Биполярный транзистор
Время на прочтение
12 мин
Количество просмотров 37K
1. Основные сведения
Биполярным транзистором называется трехэлектродный усилительный полупроводниковый прибор, имеющий трехслойную p-n-p, либо n-p-n структуру с двумя взаимодействующими (ключевое слово) p-n переходами.
Свое имя «TRANSferresISTOR» (дословно – «переходное сопротивление») этот полупроводниковый прибор получил в 1948 году от Уильяма Шокли. Термин «биполярный» подчеркивает тот факт, что принцип действия транзистора основан на взаимодействии с электрическим полем частиц обоих знаков — как дырок, так и электронов.
На рис. 1 показан упрощенный вид внутренней структуры объемного маломощного биполярного p-n-p транзистора. Крайнюю слева р+ область называют эмиттером. Промежуточная n область называется базой. Крайняя p область справа – коллектор. Электронно-дырочный переход между эмиттером и базой называют эмиттерным, а между базой и коллектором – коллекторным.
-
Расстояние между металлургическими границами переходов называется физической толщиной базы «L» .
-
Расстояние между обедненными зонами называется эффективной толщиной базы «W».
Для того, чтобы уменьшить интенсивность процессов рекомбинации дырок в базе, необходимо выполнить условие , то есть физическая толщина базы должна быть меньше диффузионной длины. Это означает автоматическое выполнение условия
, что обуславливает взаимодействие переходов.
Эмиттер предназначен для инжекции дырок в базу. Область эмиттера имеет небольшие размеры, но большую степень легирования – концентрация акцепторной примеси NA в эмиттере кремниевого транзистора достигает ~ 1017 – 1018 ат/см3 (этот факт обозначен символом р+). Область базы легирована нормально – концентрация донорной примеси ND в ней составляет ~ 1013 – 1014 ат/cм3. В этом случае эмиттерный переход получается резко несимметричным, поскольку обедненная зона располагается, в основном, в базе. Диффузия носителей становится односторонней, так как резко уменьшается встречный поток электронов из базы в эмиттер, что также уменьшает интенсивность процессов рекомбинации дырок в базе.
Теперь выделим еще раз особенности структуры, которые обеспечивают хорошие усилительные свойства транзистора, уменьшая интенсивность процессов рекомбинации:
-
тонкая база —
;
-
односторонняя диффузия (несимметичный эмиттерный переход)
Область коллектора имеет наибольшие размеры, поскольку в его функцию входит экстракция носителей, диффундировавших через базу. Кроме того, на коллекторе рассеивается большая мощность, что требует эффективного отвода тепла.
Биполярные транзисторы, как правило, изготавливаются из кремния, германия или арсенида галлия. По технологии изготовления биполярные транзисторы делятся на сплавные, диффузионные и эпитаксиальные.
Биполярные транзисторы являются усилительными приборами и, поэтому, применяются для построения схем усилителей, генераторов и преобразователей электрических сигналов в широком диапазоне частот (от постоянного тока до десятков гигагерц) и мощности (от десятков милливатт до сотен ватт). В соответствии с этим биполярные транзисторы делятся на группы по частоте:
-
низкочастотные не более 3 МГц;
-
средней частоты — от 3 МГц до 30МГц;
-
высокочастотные- от 30 МГц до 300 МГц;
-
сверхвысокочастотные — более 300 МГц
По мощности выделяют следующем образом:
-
маломощные — не более 0,3 Вт;
-
средней мощности — от 0,3 Вт до1,5 Вт;
-
большой мощности — более 1,5 Вт.
В настоящее время парк биполярных транзисторов очень разнообразен. Сюда входят как обычные транзисторы, которые работают в самых различных аналоговых, импульсных и цифровых устройствах, так и специальные, например, лавинные транзисторы, предназначенные для формирования мощных импульсов наносекундного диапазона. Следует упомянуть многоэмиттерные, а также составные биполярные транзисторы (транзисторы Дарлингтона), обладающие очень высоким коэффициентом передачи тока.
2. Принцип действия
Рассмотрим активный режим работы транзистора, когда эмиттерный переход открыт прямым смещением Uэб, а коллекторный закрыт обратным смещением Uкб. Для этого воспользуемся одномерной моделью транзистора, которая показана на рис. 2. Модель характерна тем, что все физические величины зависят только от продольной координаты, поперечные же размеры бесконечны. Стрелками на рисунке обозначены положительные направления токов (от «+» к «–»), дырки обозначены открытыми, а электроны – закрытыми кружками. Сокращения: ЭП – эмиттерный переход, КП – коллекторный переход.
Предположим, что в начальный момент времени ключ «К» разомкнут. Эмиттерный переход закрыт, поскольку потенциальный барьер в обедненной области перехода запрещает диффузию носителей, несмотря на огромный градиент концентраций на переходе – дырок слева 1017см-3, а справа 106см-3. Это режим отсечки. Транзистор закрыт, существует только небольшой обратный тепловой ток обратно смещенного коллекторного перехода.
Теперь замкнем ключ «К». Потенциальный барьер понижается вследствие частичной компенсации внутреннего электрического поля встречно направленным внешним электрическим полем источника Uэб. Начинается процесс диффузии, вследствие огромного градиента концентраций дырок между эмиттером и базой. Дырки диффундируют или инжектируются из эмиттера в базу, где меняют статус – становятся неосновными. Для неосновных носителей нет потенциального барьера, другими словами, диффундируя через базу в направлении коллекторного перехода, они попадают во втягивающее поле коллекторного перехода и экстрагируются в область коллектора. В цепи коллектора эти дырки создают дрейфовый ток, пропорциональный току эмиттера:
(2.1)
где α – доля дырок, достигших коллектора, или коэффициент передачи тока эмиттера. Поскольку небольшая часть дырок, инжектированных из эмиттера в базу, все же успевает рекомбинировать, то всегда α <1. При достаточно тонкой базе α может доходить до 0,99 и более. Уменьшение концентрации электронов в базе в результате рекомбинации восполняется потоком электронов от внешнего источника Uэб через внешний вывод базы. Таким образом внутренний ток рекомбинации, являющийся дырочным, полностью компенсируется электронным током через электрод базы:
(2.2)
В цепи коллектора кроме управляемого тока протекает неуправляемый дрейфовый обратный ток Iкб0, обусловленный, в основном, тепловой генерацией электронно-дырочных пар в объеме перехода. Этот ток очень мал, он не зависит от напряжения Uкб, а зависит только от температуры. Обратный ток коллектора Iкб0 измеряется при разомкнутой цепи эмиттера, о чем говорит индекс «0» (ноль).
Полный ток, протекающий во внешней цепи коллектора, имеет дырочный характер и равен
(2.3)
В нормальных условиях работы поэтому с хорошей точностью полагают, что ток во внешней цепи коллектора равен
(2.4)
а ток во внешней цепи базы имеет электронный характер и равен
(2.5)
Согласно первому закону Кирхгофа,
(2.6)
Для удобства, формально, вводят коэффициент передачи тока базы
(2.7)
Коэффициент связан с коэффициентом
соотношением
(2.8)
3. Режимы работы и способы включения
и n-p-n структуры .
Условные обозначения биполярного транзистора на схеме, показаны на рис. 3.1, а показано условное графическое обозначение биполярного транзистора по ГОСТ для формата листа А4. Стрелка на выводе эмиттера всегда направлена от «p» к «n», то есть указывает направление прямого тока открытого перехода. Кружок обозначает корпус дискретного транзистора. Для транзисторов в составе интегральных схем он не изображается. На рис. 3.1, б и в показаны структуры p-n-p и n-p-n соответственно. Принцип действия транзисторов обеих структур одинаков, а полярности напряжений между их электродами разные. Поскольку в транзисторе два перехода (эмиттерный и коллекторный) и каждый из них может находиться в двух состояниях (открытом и закрытом), различают четыре режима работы транзистора.
-
Активный режим, когда эмиттерный переход открыт, а коллекторный закрыт. Активный режим работы является основным и используется в усилительных схемах.
-
Режим насыщения— оба перехода открыты.
-
Режим отсечки— оба перехода закрыты.
-
Инверсный режим— эмиттерный переход закрыт, коллекторный — открыт.
В большинстве транзисторных схем транзистор рассматривается как четырехполюсник. Поэтому для такого включения один из выводов транзистора должен быть общим для входной и выходной цепей. Соответственно различают три схемы включения транзистора, которые показаны на рис. 3.2: а) с общей базой (ОБ), б) общим эмиттером (ОЭ) и в) общим коллектором (ОК). На рисунке указаны положительные направления токов, а полярности напряжений соответствуют активному режиму работы.
В схеме ОБ входную цепь является цепь эмиттера, а выходной – цепь коллектора. Эта схема наиболее проста для анализа, поскольку напряжение Uэб прикладывается к эмиттерному переходу, а напряжение Uкб – к коллекторному, причем источники имеют разные знаки.
В схеме ОЭ входной цепью является цепь базы, а выходной – цепь коллектора. Напряжение Uбэ> 0 прикладывается непосредственно к эмиттерному переходу и открывает его. Напряжение Uкэ той же полярности распределяется между обоими переходами: Uкэ = Uкб + Uбэ. Для того чтобы коллекторный переход был закрыт, необходимо выполнить условие Uкб = Uкэ — Uбэ> 0, что обеспечивается неравенством Uкэ> Uбэ> 0.
В схеме ОК входной цепью является цепь базы, а выходной – цепь эмиттера.
4. Статические вольт-амперные характеристики
Транзистор, как любой четырехполюсник, можно охарактеризовать четырьмя величинами — входными и выходными напряжениями и токами: Uвх = U1, Uвых = U2, Iвх = I1, Iвых = I2. Функциональные зависимости между этими постоянными величинами называются статическими характеристиками транзистора. Чтобы установить функциональные связи между указанными величинами, необходимо две из них взять в качестве независимых аргументов, а две оставшиеся выразить в виде функций этих независимых аргументов. Как правило, применительно к биполярному транзистору в качестве независимых аргументов выбирают входной ток и выходное напряжение. В этом случае
(4.1)
Обычно соотношения (4.1) представляют в виде функций одного аргумента. Для этого второй аргумент, называемый параметром характеристики, фиксируют. В основном, используют два типа характеристик транзистора:
-
входная характеристика:
(4.2)
-
выходная характеристика:
(4.3)
Следует отметить, что общепринято представление вольт-амперной характеристики как функции тока от напряжения, поэтому входная характеристика используется в виде обратной функции
(4.4)
Статические характеристики транзистора могут задаваться аналитическими выражениями, но в большинстве случаев их представляют графически в виде семейства характеристик, которые и приводятся в справочниках.
4.1. Статические характеристики в схеме с ОБ
В схеме с ОБ (рис. 3.2.а) входным током является ток эмиттера Iэ, а выходным – ток коллектора Iк, соответственно, входным напряжением является напряжение Uэб, а выходным – напряжение Uкб.
Входная характеристика в схеме ОБ представлена зависимостью
(4.5)
которая, в свою очередь, является прямой ветвью вольт-амперной характеристики эмиттерного перехода. Семейство входных характеристик кремниевого n-p-n транзистора показано на рис. 4.1, а. Зависимость Iэ от Uкб как от параметра связана с эффектом Эрли: увеличение обратного смещения коллекторного перехода Uкб уменьшает эффективную толщину базы W, что приводит к некоторому росту Iэ. Это проявляется в смещении входной характеристики в сторону меньших значений . Режиму отсечки формально соответствует обратное напряжение Uэб> 0, хотя реально эмиттерный переход остается закрытым (
) и при прямых напряжениях
.
Выходная характеристика транзистора в схеме ОБ представляет собой зависимость
(4.6)
Семейство выходных характеристик n-p-n транзистора показано на рис. 4.1, б. Форма кривых в активной области соответствует форме обратной ветви вольт-амперной характеристики коллекторного перехода.
Выражение для идеализированной выходной характеристики в активном режиме имеет вид
(4.7)
Отсюда следует, что ток коллектора определяется только током эмиттера и не зависит от напряжения Uкб, т.е. характеристики в активном режиме расположены параллельно оси абсцисс. На практике же при увеличении Uкб имеет место небольшой рост Iк, связанный с эффектом Эрли, характеристики приобретают очень незначительный наклон. Кроме того, в активном режиме характеристики практически эквидистантны (расположены на одинаковом расстоянии друг от друга), и лишь при очень больших токах эмиттера из-за уменьшения α кривые несколько приближаются друг к другу.
При Iэ = 0 транзистор находится в режиме отсечки и в цепи коллектора протекает только неуправляемый тепловой ток (Iк = Iкб0).
В режиме насыщения на коллекторном переходе появляется открывающее его прямое напряжение Uкб, большее порогового значения Uкб пор, и возникает прямой диффузионный ток навстречу нормальному управляемому току Iк. Этот ток называют инверсным. Инверсный ток резко увеличивается с ростом , в результате чего Iк очень быстро уменьшается и, затем, меняет знак.
4.2. Статические характеристики в схеме с ОЭ
В схеме с ОЭ (рис. 3.2, б) входным током является ток базы Iб, а выходным – ток коллектора Iк. Соответственно, входным напряжением является напряжение Uбэ, а выходным – Uкэ.
Входная характеристика в схеме с ОЭ представляет собой зависимость
(4.8)
что, как и в схеме с ОБ, соответствует прямой ветви вольт-амперной характеристики эмиттерного перехода.
Семейство входных характеристик кремниевого n-p-n транзистора показано на рис. 4.2, а. Зависимость тока базы Iб от напряжения на коллекторе Uкэ, как и в предыдущем случае, обусловлена эффектом Эрли. Уменьшение эффективной ширины базы W с ростом Uкэ приводит к уменьшению тока рекомбинации, а, следовательно, тока базы в целом. В результате, характеристики смещаются в сторону больших значений Uбэ. Следует отметить, что Iб = 0 при некотором значении Uпор> 0, когда рекомбинационный ток (1-α)Iэ становится равным тепловому току Iкэ0. При Uбэ <Uпор, Iб = — Iкэ0, что соответствует режиму отсечки.
При Uкэ <Uбэ открывается коллекторный переход, и транзистор переходит в режим насыщения. В этом режиме вследствие двойной инжекции в базе накапливается очень большой избыточный заряд электронов, интенсивность рекомбинации которых с дырками резко возрастает, и ток базы стремительно растет.
Выходная характеристика в схеме с ОЭ представляет собой зависимость
(4.9)
Семейство выходных характеристик показано на рис. 7.6б. Для получения идеализированной выходной характеристики в активном режиме из соотношения (2.2), учитывая (2.6), исключим ток эмиттера. Тогда
(4.10)
Ток Iкэ0 называют сквозным тепловым током транзистора, причем, как видно из (4.11),
(4.11)
Семейство выходных характеристик целиком расположено в первом квадранте. Данный факт обусловлен тем, что в схеме с ОЭ напряжение Uкэ распределено между обоими переходами. При Uкэ <Uбэ напряжение на коллекторном переходе меняет знак и становится прямым. В результате транзистор переходит в режим насыщения при Uкэ> 0. В режиме насыщения характеристики сливаются в одну линию, т.е. Iк становится неуправляемым и не зависит от тока базы.
Как видно из рис. 4.2 .б, в активном режиме кривые проходят под углом к оси абсцисс, причем этот угол увеличивается с ростом тока базы. Такое поведение кривых обусловлено эффектом Эрли. Однако рост Iк при увеличении Uкэ выражен значительно ярче, чем в схеме с ОБ, поскольку в активном режиме эмиттерный переход приоткрыт падением напряжения на материале базы в результате протекания коллекторного тока. Это приводит к дополнительному увеличению коллекторного тока Iк с ростом напряжения Uкэ. Этим же объясняется отсутствие эквидистантности и наличие в β раз большего, чем Iкб0, сквозного теплового тока Iкэ0 (4.11).
На
практике часто пользуются вторичными
параметрами транзисторов, характеризующими
его как активный линейный четырехполюсник,
т.е. прибор, имеющий два входных и два
выходных зажима (рисунок 2.1). Вторичные
параметры связывают друг с другом
входные и выходные переменные токи и
напряжения и справедливы только для
данного режима транзистора и для малых
амплитуд малых приращений тока и
напряжения. Поэтому их называют
низкочастотными малосигнальными
параметрами.
U1
Uбэ
Рисунок
2.1 – Линейные четырехполюсники биполярного
транзистора
Линейный
четырехполюсник характеризуется двумя
уравнениями, взаимно связывающими токи
и напряжения на входе и выходе. Можно
составить шесть пар таких уравнений,
определяющих шесть различных систем
параметров. В транзисторной технике
наиболее широкое распространение
получила система h-параметров.
Эти
параметры называются смешанными или
гибридными. Такое название они получили,
потому что среди них имеются две
относительные величины, одно сопротивление
и одна проводимость. Именно h
-параметры приводятся во всех справочниках
по биполярным транзисторам. Параметры
системы h
удобно измерять. Важно отметить, что
публикуемые в справочниках параметры
являются средними, полученными в
результате измерений параметров
нескольких транзисторов данного типа.
Кроме того, вследствие нелинейности
характеристик транзистора при изменении
его режима и при больших амплитудах
вторичные параметры изменяются.
Система
h
-параметров позволяет определить входное
напряжение U1
и выходной ток I2
по известным
входному току I1
и выходному напряжению U2.
U1
= f1
( I1
, U2
) или UВХ
= f1
( IВХ
, UВЫХ
)
(2.1)
I2
= f2
( I1
, U2
) IВЫХ
= f2
( IВХ
, UВЫХ
)
Для
малосигнальных параметров (для малых
приращений токов и напряжений) систему
(2.1) можно представить в линейном виде
d
uВХ =
h11 d
iВХ + h12
d uВЫХ
(2.2)
d
iВЫХ =
h21 d
iВХ +
h22 d
uВЫХ
Параметры
h11
и h21,
определяются при коротком замыкании
для переменного тока на выходе dUвых
= 0. В этом случае на выход транзистора
подается только постоянное напряжение
Uвых
=const.
Параметры h12
и h22
определяются при разомкнутой для
переменного тока входной цепи
dIвх
=0, т.е. когда
во входной цепи имеется только постоянный
ток (Iвх
= const),
создаваемый источником питания. Условия
Uвых
= соnst
и Iвx
= const
нетрудно осуществить на практике при
измерении h
-параметров.
Параметры
h11
и h12
определяются из первого уравнения
системы (2.2).
Полагая
dUвых
= 0, (Uвых
= const),
получим
d
uВХ
= h11
diВХ
(2.3)
откуда
h11
=duВХ
/ diВХ
при Uвых=const
(2.4)
—
входное сопротивление транзистора для
переменного входного тока (дифференциальное
входное сопротивление) при постоянном
напряжении на выходе (при отсутствии
выходного переменного напряжения).
Полагая
dIвх
= 0, (Iвх
= const)
получим
d
uВХ
= h12
duВЫХ
(2.5)
откуда
h12
= d
uВХ
/duВЫХ
при Iвх
=const
(2.6)
-
коэффициент
обратной связи по напряжению.
Он
показывает, какая доля выходного
переменного напряжения передается на
вход транзистора вследствие наличия в
нем внутренней обратной связи. Условие
Iвх
= const
в данном случае подчеркивает, что во
входной цепи нет переменного тока.
Следовательно, изменение напряжения
на входе dUвх
есть результат изменения только выходного
напряжения dUвых.
Параметры
h21
и h22
определяются из второго уравнения
системы (2.2).
Полагая
dUвых
= 0 (Uвых
= const),
получим
diВЫХ
= h21
diВХ
(2.7)
откуда
h21
= diВЫХ
/ diВХ
при Uвых
= const
(2.8)
коэффициент
передачи тока (коэффициент усиления по
току). Он показывает усиление переменного
тока транзистором в режиме работы без
нагрузки. Условие
Uвых
= const,
т.е. Rн
= 0 задается
для того, чтобы изменение выходного
тока dIвх
зависело от изменения входного тока
dIвх.
Именно при выполнении такого условия
параметр h21
будет действительно характеризовать
усиление тока самим транзистором. Если
бы выходное напряжение менялось, то оно
влияло бы на выходной ток, и по изменению
этого тока нельзя уже было бы правильно
оценить усиление.
