или иной приемник энергии, а так же вся цепь в целом. Этим мы и займёмся в данной статье.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Расчёт электрических цепей с помощью законов Кирхгофа

Существует несколько методов расчёта электрических цепей, которые различаются между собой параметрами, которые необходимо найти, а так же количеством необходимых расчётов.

Вначале я расскажу, как произвести расчёт цепи в общем виде, но в результате размеры вычислений будут неоправданно большими. Данный метод расчёта основан на законах Ома и Кирхгофа и используется при расчётах небольших цепей с малым количеством контуров. Для этого составляют систему уравнений из (q — 1) уравнений для узлов цепи и n уравнений для независимых контуров. Независимые контуры характеризуются тем, что при составлении уравнений для каждого нового контура входит хотя бы одна новая ветвь, не вошедшая в предыдущий контур. Таким образом, количество уравнений в системе уравнений по данному методу расчёта цепи будет определяться следующим выражением

В качестве примера рассчитаем электрическую цепь, приведённую на рисунке ниже

Схема для расчёта по законам Кирхгофа
Пример электрической цепи для расчёта по законам Ома и Кирхгофа.

В качестве примера возьмём следующие параметры схемы: E1 = 50 B, E2 = 30 B, R1 = R3 = 10 Ом, R2 = R5 = 20 Ом, R4 = 25 Ом.

  1. Составим уравнение по первому закону Кирхгофа. Так как узла у нас два, то выберем узел А и составим для него уравнение. Я выбрал условно, что токи I1 и I2 втекают в узел, а I3 – вытекает, тогда уравнение будет иметь вид

  2. Составим недостающие уравнения по второму закону Кирхгофа. В схеме у нас два независимых контура: E1R1R2R4E2R3  и E2R4R5, поэтому выбирая произвольное направление контуров составим недостающие два уравнения. Я выбрал обход по ходу часовой стрелке, поэтому уравнения имеют вид

Таким образом, получившаяся система уравнений будет иметь следующий вид

Решив данную систему, получим следующие результаты: I1 ≈ 0,564 А, I2 ≈ 0,103 А, I2 ≈ 0,667 А.

В результате решения системы уравнений по данному методу может оказаться, что токи получились отрицательными. Это значит, что действительное направление токов противоположно по направлению выбранному.

Метод контурных токов

Рассмотренный выше метод расчета электрических цепей при анализе больших и разветвленных цепей приводит к неоправданно трудоемким расчетам, поэтому редко применяется. Более широко используется метод контурных токов, позволяющий значительно сократить количество уравнений. При этом вместо токов в ветвях электрической цепи определяются так называемые контурные токи при помощи второго закона Кирхгофа. Таким образом, количество требуемых уравнений будет равняться числу независимых контуров. В качестве примера рассчитаем цепь изображённую на рисунке ниже

Метод контурных токов
Расчет цепи методом контурных токов.

Если бы мы вели расчёт цепи по методу законов Ома и Кирхгофа, то необходимо было бы решить систему из пяти уравнений. Для расчёта по методу контурных токов необходимо всего три уравнения.

В начале расчёта выделяют независимые контуры, в нашем случае это: E1R1R2E2, E2R2R4E3R3 и E3R4R5. Затем контурам присваивают произвольно направленный контурный ток, который имеет одинаковое направление для всех участков выбранного контура, в нашем случае для первого контура контурный ток будет Ia, для второго – Ib, для третьего – Ic. Как видно из рисунка некоторые контурные токи соответствуют токам в ветвях

Остальные же токи можно найти как разность двух контурных токов

В результате выбора контурных токов можно составить систему уравнений по второму закону Кирхгофа

Рассчитаем схему, изображённую на рисунке выше со следующими параметрами E1 = E3 = 100 B, E2 = 50 B, R1 = R2 = 10 Ом, R3 = R4 = R5 = 20 Ом. Запишем систему уравнений

В результате решения системы получим Ia = I1 = 4,286 А, Ib = I3 = 3,571 А, Ic = I5 = -0,714 А, I2 = -0,715 А, I4 = 4,285 А. Так же как и в предыдущем случае если токи получаются отрицательными, значит действительное направление противоположно принятому. Таким образом, токи I2 и I5 имеют направление противоположное изображённым на рисунке.