Полагая
dIвx
= 0 (Iвх
= const)
, получим
diВЫХ
= h22
duВЫХ
(2.9)
откуда
h22
= diВЫХ
/ duВЫХ
при Iвx
= сonst
(2.10)
выходная
проводимость для переменного тока между
выходными зажимами транзистора. Ток
Iвых
должен изменяться только под влиянием
изменения выходного напряжения Uвых
. Если при этом ток Iвх
не будет постоянным, то его изменения
вызовут изменения тока Iвых
и значение h22
будет
определено неправильно. Величина h22
измеряется в сименсах (См). Так как
проводимость в практических расчетах
применяется значительно реже, нежели
сопротивление, то часто используют
вместо h22
выходное сопротивление
RВЫХ
= 1 / h22
(2.11)
Определить
параметры можно не только через приращения
токов и напряжений, но и через амплитуды
(или действующие значения) переменных
токов и напряжений из следующих уравнений:
UmВХ
= h11
I mВХ,+
h12
U mВЫХ
(2.12)
I mВЫХ
= h21
I mВХ
+ h22
U mВЫХ
h11
= UmВХ
/ I mВХ
при Uвых=const
(2.13)
h12
= UmВХ
/ U mВЫХ
при
Iвх
=const
(2.14)
h21
= I mВЫХ
/ I mВХ
при
Uвых
= const
(2.15)
h22
= I mВЫХ
/ U mВЫХ
при
Iвx
= сonst
(2.16)
Напомним,
что h-параметры
определены для малых амплитуд поэтому
использование их для больших амплитуд
дает значительные погрешности.
Уравнениям
(2.12)-(2.16) соответствует эквивалентная
схема, изображенная на рисунке 2.2
Рисунок
2.2 – Эквивалентная схема
В
ней генератор ЭДС h12Um.вых
показывает наличие напряжения связи
во входной цепи. Сам генератор надо
считать идеальным, т.е. не имеющим
внутреннего сопротивления. Генератор
тока h21Im.вх
в выходной цепи учитывает эффект усиления
тока, а h22
является внутренней проводимостью.
Хотя входная и выходная цепи кажутся
не связанными друг с другом, на самом
деле эквивалентные генераторы учитывают
взаимосвязь этих цепей.
Как
известно, применяют три основные схемы
включения транзисторов в усилительные
каскады. В этих схемах один из электродов
транзистора является общей точкой входа
и выхода каскада (рисунок 2.1). В соответствии
с этим, транзистор можно представить в
виде четырехполюсника с двумя входными
и двумя выходными зажимами. В зависимости
от того, к какой схеме относятся
параметры, дополнительно к цифровым
индексам ставятся буквы: э — для схемы
ОЭ, б — для схемы ОБ и к — для схемы ОК.
Рассмотрим
формулы h-параметров
для схем.
ОЭ:
h11Э
=duБЭ
/ diБ
при Uкэ=const
(2.17)
h12Э
= d
uБЭ
/duКЭ
при Iб
=const
(2.18)
h21Э
= diК
/ diБ
при Uкэ
= const
(2.19)
h22Э
= diК
/ duКЭ
при Iб
= сonst
(2.20)
ОБ:
h11
=duВХ
/ diВХ
при Uвых=const
(2.21)
h12
= d
uВХ
/duВЫХ
при Iвх
=const
(2.22)
h21
= diВЫХ
/ diВХ
при Uвых
= const
(2.23)
h22
= diВЫХ
/ duВЫХ
при Iвx
= сonst
(2.24)
OK:
h11
=duВХ
/ diВХ
при Uвых=const
(2.25)
h12
= d
uВХ
/duВЫХ
при Iвх
=const
(2.26)
h21
= diВЫХ
/ diВХ
при Uвых
= const
(2.27)
h22
= diВЫХ
/ duВЫХ
при Iвx
= сonst
(2.28)
Приведем
типовые значения h
-параметров для транзисторов небольшой
мощности в таблице 2.1
Таблица
2.1 — Типовые значения h
-параметров
Параметр |
Схема ОЭ |
Схема ОБ |
h11 |
Сотни Ом – единицы |
Единицы – десятки |
h12 |
10-3 |
10-3 |
h21 |
Десятки — сотни |
0,950 ÷ 0,998 |
1 |
Десятки кОм |
Сотни кОм – |
Находятся
h
-параметры по характеристикам для
заданной исходной рабочей точки (ИРТ)
в соответствии с формулами (2.12) — (2.28).
При этом дифференциалы d
заменяются на конечные приращения ∆.
Для
примера найдем h
-параметры транзистора ГТ703
для схемы 0Э:
Задаем
режим работы транзистора по постоянному
току (задаём положение исходной рабочей
точки):
Iбо
= 10 мкА, Uкэо
= 5 В .
(2.29)
Параметры
h11э
и h12э
определяют по входным статическим
характеристикам (рис. 2.3). Для того, чтобы
нанести положение ИРТ, возьмем
характеристику Uкэ=
5 В и на ней отметим точку, соответствующую
Iб=
10 мА. После этого можем для ИРТ найти
Uбэо
= 0,84 В
(2.30)
Рисунок
2.3 – Статистические входные характеристики
Определение
параметра h11э
В
соответствии с (2.17) для выполнения
условия Ukэ
= const
выберем две точки на характеристике
Ukэ
= 5 В рядом с ИРТ (рисунок 2.3).
Для
точки А: Uбэа
= 0,9В ; Iба=11
мА ; Uкэа
= 5 В
Для
точки В: Uбэв
= 0,6 В ; Iбв=6
мА ; Uкэв
= 5 В
(2.31)
Для
ИРТ: Uбэо
= 0,84 В ;Iбо
= 10 мА ; Uкэо
= 5 В
Как
видно, для всех трех точек выполняется
условие Ukэ=5В=const
по графикам (см. рис.2.3) определяем
приращения ∆Uбэ
и ∆ Iб
точками А и В и находим параметр h11э.
h11Э
=ΔuБЭ
/ΔiБ
│при
Uкэ=const
=(Uбэа–Uбэв)/(Iба–Iбв)=(0,9В-0,6В)/(11мА-6мА)=60
Ом
(2.32)
Определение
параметра h12э
В
соответствии с (2.18) для выполнения
условия Iб=сonst
на характеристике Uкэ
=0 выберем
точку С, для которой Iб
= 10 мА (рисунок
2.3).
Для
точки C:
Uбэc
= 0,7 В ; Uкэс
= 0 В ; Iбс
=10 мА
(2.33)
Для
ИРТ: Uбэc
= 0,7 В ; Uкэо
= 5 В ; Iбо
= 10 мА
Как
видно, для этих двух точек выполняется
условие Iб=10
мА = const.
По графикам (рисунок 2.3) определим
приращение ∆Uбэ
и ∆Uкэ
между точками С и ИРТ и находим параметр
h12э.
h12Э=ΔuБЭ/ΔuКЭ│приIб=const=(Uбэ0–Uбэс)/(Uкэ0–Uкэс)=(0,84В-0,7В)/(5В-0В)=0,028.
(2.34)
Параметры
h21э
и h22э
определяют, по выходным статическим
вольт-амперным характеристикам (рисунок
2.4). Для того чтобы нанести положение
ИРТ : Iбо
= 10 мА,
Uкэо=10В,
возьмем выходную характеристику при
Iб=10мА,
и на ней отметим точку, соответствующую
Ukэo
= 10В. После
этого для заданной ИРТ найдём
Iко=3
мА
(2.35)
Определение
параметра h21э
В
соответствии с (2.19) для выполнения
условия Uкэ=const
выберем две точки ,
G
и F
выше и ниже ИРТ на характеристиках Iб
= 15 мА и Iб
= 5 мА, для
которых Uкэ
= 10В (рисунок 2.4).
Рисунок
2.4 — Выходные статические вольтамперные
характеристики
Для
точки G:
IкG
= 5мА ; IбG
= 15 мА ; UкэG
= 10В
Для
точки F:
IкF
= 0.8мА ; IбF
= 5 мА ; UкF
= 10В
(2.36)
Для
ИРТ: Iко
= 3мА ; Iбo
= 10 мА ; Uкэо
= 10В
Как
видно, для этих трех точек выполняется
условие Uкэ
= 10В = const.
По
графикам (рисунок 2.4) определяем приращение
∆Iк
и ∆Iб
между точками G
и F
и находим параметр h21э
h21Э
= ΔiК
/ΔiБ
│при
Uкэ=const
=(
IкG–IкF)/(IбG–IбF)=(5мА-0.8мА)/(15мА-5мА)=0.42мА
(2.37)
Определение
параметра h22э
В
соответствии с (2.20) для выполнения
условия Iб=const
выберем на характеристике Iб=
10 мА две
точки Д и Е (рисунок 2.4).
Для
точки Д: Iкд
= 2,5 мА ; Uкэд
= 4В ; Iбд
= 10мА.
Для
точки Е: Iке
= 4 мА ; Uкэе
= 16 В ; Iбе
= 10 мА
Для
ИРТ: Ikо
= 3 мА ; Ukэо
= 10В ; Iбо
= 10мА
Как
видно, для этих точек выполняется условие
Iб
= 10 мА = const.
По графикам (рисунок 2.4) определяем
приращения ∆Ik
и ∆Uкэ
между точками Д и Е и находим параметр
h22э
h22Э=ΔiК/ΔuКЭ│приIб=const=(Ikе—Ikд)/(Uкэе–Uкэд)=(4мА-2,5мА)/(16В-
4В)=0,125мСм
(2.39)
Отметим
важную особенность, что приращения
токов и напряжений при определении
различных параметров находятся при
разных условиях и поэтому не равны между
собой. Например, при расчёте h21э
и h22э
используется приращение тока коллектора
∆Iк.
Однако, в первом случае оно определяется
при Uкэ
= const,
а во втором — при Iб
= const.
Как было показано ранее,
ΔiК
│при
Uкэ=const
≠
ΔiК│приIб=const
(2.40)
Как
уже отмечалось, значения всех параметров
транзистора зависят от режима работы
транзистора (заданного положения ИРТ).
Кроме
того, значения h-параметров
зависят от температуры, так как при
изменении температуры происходит
смещение вольтамперных характеристик.
Таким
образом, при определении любого из
h—параметров
рекомендуется следующая последовательность
работы:
-
Нанести
положение ИРТ в соответствии с заданным
режимом. -
Выбрать
точки согласно условию расчета данного
параметра. -
Определить
конечные приращения и рассчитать h
параметр
по формуле.
Расчёт
h-параметров
для других схем включения транзистора
проводится аналогично по статистическим
характеристикам.
3
ГРАФОАНАЛИТИЧЕСКИЙ
РАСЧЁТ РАБОЧЕГО РЕЖИМА БИПОЛЯРНОГО
ТРАНЗИСТОРА
Рабочий
режим, т.е. режим усиления транзисторов
— это режим, когда транзистор работает
с нагрузкой в выходной цепи. На рисунке
3.1 изображена схема усилительного
каскада с транзистором типа n—p—n.
Данную схему принято называть схемой
с общим эмиттером, так как эмиттер
является общей точкой для входа и выхода
схемы. В отличие от других схем включения
транзистора (ОБ и ОК) схема ОЭ обладает
усилительными свойствами и по току, и
по напряжению, и, следовательно, дает
наибольший коэффициент усиления по
мощности. Именно поэтому мы будем
рассматривать в данном случае расчет
работы транзистора в схеме ОЭ.
Рисунок 3.1 –
Принципиальная схема усилительного
каскада
Входное
переменное напряжение, которое необходимо
усилить, подается от источника колебаний
ИК на участок база-эмиттер. На базу
подано также положительное (для
n—p—n-транзистора)
от источника E, являющееся
прямым напряжением для эмиттерного
перехода. Чтобы не происходила потеря
входного переменного напряжения на
внутреннем сопротивлении источника E,
он зашунтирован конденсатором достаточно
большой емкости. Таким образом, напряжение
на участке база-эмиттер транзистора
UБЭ
= UБЭ0
+ UmБЭ
cos
t (3.1)
Цепь
коллектора (выходная цепь) питается от
источника Е2.
Для
получения усиленного входного напряжения
в эту цепь включен резистор Rк
источник Е2
зашунтирован конденсатором, чтобы не
было потери части выходного усиленного
напряжения на внутреннем сопротивлении
источника Е2.
Напряжение источника Е2
делится между сопротивлением Rк
и участком коллектор-эмиттер транзистора.
E2
= UR
+ UКЭ =
iК RК
+ UКЭ
(3.2)
При
отсутствии переменного сигнала во
входной цепи в выходной цепи течет
постоянный ток коллектора
iК
= IК0
(3.3)
и напряжение
коллектор-эмиттер остается постоянным
uКЭ
= UКЭ0
= E2
– IК0
RК
= E2
– UR0
(3.4)
Если
во входную цепь включается источник
колебаний, то при изменении его напряжения
изменяется ток коллектора.
iК
= IК0
+ ImК
cos t
(3.5)
При
этом переменное напряжение на резисторе
Rк
может быть в десятки раз больше, чем
входное переменное
UR
= UR0
+ UmR
cos
t
(3.6)
Изменения
тока коллектора во много раз больше
изменений тока базы. Поэтому в
рассматриваемой схеме получается
значительное усиление тока и очень
большое усиление мощности. Усиленная
мощность является частью мощности,
затрачиваемой источником E2.
Напряжение на
выходе схемы
UВЫХ
= UКЭ
= UКЭ0
— UmКЭ
cos
t
(3.7)
Перейдем
теперь к графоаналитическому расчету
рабочего режима транзистора. Этот метод
является наиболее точным, так как он
проводится по вольтамперным характеристикам
и учитывает нелинейные свойства
транзистора. Кроме того, графоаналитический
метод позволяет сделать наиболее полный
расчет: в нем определяются величины,
связанные не только с переменными, но
и с постоянными составляющими токов и
напряжений.
Исходными
данными для расчета являются параметры
схемы: Е2,
RК
и амплитуда
входных колебаний
Imб.
Поскольку входным для транзистора
является переход эмиттер-база, который
в активном режиме смещен в прямом
направлении, то входное сопротивление
схемы мало, источник колебаний работает
в режиме, близком к режиму генератора
тока, поэтому в исходных данных указывается
не входное напряжение, а входной ток.
При необходимости их можно пересчитать
по закону Ома, зная входное сопротивление
транзистора. При этом необходимо
учитывать, что входные сопротивления
транзистора переменному и постоянному
токам имеют различные значения. Их можно
определить для заданной рабочей точки
по входным вольт-амперным характеристикам
подобно тому, как это указывалось для
диода, смещенного в прямом направлении
-
UmВХ
= RВХ
ДИФ
ImВХ
h11
ImВХ
(3.8) -
UБЭ0
= RВХ
0
IБ0
(3.9)
Задаемся исходными
данными для расчета
E2
= 15В , Rк
= 12 Ом , Imб
= 5 мА
(3.10)
Расчет
начинается с построения рабочей
характеристики, называемой линией
нагрузки. Преобразуем уравнение (3.2) к
виду
(3.11)
Это
уравнение первой степени, следовательно,
линия нагрузки представляет собой
прямую линию, которую проще всего строить
по двум точкам пересечения с осями
координат:
1. iК =0,
UКЭ = E2
(3.12)
2. UКЭ =0,
iК =
E2 / RК
(3.13)
Для
заданных исходных данных (3.10) строим
выходную рабочую характеристику
(рис.3.2)
1. iК
=0, UКЭ
= E2 =15 В
точка N (3.14)
2. UКЭ =0,
iК =
E2 / RК
= 15 В /12 Ом = 1,25 А точка М
(3.15)
Рабочую
точку ИРТ наносим на пересечении линии
нагрузки со статистической характеристикой,
соответствующей заданному режиму Iбо
=10мА =const (рисунок
3.2). После этого определяем состояние
выходной цепи в режиме покоя (при
отсутствии входного сигнала).
Iко
=0,75 А, Uкэо
= 3,75 В
(3.16)
и
мощность Рко,
выделяющуюся в транзисторе в режиме
покоя
Pко
= Iко
Uкэо
≤ Pк.max
(3.17)
которая
должна быть меньше максимально допустимой
рассеиваемой мощности.
Для
рассматриваемого примера
Pko
= Iko
Ukэо
= 0,75А 3,75В =2,93 Вт
(3.18)
По
справочным данным определяем, что для
транзистора ГТ703
постоянная рассеиваемая мощность
коллектора при t
= -600С…+900С
составляет Pk.max
=15 Вт,
что удовлетворяет расчетам. Следовательно,
нет необходимости применять дополнительные
меры теплоотвода.
Рисунок 3.2 — Вольтамперные характеристики
Часто
для проверок режима работы транзистора
строят кривую Pк.max=сonst
, ограничивающую область допустимых
режимов транзистора. Из уравнения (3.17)
видно, что эта кривая представляет собой
гиперболу.
(3.19)
Построим
кривую допустимых режимов работы
транзистора ГТ703 для Pк.max=15Вт
(рисунок 3.2). Видно, что выбранный режим
работы является допустимым.
По
заданной амплитуде входного сигнала
Imб
находим точки находим точки А и В
максимального отклонения от положения
ИРТ (рисунок 3.2). Эти точки находим на
пересечении линии нагрузки со
статистическими характеристиками.
точка
А: при Iба
= Iбо+Imб
= 15 мА
(3.20)
точка
В: при Iбв
= Iбо—Imб
= 5 мА
(3.21)
По
проекции рабочего участка на оси
координат (на ось коллекторного тока и
на ось напряжения коллектор-эмиттер)
определяется амплитуды переменных
составляющих выходного тока и выходного
напряжения
ImК
= (IКа
— IКб )
/ 2 = ( 0,98 А –0,45А ) /2 =0,27 А
(3.22)
UmКЭ
= (UКЭб
— UКЭа
) /2 = (6,75 В – 2,5 В ) / 2 = 2,13 В
(3.23)
После этого можно
найти выходную мощность
Pвых
= 0.5 Imк
Umkэ
(3.24)
Pвых
= 0,5 0,27 А 2,13В = 0,288 Вт
(3.25)
4
РАСЧЕТ ПАРАМЕТРОВ И ХАРАКТЕРИСТИК
ПОЛЕВЫХ ТРАНЗИСТОРОВ
Полевые
транзисторы получают все более широкое
распространение как в качестве дискретных
элементов, так и в качестве элементов
и компонентов интегральных микросхем.
Главным достоинством полевых транзисторов
является высокое входное сопротивление,
обусловленное очень малым током затвора.
Существуют следующие
разновидности полевых транзисторов:
—
полевые транзисторы с р-n
переходом (рисунок 4.1,а,б);
— полевые
транзисторы с изолированным затвором,
которые также называются МДП
(металл-диэлектрик-полупроводник) или
МОП (металл-оксид-полупроводник), в свою
очередь, подразделяются на:
а)
МДП — транзисторы с индуцированным
каналом (рисунок 4.1, в, г,)
б)
МДП — транзисторы со встроенным каналом
(рисунок 4.1, д, е,)
Рисунок
4.1 Разновидности полевых транзисторов
Полевые
транзисторы бывают с каналом р- типа
(рисунок 4.1 а,в,д,) и с каналом n-типа
(рисунок 4.1,б,г,е). Различие состоит в
знаке используемых подвижных носителей
заряда. При включении транзисторов с
различными каналами в схемы, полярность
подключения источников питания у них
противоположная.
Ток
утечки затвора, как уже отмечалось,
очень мал. Например у транзистора КП103
Iз.ут≤20нА
(при Uси=0
В, Uзи=10
В), у транзистора
КП301 Iз.ут≤0,3нА
(при Uзи=-30
В).
Поэтому
входные характеристики полевых
транзисторов не рассматриваются.
IВХ
= f(UВХ
) или IЗ
= f(
UЗИ
)
(4.1)
Управляющее
действие затвора наглядно иллюстрируют
управляющие (стокозатворные или
переходные, проходные) характеристики
выражающие зависимость.
IВЫХ
= f
(UВХ
)
при Uвых
= const
(4.2)
IС
= f (UЗИ
)
при
Ucи
= const
Однако
эти характеристики неудобны для расчетов,
и поэтому чаще пользуются выходными
характеристиками.
Выходные
характеристики (стоковые) выражают
зависимость (рисунок 4.2)
IВЫХ
= f
(UВЫХ
) при
Uвх
= const
(4.3)
IС
= f
(UСИ
) при
Uзи
= const
(4.4)
Они
показывают, что с увеличением Uси
ток стока Ic
сначала довольно быстро, а затем это
нарастание замедляется и почти совсем
прекращается, т.е. наступает явление,
напоминающее насыщение. Работа транзистора
обычно происходит на пологих участках
характеристик, в области, которую не
совсем удачно называют областью насыщения
(на рисунке 4.2 отмечено пунктиром).
Напряжение,
при котором начинается эта область,
иногда называют напряжением насыщения.
Запирающее напряжение затвора (при
котором ток стока равен нулю Iс=
0) называют
напряжением отсечки.
По
выходным вольтамперным характеристикам
полевого транзистора определить
разновидность транзистора и тип канала,
рассчитать параметры крутизну S,
внутреннее дифференциальное сопротивление
RДИФ,
коэффициент усиления ,
сопротивление постоянному току RО
в заданной исходной рабочей точке.
Полевой
транзистор характеризуется следующими
параметрами. Основным параметром
является.
S
— крутизна, отношение изменения тока
стока к изменению напряжения на затворе
при коротком замыкании по переменному
току на выходе транзистора в схеме с
общим истоком
Вторым
параметром является: Ri
— внутреннее (выходное) дифференциальное
сопротивление представляющее собой
сопротивление транзистора между стоком
и истоком (сопротивление канала) для
переменного тока,
Ri
= ΔUСИ
/ ΔIС
при Uзи
= сonst
(4.5)
На
пологих участках выходных характеристик
Ri
достигает сотен килоом и оказывается
во много раз больше сопротивления
транзистора постоянному току Ro.
R0
= UСИ0
/ IС0
(4.6)
Следующий
важный параметр — коэффициент усиления,
который показывает, во сколько раз
сильнее действует на ток стока изменение
напряжения затвора, нежели изменение
напряжения стока
μ
= — ΔUСИ
/ΔUЗИ
при Iс
= const.
(4.7)
Коэффициент
усиления
выражается отношением таких изменений
∆Uси
и ∆Uзи,
которые компенсируют друг друга по
действию на ток стока Iс,
в результате чего этот ток остаётся
постоянным. Так как для подобной
компенсации ∆Uси
и ∆Uзи
должны иметь разные знаки (например,
увеличение Uси
должно компенсироваться уменьшением
Uзи,
то в правой части формулы (4.7) стоит знак
«минус». Иначе, вместо этого можно
взять абсолютное значение правой части,
т.e.
>0. Коэффициент
усиления
связан с параметрами Ri
и S
простой зависимостью
=S
Ri
(4.8)
К
параметрам полевого транзистора,
которые, как правило, указываются в
справочной литературе, относятся:
Iс.нач
— начальный ток стока, ток стока при
напряжении между затвором и истоком,
равном нулю, и при напряжении на стоке,
равном или превышающем напряжение
насыщения;
Iс.оcт
— остаточный ток стока при напряжении
между затвором и истоком, превышающем
напряжение отсечки;
Iз.ут—
ток утечки затвора, ток затвора при
заданном напряжении между затвором и
остальными выводами, замкнутыми между
собой;
Iзио
— обратный
ток перехода затвор-исток. при разомкнутом
выводе, ток, протекающий по цепи
затвор-исток, при заданном обратном
напряжении между затвором и истоком и
разомкнутыми выводами.
Uзиотс
— напряжение отсечки полевого транзистора,
напряжение между затвором и истоком
транзистора с р-n-переходом
или МДП транзистора со встроенным
каналом, при котором ток стока достигает
заданного низкого значения;
Uзипор—
пороговое напряжение полевого транзистора,
напряжение между затвором и истоком
МДП — транзистора с индуцированным
каналом, при котором ток стока достигает
заданного низкого значения;
Rсuoтк
— сопротивление сток-исток в открытом
состоянии транзистора, сопротивление
между стоком и истоком в открытом
состоянии транзистора при заданном
напряжении сток-исток, меньшем напряжения
насыщения.
Указанные
параметры можно определить экспериментально
либо по статистическим вольт-амперным
характеристикам. В справочниках нередко
приводят только один из видов характеристик.
Чаще всего стоковые характеристики
Ic=f(Ucи)
при Uзи=const
.
Рассмотрим
пример построения семейства стокозатворных
характеристик Ic=f(Uзи)
при Ucи=const
для полевого транзистора КП312Б (рисунок
4.6,а,б). Графическими построениями находим
значения токов и напряжений и заносим
в таблицу 4.1
Таблица.
4.1
Uзи, |
0 |
-0,25 |
-0,5 |
||
Из |
Uси |
Iс |
1,1 |
0,75 |
0,55 |
Uси |
Iс |
2,2 |
1,4 |
1 |
|
Uси |
Iс |
2.4 |
1,6 |
1,1 |
|
Из |
Uси |
Iс |
2,8 |
1,9 |
1,3 |
Uси |
Iс |
3 |
2 |
1,3 |
|
Uси |
Iс |
3 |
2 |
1,3 |
По
полученным данным строим семейство
кривых, обозначающих зависимость
Ic=f(Uзи)
при Uси
=const
(рисунок 4.б,в). Если в справочнике
приведены только стокозатворные
характеристики
Ic=f(Uзи)
при Uси
=const
, то, используя их, можно построить
семейство выходных характеристик.
Рассмотрим
пример построения семейства стоковых
характеристик Ic=
f(Ucи)
при Uзи
=const.
по известному семейству стокозатворных
характеристик транзистора КП601 (рисунок
4.7,а). По графикам определяем значения
токов и напряжений и заносим в таблицу
4.2.
Таблица 4.2
Uси, |
0,5 |
1 |
3 |
5 |
10 |
20 |
|
Uзи=-8В |
Iс, |
0 |
8 |
20 |
26 |
35 |
53 |
Uзи=-4В |
Iс, |
13 |
26 |
66 |
80 |
97 |
120 |
Uзи=-2В |
Iс, |
30 |
70 |
140 |
160 |
180 |
205 |
Uзи=0В |
Iс, |
60 |
100 |
200 |
260 |
290 |
305 |
По
полученным данным строим семейство
кривых, обозначающих стокозатворные
характеристики Ic=f(Uзи)
при Uси
= const
(4.7,б).
Рассмотрим
пример определения параметров S,
Ri,
μ и Rо
транзистора КП312Б по выходным стоковым
характеристикам.
Задаем
режим работы транзистора по постоянному
току (задаем положение исходной рабочей
точки).
Ucио=5В,
Uзио
=-0, 5В
(4.9)
Наносим положение
ИРТ на характеристику Uзи=-0,5В=const
при Uси
=5В и определяем (рисунок 4.8) ток стока:
Iсо
=1,4 мА
(5.10)
Рисунок
4.8 – Выходные стоковые характеристики
Определение
параметра S
В
соответствии с формулой (4.4) для выполнения
условия Ucи
= const
выше и ниже ИРТ
на характеристике Uзи
= 0,75В и Uзи=0,25
В выберем
две точки, для которых Uси=-8В
(см, рис.5.8)
Для
точки А: Uзиа
=- 0,25В ; Iса=2мА;
Ucиа=5В.
Для
точки В: Uзив
= -0,75В ; Iсв
= 0,9 мА; Ucив
=5В.
(4.11)
Для
ИРТ: Uзио
= -0,5В ; Iсо
=1,4 мА; Ucио
=5В.
Как
видно, для всех трех точек выполняется
условие Ucи
=5В = const.
По графикам (рисунок 4.8) определяем
приращение ∆Uзи
и ∆Ic
между точками А и В и находим крутизну
S
:
S=ΔIС/ΔUЗИ│приUси=const=(Iса–Iсв)∕(Uзив–Uзиа)=(2мА-0,9мА)∕(-0,75+0,25В)
=-2,2мА∕В.
(5.12)
Согласно
справочным данным для транзистора КП103
крутизна составляет S=0,4…3,0мА/В.
Определение
параметра Ri
В
соответствии с формулой (5.5) для выполнения
условия) Uзи
=const
выберем на характеристике Uзи
= 1,0 В две
точки
левее и
правее ИPT
(рис.5.9)
Для
т.С: Uси
с = -12В ; Iсс
= 0,42 мА; Uзис=1,0
В.
Для
т.Д: Uси
д = -4В ; Iсд
= 0,38 мА; Uзид
= 1,0В.
(5.13)
Для
ИРТ: Uсио
= -8В ; Iсо
= 0,4 мА; Uзио
= 1,0 В.
Как
видно для всех трех точек выполняется
условие Uзи
= 1,0 В =const.
По
графикам (см.рис.5.9) определяем приращения
∆Ic
и ∆Ucи
и находим параметр Ri
Ri
= ΔUСИ
/ ΔIС
│ при Uзи
= сonst
=(12В-4В)∕(0,42мА-0,38мА)=200
кОм
(5.14)
Рис. 5.9
Определение
параметра μ
В результате того,
что коэффициент усиления
μ
имеет довольно большую величину, то его
нередко невозможно измерить в указанной
рабочей точке. Тогда коэффициент μ
находят по формуле (5.8) после определения
параметров S
и Ri
μ
= S
Ri
= 0.65мА/в 200 кОм =130
(5.15)
Действительно,
легко проверить, что для такого значения
μ изменению
напряжения сток-исток на 4 вольта (∆Uси
= 4 В) соответствует изменение напряжения
затвор-исток ∆Uзи
= 30 мВ. По вольт — амперным характеристикам
такие вычисления можно выполнять только
при малом значении μ.
Определение
параметра Rо
Сопротивление
транзистора постоянному току определяем
для заданной рабочей точки как отношение
постоянного выходного напряжения Ucио
к соответствующему постоянному выходному
току Iсо
по формуле (5.6) (см.рис.5.8)
R0
= UСИ0 /
IС0 = 8В
/ 0,4 мА = 20 кОм (5.16)
Следует подчеркнуть,
что значения рассчитанных параметров
зависят от выбранного положения ИРT.
Для подтверждения на рис.5.10 приведен
график зависимости крутизны S
от тока стока Iсо
для транзистора КП313. Читатель может
убедиться в этом и непосредственно,
рассчитав значение крутизны S
по изложенной выше методике для различных
положений ИРТ.
Рис. 5.10
Данные
параметры можно определить и по семейству
сток-затворных характеристик. Рассмотрим
на примере транзистора КП313 для рабочей
точки:
Uзио
= 1В, Uсио=10
В (5.17)
Наносим положение
ИРТ на характеристику Uси=10В=const
при Uзи=1В
и определяем ток стока (рис.5.11):
Iсо
= 10 мА (5.I8)
Рис. 5,11
Определение
крутизны
В соответствии с
формулой (5.4) для выполнения условия Ucи
=const выберем две
точки т.А и т.В на характеристике Ucи
= 10В (см.рис.5.11).
Для т.А: Uзиа
= 1,3 В;Icа
= 12,5мА; Uсиа
= 10 В
Для т.А: Uзив
= 0,7 В;Icв
= 7,5мА; Uсив
= 10 В (5.19)
Для ИРТ: Uзио
= 1 В; Icо
= 10мА; Uсио
= 10 В
Видно, что для всех
трех точек выполняется условие Uси
=10В=const. По графикам
(см.рис.5.11) определяем приращение ∆Uзи
и ∆Ic
между точками т.А и т.В и определяем
крутизну S.
S=ΔIС/ΔUЗИ│приUси=const=(Iса–Iсв)∕(Uзиа–Uзив)=(12,5мА-7,5мА)∕(1,3В-0,6В)=8,3мА∕В.
(5.20)
Для сравнения: по
справочнику у транзистора КП313 крутизна
S составляет
S
= 4,5 … 10,5 мА/В .
(5.21)
Определение
параметра Ri
Для определения
параметра Ri
в соответствии с формулой (5.5) для
выполнения условия Uзи
= const выберем т.С на
характеристике Uси
= 15 В, соответствующую Uзи
=1В (рис.5.12)
Для т.С: Uсис
= 15В; Icc
= 11мА;Uзис
= 1В (5.22)
Для ИРТ: Uсио
= 10В; Icо
= 10мА;Uзио
= 1В
Рис.5.12
Для этих двух точек
выполняется условие Uзи
= 1В = const. По графикам
(см. рис.5.12) находим приращения ∆Ic
и ∆Uси
и определяем параметр Ri
Ri=ΔUСИ
/ΔIС│при
Uзи=сonst
=(Uсис—Uсио)∕(Icc—Icо)=(15В-10В)∕(11мА-10мА)=5кОм
(5.14)
Определение
коэффициента усиления μ
Для определения
коэффициента усиления μ
в соответствии с формулой (5,7) для
выполнения условия Ic
= const выберем на
характеристике Ucи
= 15 В точку т.Д, для которой Ic
= 10 мА (рис. 5,13)
Рис.
5.13
Для т.Д: Uсид
= 15В; Uзид
= 0,85В; Iсд
= 10мА (5.24)
Для ИРТ: Uсио
= 10В; Uзид
= 1В; Iсо
= 10мА
Для этих двух точек
выполняется условие Iс
= 10мА=const.
По графикам
(см.рис.5.13) находим приращения ∆Uзи
и ∆Ucи
и определяем коэффициент усиления μ..
μ=│∆Ucи∕∆Uзи│приIс=10мА=const=(Uсид–Uсио)∕(Iсд-Iсо)=(15В-10В)∕(1В-0,85В)=38,5
(5.25)
Расчет по формуле
(5.8)
μ
= S
Ri
= 8,3 мА 5кОм = 41,5
(5.26)
дает удовлетворительное
согласование с (5.25). Небольшие расхождения
обусловлены неизбежными погрешностями
графических построений и не играют
существенной роли. Как уже отмечалось
выше, существует разброс параметров у
транзисторов.
Таблица
4 – Данные
варианта задания 4 на курсовую работу.
№ |
транзистор |
UСИ |
Исходная рабочая |
|
UСИ |
UСИ, |
|||
13 |
КП312Б |
5В |
-0.5В |
5В |
Рисунок 1 –
Обобщенная схема электрической цепи
Значения элементов
ветвей приведены в таблице 1.
Таблица
1 — Значения
элементов ветвей электрической цепи
Ветвь |
Ветвь |
Ветвь |
Ветвь |
Ветвь |
R, Ом |
C, нФ |
L, МГн |
R, Ом |
L, мГн |
200 |
200 |
30 |
500 |
30 |
В
таблице 2 приведен номер варианта и
задания на курсовую работу.
Таблица
2 – Вариант
задания на курсовую работу.
Номер варианта |
Ветвь 1 |
Ветвь 2 |
Ветвь 3 |
Ветвь 4 |
Ветвь 5 |
65 |
R |
C |
L |
R |
L |
2
СОДЕРЖАНИЕ КУРСОВОЙ РАБОТЫ
Курсовая
работа предусматривает решение одной
задачи, в которой необходимо:
—
изобразить расчетную и комплексную
схемы замещения электрической цепи,
обозначив входящие в нее элементы;
—
рассчитать методом контурных токов и
узловых напряжений токи в ветвях и
падения напряжений на элементах цепи;
— записать
их аналитические выражения для мгновенных
значений;
—
проверить выполнение 1 и 2 законов
Кирхгофа.
3.1
Расчет методом контурных токов
3.1.1
Изображение расчётной схемы замещения
электрической цепи.
Пусть
в первой и четвертой ветвях содержатся
сопротивления, в третьей и пятой –
индуктивности, а во второй – емкость.
Тогда
расчетная схема замещения цепи будет
иметь вид, изображенный на рисунке 2.
Рисунок 2 —
Расчётная схема замещения электрической
цепи
3.1.2
Изображение комплексной схемы замещения
Комплексная
схема замещения цепи изображена на
рисунке 3.
Рисунок 3 –
Комплексная схема замещения электрической
цепи
Цепь
имеет 3 узла (A,B,C)
и 5 ветвей. Следовательно, при использовании
метода уравнений Кирхгофа необходимо
решать систему из 7 уравнений.
Метод
контурных токов позволяет решать систему
из 3 уравнений, так как в цепи 3 независимых
контура.
3.1.3
Выбор положительных направлений токов
в ветвях
Условные
положительные направления токов в
ветвях выбираются произвольно. Выберем
их так, как указано на рисунке 3.
3.1.4
Выбор направления обхода и обозначение
независимых контуров
Контурные
токи обозначим также произвольно,
например, по часовой стрелке, как на
рисунке 3. Положительные направления
обхода контуров выберем совпадающим с
направлениями контурных токов.
3.1.5
Запись системы контурных уравнений для
расчета контурных токов в общем виде
Составим
систему контурных уравнений для контурных
токов в общем виде
,
,
,
где
— комплексные контурные токи;
комплексные
ЭДС;
собственные
комплексные сопротивления контуров;
взаимные
комплексные сопротивления контуров.
Здесь ,
,
,
,
,
.
3.1.6
Расчет сопротивлений элементов схемы
на указанной частоте
,
,
,
,
.
3.1.7
Расчет собственных и взаимных сопротивлений
Z
11 =
500 + j300
[Ом],
Z
12
= j300
[Ом],
Z
22
=
200 – j200 [Ом],
Z
23
=
200 [Ом],
Z
33 =
200
+ j300
[Ом].
3.1.8
Расчет контурных токов
Систему
уравнений будем решать методом Крамера.
Найдем сначала определитель системы
.
Подставляя
значения, получим
Определитель
для тока
После
подстановки значений имеем
.
Разделив
на
,
получим значение контурного тока
.
Определитель
для тока
.
Для
заданных значений имеем
.
Определим
ток контурный ток
.
Определитель
для тока
.
Подставляя
значения, получим
.
Отсюда
контурный ток
равен
.
3.1.9
Расчет токов в ветвях и напряжений на
элементах.
В
соответствии с обозначениями рисунка
3 получаем
.
,
,
,
.
,
,
.
,
.
3.1.10
Проверка правильности решения задачи
на основе выполнения законов Кирхгофа
Проверим
выполнение 1 закона Кирхгофа.
Для
узла А:
.
Для
узла В:
.
Следовательно,
первый закон Кирхгофа выполняется.
Проверим
выполнение 2 закона Кирхгофа.
Для
контура 1:
.
Для
контура 2:
.
Для
контура 3:
.
Лучше все это делать с помощью специального избирательного прибора типа Л2-51, Л2-56 или аналогичного, который на экране рисует непосредственно семейство входных, выходных или проходных характеристик транзисторов.
Но такие приборы вряд ли есть в кладовке простого радиолюбителя, так что придётся ограничиться мультиметром. А лучше двумя. Потому что любой параметр — это зависимость чего-то от чего-то, то есть измеряются одновременно две величины, входная и выходная, и удобнее делать это двумя приборами параллельно. Хотя, безусловно, можно и одним, всё время его перетыкая с места на место и переключая режим работы (потому что часто измерять надо и напряжение, и ток).
Ну дык по порядку.
Параметр, который интересует публику чаще всего, — это коэффициент усиления по току в схеме с общим эмиттером. Причём, как и почти всякий параметр, он существует в двух ипостасях — статический (H21э) и динамический (h21э), или «по переменному сигналу».
Схема для измерения: транзистор подключается эмиттером на землю, коллектором через (милли)амперметр к источнику питания, базой через небольшой резистор — к регулируемому источнику напряжения. Хотя входным параметром тут является ток, устанавливать точно ток базы для «чистой» схемы с ОЭ затруднительно из-за экспоненциального вида входной характеристики транзистора. Поэтому и нужен базовый резистор.
Величина базового резистора выбирается исходя из тех токов, на которых предполагается работа транзистора. Если это мощный транзистор, типа показанного на фотографии, то речь идёт о коллекторных токах в сотни мА или даже в единица ампер, так что и базовый ток может быть значительным — десятые доли ампера. Поэтому резистор должен быть в несколько десятков ом. Для маломощных транзисторов и измерений на уровне тока коллектора в единицы мА ток базы будет в десятки мкА, поэтому резистор должен быть килоомной величины.