Метод узловых напряжений

Кроме метода контурных токов, для уменьшения трудоемкости расчётов, применяют метод узловых напряжений, при этом возможно еще меньшее число уравнений, так как при этом методе их число достигает

где q – количество узлов в электрической цепи.

Принцип расчёта электрической цепи заключается в следующем:

  1. Принимаем один из узлов цепи за базисный и присваиваем ему потенциал равный нулю;
  2. Для оставшихся узлов составляем уравнения по первому закону Кирхгофа, заменяя токи в ветвях по закону Ома через напряжение и сопротивление;
  3. После решения получившейся системы уравнений вычисляем токи в ветвях по обобщенному закону Ома.

В качестве примера возьмём предыдущую цепь и составим систему уравнений

Метод узловых потенциалов
Схема для решения уравнений методом узловых потенциалов.

В качестве базисного возьмём узел А и заземлим его, для остальных узлов B и D составим уравнения по первому закону Кирхгофа

Примем потенциалы узлов В = U1 и D = U2, тогда токи в ветвях выразятся через обобщённый закон Ома

В результате получившаяся система будет иметь следующий вид

Рассчитаем схему, изображённую на рисунке выше со следующими параметрами E1 = E3 = 100 B, E2 = 50 B, R1 = R2 = 10 Ом, R3 = R4 = R5 = 20 Ом. Запишем систему уравнений

В результате решения системы уравнений мы пришли к следующим результатам: потенциал в узле В – U1 = -57,14 В, а в узле D – U2 = 14,29 В. Теперь нетрудно посчитать, что токи в ветвях будут равны

Результат решения для токов I2 и I5 получился отрицательным, так как действительное направление токов противоположно направлению, изображённому на рисунке. Данные результаты совпадают с результатами, полученными для этой же схемы при расчёте по методу контурных токов.

Параметры электрических цепей

Параметрами электрической цепи являются R, L, C
R — сопротивление
L — индуктивность
C – емкость
Любой элемент электрической цепи обладает сопротивлением, емкостью и индуктивностью. Это неотъемлемое свойство как цвет, вес, и т.п.
Любая электрическая цепь, даже простейшая, обладает сопротивлением, емкостью и индуктивностью, поэтому параметры цепи – это ее сопротивление, индуктивность и емкость.

Сопротивление – это свойство  сопротивляться электрическому току.
Цепь состоит из источника, приемников и других элементов, которые сопротивляются току,  однако, ведут они себя по разному.
Это зависит от  того переменный ток или постоянный, и если переменный, то зависит от частоты.
Элементы R, L, C ведут себя в цепи как, сопротивления

Сопротивление R
Оказывает сопротивление и переменному и постоянному току и величина этого сопротивления не меняется.

Индуктивность L  
Оказывает сопротивление переменному току и пропускает постоянный ток. Сопротивление индуктивности изменяется при изменении частоты, чем выше частота, тем больше сопротивление.

Емкость С
Оказывает сопротивление постоянному току и пропускает переменный ток. Сопротивление емкости изменяется, чем выше частота, тем меньше сопротивление

Сопротивление – элемент, на котором происходит превращение энергии электрического тока в тепло.
 U = RI       R = U/I

Сопротивление – коэффициент пропорциональности между напряжением и током.
При данном токе, напряжение получается тем больше, чем больше сопротивление.

Емкость – элемент, в котором накапливается энергия электрического поля.
q = CU        C = q/U

Емкость – коэффициент пропорциональности между зарядом и напряжением
При данном напряжении, заряд получится тем больше, чем больше емкость

Индуктивность – элемент, в котором накапливается энергия магнитного поля.
Ф = LI         L = Ф/I

Индуктивность – коэффициент пропорциональности между магнитным потоком и током
При данном токе, магнитный поток получается тем больше, чем больше индуктивность

R, L и C являются пассивными элементами электрических схем, то есть, они лишь определяют значение токов в ветвях, но не могут эти токи изменять.