Процедура измерения: изменяется напряжение регулируемого источника питания, и для каждой величины этого напряжения измеряется падение напряжения на базовом резисторе. Которое, как должно быть понятно, определяется величиной тока базы. Одновременно для каждой точки измеряется и ток коллектора транзистора. После чего для каждого значения выходного тока рассчитываются статический и динамический коэффициенты усиления:
H21э = Iк/Iб
h21 = [Iк(n)-Iк(n-1)]/[Iб(n)-Iб(n-1)]
Имейте в виду, что из-за эффекта модуляции толщины базы оба этих параметра зависят от напряжения на коллекторе.
Следующий параметр, который может интересовать, — входное напряжение транзистора. Потому что от этого зависит расчёт цепей смещения, правильность выставления рабочей точки каскада и балансировка дифференциальных каскадов.
Схема для измерения такая же, как и для измерения коэффициента усиления, разве что нам не надо измерять тока коллектора. Зато надо измерять напряжение база-эмиттер.
Процедура измерения до безобразия простая: меняя напряжение регулируемого источника питания, измерять одновременно ток базы (по падению напряжения на базовом резисторе) и напряжение на базе относительно эмиттера. Вот так, по точкам, и строится эта характеристика. По ней же можно вычислить и дифференциальное входное сопротивление транзистора — догадайтесь сами, как именно
Для транзисторов, которые предполагается использовать в выходных каскадах или в стабилизаторах напряжения, полезно знать напряжение насыщения при некотором токе коллектора. Схема для измерения: на этот раз регулируемый источник понадобится не только для питания базы, но и для питания коллектора (либо запастись обоймой разных коллекторных нагрузок). Питание подключается к коллектору через небольшой резистор, величина которого выбирается исходя из значения тока, на котором мы хотим измерить Uнас, и из диапазона регулировки источника питания коллектора. Попросту, Rк = Uпит/Iк. Если, скажем, измерить напряжение насыщения надо на токе в 200 мА, а имеющийся в нашем распоряжении резистор — 50 Ом, то понадобится источник питания с диапазоном регулировки от чего-то меньше 10 В до чего-то порядка 15 В. Ну и не забудьте про мощность рассеяния этого резистора.
Процедура измерения: ставим коллекторное напряжение заведомо выше того, которое брали для расчёта Rк. Напряжение базового источника начинаем плавно увеличивать от 0 до величины, при которой ток коллектора станет равным нужному (200 мА, к примеру). Ток измеряем опять же по падению напряжения на коллекторной нагрузке. Как только дошли до этого тока, оставляем базовый источник в покое и начинаем уменьшать напряжение питания коллектора, контролируя напряжение на коллекторе относительно эмиттера. Как только оно перестанет уменьшаться с тем же темпом, что и напряжение питания, — всё, насыщение достигнуто, а то, что мы видим, и есть Uнас.
Если источник питания коллектора нерегулируемый, то придётся выбрать вполне определённое значение сопротивления коллекторной нагрузки, по той же формуле. Затем начинаем увеличивать напряжение базового источника, отслеживая напряжение коллектор-эмиттер. Как только оно перестало уменьшаться — достигнуто насыщение, и то, что показывает мультиметр на выходе, и есть искомый параметр.
Не первое время хватит. Если надо что-то ещё — обращайтесь :). Но учтите, что халява на этом кончилась: для измерения большинства других параметров, в первую очередь тех, которые важны на переменном токе, обычного мультиметра мало. Понадобятся осциллограф и генератор.
to continue to Google Sites
Not your computer? Use Guest mode to sign in privately. Learn more
Транзистор… По-моему самая сложная и очень любопытная тема во всей электронике. Ничего нигде про них толком не написано. Ну что же, дорогие читатели, попробуем пролить свет истины на самое величайшее изобретение XX века, с которого началась Великая Эра цифровой электроники.
Что такое транзистор?
Транзистор – это (от англ. transfer — переносить и resistor — сопротивление) радиоэлектронный компонент, способный усиливать слабые электрические сигналы. Все, пока на этом хватит… Дальше интереснее.
Более подробно в видео:
Из чего состоит транзистор?
Как вы знаете, все мы из чего-то состоим. Люди состоят из мяса, воды и костей. А некоторые состоят вообще из другого материала, поэтому не тонут в воде ))). Так и наш транзистор — он тоже из чего-то состоит. Но из чего?
Как вы все знаете, материалы делятся на проводники и диэлектрики, а между ними находятся полупроводники. Еще раз напомню вам, что проводники прекрасно проводят электрический ток, диэлектрики не проводят электрический ток, а вот полупроводники проводят электрический ток, но очень плохо.
«И зачем нам нужен этот полупроводниковый материал?» — спросите вы. Сам по себе материал полупроводник с практической точки зрения не представляет никакого интереса, но вот когда в него добавить малюсенькую долю некоторых элементов из таблицы Менделеева, по-научному «пролегировать», то мы получим полупроводниковый материал, но с очень странными свойствами.
Самым знаменитым полупроводником является кремний
и германий
Как вы видите, они мало чем отличаются.
Кремний составляет почти 30% (!) земной коры, германий 1.5х10-4% . Может быть поэтому полупроводниковые радиоэлементы очень дешевые, особенно из кремния?
P и N полупроводники
Когда в кремний добавляют мышьяк, получается так, что в кремнии стает очень много свободных электронов. А материалы, в которых очень много свободных электронов, мы уже называем проводниками. Следовательно, кремний, после легирования (смешивания) с мышьяком превращается из полупроводника в очень хороший проводник. Электроны обладают отрицательным зарядом, и их в полупроводнике как песчинок в пустыне, значит такой полупроводник будем называть полупроводником N-типа. N — от англ. Negative — отрицательный.
А вот если пролегировать кремний с индием, то мы получим очень забавную вещь… В первом случае у нас появились лишние электроны, которые превратили полупроводник в проводник. Но здесь ситуация абсолютно противоположная. Представьте себе, как это бы странно не звучало, электрон с положительным зарядом. Да да, именно так. Но самое-самое интересное знаете что? Его не существует! Он как бы есть, но его как бы нет))).
Это все равно, что магнитное, электрическое или гравитационное поле. Оно существует, но мы его не видим.
Такой «электрон» мы будем называть дыркой. Так как дырка обладает положительным зарядом, то полупроводниковый материал в котором очень-очень много этих дырок, мы будем называть полупроводником P-типа. P — от англ. Positive — положительный.
По отдельности полупроводники P и N типа не представляют никакого интереса. Все самое интересное начинается тогда, когда они спаиваются с друг другом и образуется PN-переход.
PN-переход
В настоящее время PN-переход спаивается по специальной технологии, что, конечно же, увеличивает проводимость для электрического тока. Ширина этой спайки очень мала и достигает одну тысячную миллиметра.
Свойство PN-перехода
Думаю, будет излишним рассказывать как на физическом уровне работает PN переход. Это долго, муторно и непонятно. Да и вам это точно не пригодится). Самое главное свойство P-N перехода — это односторонняя проводимость! Односторонняя ЧТО? ОДНОСТОРОННЯЯ ПРОВОДИМОСТЬ. Но что означает это словосочетание?
Давайте представим себе воронку, наподобие этой:
С какой стороны нам будет удобней наливать жидкость? Думаю, что сверху, не так ли? Тем самым мы переливаем нашу жидкость далее в какой-либо сосуд.
Ну а что будет, если мы перевернем нашу воронку и будем наливать жидкость через узенькую трубочку таким же напором? Совсем малюсенькая часть жидкости попадет через узкую трубочку и окажется по ту сторону воронки. Остальная же часть тупо прольется мимо воронки.
А давайте теперь на секундочку представим, что вместо жидкости мы будем «наливать» электрический ток. С широкой стороны воронки ток прекрасно зайдет и потечет дальше через узенькую трубочку, а если перевернуть воронку совсем малюсенькая часть электрического тока протиснется на другой конец воронки, остальная же часть электрического тока «прольется» мимо воронки.
Так вот, дорогие мои читатели, P-N переход работает точно таким же способом, как и эта воронка! P — это широкая часть воронки, N — узкая часть воронки, ну то есть та самая тонкая трубочка.
Таким образом, подавая на «воронку» полупроводника P, плюс от источника питания (это может быть батарейка или блок питания ) , а к N-полупроводнику, к узкой трубочке воронки, минус, то у нас ток течет как ни в чем не бывало. Но как только мы поменяем полярность, то есть подадим на P минус, а на N плюс, то у нас ток никуда не потечет. То есть цепь будет находиться в обрыве.
Диод, как самый простой PN-переход
А вам знаком вот такой радиоэлемент? Да, это самый простой диод.
а вот его схематическое изображение
А знаете ли вы, что диод состоит из самого обычного PN-перехода? Можем даже вот так нарисовать диод:
Проведем опыт. Возьмем простой советский диод марки Д226:
Интересно, что же внутри у него? На наждаке стачиваем одну треть корпуса диода, чтобы не повредить внутренности:
Интересно, где же этот PN-переход? С помощью цифрового микроскопа Prima Expert M100 увеличиваем наш парированный диод и видим кристалл кремния.
Судя по книге Шишкова «Первые шаги в радиоэлектронике», PN-переход находится где-то здесь:
Хотя я увидел там только одну пластинку кремния. Видать полупроводники P и N сплавлены в один бутербродик.
Итак, классика жанра… Как вы видите на этой картинке, диод имеет анод и катод. Анод — это P полупроводник, катод — это N полупроводник. Все элементарно и просто.
Односторонняя проводимость PN-перехода
Далее проведем классический опыт, который описывается во всех учебниках физики. Собираем цепь из блока питания, лампочки и нашего диода вот по такой схеме (снизу перечеркнутый кружочек — это лампочка).
Теперь собираем эту схемку в реале. Красный щуп — это плюс от блока питания, черный щуп — это минус от блока питания.
Видим, что лампочка загорелась. Это означает, что электрический ток течет через диод как ни в чем не бывало.
Теперь меняем щупы местами и собираем вот по такой схеме:
Лампочка не горит. Ну ладно, не переживайте, ведь мы для себя сейчас открыли важнейшее свойство диода, а следовательно и PN-перехода! Диод пропускает электрический ток, если подать на его анод плюс, а на катод минус. Такое включение называют прямым включением диода. А если подать на анод минус, а на катод плюс — диод не будет пропускать электрический ток.
Как проверить целостность PN-перехода
Как проверить целостность PN-перехода, а соответственно и диода? Для этого ставим крутилку на мультиметре в режим прозвонки вот на этот значок :
В этом режиме измеряется падение напряжения. Прямое падение напряжения для кремниевых диодов составляет значение от 0,5 Вольт и до 0,7 Вольт, а для германиевых 0,3-0,4 Вольта.
Цепляем анод у диода к положительному щупу мультиметра (красный щуп), а катод цепляем к отрицательному щупу (черный щуп):
Итак, на дисплее мультиметра мы видим так называемое прямое падение напряжения PN-перехода. В данном случае оно равно 554 милливольта или 0,55 Вольт.
Если поменять щупы местами, то на дисплее мультиметра высветится единичка. Это значит, что падение напряжения в данном случае не влазит в диапазон измерения мультиметра в функции прозвонки. При функции «прозвонка» можно наблюдать падение напряжения только в диапазоне от 0 и до 1999 милливольт. Мультиметр же выдает 2,8-3 Вольта в этом режиме.
Зависимость падения напряжения на PN-переходе от температуры
Также у PN-перехода есть очень интересное свойство. Его прямое падение напряжения зависит от температуры.
Вот прямое падение напряжения на диоде при обычной комнатной температуре: 554 милливольта.
Начинаем жарить паяльным феном при 200 градусах по Цельсию и смотрим на дисплей мультиметра:
Опа-на, 392 милливольт, а было 554 …
А давайте охладим наш диод. Для этого используем морозильную камеру холодильника:
615 милливольт…
При повышении температуры, прямое падение напряжения на PN-переходе понижается, а при понижении температуры — повышается. Из Закона Ома вы знаете, что чем меньше сопротивление (а следовательно и падение напряжение на нем), тем лучше течет электрический ток. Может быть, именно поэтому вся современная электроника очень плохо работает на холоде, но прекрасно работает в жаре, потому как почти полностью построена на полупроводниках.
Зависимость сопротивления прямого перехода от температуры радиолюбители используют даже в своих схемах, например в схеме умного вентилятора.
Биполярный транзистор
История возникновения
На дворе стоял послевоенный 1947 год. Декабрь. Холодно, голодно, жутко… но только не в лаборатории Bell Labs! Трое ученых: Джон Бардин, Уильям Шокли и Уолтер Браттейн, бились над радиоэлементом, который перевернул весь мир с ног на голову! 16 декабря 1947 года можно назвать днем второго рождения электроники! Да, черт побери! В этот день впервые миру был продемонстрирован биполярный транзистор.
Именно биполярный транзистор сделал революцию в электронике. Обладая усилительными свойствами, он заменил собой электронные лампы, что сделало электронику намного надежнее, мобильнее и компактнее. Без такого изобретения, как транзистор, мы с вами до сих пор бы жили без компьютеров, мобильных телефонов, планшетов и других различных электронных гаджетов.
Внутреннее строение биполярного транзистора
Помните, о чем мы беседовали выше? Да-да, о полупроводниках P и N типа, а также об их совместном воздействии. В итоге у нас получился диод.
А почему бы нам не добавить еще один полупроводник с такой же проводимостью, как слева? Сказано — сделано! Ну что же, прошу любить и жаловать! Получился БИПОЛЯРНЫЙ ТРАНЗИСТОР!
Если читать слева-направо или справа-налево, из каких полупроводников он состоит, то можно узнать какой он проводимости. Значит, транзистор на рисуночке выше у нас проводимости PNP, или, как у нас говорят, прямой проводимости.
А вот у этого транзистора проводимость NPN или обратной проводимости.
Вывод со среднего полупроводникового материала называется базой, а по краям эмиттер и коллектор. Откуда такие названия? Так как транзистор придумали американцы, то и названия они дали соответствующие:
Эмиттер — на буржуйском Emitter — источник, излучатель, генератор. То есть вывод, на который что-то подается. В данном случае электрический ток.
База — Base — основа. Cамый главный вывод.
Коллектор — Collector — сборщик, собиратель, токоприемник. Он как-бы «собирает» электрический ток.
Обозначение на схеме биполярного транзистора
Как же на схемах обозначаются биполярные транзисторы? Мы разобрали, что существуют транзисторы прямой и обратной проводимости, значит и на схемах они будут обозначатся совсем по-другому.
Схемотехническое обозначение P-N-P транзистора, то есть транзистора прямой проводимости
будет выглядеть вот так:
А схемотехническое обозначение транзистора обратной проводимости или N-P-N транзистора
будет выглядеть вот так:
В старинных советских схемах транзисторы обозначались буквой T, в современных схемах они уже обозначаются буквами VT. Как нетрудно догадаться, вывод со стрелочкой — это эмиттер.
Как не путаться в проводимостях транзистора и в их схемотехнических изображениях? Тут все просто. Как вы помните, в полупроводнике P-типа у нас очень много дырок, а дырки обладают положительным зарядом, то есть они со знаком «плюс».
Полупроводник N-типа содержит большое количество электронов, а электроны — это отрицательные частицы со знаком «минус». Как вы помните, электрический ток течет от «плюса» к «минусу». Стрелка эмиттера показывает направление движения электрического тока. То есть, если у нас база состоит из полупроводника P-типа, то значит ток течет от базы, следовательно, стрелка эмиттера направлена от базы, если же база из N-полупроводника, то стрелка эмиттера направлена в базу. Все просто как дважды два.
Как выглядят биполярные транзисторы
Как же в реале выглядят транзисторы? Уууу…. тут фантазиям разработчиков нет предела. Ниже фоты самых распространенных корпусов транзисторов:
Но! Имейте ввиду! Если вам попался радиоэлемент в таком корпусе — это не обязательно транзистор! Это может быть и тиристор, и диодная сборка или даже стабилизатор напряжения, или вообще что угодно. Как же тогда распознать транзистор? Читаем ниже).
Эквивалентная схема биполярного транзистора
Итак, как же нам распознать биполярный транзистор среди кучи радиоэлементов, имеющих схожий корпус? Давайте рассмотрим еще раз его внутреннюю структуру. Для транзистора прямой проводимости она будет выглядеть так:
а для транзистора обратной проводимости вот так:
А знаете что? Давайте-ка резанём серединный слой пополам… Предположим, мы взяли тонкий-тонкий ножик и разделили полупроводник базы на две части.
Итак, рисуночки у нас становятся такими:
для транзистора прямой проводимости
для транзистора обратной проводимости
Вот этот или вот этот участок транзистора вам ничего не напоминает?
Едрить-колотить! Так ведь это же диод!
Так что тогда получается? Что транзистор тупо состоит из двух диодов? Грубо говоря, так оно и есть.
Значит, схематически мы можем транзистор нарисовать как два диода. Итак, что у нас тогда получиться? Для транзистора прямой проводимости:
схема будет выглядеть вот так:
а для транзистора обратной проводимости
вот так:
Все элементарно и просто, господа! Итак, мы с вами узнали, что схематически (не физически) транзистор можно заменить как два диода, которые соединены катодами или анодами. А проверять диоды мы с вами умеем без проблем, не так ли? Кто подзабыл, читаем статью как проверить диод мультиметром.
Как проверить транзистор с помощью мультиметра
У нас имеются два транзистора. Стоп! А с чего мы взяли что это вообще транзисторы?
Внимательно смотрим на них и видим какие то буквы и цифры. КТ815Б и КТ814Б. Блин, снизу еще какие-то цифры. Во дела! Ладно, ничего страшного. Для этого открываем яндекс или гугл и вбиваем первую строчку названия транзистора. Вбиваем «КТ815Б» и рядышком пишем незамысловатое слово «даташит» или на буржуйский манер «datasheet».
Качаем документацию на этот радиоэлемент и узнаем что это такое и что он из себя представляет. Теперь я знаю, что это транзистор NPN структуры, а также знаю расположение его выводов.
Вон сколько сразу можно узнать!
А вот и вторая страничка даташита:
Здесь мы видим уже тот же самый транзистор, но уже в другом корпусе. У нас на фото транзистор в корпусе КТ-27. Видите цифры на выводах транзистора? Смотрим в табличку и узнаем, где какой вывод. Значит, на фото у нас выводы идут таким образом:
Теперь рассмотрим другой транзистор.
Из даташита транзистора КТ815Б мы узнали, что у него есть комплиментарная пара: транзистор КТ814
Комплиментарная пара для кого-либо транзистора – это транзистор точно с такими же характеристиками и параметрами, НО у него просто-напросто другая проводимость. Это значит, что транзистор КТ815 у нас обратной проводимости, то есть NPN, а КТ814 прямой проводимости, то есть PNP .
Справедливо также и обратное: для транзистора КТ814 комплиментарной парой является транзистор КТ815 ! Короче говоря, зеркальные братья-близнецы. Также самой популярной комплиментарной парой транзисторов в Советском Союзе были транзисторы КТ315 и КТ361.
Проверка NPN-транзистора с помощью мультиметра
Берем наш знаменитый мультиметр, цепляем щупы-крокодилы и ставим на значок «прозвонка»
Будем проверять транзистор КТ815. Так как он структуры NPN, следовательно, его можно схематически заменить вот на такую диодную схему:
Вспоминаем распиновку нашего транзистора:
Как мы помним, диод пропускает постоянный ток только в одном направлении. Проверяем первый диод транзистора. Для этого ставим на базу плюс, на эмиттер — минус.
Видим падение напряжения при прямом включении на PN-переходе в милливольтах.
Меняем щупы местами. То есть на базу подаем минус, а на эмиттер – плюс:
Единичка, значит первый диод транзистора исправен.
Проверяем второй диод транзистора. Ставим на базу плюс, а на коллектор – минус:
Видим падение напряжения на PN-переходе. Все гуд.
Меняем щупы местами:
Мультиметр показывает единичку. Все в порядке. Второй диод тоже в полном здравии. Значит, транзистор в полной боевой готовности!
Проверка PNP-транзистора с помощью мультиметра
Ну что, теперь проверим комплиментарный транзистор – КТ814 ;-). Его эквивалентная схема будет выглядеть уже по другому, так как он прямой проводимости.
Здесь так же проверяем два диода. Для этого ставим минус на базу, а на эмиттер – плюс.
Падение напряжения на PN-переходе. Все ОК.
Меняем так же местами щупы:
Единичка – все ОК.
Проверяем второй диод транзистора точно так же. Для этого на базу также ставим минус, а на коллектор – плюс.
Опять видим падение напряжения при прямом включении на PN-переходе.
Меняем щупы местами.
Единичка – гуд!
КТ814 у нас тоже полностью жив и здоров!
Проверка неисправного транзистора
Также ставим мультиметр на прозвонку и цепляемся к нашему подопечному.
Нолики… Это не есть хорошо. Это говорит о том, что PN-переход пробит. Можно смело выкидывать такой транзистор в мусорку.
Как проверить транзистор с помощью транзисторметра
Очень удобно проверять транзисторы, имея прибор RLC-транзисторметр
Для этого всего лишь достаточно поместить выводы транзистора в разные отверстия и нажать зеленую кнопку. Как вы видите, прибор полностью нам показал цоколевку (расположение выводов) транзистора, его коэффициент усиления в схеме с общим эмиттером (об этом ниже), а также напряжение открытия, то есть напряжение, при котором он начинает открываться и пропускать ток через коллектор-эмиттер (об этом также ниже).
Принцип работы транзистора
Что такое усиление
Давайте для начала разберем, что мы вообще подразумеваем под словом «усиление»? Ну… усиление это когда мы производим какое-то действие, чтобы было лучше, качественнее, комфортнее, удобнее, безопаснее. По-моему как-то так. Усиливаем подвеску на машине, чтобы езда была комфортнее. Усиливаем фундамент под дом, загоняя туда железную арматуру, чтобы дом стоял долго и не трещал. Усиливаем армию военной техникой, чтобы обеспечить себе и своему народу безопасность, усиливаем свое тело, чтобы выглядеть уверенно и дать отпор гопникам.
Но какое слово идет рядом в паре со словом «усиление»? Мне кажется — это слово «мощность».
Усиливаем подвеску на машине, то есть делаем ее мощнее. Усиливаем фундамент — делаем его мощнее. Усиливаем армию танками и самолетами — делаем ее мощнее :-), усиливаем свою тушку — значит делаем ее опять же мощнее.
Давайте рассмотрим на примере человека. Как же его усилить? Здесь я вижу два варианта:
Увеличить человека в размерах
Либо усилить его с помощью экзоскелета:
Тут уже даже и ежу понятно, что мощности каждого из этих персонажей хватит для того, чтобы размотать целую роту вояк в рукопашном бою. В первом случае их проще будет давить либо пяточкой, а если попадется воспитанный великан с хорошими манерами — то пальчиками :-). Во втором случае, с экзоскелетом, хуком справа и слева.
Значит, для того, чтобы сделать сигнал мощнее, мы должны либо увеличить его амплитуду, либо увеличить его… Хм… Зачем наш Тони Старк сделал себе костюм? Чтобы он защищал его тело, то есть чтобы оказывать сопротивление ударам, пулям и тд. Какая-бы пулька или удар не влетали в него, он бы стоял колом (разумеется в разумных пределах) То есть его экзоскелет защищает его от разного рода сопротивления.
Получается, для нашего сигнала какое бы сопротивление он не встретил на своем пути, он будет таким же «бодрым и энергичным», каким был и до встречи с нагрузкой. Если Тони Старк брал энергию из своего реактора на груди, то сигнал должен брать энергию от какого-либо мощного источника. Сравнение, конечно, так себе, но думаю, суть вы уловили.
Как усиливает транзистор
Итак, представим себе нашу сборную России по футболу. Ну да, ребята частенько лажают), но суть не в этом. Для того, чтобы наши футболисты играли хорошо, надо к каждому футболисту приставить хорошего тренера, установить нормальный график труда и отдыха, кормить самой лучшей спортивной едой, пичкать допингами и тд. Как результат — команда может быть дотянет до полуфинала на чемпионате мира.
Но… есть и другой вариант. Почему бы в команду не пригласить таких футболистов, как Месси, Рональдо, Роналду, Бекхэма и других знаменитостей? То есть в этом варианте мы полностью заменили всю команду. Но для нас ведь главное — победа, и не волнует, кто играет в нашей команде. Главное, чтобы наша команда порвала всех на чемпионате.
И там и там мы усилили эти команды. Но как вы думаете, какой вариант будет лучше? Ну тут уже и ежу понятно, что второй вариант — стопроцентный! Если провести параллельную грань с электроникой, то можно сказать, что транзистор использует именно второй вариант. В нем нет ничего такого, чтобы он сам бы усиливал сигнал. Он его полностью заменяет другим сигналом. То есть усиливаемый сигнал, который выходит из транзистора, является копией входного слабенького сигнала, но это не тот же самый слабенький сигнал.
Тяжко для понимания? Ну давайте приведем тогда еще один пример.
Вернемся в детство. Вам купили маленького хомячка. Вы за ним ухаживаете, меняете водичку, убираете какашки, покупаете колесико, чтобы он бегал и радовался жизни. Через год из маленького хомячка вырастает здоровый пушистый хомяк. Вы очень рады, что у вас вырос такой здоровый хомячок. Но… как-то летом вы решили съездить в деревню к бабушке, за хомяком никто не ухаживал и он сдох. Ваши родители, конечно же, ничего вам не сказали. Они быстренько сбегали в зоомагазин и купили точно такого же хомяка! Один в один! Вы приезжаете к себе домой и продолжаете радоваться своему хомяку, даже не догадываясь, что это вообще не он))). Именно точно также ведет себя транзистор).
Транзистор не усиливает сигнал, а просто выводит усиленную копию на выходе.
Откуда берется энергия для усиления
Вспомните также в своей жизни моменты, когда вы или кто-то другой прилагали очень малую силушку, но наворотили делов.
Получается, какое-то слабенькое движение хвостиком привело к нехорошим последствиям, но энергия использовалась извне. Для мышки-норушки это будет гравитационная сила.
Тот же самый принцип заложен и в транзисторе. Он не может сам по себе усиливать. Он использует энергию извне. А для энергии извне используется источник постоянного тока.
Можно сказать, транзистор представляет из себя именно такую же систему — слабенький управляющий базовый ток управляет огромным током коллектор-эмиттер. Справа это все показано на бачке с водой. То есть чуток открыв краник, чтобы из трубки «База»(Б) полилась водичка, мы открываем клапан, который держит закрытым бачок «Коллектор» (К). Вода сразу же из бачка «Коллектор» стремится в тазик «Эмиттер» (Э). Если же мы закрываем краник «База», то пружинка возвращает клапан и закрывает прохождение водички из бачка «Коллектор».
Из всего выше рассказанного и показанного можно сделать некоторые выводы:
— выходной сигнал с транзистора — это усиленная копия входного сигнала
— транзистор для усиления сигнала использует энергию извне, а точнее, источник постоянного тока.
— малый управляющий базовый ток управляет намного большим коллекторным током (рисунок выше)
— независимо от схемы включения управляющий PN переход — эмиттерный, а управляемая цепь — эмиттер-коллектор
Усиление в электронике
Увеличивая амплитуду сигнала, мы меняем его напряжение, а делая сигнал «неуязвимым», мы добавляем ему силу. Силу тока. Поэтому, увеличивая или напряжение, или силу тока, либо сразу два этих параметра, мы делаем сигнал мощнее.
Для тех, кто позабыл:
P=IU
где
P — это мощность, измеряется в Ваттах
I — сила тока, в Амперах
U — напряжение, в Вольтах
В своих электронных разработках вы должны точно решить для себя, что именно собираетесь делать с сигналом:
— увеличить его амплитуду напряжения, при этом силу тока оставить неизменной
— оставить амплитуду напряжение такой же, но прибавить мощности с помощью силы тока
— увеличить и напряжение и силу тока
В основном применяют усиление сразу по обоим параметрам. Поэтому, в электронике чаще всего используется схема с ОЭ (Общим Эмиттером), которая увеличивает сигнал и по силе тока, и по напряжению одновременно.
Для транзистора PNP проводимости подключение транзистора с ОЭ выглядит так:
А для NPN транзистора вот так:
Но вы также должны иметь ввиду, что в электронике нам не просто надо усилить сигнал, а усилить его правильно, чтобы он не потерял свой первозданный вид. Мощная копия сигнала должна пропорционально усиливаться по амплитуде. По времени мы не должны ее трогать, иначе изменится частота сигнала. Тогда это уже будет совсем другой сигнал.
На рисунке ниже мы можем увидеть входной слабенький сигнал, а на выходе усиленный сигнал после транзисторного каскада.
Как мы видим, сигнал по амплитуде изменился линейно и пропорционально, но период сигнала не изменился. То есть T1=T2. Это пример идеального усилителя.
Принцип усиления
Усилители в электронике в большинстве случаев усиливают именно напряжение. То есть на вход загоняем какой-либо маленький сигнал напряжения, а на выходе получаем точную копию сигнала, но уже бОльшего напряжения. Но как это сделать на практике?
А почему бы нам не использовать делитель напряжения, у которого один резистор будет постоянным, а другой — переменным:
Что будет, если мы на переменном резисторе будем менять сопротивление? Правильно! Будем меняться напряжение на выходе U. А теперь представьте, что мы не ручками меняли бы сопротивление, а за нас это бы делало напряжение? Чем больше меняем напряжение, тем больше меняется сопротивление. То есть сопротивление переменного резистора менялось бы прямо пропорционально напряжению. Было бы круто, так ведь?
Транзистор можно сравнить с краником? Открываем чуток — напор воды слабый, открываем больше — сильнее. Открываем полностью — вода бежит полным потоком.
В биполярном транзисторе происходят похожие процессы. Меняя значение напряжения на базе, а следовательно силу тока в цепи база-эмиттер, мы тем самым меняем сопротивление между коллектором и эмиттером Следовательно, наша схема из такого вида:
примет вот такой вид
Выглядеть должно все приблизительно так, но не совсем так… и далее вы поймете почему.
Режимы работы транзистора
Режим отсечки
Режим отсечки — это когда транзистор полностью закрытый, то есть нет напряжения смещения на базе-эмиттере 0,6-0,7. Вольт. В этом случае у нас сопротивление между коллектором и эмиттером очень большое.
Режим насыщения
Режим насыщения — это когда транзистор полностью открытый. В этом режиме смещение на базе-эмиттере более, чем 0,6-0,7 Вольт и сопротивление между коллектором и эмиттером равняется почти нулю.
В режиме отсечки и насыщения работает транзисторный ключ.
Активный режим
В активном режиме напряжение смещения более, чем 0,6-0,7 Вольт, но у нас сопротивление между коллектором и эмиттером не равняется ни нулю, ни бесконечности. В этом режиме мы можем регулировать сопротивление с помощью силы тока, проходящего между базой и эмиттером. А чтобы регулировать эту силу тока , мы можем подавать большее или меньшее напряжение на базу.
Если все объяснить заумной фразой получается так: небольшое изменение силы тока в цепи базы-эмиттер приводит к пропорциональному изменению силы тока в цепи коллектор-эмиттер.
Коэффициент, показывающий, во сколько раз увеличивается сила тока коллектор-эмиттер от силы тока базы-эмиттер называется коэффициентом усиления по току в схеме с ОЭ. Этот коэффициент часто называют h21э или просто β.
Думаю, большинство из вас сидело за рулем авто. Может быть, вы когда-нибудь даже пользовались педалью газа)
Допустим, мы поставили первую скорость и решили проехаться по трассе. Топим педаль в пол и едем на всей первой скорости, не переключая коробку скоростей. По аналогии с транзистором — это и есть режим насыщения.
Вообще убираем ногу от педали — машина встает колом. Это режим отсечки (о понятии отсечки в самом авто мы с вами сейчас не говорим). В этом режиме мы вообще не касаемся педали.
Ну а в активном режиме мы нажимаем педаль с такой силой, которая нам нужна В этом режиме мы сами регулируем скорость. Хотим — едем быстрее, а хотим медленнее
То есть мы управляем автомобилем между режимами отсечки и насыщения. Именно в этом режиме работает транзистор в режиме усиления сигналов.
Основные схемы включения транзистора
Итак, существуют три основные схемы соединения биполярного транзистора:
— с Общей Базой (ОБ)
Эта схема усиливает по напряжению. Схема с общей базой используется редко.
— с Общим Эмиттером (ОЭ)
Эта схема усиливает и по напряжению, и по току, и на практике используется наиболее часто.
— с Общим Коллектором (ОК)
Эта схема усиливает по току. Ее часто называют эмиттерный повторитель.
Здесь все просто: какой вывод является общим для входного и выходного сигнала, такая и схема включения транзистора.
Обозначение напряжений выводов транзистора
А теперь давайте поговорим об условностях, которые применяются в схемотехническом жаргоне транзистора.
Итак, если вы слышите, что напряжение на базе равно 1 Вольт, то это означает, что это напряжение между базой и общим проводником. На общий в основном садят «минус» и обозначается общий проводник вот таким значком:
Например, UБ (напряжение на базе) транзистора VT1 замеряется как-то вот так:
Напряжение между выводами обозначается двумя индексами. Например, напряжение между базой и эмиттером обозначается как UБЭ . Также на схемах часто можно увидеть обозначения типа UКК (в буржуйском варианте VCC ) – это напряжение питания коллектора, обычно положительное. Также есть и UЭЭ (в буржуйском варианте VEE) – напряжение питания эмиттера, обычно отрицательное. Короче говоря, это в основном напряжение питания схемы.
Также имейте ввиду, что каждый транзистор характеризуется основными максимальными параметрами такими как:
1) Iк – ток коллектора
2) UКЭ – напряжение между коллектором и эмиттером
3) P – мощность, которая рассеивается на транзисторе. Р = IК UКЭ
4) UБЭ – напряжение между базой и эмиттером
Attention!
Превышение какого-либо параметра из списка выше приведет к неминуемой гибели транзистора!
Как усиливает транзистор?
Для того, чтобы понять принцип работы транзистора, давайте рассмотрим вот такое фото:
Условимся считать, что это самая простая модель транзистора. Направление потока воды – это направление электрического тока. Пусть у нашего «транзистора» будет проводимость NPN, то есть он будет выглядеть вот так:
С помощью краника (Базы) мы уменьшаем или увеличиваем скорость потока воды через трубу. В нашем случае вода бежит с жёлтой трубы к чёрной трубе, или по аналогии с транзистором: от коллектора к эмиттеру, потому что стрелочка эмиттера показывает направление электрического тока.
Итак, в таком положении краник полностью закрыт, следовательно поток воды не проходит через трубу:
А вот так краник полностью открыт и поток воды бежит на полной мощности через трубу:
Краник открыли, вода через трубу побежала на полной мощности:
Краник закрыли, вода не бежит:
С помощью одного только пальчика, я включал и выключал ОГРОМНЫЙ поток воды, который бы мог смыть все какашки на вашей тельняшке). То есть поток воды из трубы обладает огромнейшей силой, по сравнению с силой пальчика, которую я прикладывал к рычагу краника.
Транзистор работает аналогичным образом! Прикладывая небольшое напряжение к базе, я могу управлять огромнейшим током проходящим через коллектор и эмиттер. В данном случае я показал только два положения, краник полностью включен, или краник полностью выключен. Режим, при котором я включал и отключал краник до упора, в транзисторе называется «ключевым режимом» (о нем ниже). Не от слова «ключевой» – типа главный, важный, а от слова «ключ». А что у нас делает ключ? Что-то отпирает и закрывает, да хотя бы те же самые двери или бабушкин комод.
Режим, когда я ЗАКРЫВАЛ краник полностью, называется в транзисторе закрытый или в простонародье «зАпертый». В этом случае на базу ток не идет и транзистор не пропускает электрический ток между коллектором и эмиттером.
Режим, когда я полностью ОТКРЫВАЛ краник, называется в транзисторе режимом «насыщения». В этом случае через эмиттер и коллектор ток бежит по полной. Хочу сказать, что дальнейшее открывание краника бессмысленно, так как от этого ток не увеличится между коллектором и эмиттером, то есть нет резона подавать еще большее напряжение на базу, если транзистор уже работает в режиме насыщения.
Как работает биполярный транзистор на практике
Ну что же, надо теперь все это дело проверить на реальном транзисторе. У нас в гостях всеми вами любимый транзистор КТ815Б:
Его проводимость NPN, то есть он выглядит вот так:
Мы с вами разобрали, что краник – это база, а большой поток воды должен течь с коллектора на эмиттер. Направление стрелки на эмиттере показывает направление движения электрического тока.
В транзисторе все то же самое. Давайте используем его в деле. Для этого собираем вот такую схемку:
Ну что, вроде бы все элементарно и просто. Есть батарея, есть лампочка. Электрический ток должен бежать от «плюса» к «минусу» и лампа должна гореть. Собираем схему в реале. Щупы-крокодилы идут от блока питания. Красный – плюс, черный – минус. Напряжение на них около 13,5 Вольт, лампа на такое же напряжение. Лампа не горит… В чем же дело?
Помните эту картинку?
Елки-палки, нам базу-то надо «повернуть» так, чтобы электрический ток мог бежать от коллектора к эмиттеру! Но как «повернуть» базу? Да все просто! Для этого нам надо всего-то подать на нее напряжение.
Теперь наша схема будет выглядеть вот так:
Собираем схему. Крокодилы с синими проводами идут от блока питания Bat1.
Но теперь вопрос. Какое минимальное напряжение должно быть на Bat1, чтобы «краник начал открываться»?
Помните мы с вами разбирали статью, что на PN переходе у кремниевых транзисторов (а у нас как раз кремниевый) «падает» напряжение где-то 0,5-0,7 В. А давайте выставим на Bat1 где-то 0,5 В.
Нет… лампочка не зажигается.
Кручу крутилку и выставляю 0,6 Вольт и вуаля! В простонародье говорят, что транзистор «открылся».
Отсюда делаем вывод: для того, чтобы через коллектор-эмиттер побежал электрический ток, мы должны на базу подать напряжение более чем 0,5-0,7 В, то есть больше падения напряжения на PN-переходе данного транзистора.
Но как много мы можем подать напряжения в базу? Давайте крутанем крутилку на уровень 0,7 В.
При 0,7 В базовый ток составляет уже 20 мА.
Давайте еще чуток добавим:
При 0,8 В уже 140 мА.
А при 0,9 Вольтах:
чуть меньше пол-Ампера! Дальнейшее увеличение напряжения может привести … к полному выходу транзистора из строя!
Максимальные параметры транзистора
Каждый транзистор характеризуется основными максимальными параметрами такими как:
1) Iк – ток коллектора
2) UКЭ – напряжение между коллектором и эмиттером
3) P – мощность, которая рассеивается на транзисторе. Р = IКЭ х UКЭ
4) UБЭ – напряжение между базой и эмиттером
Коэффициент бета транзистора
Итак, давайте заранее договоримся, что в своих примерах мы будем использовать схему с ОЭ (Общим Эмиттером):
Плюсы этой схемы таковы, что эта схема усиливает и по напряжению, и по току. Поэтому, это схема чаще всего используется в электронике.
Ну что же, начнем изучение усилительных свойств транзистора именно с этой схемы. Есть у этой схемки очень интересный параметр. Называется он коэффициент усиления по току в схеме с Общим Эмиттером и обозначается буквой β (бета). Этот коэффициент показывает во сколько раз коллекторный ток превышает базовый в активном режиме работы транзистора
Также частенько, особенно на мультиметрах, его обозначают как h21э или Hfe.
Находим бету на практике
Давайте соберем схемку, с помощью которой, думаю, все встанет на свои места. С помощью этой схемы мы будет приблизительно замерять коэффициент β.
Для NPN транзистора схема будет выглядеть следующим образом:
Для PNP транзистора вот так:
Так как его проводимость NPN, следовательно, будем использовать вот эту схему:
Итак, что мы тут видим? Есть транзистор, два блока питания и два амперметра. Один амперметр ставим на измерение микроампер (мкА), а второй на измерение миллиампер (мА). На блоке питания Bat 2 выставим напряжение в 9 Вольт. Блок питания Bat 1 у нас со стрелочкой. Значит его значение будем менять от 0 и до 1-ого Вольта.