Каждый из параметров R, L, C может быть определен на основании геометрических параметров с учетом свойств среды и материалов. Это позволяет изготавливать их в виде отдельных элементов с заранее заданными значениями R, L, и C

Если в цепи нужно сопротивление, то применяется Резистор
Резистор – сопротивление, оформленное в виде отдельного элемента, с гарантированным значением сопротивления.

Если в цепи нужна емкость, то применяют конденсатор
Конденсатор — емкость, оформленная в виде отдельного элемента с гарантированным значением емкости.

Если в цепи нужна индуктивность, применяют катушку, дроссель или контур
Катушка (контур), индуктивность оформленная в виде отдельного элемента, с гарантированным значением индуктивности.

Резисторы применяются для ограничения постоянных и переменных токов, а также для выделения тепла.
Конденсаторы применяются для того, чтобы пропускать переменный ток и не пропускать постоянный ток.
Индуктивности применяются для того, чтобы пропускать постоянный ток и не пропускать переменный ток.

 
Сочетания R, L и C позволяют делать электрические и электронные схемы с любыми заданными свойствами.

Свойствами R, L и C обладают любые элементы электрических цепей. У резистора всегда есть небольшая емкость и индуктивность, у конденсатора всегда есть признаки индуктивности и сопротивления, у катушки всегда есть сопротивление  и признаки емкости. Провода всегда обладают сопротивлением, емкостью и индуктивностью, транзисторы проявляют сильные свойства емкости и т. д.
Почти всегда неосновные свойства элемента являются нежелательными, например емкости транзисторов или сопротивление катушки, но они есть и, значит, в анализе электрических цепей их надо учитывать.

Алгоритм решения
задач по физике для расчета характеристик электрической цепи.

Малкова Анастасия Викторовна, ГБОУ школа №
258 Колпинского района Санкт-Петербурга

Цель: систематизация знаний учащихся по теме «Электрический
ток», применение полученных знаний для решения задач на расчет характеристик
электрической цепи в случае смешанного соединения проводников

Характеристиками электрической цепи являются значения
сопротивления элементов ее составляющих, сила тока и напряжение на них, а также
работа и мощность.

Основополагающим для школьников среднего звена при
изучении электрического тока является закон Ома для участка цепи:

I = U / R

Также необходимо не забывать о правилах при вычислении
тех или иных характеристик цепи при разных типах соединения проводников. Для
удобства восприятия все необходимые для вычисления формулы можно
систематизировать в таблице:

Сила тока

I (А)

Сопротивление R (Ом)

Напряжение U (В)

Работа

А (Дж)

Мощность

Р (Вт)

Определение

I = q/t

R = U / I

U = A / q

A = UIt

P = UI

Последовательное соединение

I = I1 = I2

R= R1 + R2

U = U1 + U2

A = I2Rt

P = I2R

Параллельное соединение

I = I1 + I2

1/R = 1/R1 + 1/R2

U = U1 = U2

A = U2t / R

P = U2 / R

При
рассмотрении задач на смешанное соединение проводников необходимо делить их на
небольшие задачки, в каждой из которых рассматривать уже только один тип
соединения.

Рассмотрим
задачу:

Найдите
распределение сил токов и напряжений в цепи, общее сопротивление  элементов
цепи, если амперметр показывает 3 А, а
R1=2 Ом, R2=4 Ом, R3=3 Ом, R4=1 Ом, R5=12Ом. 1 вар.JPG

Дано:

Ia=
3A

R1=2Ом

R2=4Ом

R3=3Ом

R4=1Ом

R5=12Ом

Решение:

Задача представляет из себя пример смешанного соединение проводников.
Для решения будем использовать метод от части к целому , путем поэтапного
упрощения сложной электрической схемы.

I этап. Нахождение общего сопротивления цепи.

Рассмотрим 1 и 2 резисторы, они между собой связаны последовательным
соединением. Значит мы можем модифицировать схему следующим образом и
применить формулу для расчета сопротивления
R12

R12 = R1 + R2

1 1.JPGR12 = 2 Ом + 4 Ом
= 6 Ом

Найти:

Rобщ — ?