Схема у нас с ОЭ. Через базу-эмиттер и далее по контуру у нас протекает базовый ток IБ , а через коллектор-эмиттер и далее по контуру несется коллекторный ток IК. Для того, чтобы замерить этот ток (силу тока), мы в разрыв цепи цепанули по амперметру. Остается дело за малым. Замерить базовый ток (IБ), замерить коллекторный ток (IК) и потом тупо разделить ток коллектора на ток базы. И из этого отношения мы приблизительно найдем коэффициент β. Все просто).
Вот два блока питания:
Выставляем на Bat 2 напряжение в 9 Вольт:
Вся схема выглядит примерно вот так
Желтый мультиметр у нас будет замерять миллиамперы, а красный — микроамперы, поэтому на запятую на красном мультиметре не обращаем внимания.
Добавляем напряжение на Bat 1 от 0,6 Вольт и крутим крутилку до 1 Вольта, не забывая при этом фотографировать результаты. Высчитываем коэффициент β для некоторых замеров:
24,6мА/0,23мА=107
50,6мА/0,4мА=126,5
53,4мА/0,44мА=121,4
91,1мА/0,684мА=133,2
99,3мА/0,72мА=137,9
124,6мА/0,827мА=150,6
173,3мА/1,095мА=158
Находим среднее арифметическое:
β≈(107+126,5+121,4+133,2+137,9+150,6+158)/7=133
В даташите на КТ815Б коэффициент β может иметь значение в диапазоне от 50 и до 350. Наш коэффициент вполне укладывается в этот диапазон, значит транзистор жив и здоров. Усиливать будет.
Хочу добавить, что истинное значение коэффициента β измеряется чуток по другому. Для определения истинного значения надо измерять не постоянные токи, как мы это делали, а очень малые приращения этих токов, то есть производить измерения на переменном токе и малом сигнале:
При малом постоянном токе измеренное значение коэффициента бета меньше чем реальное, а при большом постоянном токе больше, чем реальное. Истина где-то посередине. Радиолюбители — народ не привередливый и в полевых условиях главное приблизительно узнать значение β.
Работа транзистора в активном режиме
В этой статье мы рассмотрим и даже посчитаем небольшой каскад, а также соберем его в реале и испытаем на практике.
Активный режим транзистора
Если вы читали прошлую статью, то наверняка помните, что транзистор в режиме усиления работает только в активном режиме. Этот активный режим находится между режимами отсечки и насыщения:
Следовательно, выходной усиленный сигнал должен находиться в области активного режима, иначе он будет сильно искажаться.
Далее вспоминаем нехитрую формулу
Коэффициент бета — это коэффициент усиления по току в схеме с общим эмиттером (ОЭ). Ну и что все это значит? А значит это то, что в любом транзисторе в активном режиме ток коллектора в β (бета) раз больше, чем ток базы. Задав крохотную силу ток через базу, мы в бета раз можем увеличить силу тока в цепи коллектора.
Что будет, если на базу мы подадим переменный сигнал напряжения? Следовательно, в цепи базы переменный сигнал будет либо увеличивать, либо уменьшать силу тока, протекающую через базу, а переменная сила тока через базу в свою очередь будет «тащить» за собой силу тока в цепи коллектора, который будет в бета раз больше, чем базовый ток.
Если вставить резистор в цепь коллектора, то можно будет с него снимать переменное напряжение. Ну разве не замечательно? А откуда возьмется напряжение на резисторе? Дело в том, что резистор и переход коллектор-эмиттер обладают сопротивлением. Самый прикол в том, что переход коллектор-эмиттер — это управляемое сопротивление, зависящее от тока базы. Получаем простой делитель напряжения
Но для того, чтобы усиливать переменный сигнал правильно, есть одно НО… И это «НО» заключается еще в одном резисторе.
Двухрезисторная схема смещения
Я хочу усилить синусоидальный сигнал и поэтому подаю его на базу транзистора. На выходе хочу получить усиленную копию.
Для того, чтобы получить красивую усиленную копию, надо чтобы эта копия не выходила за границы режима отсечки и насыщения и желательно, чтобы она располагалась посередине активной области. То есть надо этот сигнал сместить в середину активной области:
Поэтому, требуется добавить к схеме еще один резистор, чтобы получилась схема смещения.
Итак, давайте рассмотрим самую простую схему смещения и на ее примере разберемся, что к чему
Что здесь имеем?
Uпит — напряжение питания. На Uвх подаем переменный сигнал, на Uвых получаем усиленную копию. Или более понятно:
Итак, давайте рассмотрим назначение радиоэлементов в этой схеме. Транзистор используется для усиления. Я думаю, вы это уже поняли Резистор R2 служит для того, чтобы у нас получился делитель напряжения и потом можно будет снять с резистора это напряжение.
Конденсаторы С1 и С2 у нас пропуска ют переменный ток, а постоянный не пропускают. А нам постоянный ток на входе и на выходе не нужен. Мы ведь хотим усиливать переменный ток, не так ли?
И самый главный радиоэлемент в этой схеме считается резистор R1, который как раз и задает режим работы усилителя. Зачем он здесь нужен?
Во-первых, чтобы отпереть транзистор. Вывести его из режима отсечки в активный режим. А для этого, как вы помните, достаточно подать напряжение более, чем падение напряжения на переходе база — эмиттер, которое для кремниевых транзисторов составляет 0,6-0,7 Вольт. Поэтому, Uпит должно быть больше, чем падение напряжения на переходе база-эмиттер.
Во-вторых, задать базовый ток, так как через цепь +Uпит —-> R1—-> база —-> эмиттер —-> земля потечет ток, сила тока которого будет зависеть от того, какой резистор мы туда воткнем.
В-третьих, задавая нужный базовый ток этим резистором, мы выбираем режим работы нашего усилителя. Сейчас нас интересует режим, при котором сигнал будет «болтаться» между режимами отсечки и насыщения примерно в середине активного режима.
Как этого добиться?
Для удобства пусть у нас R1 называется RБ (базовый резистор), а R2 назовем Rк (коллекторный резистор):
Так как мы хотим получить усиленную копию сигнала в активном (линейном) режиме транзистора, следовательно, нам надо добиться того, чтобы через базу протекала такая сила тока, чтобы напряжение на коллекторе (в узле, куда цепляется конденсатор С2) было ровнёхонько половинка от Uпит.
Не забываем, что у нас входной сигнал, подаваемый на базу, может принимать как положительные значения, так и отрицательные. Следовательно, напряжение на коллекторе будет принимать меньшее или большее значение. А чтобы уже усиливаемый сигнал не доходил до режима отсечки или насыщения, мы его как раз и будем держать в серединке активной области.
Расчет каскада с двумя резисторами
Берем рыжий советский транзистор КТ315Б и рассчитаем вот такую схемку при напряжении питания в 9 Вольт
Для того, чтобы рассчитать схему, надо действовать с конца, то есть с выхода схемы.
Для получения усиленной копии сигнала, нам надо, чтобы напряжение на коллекторе было равно половине напряжения питания, то есть получаем Uк = 9 В/2 = 4,5 Вольт. Это значит, что на Rк падает напряжение в 4,5 Вольт и на транзисторе между выводами коллектора и эмиттера тоже падает 4,5 Вольт. Для маломощных усилительных каскадов в основном ток коллектора Iк берут в 1 миллиампер, это значит, что ток потечет по цепи +9 В —> Rк —-> коллектор—> эмиттер—->земля и если его замерить в этой цепи, то получим 1мА.
Долго не думая, находим, чему равняется Rк . Вспоминаем дядюшку Ома и получаем, что Rк = Uк /Iк =4,5 В/1 мА=4,5 кОм. Берем ближайший из ряда, то есть на 4,7 кОм.
Следующим шагом нам надо приблизительно узнать коэффициент бета. В этом нам может помочь простой мультиметр с функцией замера HFE (β) либо RLC-транзистор метр. В моем случае на RLC-транзистор-метре получилось что-то около 142.
Высчитываем ток базы. Так как мы знаем, что
Из этой формулы находим IБ. Получается, что IБ = Iк / β = 1мА/142 = 7 микроампер.
Следующим делом находим сопротивление базового резистора: RБ =(Uпит -0,6)/ IБ = 9 В/7мкА=1,2 Мегаом. В этой формуле 0,6 В мы берем, как падение напряжения на переходе база-эмиттер.
Следующим шагом вставляем ближе к номиналу этот резистор из ближайшего ряда и замеряем силу тока по цепи +9 В —> Rк —-> коллектор—> эмиттер—->земля с помощью миллиамперметра. Скорее всего вы не получите на миллиамперметре значение в 1мА, поэтому надо будет подгонять значение RБ либо с помощью потенциометра либо магазина сопротивления, чтобы амперметр показал нам 1 мА на табло. В моем случае RБ я подобрал номиналом в 1 Мегаом.
Ну теперь дело за малым. Конденсаторы С1 и С2 используются для того, чтобы пропускать и снимать только переменное напряжение, так как мы с вами знаем, что конденсатор постоянный ток через себя не пропускает. Для усиления звуковых частот (от 20 и до 20 000 Герц) , а также частот более 20 000 Гц вполне подойдут конденсаторы в 10 мкФ.
Вот фото моего усилителя, амперметр показывает ток в 1,04 миллиампер.
Теперь подаю на вход конденсатора С1 слабый синусоидальный сигнал. У нас получается интересная штука. После того, как я настроил каскад, на базе имеется постоянное напряжение. Если добавить к этому напряжению еще напряжение, ток базы увеличится, что приведет к увеличению коллекторного тока. Если же уменьшить, то наоборот у нас ток базы уменьшится и следовательно, коллекторный ток тоже уменьшится. Переменный сигнал, подаваемый на базу уменьшается и увеличивается поочередно, следовательно, получается типа что-то этого:
А вот и осциллограммы, которые у меня получились. Красный сигнал — это входной, который мы подаем на С1 , а желтый — выходной, который снимаем с С2. Частота сигнала и его цена деления показаны в нижнем левом уголке скриншота осциллографа.
Ну вот! Более менее похоже на правду!
Если вы заметили своим наблюдательным глазом, есть одно НО… Фаза усиленного сигнала противоположна фазе исходного сигнала. Если еще помните алгебру, то можно сказать, что фаза усиленного сигнала и фаза исходного различаются на 180 градусов. Получается, что усилитель по схеме с ОЭ (Общим Эмиттером) инвертирует фазу сигнала.
Давайте увеличим амплитуду исходного сигнала:
Как мы видим, усиленный сигнал исказился. В дело вступили так называемые нелинейные искажения, потому что наш усиленный сигнал добрался до области отсечки (верхний уровень желтого графика) и до области насыщения (нижний уровень желтого графика). Вы ведь не забыли, что сигнал инвертированный? В режиме отсечки, как мы видим, синусоида закруглилась, а в режиме насыщения она не могла стать более 9 Вольт, то есть больше, чем Uпит, поэтому ее резко срезало.
Давайте усилим треугольный сигнал
Получились чуток «пухловатые» горки. Как мы видим, данный тип усилителя обладает плохой линейностью. Это значит, что он не пропорционально увеличивает исходный сигнал.
Давайте усилим прямоугольный сигнал
Вроде бы нормально.
Даже если добавить амплитуду, то сигнал остается по форме таким же.
Прямоугольные сигналы усиливать, передавать, обрабатывать намного проще, поэтому цифровая электроника шагнула далеко вперед.
Данный тип усилителя, работает в классе «А» , то есть в режиме линейного усилителя. Это означает, что мы полностью усиливаем форму сигнала, который подаем на вход такого усилителя.
Минусы схемы
В чем минусы этой схемы? В этой схеме рабочий режим зависит от коэффициента бета. Это не есть гуд.
«Схему можно считать плохой, если на ее характеристики влияет величина параметра бета»
Хорвиц и Хилл «Искусство схемотехники»
Дело в том, что коэффициент бета «гуляет» в зависимости от температуры. Следовательно, наш график будет смещен, что приведет к нелинейным искажениям, так как он будет ближе находится или к области насыщения, либо к области отсечки.
Усилитель с общим эмиттером. Расчет схемы
Усилитель с общим эмиттером раньше являлся базовой схемой всех усилительных устройств.
Описание работы
Выше мы с вами говорили о самой простой схеме смещения транзистора. Эта схема зависит от коэффициента бета, а он в свою очередь зависит от температуры, что не есть хорошо. В результате на выходе схемы могут появиться искажения усиливаемого сигнала. Чтобы такого не произошло, в эту схему добавляют еще парочку резисторов и в результате получается схема с 4-мя резисторами:
Резистор между базой и эмиттером назовем Rбэ , а резистор, соединенный с эмиттером, назовем Rэ. Теперь, конечно же, главный вопрос: «Зачем они нужны в схеме?»
Начнем, пожалуй, с Rэ.
Как вы помните, в предыдущей схеме его не было. Итак, давайте предположим, что по цепи +Uпит—->Rк ——> коллектор—> эмиттер—>Rэ —-> земля бежит электрический ток, с силой в несколько миллиампер (если не учитывать крохотный ток базы, так как Iэ = Iк + Iб ) Грубо говоря, у нас получается вот такая цепь:
Следовательно, на каждом резисторе у нас будет падать какое-то напряжение. Его величина будет зависеть от силы тока в цепи, а также от номинала самого резистора.
Чуток упростим схемку:
Rкэ — это сопротивление перехода коллектор-эмиттер. Как вы знаете, оно в основном зависит от базового тока.
В результате, у нас получается простой делитель напряжения, где
Мы видим, что на эмиттере уже НЕ БУДЕТ напряжения в ноль Вольт, как это было в прошлой схеме. Напряжение на эмиттере уже будет равняться падению напряжения на резисторе Rэ .
А чему равняется падение напряжения на Rэ ? Вспоминаем закон ома и высчитываем:
Как мы видим из формулы, напряжение на эмиттере будет равняться произведению силы тока в цепи на номинал сопротивления резистора Rэ . С этим вроде как разобрались. Для чего вся эта канитель, мы разберем чуть ниже.
Какую же функцию выполняют резисторы Rб и Rбэ ?
Именно эти два резистора представляют из себя опять же простой делитель напряжения. Они задают определенное напряжение на базу, которое будет меняться, если только поменяется +Uпит, что бывает крайне редко. В остальных случаях напряжение на базе будет стоять мертво.
Вернемся к Rэ .
Оказывается, он выполняет самую главную роль в этой схеме.
Предположим, у нас из-за нагрева транзистора начинает увеличиваться ток в этой цепи.
Теперь разберем поэтапно, что происходит после этого.
а) если увеличивается ток в этой цепи, то следовательно увеличивается и падение напряжения на резисторе Rэ .
б) падение напряжения на резисторе Rэ — это и есть напряжение на эмиттере Uэ. Следовательно, из-за увеличения силы тока в цепи Uэ стало чуток больше.
в) на базе у нас фиксированное напряжение Uб , образованное делителем из резисторов Rб и Rбэ
г) напряжение между базой эмиттером высчитывается по формуле Uбэ = Uб — Uэ . Следовательно, Uбэ станет меньше, так как Uэ увеличилось из-за увеличенной силы тока, которая увеличилась из-за нагрева транзистора.
д) Раз Uбэ уменьшилось, значит и сила тока Iб , проходящая через базу-эмиттер тоже уменьшилась.
е) Выводим из формулы ниже Iк
Iк =β х Iб
Следовательно, при уменьшении базового тока, уменьшается и коллекторный ток Режим работы схемы приходит в изначальное состояние. В результате схема у нас получилась с отрицательной обратной связью, в роли которой выступил резистор Rэ . Забегая вперед, скажу, что Отрицательная Обратная Связь (ООС) стабилизирует схему, а положительная наоборот приводит к полному хаосу, но тоже иногда используется в электронике.
Расчет усилительного каскадас ОЭ
Рассчитать каскад на биполярном транзисторе КТ315Б с коэффициентом усиления равным KU =10, Uпит = 12 Вольт.
1) Первым делом находим из даташита максимально допустимую рассеиваемую мощность, которую транзистор может рассеять на себе в окружающую среду. Для моего транзистора это значение равняется 150 миллиВатт. Мы не будем выжимать из нашего транзистора все соки, поэтому уменьшим нашу рассеиваемую мощность, умножив на коэффициент 0,8:
Pрас = 150х0,8=120 милливатт.
2) Определим напряжение на Uкэ . Оно должно равняться половине напряжения Uпит.
Uкэ = Uпит / 2 = 12/2=6 Вольт.
3) Определяем ток коллектора:
Iк = Pрас / Uкэ = 120×10-3 / 6 = 20 миллиампер.
4) Так как половина напряжения упала на коллекторе-эмиттере Uкэ , то еще половина должна упасть на резисторах. В нашем случае 6 Вольт падают на резисторах Rк и Rэ . То есть получаем:
Rк + Rэ = (Uпит / 2) / Iк = 6 / 20х10-3 = 300 Ом.
Rк + Rэ = 300, а Rк =10Rэ , так как KU = Rк / Rэ , а мы взяли KU =10 ,
то составляем небольшое уравнение:
10Rэ + Rэ = 300
11Rэ = 300
Rэ = 300 / 11 = 27 Ом
Rк = 27х10=270 Ом
5) Определим ток базы Iбазы из формулы:
Коэффициент бета мы замеряли в прошлом примере. Он у нас получился около 140.
Значит,
Iб = Iк / β = 20х10-3 /140 = 0,14 миллиампер
6) Ток делителя напряжения Iдел , образованный резисторами Rб и Rбэ , в основном выбирают так, чтобы он был в 10 раз больше, чем базовый ток Iб :
Iдел = 10Iб = 10х0,14=1,4 миллиампер.
7) Находим напряжение на эмиттере по формуле:
Uэ= Iк Rэ= 20х10-3 х 27 = 0,54 Вольта
Определяем напряжение на базе:
Uб = Uбэ + Uэ
Давайте возьмем среднее значение падения напряжения на базе-эмиттер Uбэ = 0,66 Вольт. Как вы помните — это падение напряжения на P-N переходе.
Следовательно, Uб =0,66 + 0,54 = 1,2 Вольта. Именно такое напряжение будет теперь находиться у нас на базе.
9) Ну а теперь, зная напряжение на базе (оно равняется 1,2 Вольта), мы можем рассчитать номинал самих резисторов.
Для удобства расчетов прилагаю кусочек схемы каскада:
Итак, отсюда нам надо найти номиналы резисторов. Из формулы закона Ома высчитываем значение каждого резистора.
Для удобства пусть у нас падение напряжения на Rб называется U1 , а падение напряжения на Rбэ будет U2 .
Используя закон Ома, находим значение сопротивлений каждого резистора.
Rб = U1 / Iдел = 10,8 / 1,4х10-3 = 7,7 КилоОм. Берем из ближайшего ряда 8,2 КилоОма
Rбэ = U2 / Iдел = 1,2 / 1,4х10-3 = 860 Ом. Берем из ряда 820 Ом.
В результате у нас будут вот такие номиналы на схеме:
Проверка работы расчетной схемы на практике
Одной теорией и расчетами сыт не будешь, поэтому собираем схему в реале и проверяем ее в деле. У меня получилась вот такая схемка:
Итак, беру свой цифровой осциллограф и цепляюсь щупами на вход и выход схемы. Красная осциллограмма — это входной сигнал, желтая осциллограмма — это выходной усиленный сигнал.
Первым делом подаю синусоидальный сигнал с помощью своего китайского генератора частоты:
Как вы видите, сигнал усилился почти в 10 раз, как и предполагалось, так как наш коэффициент усиления был равен 10. Как я уже говорил, усиленный сигнал по схеме с ОЭ находится в противофазе, то есть сдвинут на 180 градусов.
Давайте подадим еще треугольный сигнал:
Вроде бы гуд. Если присмотреться, то есть небольшие искажения. Нелинейность входной характеристики транзистора дает о себе знать.
Если вспомнить осциллограмму схемы с двумя резисторами
то можно увидеть существенную разницу в усилении треугольного сигнала
Плюсы и минусы схемы
Схема с ОЭ во времена пика популярности биполярных транзисторов использовалась как самая ходовая. И этому есть свое объяснение:
Во-первых, эта схема усиливает как по току, так и по напряжению, а следовательно и по мощности, так как P=UI.
Во-вторых, ее входное сопротивление намного больше, чем выходное, что делает эту схему отличной малопотребляемой нагрузкой и отличным источником сигнала для следующих за ней нагрузок.
Ну а теперь немного минусов:
1) схема потребляет небольшой ток, пока находится в режиме ожидания. Это значит, питать ее долго от батареек не имеет смысла.
2) она уже морально устарела в наш век микроэлектроники. Для того, чтобы собрать усилитель, проще купить готовую микросхему и сделать на ее базе мощный и простой усилок.
Транзисторный ключ
Работа транзистора в режиме ключа является базовой во всей электронике, особенно в цифровой. Раньше, когда еще не было сверхмощных компьютеров и сверхскоростного интернета, сообщения передавали с помощью азбуки Морзе. В азбуке Морзе использовались три знака: точка, тире и… пауза. Чтобы передавать сообщения на далекие расстояния использовался так называемый телеграфный КЛЮЧ.
Нажали на черную большую пипочку — ток побежал, отжали — получился обрыв цепи и ток перестал течь. ВСЕ! То есть меняя скорость и продолжительность нажатия на пипочку, мы можем закодировать любое сообщение. Нажали на пипку — сигнал есть, отжали пипку — сигнала нет.
Схема транзисторного ключа
Ключ, собранный на транзисторе, называется транзисторным ключом. Транзисторный ключ выполняет только две операции: вКЛЮЧено и выКЛЮЧено, промежуточный режим между «включено» и «выключено» мы будем рассматривать в следующих главах. Электромагнитное реле выполняет ту же самую функцию, но его скорость переключения очень медленная с точки зрения современной электроники, да и коммутирующие контакты быстро изнашиваются.
Что из себя представляет транзисторный ключ? Давайте рассмотрим его поближе:
Знакомая схемка не так ли? Здесь все элементарно и просто Подаем на базу напряжение необходимого номинала и у нас начинает течь ток через цепь от плюсовой клеммы +Bat2—>лампочка—>коллектор—>эмиттер—>к минусовой клемме Bat2. Напряжение на Bat2 должно быть равно рабочему напряжению питания лампочки. Если все так, то лампочка испускает свет. Вместо лампочки может быть какая-либо другая нагрузка. Резистор «R» здесь требуется для того, чтобы ограничить значение управляющего тока на базе транзистора. Про него более подробно я писал еще в этой статье.
Условия для работы транзисторного ключа
Итак, давайте вспомним, какие требования должны быть, чтобы полностью «открыть» транзистор?
1) Для того, чтобы полностью открыть транзистор, напряжение база-эмиттер должно быть больше 0,6-0,7 Вольт.
2) Сила тока, текущая через базу должна быть такой, чтобы электрический ток мог течь через коллектор-эмиттер абсолютно беспрепятственно. В идеале, сопротивление через коллектор-эмиттер должно стать равным нулю, в реале же оно будет иметь доли Ома. Такой режим называется «режимом насыщения«.
Этот рисунок — воображение моего разума. Здесь я нарисовал тот самый режим насыщения.
Как мы видим, коллектор и эмиттер в режиме насыщения соединяются накоротко, поэтому лампочка горит на всю мощь.
Базовая схема транзисторного ключа
А что теперь надо сделать, чтобы лампочка вообще не горела? Отключить ее ручками? Зачем? Ведь у нас есть управляемый резистор: коллектор-эмиттер, сопротивление которого мы можем менять, прогоняя через базу определенную силу тока Итак, что нужно для того, чтобы лампочка вообще перестала гореть? Возможны два способа:
Первый способ. Полностью отключить питание от резистора базы, как на рисунке ниже
В реальности вывод базы является своего рода маленькой антенной, которая может принимать различные наводки и помехи из окружающего пространства. От этих наводок в базе может начать течь ток малого номинала. А как вы помните, для того, чтобы открыть транзистор много и не надо. И может даже случится так, что лампочка будет даже очень тихонько светится!
Как же выйти из этой ситуации? Да очень легко! Достаточно поставить резистор между базой и эмиттером, то есть сделать так, чтобы при отключении напряжения, на базе напряжение было равно нулю. А какой вывод транзистора у нас находится под нулем? Эмиттер! То есть научным языком, мы должны сделать так, чтобы потенциал на базе был равен потенциалу на эмиттере
И что, теперь каждый раз при отключении заземлять базу? В идеале — да. Но есть более хитрое решение Достаточно поставить резистор между базой и эмиттером. Его номинал в основном берут примерно в 10 раз выше, чем номинал базового резистора.
Так как в схеме появился еще один резистор, то базовый резистор назовем RБ , а резистор между базой и эмиттером не будем придумывать и назовем RБЭ. Схема примет вот такой вид:
Как же ведет себя резистор RБЭ в схеме? Если ключ S замкнут, то этот резистор не оказывает никакого влияния на работу схемы, так как через него протекает и без того малая сила тока, которая управляет базой. Ну а если ключ S разомкнут, то, как я уже сказал, потенциал на базе будет равняться потенциалу эмиттера, то есть нулю.
Второй способ. Добиться того, чтобы UБЭ<0,6 Вольт или чтобы ток базы IБ = 0. Этот способ чаще всего используется в МК и других логических схемах.
Что в первом, что во втором случае транзистор у нас не пропускает ток через коллектор-эмиттер. В этом случае говорят, что транзистор находится в режиме «отсечки«.
Формула расчета транзисторного ключа
Как же рассчитать примерно значение резистора базы? Есть нехитрые формулы. Для того, чтобы их разобрать, рассмотрим вот такую схемку:
Для начала можно найти ток базы:
где
IБ — это базовый ток, в Амперах
kНАС — коэффициент насыщения. В основном берут в диапазоне от 2-5. Он уже зависит от того, насколько глубоко вы хотите вогнать ваш транзистор в насыщение. Чем больше коэффициент, тем больше режим насыщения.
IK — коллекторный ток, в Амперах
β — коэффициент усиления тока транзистора
Ну а дальше дело за малым
Это самый простой расчет без всяких заморочек.
Расчет транзисторного ключа на практике
Ну что же, давайте рассчитаем наш базовый резистор для этой схемы в режиме насыщения. На базу будем подавать распространенное питание в 5 В.
Возьмем транзистор средней мощности КТ819Б и лампочку-нагрузку для нашего транзисторного ключа. Лампочка на 6 В.
Транзистор КТ819Б структуры NPN
А вот и его цоколевка
Почти стандартная распиновка слева-направо: Эмиттер-Коллектор-База.
Лампочка при питании 6 В светит примерно вот так:
А вот такую силу тока потребляет наша подопечная, если ее соединить напрямую к блоку питания.
0,23 Ампера. Именно такую силу тока должна кушать наша лампочка в режиме насыщения, когда транзистор полностью открыт. То есть это у нас будет коллекторный ток Ik . Так как сопротивление нити накала лампочки меняется при подключении ее к источнику питания, то лучше всего сразу же измерить ее силу тока, как мы и сделали.
Теперь дело за малым. Надо замерить коэффициент бета. Для этого случая на моем рабочем столе есть прибор транзисторметр. Итак, у меня получилось значение 148
Итак, находим ток базы по формуле
Чем больше силы тока мы подаем на базу, тем больше мы вводим транзистор в режим глубокого насыщения. Здесь уже вы сами должны выбрать значение коэффициента насыщения. Как я уже писал выше, чем больше коэффициент, тем сильнее уходит транзистор в режим насыщения. Режим глубокого насыщения чреват тем, что он задерживает выключение транзистора, но хорош тогда, когда надо долго держать нагрузку включенной, так как в этом случае транзистор греется меньше всего. Если вы не забыли, мощность, рассеиваемая на транзисторе будет равна P=UКЭ х IН
где
P — это мощность в Ваттах
UКЭ — напряжение между коллектором и эмиттером, В
IН — сила тока, протекающая через нагрузку и коллектор-эмиттер, А
Из формулы: чем меньше UКЭ , тем меньше будет греться транзистор
Поэтому, берем среднее значение коэффициента насыщения равное 3. Получаем:
Теперь считаем базовый резистор по формуле:
Берем ближайший из ряда, то есть 1 кОм.
Давайте посмотрим, будет ли работать наш транзисторный ключ? Итак, RБ берем рассчитанное значение в 1 кОм.
Собираем схему и смотрим, как она работает
В данном случае синие провода — это питание с Bat2 (MEILI), а другие два провода — это питание с блока питания Bat1 (YaXun)
Как вы помните, лампочка у нас потребляла силу тока в 0,23 Ампер при прямом включении ее к блоку питания. Сейчас же она кажет почти то же самое значение с небольшой погрешностью. Но можно все равно сказать, что при открытом транзисторном ключе сопротивление коллектора-эмиттера очень мало. То есть все напряжение поступает на лампу.
Так как амперметр на YaXun стрелочный и не может измерять очень маленькие значение тока, то воспользуемся мультиметром и посмотрим, сколько же потребляет наш транзистор в режиме полного открытия. Для этого ставим мультиметр в разрыв цепи. Более подробно, как измерять силу тока и напряжение мультиметром, вы можете прочитать в этой статье.
Мы получили 4,5 мА. Очень близко к расчетному 4,7 мА. Не забываем подтянуть базу к земле резистором большим номиналом RБЭ, иначе база может поймать помеху и открыть невзначай транзистор, что приведет к ложному срабатыванию. В нашем случае мы берем резистор от 10 кОм и более.
Ну все, такой транзисторный ключ будет уже защищен от ложных срабатываний и его можно использовать в своих электронных безделушках.
Применение транзисторного ключа в связке с МК
Транзисторный ключ очень часто можно увидеть в схемах, где МК или другой логический элемент коммутирует мощную нагрузку. Как вы помните, максимальную силу тока, которую может выдать МК на одну ножку, равняется 20 миллиампер. Поэтому чаще всего можно увидеть вот такое схемотехническое решение на биполярном транзисторе в режиме ключа:
В резистор RБЭ нет необходимости, потому как выходы МК «подтягивается» к нулю еще при программировании.
Плюсы и минусы транзисторного ключа
В настоящее время биполярные транзисторы уже морально устаревают. На смену им приходят мощные полевые транзисторы и твердотельные реле, так как они практически не потребляют ток. Также часто в режиме ключа используют диоды, тиристоры, терморезисторы и даже электронные лампы. Электронные ключи широко применяются в различных автоматических устройствах, в логических схемах и системах управления. Чем же хорош ключ на биполярном транзисторе? Я думаю, скорее всего своей дешевизной, широким распространением и долговечностью самих биполярных транзисторов.
Инвертор на транзисторе
В данном контексте под инвертированием подразумевается битовая операция НЕ. То есть если была 1, то станет 0, и наоборот, если был 0, то станет единица. Инвертор на транзисторе — прародитель цифровых микросхем. Именно в те далекие времена, благодаря транзистору, цифровая электроника стала развиваться быстрыми темпами.
Схема инвертора на ключе
Рассмотрим вот такую простенькую схемку:
Что мы здесь видим? Видим ключ, резистор и источник питания. Резистор R мы повесили для того, чтобы не было короткого замыкания в источнике питания, когда замыкается ключ S. На клемму +U мы подаем плюс питания, а на землю, соответственно, минус. В схеме возможны два варианта развития событий: ключ замкнут и ключ разомкнут. Давайте рассмотрим каждый из этих двух вариантов:
1) Ключ замкнут
В результате в цепи +U——-> R——-> S ——-> земля побежит электрический ток.
Будет ли в этом случае напряжение между клеммой «А» и землей?
Чешем свою репу и думаем… Так как ключ у нас замкнут, следовательно, в идеале его сопротивление 0 Ом. Вспоминаем закон Ома для участка цепи: I=U/R, отсюда U=IR. Получается, что падение напряжения на сопротивлении 0 Ом будет равно U=IR= I х 0 = 0 Вольт. Значит, напряжение между землей и клеммой «А» будет 0 Вольт. Получается, что напряжения на клемме «А» не будет.
2) Ключ разомкнут
Что в результате у нас будет на клемме «А»? Давайте также посчитаем по закону Ома. Мы знаем, что электрический ток бежит от плюса к минусу. Но так как у нас минус вообще не при делах, так как цепь разорвана ключом, следовательно, сила тока в цепи +U——->R——->клемма «А» будет равняться 0 Ампер. Значит, падение напряжения на резисторе R будет равняться U=IR=0 х R = 0 Вольт. Получается, что все полноценные +U Вольт доходят до клеммы «A». Поэтому, на клемме «А» будет напряжение +U.
Транзистор в ключевом режиме
А почему бы нам не заменить ключ S транзисторным ключом? Вводя транзистор в режим насыщения или отсечки, мы можем управлять сопротивлением между коллектором и эмиттером.
Следовательно, в режиме отсечки схема примет вот такой вид:
а в режиме насыщения вот такой:
Хотя, если честно, падение напряжения в этом случае на коллекторе-эмиттере будет составлять доли Вольт, что на самом деле не критично.
Как мы видим, ключ на транзисторе у нас имеет Вход и Выход:
Допустим, мы на Вход не подаем никакого сигнала. Что будет на Выходе? Не подавая никакого сигнала на базу транзистора через резистор R1, в данном случае на Вход, у нас транзистор НЕ откроется и ключ будет разомкнут (как вы помните, для открытия мы должны подать на базу более 0,6-0,7 Вольт), поэтому на Выходе (клемма «А» ) у нас будет +U Вольт
Но если правильно рассчитать резистор R1 и подать сигнал, значение напряжения которого будет больше, чем 0,6-0,7 Вольт, то у нас транзистор войдет в режим насыщения и ключ будет замкнут
В этом случае на Выходе (на клемме «А») у нас будет напряжение близкое к нулю.
Итак, что получаем? Подаем сигнал и имеем на выходе 0 Вольт, если НЕ подаем сигнал — имеем +U.
Такая схема в народе называется инвертором.
— Закрой окно.
— Я не расслышала, закрыть окно или открыть?
— Инвертируй!
Если за входной сигнал и +U взять напряжение, допустим, в 5 Вольт, и договориться, что значение напряжения близкое к 5 Вольтам принять за логическую единичку, а напряжение близкое к нулю принять за логический ноль, то можно вывести самую простую закономерность:
— подаем логическую единичку на вход, получаем логический ноль на выходе
— подаем логический ноль на вход, получаем логическую единичку на выходе
На осциллограмме все это будет выглядеть вот так:
Также в цифровой электронике есть такое понятие, как таблица истинности, которая показывает значение Выходов каких-либо логических элементов со всеми возможными комбинациями на Входе. Для нашего инвертора таблица истинности примет вот такой вид:
Как рассчитать инвертор на биполярном транзисторе
Давайте построим инвертор на транзисторе КТ815Б, рассчитаем его и испытаем. +U возьмем 5 Вольт. На Вход также будем подавать управляющий сигнал в 5 Вольт. Вся схема у нас будет вот такая:
Как мы уже сказали, резистор R2 будет ограничивать силу тока в цепи +5 Вольт ——-> R2——-> коллектор——-> эмиттер——-> земля, когда транзистор будет полностью открыт, то есть будет находиться в режиме насыщения. Также R2 будет задавать силу тока через нагрузку в режиме отсечки, которую мы цепанем на Выход схемы. В принципе, резистора Ом на 500 вполне хватит, чтобы в цепи +U——->R2——->коллектор——->эмиттер——->земля в режиме насыщения протекал ток силой в 10 миллиАмпер (I=U/R= 5 В / 500 Ом = 10 мА)
Дело за малым. Надо рассчитать резистор R1. Для этого щелкаем на статью работа транзистора в режиме ключа, и берем из этой статьи формулы для расчета резистора R1.
Для начала рассчитываем базовый ток по формуле:
где
IБ — это базовый ток, в Амперах
kнас — коэффициент насыщения. В основном берут в диапазоне от 2-5. Он уже зависит от того, насколько глубоко вы хотите вогнать ваш транзистор в насыщение. Чем больше коэффициент, тем больше режим насыщения.
IK — коллекторный ток, в Амперах
β — коэффициент усиления тока транзистора, для расчетов берут минимальное значение в даташите или замеряют на практике
С помощью своего китайского транзистор-тестера я без труда замеряю β . Здесь он обозначается как hFE.
Теперь kнас берем 3, так как у нас будет типа переключающая схема. Iк у нас 10 миллиампер, это значение мы высчитывали выше. Считаем базовый ток:
Iб = (3 х 0,01) / 78 = 3,84 х 10-4 А
Так как управляющее напряжение у нас будет 5 Вольт, применяем закон Ома:
Iб = U/R1
R1 = U/Iб = 5 / 3,84 х 10-4 =1,3 х 104 Ом. Берем ближайший из ряда на 12 Килоом.
Следовательно, схема будет с такими параметрами:
Вот так она выглядит на макетной плате:
Давайте вместо нагрузки подцепим светодиод. Когда я НЕ подаю 5 Вольт на Вход, светодиод светится:
Когда беру 5 Вольт с другого блока питания и подаю на Вход схемы, то светодиод тухнет:
Как мы видим, схема работает.
Осциллограммы инвертора на транзисторе
Ну а теперь момент истины, смотрим осциллограммы. Желтый — входной сигнал амплитудой в 5 Вольт с китайского генератора частоты, а красный — выходной сигнал:
Подали прямоугольный сигнал в 5 Вольт и с частотой в 7 Килогерц, вышел прямоугольный сигнал в 5 Вольт 7 Килогерц. Выйти-то он вышел, но обратите внимание на то, что его фаза абсолютно противоположна фазе входного сигнала. Если взять 5 Вольт за логическую единичку, а 0 Вольт за логический ноль, то у нас получается, что загоняя единичку на вход, получаем ноль на выходе, и наоборот, загоняя ноль на вход, получаем единичку на выходе. Инвертор во всей своей красе
Минусы инвертора на транзисторе
Все, конечно, замечательно, но и здесь есть свои подводные камни. Дело все в том, что транзистор не может сразу быстро выключаться. Проблема заключается в физическом строении самого биполярного транзистора. Для выключения ему требуется некоторое время. В медленно переключающих схемах это не имеет значения, а вот схемы, которые работают на высоких частотах, уже будут иметь искажения. Вот осциллограмма выходного красного сигнала на частоте в 50 Килогерц :
А вот на частоте в 100 Килогерц:
Как видите, сигнал очень сильно искажается. Как же с этим бороться? Можно спроектировать ключ так, чтобы он переключался чуть выше границы насыщения. В этом случае коэффициент насыщения должен быть равен хотя бы единице. Но в этом случае у нас будет падать бОльшее напряжение между коллектором и эмиттером, что приведет к нагреву транзистора и лишним энергозатратам.
Второй вариант, использовать полевые транзисторы. Их еще называют МОП-транзисторы. Характеристики у МОПов намного лучше и энергозатраты на переключение даже меньше, чем у биполярных транзисторов. Поэтому в основном сейчас везде применяются МОП-транзисторы в роли ключей. Ну и самый пик моды — это IGBT-транзисторы. Может быть мы когда-нибудь дойдем и до них…
Обратный коллекторный ток
Как мы помним, транзистор состоит из трех полупроводников. PN-переход, который у нас база-эмиттер называется эмиттерным переходом, а переход, который база-коллектор — коллекторным переходом.
Так как в данном случае у нас транзистор NPN, значит ток будет течь от коллектора к эмиттеру, при условии, что мы будем открывать базу, подавая на нее напряжение более чем 0,6 Вольт (ну чтобы транзистор открылся).
Давайте гипотетически возьмем тонкий-тонкий ножик и вырежем эмиттер прямо по PN-переходу. У нас получится как-то вот так:
Стоп! У нас что, получился диод? Да, он самый! Помните, в статье вольтамперная характеристика (ВАХ) мы рассматривали ВАХ диода:
В правой части ВАХ мы с вами видим как веточка графика очень резко взлетела вверх. В этом случае мы подавали на диод постоянное напряжение вот таким образом, то есть это было прямое включение диода.
Диод пропускал через себя электрический ток. Мы с вами даже проводили опыты с прямым и обратным включением диода. Кто не помнит, можно прочитать здесь.
Но если поменять полярность
то диод у нас не будет пропускать ток. Нас всегда так учили, и в этом есть доля правды, но… наш мир не идеален).