I1 , I2 ,I3 ,I4 ,I5 — ?

U1 , U2 ,U3 ,U4 ,U5 — ?

1 2.JPG 

Резисторы
R12 и R5 соединены в цепь последовательно.
Преобразовываем схему и применяем формулу

 =  +

Приводим
формулу и рассчитываем
R125

1 3.JPGR125 =

  
R125 =  = 4 Ом

Элементы
R3, R4, R125 последовательно соединены. Делаем последнее преобразование цепи и
применяя формулы для расчеты сопротивления проводников при последовательном
соединении , находим значение
R общ

Rобщ = R3 + R4 + R125

                                                                        
Rобщ = 3 Ом + 4 Ом + 1 Ом
= 8 Ом

II этап. Нахождение распределения сил токов и
напряжений на элементах электрической цепи.

Для
наиболее наглядного представления результатов вычислений рекомендуется
использовать таблицу. По данным задачи мы можем внести в нее значение
сопротивлений всех элементов цепи и общее значение силы тока (поскольку именно
это значение измеряется при данном подключении амперметра). Также мы можем
заполнить ячейку с ранее вычисленным общим значением сопротивления цепи.

1

2

3

4

5

общее

Сила тока I (А)

3

Напряжение U (В)

Сопротивление R (Ом)

2

4

3

1

12

8

Исходя
из данных таблицы найдем значение напряжения по закону Ома для участка цепи:

Uобщ = Iобщ * Rобщ

Uобщ  = 3А * 8 Ом = 24 В

По
правилу распределения тока в цепи
Iа = I3 = I3 = I125 = 3А

Можем
воспользовавшись законом Ома для участка цепи определить напряжения на 3-ем и
4-ом проводниках:

U3 = I3 * R3

U3  = 3А * 3Ом = 9 В

U4 = I4 * R4

U4
 = 3А * 1 Ом = 3
В

Рассмотрим
элемент, состоящий из 1го, 2го и 5го проводников. Поскольку между 5м и 1-2м
параллельное соединение, то воcпользуемся формулой:

U125 = U12 = U5 = 12 В

Зная
значение напряжения на 5м проводнике и его сопротивление, найдем значение силы
тока на нем:

I5 =
U5 / R5

I5 = 12 / 12 = 1 А

Для
нахождения тока на 1-2 резисторах воспользуемся правилом (т к 1-2 и 5
проводники соединены параллельно) :

I125
= I12 + I5

Следовательно,
I12 = I125I5 = 3А – 1А = 2А

Т
к проводники между собой соединены последовательно , то и значение сил токов на
них совпадают, а значит

I1 =I2 = I12 = 2А

Осталось
по закону Ома для участка цепи вычислить значение напряжений на этих резисторах

U1 =
I1 * R1

U1  = 2А * 2Ом = 4 В

U2 = I2 * R2

U2  = 2А * 4 Ом = 8 В

Все
полученные результаты вычислений были занесены в таблицу.

1

2

3

4

5

общее

Сила тока I (А)

2

2

3

3

1

3

Напряжение U (В)

4

8

9

3

12

24

Сопротивление R (Ом)

2

4

3

1

12

8

Таким
образом сложную задачу удалось решить методом последовательного упрощения
электрической схемы или рассмотрения отдельных элементов этой цепи.

Задача для самостоятельной работы:

Найдите
распределение сил токов и напряжений в цепи, общее сопротивление  элементов
цепи, если вольтметр показывает 68 В, а
R1=2 Ом, R2=8 Ом, R3=3 Ом, R4=6 Ом, R5=3,4 Ом.

2 вар.JPG

Ответы
к задаче:

1

2

3

4

5

общее

Сила тока I (А)

16

4

13,3

6,6

20

20

Напряжение U (В)

32

32

40

40

68

140

Сопротивление R (Ом)

2

8

3

6

3,4

7

Понравилась статья? Поделить с друзьями:
  • Как найти ссылку на соц сеть
  • Как найти клиентов архитектору
  • Marvel ultimate alliance 2 0xe06d7363 как исправить
  • Как найти архивацию в телефоне
  • Как найти пару в астане