Помните принцип работы PN-перехода? Мы его представляли как воронку. Так вот, для этого рисуночка
наша воронка будет перевернута горлышком к потоку
Направление потока воды — это направление движения электрического тока. Воронка — это и есть диод. Но вот вода, которая попала через узкое горлышко воронки? Как же ее можно назвать? А называется она обратный ток PN перехода (Iобр).
А как вы думаете, если прибавить скорость течения воды, увеличится ли количество воды, которое пройдет через узкое горлышко воронки? Однозначно! Значит, если прибавлять напряжение Uобр , то и увеличится обратный ток Iобр , что мы с вами и видим в левой части на графике ВАХ диода:
Но до какого предела можно увеличивать скорость потока воды? Если она будет очень большой, наша воронка не выдержит, стенки треснут и она разлетится по кусочкам, так ведь? Поэтому на каждый диод можно найти такой параметр, как Uобр.макс , превышение которого для диода равнозначно летальному исходу.
Например, для диода Д226Б:
Uобр.макс = 500 Вольт, а максимальное обратное импульсное Uобр. имп.макс = 600 Вольт. Но имейте ввиду, что электронные схемы проектируют, как говорится «с 30% запасом». И если даже в схеме обратное напряжение на диоде будет 490 Вольт, то в схему поставят диод, который выдерживает более 600 Вольт. С критическими значениями лучше не играть). Импульсное обратное напряжение — это резкие всплески напряжения, которые могут достигать амплитудой до 600 вольт. Но здесь тоже лучше взять с небольшим запасом.
Обратный коллекторный ток транзистора
Так… а что я это все про диод да про диод… Мы же вроде как транзисторы изучаем. Но как ни крути, диод — кирпичик для построения транзистора. Значит, если приложить к коллекторному переходу обратное напряжение, то у нас через переход потечет обратный ток, как в диоде? Именно так. И называется такой параметр в транзисторе обратный коллекторный ток. У нас он обозначается как IКБО , у буржуев — ICBO . Расшифровывается как «ток между коллектором и базой, при открытом эмиттере». Грубо говоря, ножка эмиттера никуда не цепляется и висит в воздухе.
Чтобы замерять обратный ток коллектора, достаточно собрать вот такие простенькие схемки:
для NPN транзистора для PNP транзистора
У кремниевых транзисторов обратный ток коллектора меньше, чем 1 мкА, у германиевых: 1-30 мкА. Так как у меня мультиметр замеряет только от 10 мкА, а германиевых транзисторов под рукой нет, то провести этот опыт я не смогу, так как разрешение прибора не позволяет.
Мы так и не ответили на вопрос, почему обратный ток коллектора имеет такое важное значение и приводится в справочниках? Все дело в том, что при работе транзистор рассеивает какую-то мощность в пространство, значит нагревается. Обратный ток коллектора очень сильно зависит от температуры и на каждые 10 градусов по Цельсию увеличивает свое значение в два раза. Не, ну а что такого? Пусть возрастает, никому же вроде не мешает.
Влияние обратного коллекторного тока
Все дело в том, что в некоторых схемах включения часть этого тока проходит через эмиттерный переход. А как мы с вами помним, через эмиттерный переход течет базовый ток. Чем больше управляющий ток (ток базы) тем больше управляемый (ток коллектора).Следовательно, малейшее изменение базового тока ведет к большому изменению коллекторного тока и вся схема начинает работать неправильно.
Как борются с обратным коллекторным током
Значит, самый главный враг транзистора — это температура. Как же с ней борются разработчики радиоэлектронной аппаратуры (РЭА)?
— используют транзисторы, у которых обратный коллекторный ток имеет очень малое значение. Это, конечно же, кремниевые транзисторы. Небольшая подсказка — маркировка кремниевых транзисторов начинается с букв «КТ», что означает Кремниевый Транзистор.
— использование схем, которые минимизируют обратный ток коллектора.
Если хотите узнать какая маркировка резисторов у Вас, кликайте.
Обратный ток коллектора — важный параметр транзистора. Он приводится в даташите на каждый транзистор. В схемах, которые используются в экстремальных температурных условиях, обратный ток коллектора будет играть очень большую роль. Поэтому, если собираете схему, где не используется радиатор и вентилятор, то, конечно же, лучше взять транзисторы с минимальным обратным коллекторным током.
Основные характеристики транзистора
Проводимость транзистора
Проводимость NPN или PNP. С этим, думаю, уже все понятно
Коэффициент усиления по току
Коэффициент усиления по току в схеме с Общим Эмиттером (ОЭ) (Бета)
Обратный коллекторный ток
Обратный коллекторный ток IКБО (ICBO)
Обозначения и индексы
Откуда вообще берутся эти обозначения индексов? Снизу синим маркером я пометил эти индексы:
Оказывается, все до боли просто.
Первая буква индекса — первый вывод транзистора, вторая буква — второй вывод транзистора, ну а третья буква обозначает оставшийся вывод и его условие, при котором производится этот замер. Самая распространенная третья буква — это «О». Но скорее всего это даже и не буква, а цифра «ноль». Она говорит о том, что на третьем выводе напряжение равняется нулю. Это достигается тем, что оставшийся третий вывод никуда не подключен и висит в воздухе.
Например, IКБО говорит нам о том, что это ток (сила тока), между коллектором и базой, при условии, что напряжение на эмиттере равняется нулю. То есть эмиттер отключен.
Есть также более интересные условия, но они встречаются редко. Например, буква «К» от слова «короткий» (в англ.варианте «Shot»). Такой параметр как UКЭК говорит нам о том, что это напряжение между коллектором и эмиттером, при условии, что база и эмиттер замкнуты накоротко, или детским языком, база с эмиттером соединены проводочком. Здесь последняя буква говорит нам об оставшемся выводе и условии, которое происходит между этим выводом и буковкой-выводом которая рядом.
Также иногда встречается буква «R», которая обозначает, как ни странно, сопротивление. Например UКЭR говорит о том, что это напряжение между коллектором и эмиттером при условии что база и эмиттер соединены сопротивлением. И рядышком в справочнике приводится номинал этого сопротивления.
Также часто встречается вместо третьей буквы индекса обозначение «нас» или на буржуйский манер «sat». «Нас» — кратко от «насыщение», то же самое и «»sat» — saturation в переводе на русский — насыщение. Например, UКЭ нас (VCEsat) — это напряжение насыщения коллектор-эмиттер.
И еще один нюанс… порядок индексов совпадает с положительным направлением тока. Что это значит? Например, UКЭ напряжение между коллектором и эмиттером. Значит ток движется от коллектора к эмиттеру. Но если мы поменяем индексы вот так UЭК у нас это будет уже обозначать, что электрический ток движется от эмиттера к коллектору. Справедливы также следующие выражения:
UКЭ= — UЭК и так далее.
Максимальное допустимое обратное напряжение между коллектором и базой
Максимальное допустимое обратное напряжение между коллектором и базой UКБ макс (VCBO) — это максимальное обратное напряжение, которое может выдержать коллекторный P-N переход при открытом эмиттере (эмиттер ни с чем не связан и его ножка болтается в воздухе, короче говоря, на эмиттере ноль)
Для NPN транзистора это будет выглядеть так:
Для NPN транзистора этот параметр показан с плюсом. Оно и понятно, индексы идут как «КБ», что означает коллектор «плюсовый» а база «минусовая».
Вот, например, этот параметр для транзистора BC337 структуры NPN:
Как вы видите, параметр VCBO показан с плюсом.
Чтобы не мудрить с индексами, для PNP транзистора ставят просто тупо минус перед циферками в даташите, которое говорит нам о том, что напряжение подаем в обратной полярности. В некоторых даташитах знак «минус» не указан, но все равно имейте ввиду, что это обратное напряжение на P-N переходе.
Например как в этом даташите на транзистор S8550 PNP структуры. Видите перед цифрой «30» знак минус? Если бы мы поменяли индексы, то получили бы, что VBCO =30 Вольт. Знак «минус» тогда бы исчез, но в то же время у нас индексы поменялись (я их даже выделил жирным шрифтом).
То есть тут мы видим, что это напряжение тоже обратное.
Максимальное допустимое значение напряжения между эмиттером и базой
Максимальное допустимое напряжение между эмиттером и базой UЭБ макс (VЕВО) — это напряжение, которое может выдержать эмиттерный P-N переход, если приложить напряжение в обратном направлении, при условии, что коллектор у нас никуда не цепляется. Похожий параметр, но только уже для эмиттерного перехода.
Для NPN транзистора это выглядит вот так и напряжение в даташите указывается с плюсом:
А для PNP как-то так:
Для PNP этот параметр также идет с минусом, чтобы не переставлять индексы:
Максимальное допустимое напряжение между коллектором и эмиттером
Максимальное допустимое напряжение между коллектором и эмиттером UКЭ макс (UКЭО). Максимальное напряжение между коллектором и эмиттером по направлению стрелочки эмиттера , при условии что база никуда не цепляется. Для PNP транзистора этот параметр также идет с минусом.
Максимальная рассеиваемая мощность
Максимальная мощность, рассеиваемая на коллекторе PK макс (PC max). Это максимальная мощность, которую транзистор может рассеять на себе в окружающее пространство.
Например, для транзистора S8550 это значение равняется 1 Ватту.
Чтобы его не превысить, нужно рассчитать какую мощность будет рассеивать ваш транзистор по формуле:
P=UK x IK
где
P — это мощность, которая рассеивается на транзисторе
UK — напряжение на коллекторе относительно минуса
IK — ток коллектора
Рассеивание мощности транзистором означает, что на нем будет выделяться тепло, которое рассеивается в окружающее пространство. Поэтому, чтобы отвести это тепло от транзистора, применяют радиаторы:
Особенно это касается мощных транзисторов, через которые текут большие токи и напряжения. Как я уже говорил, для кремниевых транзисторов критическая температура нагрева это 150 градусов по Цельсию, для германиевых 70. Так что следите за температурой, если не хотите получить в результате уголек с дымом. Иными словами если Р превысит PК макс, то вашему транзистору придет жопа.
Максимальный допустимый коллекторный ток
Максимально допустимый коллекторный ток IK макс (Ic max). Превышение этого номинала приводит к пробою переходов, выгоранию тонких токоведущих проводов, которые соединяют ножку транзистора с кристаллом полупроводника. Ну и чем больше ток, тем разумеется и больше мощность, выделяемая транзистором, значит будет больше нагрев.
Граничная частота передачи тока
Граничная частота передачи тока fгр . Это частота, на которой коэффициент β (коэффициент усиления по току) становится равным единице. Так что отсюда вывод, что не каждый транзистор будет усиливать высокочастотные колебания. Поэтому в радиоприемной и радиопередающей аппаратуре используются транзисторы с высокой граничной частотой.
Различных других параметров транзистора туева куча. Здесь же я привел те параметры, на которые следует обращать внимание при проектировании своих электронных безделушек. Некоторые параметры в одной книге обозначают так, в другой эдак, в третьей совсем по-другому. Не могу сказать, что мои названия и обозначение параметров образцовые, но все-таки старался обозначить как в большинстве учебной литературы, чтобы было понятно каждому начинающему электронщику.
Как определить выводы неизвестного биполярного транзистора
Что будет, если перепутать коллектор и эмиттер
Для опыта мы возьмем простой и всеми нами любимый транзистор КТ815Б:
Соберем знакомую вам схемку:
На Bat1 выставляю напряжение в 2,5 вольта. Если подавать более 2,5 Вольт, то лампочка уже ярче гореть не будет. Скажем так, это граница, после которой дальнейшее повышение напряжение на базе не играет никакой роли на силу тока в нагрузке
На Bat2 я выставил 6 Вольт, хотя лампочка у меня на 12 Вольт. При 12 Вольтах транзистор у меня ощутимо грелся, и я не хотел его спалить. Здесь мы видим, какую силу тока потребляет наша лампочка и даже можем рассчитать мощность, которую она потребляет, перемножив эти два значения.
Ну и как вы видели, лампочка горит и схема нормально работает:
Но что случится, если мы перепутаем коллектор и эмиттер? По логике, у нас ток должен течь от эмиттера к коллектору, потому как базу мы не трогали, а коллектор и эмиттер состоят из N полупроводника.
Но на практике лампочка гореть не хочет.
Потребление на блоке питания Bat2 каких-то 10 миллиампер. Значит, ток через лампочку все-таки течет, но очень слабый.
Почему при правильном подключении транзистора ток течет нормально, а при неправильном нет? Дело все в том, транзистор делают не симметричным.
В транзисторах площадь соприкосновения коллектора с базой намного больше, чем эмиттера и базы. Поэтому, когда электроны устремляются из эмиттера к коллектору, то почти все они «ловятся» коллектором, а когда мы путаем выводы, то не все электроны из коллектора «ловятся» эмиттером.
Кстати, чудом не пробило PN переход эмиттер-база, так как напряжение подавали в обратной полярности. Параметр в даташите UЭБ макс . Для этого транзистора критическое напряжение считается 5 Вольт, у нас же оно было даже чуть выше:
Итак, мы с вами узнали, что коллектор и эмиттер неравнозначны. Если в схеме мы перепутаем эти выводы, то может произойти пробой эмиттерного перехода и транзистор выйдет из строя. Так что, не путайте выводы биполярного транзистора ни в коем случае!
Как определить выводы транзистора
Способ №1
Думаю, самый простой. Скачать на этот транзистор даташит. В каждом нормальном даташите есть рисуночек с подробными надписями, где какой вывод. Для этого вводим в гугл или яндекс крупненькие циферки и буковки, которые написаны на транзисторе, и рядышком добавляем слово «даташит». Пока еще не было такого, чтобы я не отыскивал даташит на какой-то радиоэлемент.
Способ №2
Думаю, с поиском вывода базы проблем возникнуть не должно, если учесть, что транзистор состоит из двух диодов, включенных последовательно или катодами, или анодами:
Здесь все просто, ставим мультиметр на значок прозвонки «•)))» и начинаем пробовать все вариации, пока не найдем эти два диода. Вывод, где эти диоды соединяются либо анодами, либо катодами — это и есть база. Чтобы найти коллектор и эмиттер, сравниваем падение напряжение на этих двух диодах. Между коллектором и базойом оно должно быть меньше, чем между эмиттером и базой. Давайте проверим, так ли это?
Для начала рассмотрим транзистор КТ315Б:
Э — эмиттер
К — коллектор
Б — база
Ставим мультиметр на прозвонку и базу находим без проблем. Теперь замеряем падение напряжения на обоих переходах. Падение напряжения на базе-эмиттере 794 милливольт
Падение напряжения на коллекторе-базе 785 милливольт. Мы убедились, что падение напряжения между коллектором и базой меньше, чем между эмиттером и базой. Следовательно, средний синий вывод — это коллектор, а красный слева — эмиттер.
Проверим еще транзистор КТ805АМ. Вот его цоколевка (расположение выводов):
Это у нас транзистор структуры NPN. Предположим, базу нашли (красный вывод). Узнаем, где у него коллектор, а где эмиттер.
Делаем первый замер.
Делаем второй замер:
Следовательно, средний синий вывод — это коллектор, а желтый слева — эмиттер.
Проверим еще один транзистор — КТ814Б. Он у нас PNP структуры. База у него — синий вывод. Замеряем напряжение между синим и красным выводом:
а потом между синим и желтым:
Во фак! И там и там 720 милливольт.
Этот способ этому транзистору не помог. Ну не переживайте, для этого есть третий способ…
Способ №3
Почти в каждом современном мультиметре есть 6 маленьких отверстий, и рядом какие-то буковки, что-то типа NPN, PNP, E, C, B. Вот эти шесть крохотных отверстий как раз и предназначены для того, чтобы замерять коэффициент бета. Я же эти отверстия буду называть дырками. На отверстия они не очень похожи))).
Ставим крутилку мультиметра на значок «hFE«.
Определяем какой он проводимости, то есть NPN или PNP, в такую секцию его и толкаем. Проводимость определяем расположением диодов в транзисторе, если не подзабыли. Берем наш транзистор, которые в обе стороны показал одинаковое падение напряжения на обоих P-N переходах, и суем базу в ту дырочку, где буковка «В».
Далее суем оставшихся два вывода в дырочки С и Е в этом ряду и смотрим на показания мультика:
Базу не трогаем, а тупо меняем местами два вывода. Опа-на, мультик показал намного больше, чем в первый раз. Следовательно, в дырочке Е находится в настоящее время эмиттер, а в дырочке С — коллектор. Все элементарно и просто ;-).
Способ №4
Думаю, является самым легким и точным способом проверки распиновки транзистора. Для этого достаточно приобрести Универсальный R/L/C/Transis tor-metr и сунуть выводы транзистора в клеммы прибора:
Он сразу вам покажет, жив ли ваш транзистор. И если он жив, то выдаст его распиновку.
Как работает PNP транзистор
Принцип работы PNP транзистора
Рассмотрим вот такой рисунок:
Здесь мы видим трубу, по которой течет вода снизу вверх под высоким давлением. В данный момент труба закрыта красной заслонкой и поэтому потока воды нет.
Но как только мы оттягиваем заслонку, чуток потянув зеленый рычажок, то красная заслонка оттягивается и бурный поток воды бежит по трубе снизу вверх.
Но вот мы снова отпускаем зеленый рычажок, и синяя пружина возвращает заслонку в исходное положение и преграждает путь воде
То есть мы чуток притянули заслонку к себе, и вода побежала через трубу бешеным потоком. Почти точно также ведет себя PNP транзистор. Если представить эту трубу как транзистор, то его выводы будут выглядеть вот так:
Значит, для того, чтобы ток бежал от эмиттера к коллектору (а вы ведь помните, что ток должен бежать туда, куда показывает стрелка эмиттера)
мы должны сделать так, чтобы из базы вытекал ток, или выражаясь дилетантским языком, подавать на базу минус питания («оттягивать» напряжение на себя).
Работа PNP транзистора на реальном примере
Ну что, давайте проведем долгожданный опыт. Для этого возьмем транзистор КТ814Б, который является комплиментарной парой транзистору КТ815Б.
Кто плохо читал прошлые статьи, хочу напомнить, что комплиментарная пара для кого-либо транзистора — это транзистор точно с такими же характеристиками и параметрами, НО у него просто-напросто другая проводимость. Это значит, что транзистор КТ815 у нас обратной проводимости, то есть NPN, а КТ814 прямой проводимости, то есть PNP. Справедливо также и обратное: для транзистора КТ814 комплиментарной парой является транзистор КТ815. Короче говоря, зеркальные братья-близнецы.
Транзистор КТ814Б является транзистором PNP проводимости:
Вот его цоколевка:
Для того, чтобы показать принцип его работы, мы его соберем по схеме с Общим Эмиттером (ОЭ):
На деле вся схема выглядит как-то так:
Синие проводки-крокодилы идут от блока питания Bat1, а другие два провода с крокодилами, черный и красный, от блока питания Bat2.
Итак, для того, чтобы схема заработала, выставляем на Bat2 напряжение для питания лампочки накаливания. Так как лампочка у нас на 6 Вольт, то и выставляем 6 Вольт.
На блоке питания Bat1 аккуратно добавляем напряжение от нуля и пока не загорится лампочка накаливания. И вот при напряжении в 0,6 Вольт
у нас загорелась лампочка
То есть транзистор «открылся» и через цепь эмиттер-коллектор побежал электрический ток, который заставил гореть нашу лампочку. Напряжение открытия — это падение напряжение на PN-переходе база-эмиттер. Как вы помните, для кремниевых транзисторов ( а транзистор КТ814Б у нас кремниевый, об этом говорит буква «К» в начале его названия) это значение находится в диапазоне 0,5-0,7 Вольт. То есть чтобы «открыть» транзистор, достаточно подать на базу-эмиттер напряжение более, чем 0,5-0,7 Вольт.
Схемы включения NPN и PNP транзисторов
Итак, посмотрите на две схемы и найдите разницу. Слева NPN транзистор КТ815Б в схеме с ОЭ, а справа КТ814Б по такой же схеме включения:
Ну и в чем заключается различие? Да в полярности питания! И вот теперь можно с уверенностью сказать, что транзистор проводимости PNP открывается «минусом», так как на базу мы подаем «минус», а транзистор проводимости NPN открывается «плюсом».
Приобрести биполярные транзисторы можно тут.